Properties

Label 2420.2.a.n.1.4
Level $2420$
Weight $2$
Character 2420.1
Self dual yes
Analytic conductor $19.324$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2420,2,Mod(1,2420)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2420, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2420.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2420 = 2^{2} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2420.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.3237972891\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.5125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 6x^{2} + 7x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 220)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.70636\) of defining polynomial
Character \(\chi\) \(=\) 2420.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.70636 q^{3} -1.00000 q^{5} +3.76095 q^{7} +4.32440 q^{9} +3.26981 q^{13} -2.70636 q^{15} -3.90869 q^{17} +4.32440 q^{19} +10.1785 q^{21} -6.41755 q^{23} +1.00000 q^{25} +3.58430 q^{27} +6.50105 q^{29} +5.48817 q^{31} -3.76095 q^{35} -10.0179 q^{37} +8.84928 q^{39} +8.01787 q^{41} +0.906850 q^{43} -4.32440 q^{45} +5.52673 q^{47} +7.14476 q^{49} -10.5783 q^{51} +1.09131 q^{53} +11.7034 q^{57} -6.63406 q^{59} -9.02480 q^{61} +16.2638 q^{63} -3.26981 q^{65} +13.9684 q^{67} -17.3682 q^{69} -10.3730 q^{71} -3.68253 q^{73} +2.70636 q^{75} +7.27463 q^{79} -3.27279 q^{81} -6.11400 q^{83} +3.90869 q^{85} +17.5942 q^{87} -12.1209 q^{89} +12.2976 q^{91} +14.8530 q^{93} -4.32440 q^{95} -12.3393 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 4 q^{5} + 3 q^{7} + 4 q^{9} + 3 q^{13} - 2 q^{15} + q^{17} + 4 q^{19} + 14 q^{21} - 11 q^{23} + 4 q^{25} + 11 q^{27} + 4 q^{29} - q^{31} - 3 q^{35} - 17 q^{37} + 19 q^{39} + 9 q^{41} + 5 q^{43}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.70636 1.56252 0.781259 0.624206i \(-0.214578\pi\)
0.781259 + 0.624206i \(0.214578\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 3.76095 1.42151 0.710753 0.703442i \(-0.248354\pi\)
0.710753 + 0.703442i \(0.248354\pi\)
\(8\) 0 0
\(9\) 4.32440 1.44147
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 3.26981 0.906881 0.453441 0.891287i \(-0.350196\pi\)
0.453441 + 0.891287i \(0.350196\pi\)
\(14\) 0 0
\(15\) −2.70636 −0.698780
\(16\) 0 0
\(17\) −3.90869 −0.947997 −0.473999 0.880526i \(-0.657190\pi\)
−0.473999 + 0.880526i \(0.657190\pi\)
\(18\) 0 0
\(19\) 4.32440 0.992085 0.496042 0.868298i \(-0.334786\pi\)
0.496042 + 0.868298i \(0.334786\pi\)
\(20\) 0 0
\(21\) 10.1785 2.22113
\(22\) 0 0
\(23\) −6.41755 −1.33815 −0.669075 0.743194i \(-0.733310\pi\)
−0.669075 + 0.743194i \(0.733310\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 3.58430 0.689798
\(28\) 0 0
\(29\) 6.50105 1.20722 0.603608 0.797282i \(-0.293729\pi\)
0.603608 + 0.797282i \(0.293729\pi\)
\(30\) 0 0
\(31\) 5.48817 0.985704 0.492852 0.870113i \(-0.335954\pi\)
0.492852 + 0.870113i \(0.335954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.76095 −0.635717
\(36\) 0 0
\(37\) −10.0179 −1.64693 −0.823464 0.567369i \(-0.807961\pi\)
−0.823464 + 0.567369i \(0.807961\pi\)
\(38\) 0 0
\(39\) 8.84928 1.41702
\(40\) 0 0
\(41\) 8.01787 1.25218 0.626091 0.779750i \(-0.284654\pi\)
0.626091 + 0.779750i \(0.284654\pi\)
\(42\) 0 0
\(43\) 0.906850 0.138293 0.0691467 0.997607i \(-0.477972\pi\)
0.0691467 + 0.997607i \(0.477972\pi\)
\(44\) 0 0
\(45\) −4.32440 −0.644643
\(46\) 0 0
\(47\) 5.52673 0.806156 0.403078 0.915166i \(-0.367940\pi\)
0.403078 + 0.915166i \(0.367940\pi\)
\(48\) 0 0
\(49\) 7.14476 1.02068
\(50\) 0 0
\(51\) −10.5783 −1.48126
\(52\) 0 0
\(53\) 1.09131 0.149903 0.0749514 0.997187i \(-0.476120\pi\)
0.0749514 + 0.997187i \(0.476120\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 11.7034 1.55015
\(58\) 0 0
\(59\) −6.63406 −0.863682 −0.431841 0.901950i \(-0.642136\pi\)
−0.431841 + 0.901950i \(0.642136\pi\)
\(60\) 0 0
\(61\) −9.02480 −1.15551 −0.577754 0.816211i \(-0.696071\pi\)
−0.577754 + 0.816211i \(0.696071\pi\)
\(62\) 0 0
\(63\) 16.2638 2.04905
\(64\) 0 0
\(65\) −3.26981 −0.405570
\(66\) 0 0
\(67\) 13.9684 1.70651 0.853254 0.521496i \(-0.174626\pi\)
0.853254 + 0.521496i \(0.174626\pi\)
\(68\) 0 0
\(69\) −17.3682 −2.09089
\(70\) 0 0
\(71\) −10.3730 −1.23105 −0.615526 0.788117i \(-0.711056\pi\)
−0.615526 + 0.788117i \(0.711056\pi\)
\(72\) 0 0
\(73\) −3.68253 −0.431008 −0.215504 0.976503i \(-0.569139\pi\)
−0.215504 + 0.976503i \(0.569139\pi\)
\(74\) 0 0
\(75\) 2.70636 0.312504
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7.27463 0.818460 0.409230 0.912431i \(-0.365797\pi\)
0.409230 + 0.912431i \(0.365797\pi\)
\(80\) 0 0
\(81\) −3.27279 −0.363643
\(82\) 0 0
\(83\) −6.11400 −0.671099 −0.335549 0.942023i \(-0.608922\pi\)
−0.335549 + 0.942023i \(0.608922\pi\)
\(84\) 0 0
\(85\) 3.90869 0.423957
\(86\) 0 0
\(87\) 17.5942 1.88630
\(88\) 0 0
\(89\) −12.1209 −1.28482 −0.642408 0.766363i \(-0.722064\pi\)
−0.642408 + 0.766363i \(0.722064\pi\)
\(90\) 0 0
\(91\) 12.2976 1.28914
\(92\) 0 0
\(93\) 14.8530 1.54018
\(94\) 0 0
\(95\) −4.32440 −0.443674
\(96\) 0 0
\(97\) −12.3393 −1.25286 −0.626432 0.779476i \(-0.715486\pi\)
−0.626432 + 0.779476i \(0.715486\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.0832431 0.00828300 0.00414150 0.999991i \(-0.498682\pi\)
0.00414150 + 0.999991i \(0.498682\pi\)
\(102\) 0 0
\(103\) 11.1032 1.09403 0.547016 0.837122i \(-0.315764\pi\)
0.547016 + 0.837122i \(0.315764\pi\)
\(104\) 0 0
\(105\) −10.1785 −0.993320
\(106\) 0 0
\(107\) −12.8690 −1.24409 −0.622046 0.782980i \(-0.713698\pi\)
−0.622046 + 0.782980i \(0.713698\pi\)
\(108\) 0 0
\(109\) 7.51183 0.719503 0.359752 0.933048i \(-0.382861\pi\)
0.359752 + 0.933048i \(0.382861\pi\)
\(110\) 0 0
\(111\) −27.1120 −2.57336
\(112\) 0 0
\(113\) 0.467314 0.0439612 0.0219806 0.999758i \(-0.493003\pi\)
0.0219806 + 0.999758i \(0.493003\pi\)
\(114\) 0 0
\(115\) 6.41755 0.598439
\(116\) 0 0
\(117\) 14.1399 1.30724
\(118\) 0 0
\(119\) −14.7004 −1.34758
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 21.6993 1.95656
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 18.0516 1.60182 0.800911 0.598784i \(-0.204349\pi\)
0.800911 + 0.598784i \(0.204349\pi\)
\(128\) 0 0
\(129\) 2.45426 0.216086
\(130\) 0 0
\(131\) 6.48010 0.566169 0.283085 0.959095i \(-0.408642\pi\)
0.283085 + 0.959095i \(0.408642\pi\)
\(132\) 0 0
\(133\) 16.2638 1.41025
\(134\) 0 0
\(135\) −3.58430 −0.308487
\(136\) 0 0
\(137\) 1.93761 0.165541 0.0827705 0.996569i \(-0.473623\pi\)
0.0827705 + 0.996569i \(0.473623\pi\)
\(138\) 0 0
\(139\) 13.7758 1.16845 0.584226 0.811591i \(-0.301398\pi\)
0.584226 + 0.811591i \(0.301398\pi\)
\(140\) 0 0
\(141\) 14.9573 1.25963
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −6.50105 −0.539883
\(146\) 0 0
\(147\) 19.3363 1.59483
\(148\) 0 0
\(149\) 9.68865 0.793725 0.396863 0.917878i \(-0.370099\pi\)
0.396863 + 0.917878i \(0.370099\pi\)
\(150\) 0 0
\(151\) −16.6447 −1.35452 −0.677262 0.735742i \(-0.736834\pi\)
−0.677262 + 0.735742i \(0.736834\pi\)
\(152\) 0 0
\(153\) −16.9027 −1.36650
\(154\) 0 0
\(155\) −5.48817 −0.440820
\(156\) 0 0
\(157\) 0.958197 0.0764724 0.0382362 0.999269i \(-0.487826\pi\)
0.0382362 + 0.999269i \(0.487826\pi\)
\(158\) 0 0
\(159\) 2.95348 0.234226
\(160\) 0 0
\(161\) −24.1361 −1.90219
\(162\) 0 0
\(163\) −4.44532 −0.348185 −0.174092 0.984729i \(-0.555699\pi\)
−0.174092 + 0.984729i \(0.555699\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.9494 1.07943 0.539717 0.841847i \(-0.318531\pi\)
0.539717 + 0.841847i \(0.318531\pi\)
\(168\) 0 0
\(169\) −2.30837 −0.177567
\(170\) 0 0
\(171\) 18.7004 1.43006
\(172\) 0 0
\(173\) −16.1640 −1.22893 −0.614464 0.788945i \(-0.710628\pi\)
−0.614464 + 0.788945i \(0.710628\pi\)
\(174\) 0 0
\(175\) 3.76095 0.284301
\(176\) 0 0
\(177\) −17.9542 −1.34952
\(178\) 0 0
\(179\) 18.3810 1.37386 0.686930 0.726724i \(-0.258958\pi\)
0.686930 + 0.726724i \(0.258958\pi\)
\(180\) 0 0
\(181\) 11.0775 0.823388 0.411694 0.911322i \(-0.364937\pi\)
0.411694 + 0.911322i \(0.364937\pi\)
\(182\) 0 0
\(183\) −24.4244 −1.80550
\(184\) 0 0
\(185\) 10.0179 0.736529
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 13.4804 0.980552
\(190\) 0 0
\(191\) 9.61874 0.695987 0.347994 0.937497i \(-0.386863\pi\)
0.347994 + 0.937497i \(0.386863\pi\)
\(192\) 0 0
\(193\) −19.6557 −1.41485 −0.707425 0.706789i \(-0.750143\pi\)
−0.707425 + 0.706789i \(0.750143\pi\)
\(194\) 0 0
\(195\) −8.84928 −0.633710
\(196\) 0 0
\(197\) −12.1768 −0.867562 −0.433781 0.901018i \(-0.642821\pi\)
−0.433781 + 0.901018i \(0.642821\pi\)
\(198\) 0 0
\(199\) 8.44164 0.598412 0.299206 0.954189i \(-0.403278\pi\)
0.299206 + 0.954189i \(0.403278\pi\)
\(200\) 0 0
\(201\) 37.8035 2.66645
\(202\) 0 0
\(203\) 24.4501 1.71606
\(204\) 0 0
\(205\) −8.01787 −0.559992
\(206\) 0 0
\(207\) −27.7520 −1.92890
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −21.8532 −1.50444 −0.752219 0.658913i \(-0.771016\pi\)
−0.752219 + 0.658913i \(0.771016\pi\)
\(212\) 0 0
\(213\) −28.0732 −1.92354
\(214\) 0 0
\(215\) −0.906850 −0.0618467
\(216\) 0 0
\(217\) 20.6407 1.40118
\(218\) 0 0
\(219\) −9.96626 −0.673458
\(220\) 0 0
\(221\) −12.7807 −0.859721
\(222\) 0 0
\(223\) −26.4245 −1.76951 −0.884757 0.466053i \(-0.845676\pi\)
−0.884757 + 0.466053i \(0.845676\pi\)
\(224\) 0 0
\(225\) 4.32440 0.288293
\(226\) 0 0
\(227\) 9.91876 0.658331 0.329166 0.944272i \(-0.393233\pi\)
0.329166 + 0.944272i \(0.393233\pi\)
\(228\) 0 0
\(229\) −12.9812 −0.857819 −0.428909 0.903348i \(-0.641102\pi\)
−0.428909 + 0.903348i \(0.641102\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.65984 −0.436300 −0.218150 0.975915i \(-0.570002\pi\)
−0.218150 + 0.975915i \(0.570002\pi\)
\(234\) 0 0
\(235\) −5.52673 −0.360524
\(236\) 0 0
\(237\) 19.6878 1.27886
\(238\) 0 0
\(239\) −21.8918 −1.41606 −0.708031 0.706181i \(-0.750416\pi\)
−0.708031 + 0.706181i \(0.750416\pi\)
\(240\) 0 0
\(241\) 10.6517 0.686134 0.343067 0.939311i \(-0.388534\pi\)
0.343067 + 0.939311i \(0.388534\pi\)
\(242\) 0 0
\(243\) −19.6102 −1.25800
\(244\) 0 0
\(245\) −7.14476 −0.456462
\(246\) 0 0
\(247\) 14.1399 0.899703
\(248\) 0 0
\(249\) −16.5467 −1.04860
\(250\) 0 0
\(251\) −12.1667 −0.767958 −0.383979 0.923342i \(-0.625447\pi\)
−0.383979 + 0.923342i \(0.625447\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 10.5783 0.662441
\(256\) 0 0
\(257\) 6.11400 0.381381 0.190690 0.981650i \(-0.438927\pi\)
0.190690 + 0.981650i \(0.438927\pi\)
\(258\) 0 0
\(259\) −37.6767 −2.34112
\(260\) 0 0
\(261\) 28.1131 1.74016
\(262\) 0 0
\(263\) 0.446463 0.0275301 0.0137650 0.999905i \(-0.495618\pi\)
0.0137650 + 0.999905i \(0.495618\pi\)
\(264\) 0 0
\(265\) −1.09131 −0.0670385
\(266\) 0 0
\(267\) −32.8036 −2.00755
\(268\) 0 0
\(269\) 0.00796455 0.000485607 0 0.000242803 1.00000i \(-0.499923\pi\)
0.000242803 1.00000i \(0.499923\pi\)
\(270\) 0 0
\(271\) 18.5880 1.12914 0.564570 0.825385i \(-0.309042\pi\)
0.564570 + 0.825385i \(0.309042\pi\)
\(272\) 0 0
\(273\) 33.2817 2.01430
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.95960 0.418162 0.209081 0.977898i \(-0.432953\pi\)
0.209081 + 0.977898i \(0.432953\pi\)
\(278\) 0 0
\(279\) 23.7330 1.42086
\(280\) 0 0
\(281\) −22.3622 −1.33402 −0.667010 0.745049i \(-0.732426\pi\)
−0.667010 + 0.745049i \(0.732426\pi\)
\(282\) 0 0
\(283\) −23.3482 −1.38791 −0.693954 0.720019i \(-0.744133\pi\)
−0.693954 + 0.720019i \(0.744133\pi\)
\(284\) 0 0
\(285\) −11.7034 −0.693249
\(286\) 0 0
\(287\) 30.1548 1.77998
\(288\) 0 0
\(289\) −1.72213 −0.101302
\(290\) 0 0
\(291\) −33.3946 −1.95762
\(292\) 0 0
\(293\) 3.50122 0.204543 0.102272 0.994757i \(-0.467389\pi\)
0.102272 + 0.994757i \(0.467389\pi\)
\(294\) 0 0
\(295\) 6.63406 0.386250
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −20.9841 −1.21354
\(300\) 0 0
\(301\) 3.41062 0.196585
\(302\) 0 0
\(303\) 0.225286 0.0129423
\(304\) 0 0
\(305\) 9.02480 0.516758
\(306\) 0 0
\(307\) −8.26358 −0.471628 −0.235814 0.971798i \(-0.575776\pi\)
−0.235814 + 0.971798i \(0.575776\pi\)
\(308\) 0 0
\(309\) 30.0493 1.70945
\(310\) 0 0
\(311\) 11.5621 0.655629 0.327814 0.944742i \(-0.393688\pi\)
0.327814 + 0.944742i \(0.393688\pi\)
\(312\) 0 0
\(313\) −19.3148 −1.09173 −0.545867 0.837872i \(-0.683800\pi\)
−0.545867 + 0.837872i \(0.683800\pi\)
\(314\) 0 0
\(315\) −16.2638 −0.916364
\(316\) 0 0
\(317\) 22.3736 1.25662 0.628312 0.777961i \(-0.283746\pi\)
0.628312 + 0.777961i \(0.283746\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −34.8282 −1.94392
\(322\) 0 0
\(323\) −16.9027 −0.940493
\(324\) 0 0
\(325\) 3.26981 0.181376
\(326\) 0 0
\(327\) 20.3297 1.12424
\(328\) 0 0
\(329\) 20.7858 1.14596
\(330\) 0 0
\(331\) −5.17876 −0.284650 −0.142325 0.989820i \(-0.545458\pi\)
−0.142325 + 0.989820i \(0.545458\pi\)
\(332\) 0 0
\(333\) −43.3212 −2.37399
\(334\) 0 0
\(335\) −13.9684 −0.763173
\(336\) 0 0
\(337\) 5.52656 0.301051 0.150526 0.988606i \(-0.451903\pi\)
0.150526 + 0.988606i \(0.451903\pi\)
\(338\) 0 0
\(339\) 1.26472 0.0686902
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.544434 0.0293967
\(344\) 0 0
\(345\) 17.3682 0.935073
\(346\) 0 0
\(347\) 8.58798 0.461027 0.230513 0.973069i \(-0.425959\pi\)
0.230513 + 0.973069i \(0.425959\pi\)
\(348\) 0 0
\(349\) 14.6729 0.785422 0.392711 0.919662i \(-0.371537\pi\)
0.392711 + 0.919662i \(0.371537\pi\)
\(350\) 0 0
\(351\) 11.7200 0.625565
\(352\) 0 0
\(353\) 5.79041 0.308192 0.154096 0.988056i \(-0.450753\pi\)
0.154096 + 0.988056i \(0.450753\pi\)
\(354\) 0 0
\(355\) 10.3730 0.550543
\(356\) 0 0
\(357\) −39.7846 −2.10562
\(358\) 0 0
\(359\) −11.3630 −0.599714 −0.299857 0.953984i \(-0.596939\pi\)
−0.299857 + 0.953984i \(0.596939\pi\)
\(360\) 0 0
\(361\) −0.299598 −0.0157683
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.68253 0.192752
\(366\) 0 0
\(367\) −4.58446 −0.239307 −0.119653 0.992816i \(-0.538178\pi\)
−0.119653 + 0.992816i \(0.538178\pi\)
\(368\) 0 0
\(369\) 34.6725 1.80498
\(370\) 0 0
\(371\) 4.10436 0.213088
\(372\) 0 0
\(373\) −22.8487 −1.18306 −0.591530 0.806283i \(-0.701476\pi\)
−0.591530 + 0.806283i \(0.701476\pi\)
\(374\) 0 0
\(375\) −2.70636 −0.139756
\(376\) 0 0
\(377\) 21.2572 1.09480
\(378\) 0 0
\(379\) −21.0506 −1.08130 −0.540648 0.841249i \(-0.681821\pi\)
−0.540648 + 0.841249i \(0.681821\pi\)
\(380\) 0 0
\(381\) 48.8542 2.50288
\(382\) 0 0
\(383\) −0.259899 −0.0132802 −0.00664012 0.999978i \(-0.502114\pi\)
−0.00664012 + 0.999978i \(0.502114\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.92158 0.199345
\(388\) 0 0
\(389\) −15.7617 −0.799148 −0.399574 0.916701i \(-0.630842\pi\)
−0.399574 + 0.916701i \(0.630842\pi\)
\(390\) 0 0
\(391\) 25.0842 1.26856
\(392\) 0 0
\(393\) 17.5375 0.884650
\(394\) 0 0
\(395\) −7.27463 −0.366026
\(396\) 0 0
\(397\) 7.62978 0.382928 0.191464 0.981500i \(-0.438677\pi\)
0.191464 + 0.981500i \(0.438677\pi\)
\(398\) 0 0
\(399\) 44.0159 2.20355
\(400\) 0 0
\(401\) −30.1505 −1.50565 −0.752823 0.658223i \(-0.771309\pi\)
−0.752823 + 0.658223i \(0.771309\pi\)
\(402\) 0 0
\(403\) 17.9452 0.893916
\(404\) 0 0
\(405\) 3.27279 0.162626
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 31.1480 1.54017 0.770085 0.637942i \(-0.220214\pi\)
0.770085 + 0.637942i \(0.220214\pi\)
\(410\) 0 0
\(411\) 5.24387 0.258661
\(412\) 0 0
\(413\) −24.9504 −1.22773
\(414\) 0 0
\(415\) 6.11400 0.300125
\(416\) 0 0
\(417\) 37.2824 1.82573
\(418\) 0 0
\(419\) 13.3733 0.653328 0.326664 0.945141i \(-0.394075\pi\)
0.326664 + 0.945141i \(0.394075\pi\)
\(420\) 0 0
\(421\) −10.9730 −0.534793 −0.267396 0.963587i \(-0.586163\pi\)
−0.267396 + 0.963587i \(0.586163\pi\)
\(422\) 0 0
\(423\) 23.8998 1.16205
\(424\) 0 0
\(425\) −3.90869 −0.189599
\(426\) 0 0
\(427\) −33.9418 −1.64256
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.2159 −0.781093 −0.390547 0.920583i \(-0.627714\pi\)
−0.390547 + 0.920583i \(0.627714\pi\)
\(432\) 0 0
\(433\) −21.4642 −1.03150 −0.515751 0.856739i \(-0.672487\pi\)
−0.515751 + 0.856739i \(0.672487\pi\)
\(434\) 0 0
\(435\) −17.5942 −0.843577
\(436\) 0 0
\(437\) −27.7520 −1.32756
\(438\) 0 0
\(439\) 5.94741 0.283855 0.141927 0.989877i \(-0.454670\pi\)
0.141927 + 0.989877i \(0.454670\pi\)
\(440\) 0 0
\(441\) 30.8968 1.47127
\(442\) 0 0
\(443\) −23.7410 −1.12797 −0.563984 0.825786i \(-0.690732\pi\)
−0.563984 + 0.825786i \(0.690732\pi\)
\(444\) 0 0
\(445\) 12.1209 0.574587
\(446\) 0 0
\(447\) 26.2210 1.24021
\(448\) 0 0
\(449\) 34.4170 1.62424 0.812119 0.583492i \(-0.198314\pi\)
0.812119 + 0.583492i \(0.198314\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −45.0465 −2.11647
\(454\) 0 0
\(455\) −12.2976 −0.576520
\(456\) 0 0
\(457\) 14.8301 0.693723 0.346862 0.937916i \(-0.387247\pi\)
0.346862 + 0.937916i \(0.387247\pi\)
\(458\) 0 0
\(459\) −14.0099 −0.653926
\(460\) 0 0
\(461\) 29.8441 1.38998 0.694990 0.719020i \(-0.255409\pi\)
0.694990 + 0.719020i \(0.255409\pi\)
\(462\) 0 0
\(463\) −6.87337 −0.319433 −0.159716 0.987163i \(-0.551058\pi\)
−0.159716 + 0.987163i \(0.551058\pi\)
\(464\) 0 0
\(465\) −14.8530 −0.688790
\(466\) 0 0
\(467\) −1.40932 −0.0652155 −0.0326077 0.999468i \(-0.510381\pi\)
−0.0326077 + 0.999468i \(0.510381\pi\)
\(468\) 0 0
\(469\) 52.5344 2.42581
\(470\) 0 0
\(471\) 2.59323 0.119490
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 4.32440 0.198417
\(476\) 0 0
\(477\) 4.71925 0.216080
\(478\) 0 0
\(479\) −23.2691 −1.06319 −0.531596 0.846998i \(-0.678408\pi\)
−0.531596 + 0.846998i \(0.678408\pi\)
\(480\) 0 0
\(481\) −32.7565 −1.49357
\(482\) 0 0
\(483\) −65.3210 −2.97221
\(484\) 0 0
\(485\) 12.3393 0.560298
\(486\) 0 0
\(487\) 18.6543 0.845308 0.422654 0.906291i \(-0.361099\pi\)
0.422654 + 0.906291i \(0.361099\pi\)
\(488\) 0 0
\(489\) −12.0307 −0.544045
\(490\) 0 0
\(491\) −42.0138 −1.89605 −0.948027 0.318190i \(-0.896925\pi\)
−0.948027 + 0.318190i \(0.896925\pi\)
\(492\) 0 0
\(493\) −25.4106 −1.14444
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −39.0125 −1.74995
\(498\) 0 0
\(499\) −5.22231 −0.233783 −0.116891 0.993145i \(-0.537293\pi\)
−0.116891 + 0.993145i \(0.537293\pi\)
\(500\) 0 0
\(501\) 37.7520 1.68664
\(502\) 0 0
\(503\) 28.8361 1.28574 0.642868 0.765977i \(-0.277744\pi\)
0.642868 + 0.765977i \(0.277744\pi\)
\(504\) 0 0
\(505\) −0.0832431 −0.00370427
\(506\) 0 0
\(507\) −6.24728 −0.277451
\(508\) 0 0
\(509\) 5.52488 0.244886 0.122443 0.992476i \(-0.460927\pi\)
0.122443 + 0.992476i \(0.460927\pi\)
\(510\) 0 0
\(511\) −13.8498 −0.612680
\(512\) 0 0
\(513\) 15.4999 0.684338
\(514\) 0 0
\(515\) −11.1032 −0.489266
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −43.7457 −1.92022
\(520\) 0 0
\(521\) −29.4551 −1.29045 −0.645226 0.763991i \(-0.723237\pi\)
−0.645226 + 0.763991i \(0.723237\pi\)
\(522\) 0 0
\(523\) −2.21539 −0.0968722 −0.0484361 0.998826i \(-0.515424\pi\)
−0.0484361 + 0.998826i \(0.515424\pi\)
\(524\) 0 0
\(525\) 10.1785 0.444226
\(526\) 0 0
\(527\) −21.4515 −0.934444
\(528\) 0 0
\(529\) 18.1849 0.790648
\(530\) 0 0
\(531\) −28.6883 −1.24497
\(532\) 0 0
\(533\) 26.2169 1.13558
\(534\) 0 0
\(535\) 12.8690 0.556375
\(536\) 0 0
\(537\) 49.7456 2.14668
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 33.7116 1.44938 0.724688 0.689077i \(-0.241984\pi\)
0.724688 + 0.689077i \(0.241984\pi\)
\(542\) 0 0
\(543\) 29.9799 1.28656
\(544\) 0 0
\(545\) −7.51183 −0.321772
\(546\) 0 0
\(547\) −28.0701 −1.20019 −0.600096 0.799928i \(-0.704871\pi\)
−0.600096 + 0.799928i \(0.704871\pi\)
\(548\) 0 0
\(549\) −39.0268 −1.66562
\(550\) 0 0
\(551\) 28.1131 1.19766
\(552\) 0 0
\(553\) 27.3595 1.16345
\(554\) 0 0
\(555\) 27.1120 1.15084
\(556\) 0 0
\(557\) 15.5191 0.657565 0.328782 0.944406i \(-0.393362\pi\)
0.328782 + 0.944406i \(0.393362\pi\)
\(558\) 0 0
\(559\) 2.96522 0.125416
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20.1441 −0.848971 −0.424485 0.905435i \(-0.639545\pi\)
−0.424485 + 0.905435i \(0.639545\pi\)
\(564\) 0 0
\(565\) −0.467314 −0.0196601
\(566\) 0 0
\(567\) −12.3088 −0.516921
\(568\) 0 0
\(569\) 31.4731 1.31942 0.659711 0.751520i \(-0.270679\pi\)
0.659711 + 0.751520i \(0.270679\pi\)
\(570\) 0 0
\(571\) −14.3295 −0.599673 −0.299836 0.953991i \(-0.596932\pi\)
−0.299836 + 0.953991i \(0.596932\pi\)
\(572\) 0 0
\(573\) 26.0318 1.08749
\(574\) 0 0
\(575\) −6.41755 −0.267630
\(576\) 0 0
\(577\) −11.4614 −0.477142 −0.238571 0.971125i \(-0.576679\pi\)
−0.238571 + 0.971125i \(0.576679\pi\)
\(578\) 0 0
\(579\) −53.1955 −2.21073
\(580\) 0 0
\(581\) −22.9945 −0.953971
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −14.1399 −0.584614
\(586\) 0 0
\(587\) 9.42183 0.388880 0.194440 0.980914i \(-0.437711\pi\)
0.194440 + 0.980914i \(0.437711\pi\)
\(588\) 0 0
\(589\) 23.7330 0.977901
\(590\) 0 0
\(591\) −32.9549 −1.35558
\(592\) 0 0
\(593\) −28.2270 −1.15914 −0.579571 0.814922i \(-0.696780\pi\)
−0.579571 + 0.814922i \(0.696780\pi\)
\(594\) 0 0
\(595\) 14.7004 0.602658
\(596\) 0 0
\(597\) 22.8461 0.935030
\(598\) 0 0
\(599\) 4.03320 0.164792 0.0823960 0.996600i \(-0.473743\pi\)
0.0823960 + 0.996600i \(0.473743\pi\)
\(600\) 0 0
\(601\) 37.1844 1.51679 0.758393 0.651798i \(-0.225985\pi\)
0.758393 + 0.651798i \(0.225985\pi\)
\(602\) 0 0
\(603\) 60.4048 2.45987
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −18.1300 −0.735872 −0.367936 0.929851i \(-0.619936\pi\)
−0.367936 + 0.929851i \(0.619936\pi\)
\(608\) 0 0
\(609\) 66.1710 2.68138
\(610\) 0 0
\(611\) 18.0713 0.731087
\(612\) 0 0
\(613\) −8.53512 −0.344730 −0.172365 0.985033i \(-0.555141\pi\)
−0.172365 + 0.985033i \(0.555141\pi\)
\(614\) 0 0
\(615\) −21.6993 −0.874999
\(616\) 0 0
\(617\) −24.5659 −0.988985 −0.494492 0.869182i \(-0.664646\pi\)
−0.494492 + 0.869182i \(0.664646\pi\)
\(618\) 0 0
\(619\) −38.2737 −1.53835 −0.769174 0.639039i \(-0.779332\pi\)
−0.769174 + 0.639039i \(0.779332\pi\)
\(620\) 0 0
\(621\) −23.0024 −0.923054
\(622\) 0 0
\(623\) −45.5862 −1.82637
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 39.1568 1.56128
\(630\) 0 0
\(631\) 20.6926 0.823759 0.411880 0.911238i \(-0.364872\pi\)
0.411880 + 0.911238i \(0.364872\pi\)
\(632\) 0 0
\(633\) −59.1427 −2.35071
\(634\) 0 0
\(635\) −18.0516 −0.716356
\(636\) 0 0
\(637\) 23.3620 0.925635
\(638\) 0 0
\(639\) −44.8571 −1.77452
\(640\) 0 0
\(641\) −8.35542 −0.330019 −0.165010 0.986292i \(-0.552766\pi\)
−0.165010 + 0.986292i \(0.552766\pi\)
\(642\) 0 0
\(643\) 29.4013 1.15948 0.579738 0.814803i \(-0.303155\pi\)
0.579738 + 0.814803i \(0.303155\pi\)
\(644\) 0 0
\(645\) −2.45426 −0.0966366
\(646\) 0 0
\(647\) 23.4990 0.923843 0.461921 0.886921i \(-0.347160\pi\)
0.461921 + 0.886921i \(0.347160\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 55.8613 2.18938
\(652\) 0 0
\(653\) 15.4179 0.603348 0.301674 0.953411i \(-0.402455\pi\)
0.301674 + 0.953411i \(0.402455\pi\)
\(654\) 0 0
\(655\) −6.48010 −0.253198
\(656\) 0 0
\(657\) −15.9247 −0.621283
\(658\) 0 0
\(659\) 12.2785 0.478301 0.239151 0.970982i \(-0.423131\pi\)
0.239151 + 0.970982i \(0.423131\pi\)
\(660\) 0 0
\(661\) 25.8163 1.00414 0.502070 0.864827i \(-0.332572\pi\)
0.502070 + 0.864827i \(0.332572\pi\)
\(662\) 0 0
\(663\) −34.5891 −1.34333
\(664\) 0 0
\(665\) −16.2638 −0.630685
\(666\) 0 0
\(667\) −41.7208 −1.61544
\(668\) 0 0
\(669\) −71.5142 −2.76490
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 32.3331 1.24635 0.623174 0.782083i \(-0.285843\pi\)
0.623174 + 0.782083i \(0.285843\pi\)
\(674\) 0 0
\(675\) 3.58430 0.137960
\(676\) 0 0
\(677\) −31.4919 −1.21033 −0.605167 0.796099i \(-0.706894\pi\)
−0.605167 + 0.796099i \(0.706894\pi\)
\(678\) 0 0
\(679\) −46.4075 −1.78096
\(680\) 0 0
\(681\) 26.8438 1.02866
\(682\) 0 0
\(683\) −13.3758 −0.511812 −0.255906 0.966702i \(-0.582374\pi\)
−0.255906 + 0.966702i \(0.582374\pi\)
\(684\) 0 0
\(685\) −1.93761 −0.0740322
\(686\) 0 0
\(687\) −35.1317 −1.34036
\(688\) 0 0
\(689\) 3.56837 0.135944
\(690\) 0 0
\(691\) −27.4503 −1.04426 −0.522129 0.852866i \(-0.674862\pi\)
−0.522129 + 0.852866i \(0.674862\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −13.7758 −0.522548
\(696\) 0 0
\(697\) −31.3394 −1.18706
\(698\) 0 0
\(699\) −18.0239 −0.681728
\(700\) 0 0
\(701\) −0.216417 −0.00817395 −0.00408698 0.999992i \(-0.501301\pi\)
−0.00408698 + 0.999992i \(0.501301\pi\)
\(702\) 0 0
\(703\) −43.3212 −1.63389
\(704\) 0 0
\(705\) −14.9573 −0.563325
\(706\) 0 0
\(707\) 0.313073 0.0117743
\(708\) 0 0
\(709\) −50.7909 −1.90749 −0.953746 0.300613i \(-0.902809\pi\)
−0.953746 + 0.300613i \(0.902809\pi\)
\(710\) 0 0
\(711\) 31.4584 1.17978
\(712\) 0 0
\(713\) −35.2206 −1.31902
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −59.2471 −2.21262
\(718\) 0 0
\(719\) −34.0411 −1.26952 −0.634759 0.772710i \(-0.718901\pi\)
−0.634759 + 0.772710i \(0.718901\pi\)
\(720\) 0 0
\(721\) 41.7587 1.55517
\(722\) 0 0
\(723\) 28.8273 1.07210
\(724\) 0 0
\(725\) 6.50105 0.241443
\(726\) 0 0
\(727\) 16.2361 0.602162 0.301081 0.953599i \(-0.402652\pi\)
0.301081 + 0.953599i \(0.402652\pi\)
\(728\) 0 0
\(729\) −43.2540 −1.60200
\(730\) 0 0
\(731\) −3.54460 −0.131102
\(732\) 0 0
\(733\) −29.7989 −1.10065 −0.550324 0.834951i \(-0.685496\pi\)
−0.550324 + 0.834951i \(0.685496\pi\)
\(734\) 0 0
\(735\) −19.3363 −0.713230
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −42.2471 −1.55408 −0.777042 0.629448i \(-0.783281\pi\)
−0.777042 + 0.629448i \(0.783281\pi\)
\(740\) 0 0
\(741\) 38.2678 1.40580
\(742\) 0 0
\(743\) 20.9125 0.767207 0.383603 0.923498i \(-0.374683\pi\)
0.383603 + 0.923498i \(0.374683\pi\)
\(744\) 0 0
\(745\) −9.68865 −0.354965
\(746\) 0 0
\(747\) −26.4394 −0.967366
\(748\) 0 0
\(749\) −48.3997 −1.76849
\(750\) 0 0
\(751\) 28.4428 1.03789 0.518946 0.854807i \(-0.326325\pi\)
0.518946 + 0.854807i \(0.326325\pi\)
\(752\) 0 0
\(753\) −32.9276 −1.19995
\(754\) 0 0
\(755\) 16.6447 0.605762
\(756\) 0 0
\(757\) −39.6707 −1.44186 −0.720928 0.693010i \(-0.756284\pi\)
−0.720928 + 0.693010i \(0.756284\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −48.7803 −1.76829 −0.884143 0.467217i \(-0.845257\pi\)
−0.884143 + 0.467217i \(0.845257\pi\)
\(762\) 0 0
\(763\) 28.2516 1.02278
\(764\) 0 0
\(765\) 16.9027 0.611120
\(766\) 0 0
\(767\) −21.6921 −0.783256
\(768\) 0 0
\(769\) −10.7632 −0.388132 −0.194066 0.980988i \(-0.562168\pi\)
−0.194066 + 0.980988i \(0.562168\pi\)
\(770\) 0 0
\(771\) 16.5467 0.595915
\(772\) 0 0
\(773\) 24.4695 0.880106 0.440053 0.897972i \(-0.354960\pi\)
0.440053 + 0.897972i \(0.354960\pi\)
\(774\) 0 0
\(775\) 5.48817 0.197141
\(776\) 0 0
\(777\) −101.967 −3.65804
\(778\) 0 0
\(779\) 34.6725 1.24227
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 23.3017 0.832735
\(784\) 0 0
\(785\) −0.958197 −0.0341995
\(786\) 0 0
\(787\) −4.85410 −0.173030 −0.0865150 0.996251i \(-0.527573\pi\)
−0.0865150 + 0.996251i \(0.527573\pi\)
\(788\) 0 0
\(789\) 1.20829 0.0430163
\(790\) 0 0
\(791\) 1.75755 0.0624911
\(792\) 0 0
\(793\) −29.5093 −1.04791
\(794\) 0 0
\(795\) −2.95348 −0.104749
\(796\) 0 0
\(797\) −4.60683 −0.163182 −0.0815911 0.996666i \(-0.526000\pi\)
−0.0815911 + 0.996666i \(0.526000\pi\)
\(798\) 0 0
\(799\) −21.6023 −0.764233
\(800\) 0 0
\(801\) −52.4157 −1.85202
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 24.1361 0.850685
\(806\) 0 0
\(807\) 0.0215549 0.000758770 0
\(808\) 0 0
\(809\) 31.6970 1.11441 0.557203 0.830376i \(-0.311874\pi\)
0.557203 + 0.830376i \(0.311874\pi\)
\(810\) 0 0
\(811\) 14.4303 0.506715 0.253358 0.967373i \(-0.418465\pi\)
0.253358 + 0.967373i \(0.418465\pi\)
\(812\) 0 0
\(813\) 50.3058 1.76430
\(814\) 0 0
\(815\) 4.44532 0.155713
\(816\) 0 0
\(817\) 3.92158 0.137199
\(818\) 0 0
\(819\) 53.1796 1.85825
\(820\) 0 0
\(821\) 54.4551 1.90050 0.950249 0.311493i \(-0.100829\pi\)
0.950249 + 0.311493i \(0.100829\pi\)
\(822\) 0 0
\(823\) 0.0607126 0.00211631 0.00105815 0.999999i \(-0.499663\pi\)
0.00105815 + 0.999999i \(0.499663\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11.8274 −0.411279 −0.205639 0.978628i \(-0.565927\pi\)
−0.205639 + 0.978628i \(0.565927\pi\)
\(828\) 0 0
\(829\) 16.7497 0.581743 0.290871 0.956762i \(-0.406055\pi\)
0.290871 + 0.956762i \(0.406055\pi\)
\(830\) 0 0
\(831\) 18.8352 0.653386
\(832\) 0 0
\(833\) −27.9267 −0.967602
\(834\) 0 0
\(835\) −13.9494 −0.482737
\(836\) 0 0
\(837\) 19.6712 0.679936
\(838\) 0 0
\(839\) −0.907817 −0.0313413 −0.0156707 0.999877i \(-0.504988\pi\)
−0.0156707 + 0.999877i \(0.504988\pi\)
\(840\) 0 0
\(841\) 13.2637 0.457368
\(842\) 0 0
\(843\) −60.5203 −2.08443
\(844\) 0 0
\(845\) 2.30837 0.0794102
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −63.1888 −2.16863
\(850\) 0 0
\(851\) 64.2902 2.20384
\(852\) 0 0
\(853\) 53.2766 1.82415 0.912077 0.410018i \(-0.134478\pi\)
0.912077 + 0.410018i \(0.134478\pi\)
\(854\) 0 0
\(855\) −18.7004 −0.639540
\(856\) 0 0
\(857\) 37.1487 1.26898 0.634488 0.772933i \(-0.281211\pi\)
0.634488 + 0.772933i \(0.281211\pi\)
\(858\) 0 0
\(859\) 26.8141 0.914887 0.457443 0.889239i \(-0.348765\pi\)
0.457443 + 0.889239i \(0.348765\pi\)
\(860\) 0 0
\(861\) 81.6099 2.78126
\(862\) 0 0
\(863\) −17.5306 −0.596748 −0.298374 0.954449i \(-0.596444\pi\)
−0.298374 + 0.954449i \(0.596444\pi\)
\(864\) 0 0
\(865\) 16.1640 0.549594
\(866\) 0 0
\(867\) −4.66070 −0.158286
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 45.6739 1.54760
\(872\) 0 0
\(873\) −53.3600 −1.80596
\(874\) 0 0
\(875\) −3.76095 −0.127143
\(876\) 0 0
\(877\) 20.7757 0.701545 0.350772 0.936461i \(-0.385919\pi\)
0.350772 + 0.936461i \(0.385919\pi\)
\(878\) 0 0
\(879\) 9.47556 0.319603
\(880\) 0 0
\(881\) 36.3078 1.22324 0.611621 0.791151i \(-0.290518\pi\)
0.611621 + 0.791151i \(0.290518\pi\)
\(882\) 0 0
\(883\) −37.1002 −1.24852 −0.624261 0.781216i \(-0.714600\pi\)
−0.624261 + 0.781216i \(0.714600\pi\)
\(884\) 0 0
\(885\) 17.9542 0.603523
\(886\) 0 0
\(887\) 21.9815 0.738068 0.369034 0.929416i \(-0.379689\pi\)
0.369034 + 0.929416i \(0.379689\pi\)
\(888\) 0 0
\(889\) 67.8912 2.27700
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 23.8998 0.799775
\(894\) 0 0
\(895\) −18.3810 −0.614409
\(896\) 0 0
\(897\) −56.7907 −1.89619
\(898\) 0 0
\(899\) 35.6789 1.18996
\(900\) 0 0
\(901\) −4.26559 −0.142107
\(902\) 0 0
\(903\) 9.23037 0.307168
\(904\) 0 0
\(905\) −11.0775 −0.368230
\(906\) 0 0
\(907\) 20.6799 0.686666 0.343333 0.939214i \(-0.388444\pi\)
0.343333 + 0.939214i \(0.388444\pi\)
\(908\) 0 0
\(909\) 0.359976 0.0119397
\(910\) 0 0
\(911\) −34.2643 −1.13523 −0.567613 0.823296i \(-0.692133\pi\)
−0.567613 + 0.823296i \(0.692133\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 24.4244 0.807445
\(916\) 0 0
\(917\) 24.3713 0.804813
\(918\) 0 0
\(919\) 16.6707 0.549915 0.274958 0.961456i \(-0.411336\pi\)
0.274958 + 0.961456i \(0.411336\pi\)
\(920\) 0 0
\(921\) −22.3642 −0.736927
\(922\) 0 0
\(923\) −33.9178 −1.11642
\(924\) 0 0
\(925\) −10.0179 −0.329386
\(926\) 0 0
\(927\) 48.0147 1.57701
\(928\) 0 0
\(929\) 37.2041 1.22063 0.610313 0.792160i \(-0.291043\pi\)
0.610313 + 0.792160i \(0.291043\pi\)
\(930\) 0 0
\(931\) 30.8968 1.01260
\(932\) 0 0
\(933\) 31.2913 1.02443
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 15.6477 0.511187 0.255593 0.966784i \(-0.417729\pi\)
0.255593 + 0.966784i \(0.417729\pi\)
\(938\) 0 0
\(939\) −52.2727 −1.70586
\(940\) 0 0
\(941\) −14.4769 −0.471932 −0.235966 0.971761i \(-0.575825\pi\)
−0.235966 + 0.971761i \(0.575825\pi\)
\(942\) 0 0
\(943\) −51.4551 −1.67561
\(944\) 0 0
\(945\) −13.4804 −0.438516
\(946\) 0 0
\(947\) −56.2394 −1.82754 −0.913768 0.406238i \(-0.866841\pi\)
−0.913768 + 0.406238i \(0.866841\pi\)
\(948\) 0 0
\(949\) −12.0412 −0.390873
\(950\) 0 0
\(951\) 60.5510 1.96350
\(952\) 0 0
\(953\) −22.1291 −0.716830 −0.358415 0.933562i \(-0.616683\pi\)
−0.358415 + 0.933562i \(0.616683\pi\)
\(954\) 0 0
\(955\) −9.61874 −0.311255
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 7.28725 0.235318
\(960\) 0 0
\(961\) −0.880038 −0.0283883
\(962\) 0 0
\(963\) −55.6506 −1.79332
\(964\) 0 0
\(965\) 19.6557 0.632740
\(966\) 0 0
\(967\) 32.2808 1.03808 0.519039 0.854750i \(-0.326290\pi\)
0.519039 + 0.854750i \(0.326290\pi\)
\(968\) 0 0
\(969\) −45.7449 −1.46954
\(970\) 0 0
\(971\) −27.8700 −0.894390 −0.447195 0.894437i \(-0.647577\pi\)
−0.447195 + 0.894437i \(0.647577\pi\)
\(972\) 0 0
\(973\) 51.8103 1.66096
\(974\) 0 0
\(975\) 8.84928 0.283404
\(976\) 0 0
\(977\) 10.6628 0.341133 0.170567 0.985346i \(-0.445440\pi\)
0.170567 + 0.985346i \(0.445440\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 32.4841 1.03714
\(982\) 0 0
\(983\) 30.6163 0.976508 0.488254 0.872702i \(-0.337634\pi\)
0.488254 + 0.872702i \(0.337634\pi\)
\(984\) 0 0
\(985\) 12.1768 0.387986
\(986\) 0 0
\(987\) 56.2538 1.79058
\(988\) 0 0
\(989\) −5.81975 −0.185057
\(990\) 0 0
\(991\) 12.2099 0.387859 0.193929 0.981015i \(-0.437877\pi\)
0.193929 + 0.981015i \(0.437877\pi\)
\(992\) 0 0
\(993\) −14.0156 −0.444772
\(994\) 0 0
\(995\) −8.44164 −0.267618
\(996\) 0 0
\(997\) −13.5307 −0.428521 −0.214260 0.976777i \(-0.568734\pi\)
−0.214260 + 0.976777i \(0.568734\pi\)
\(998\) 0 0
\(999\) −35.9070 −1.13605
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2420.2.a.n.1.4 4
4.3 odd 2 9680.2.a.ck.1.1 4
11.3 even 5 220.2.m.a.141.1 8
11.4 even 5 220.2.m.a.181.1 yes 8
11.10 odd 2 2420.2.a.m.1.4 4
33.14 odd 10 1980.2.z.c.361.1 8
33.26 odd 10 1980.2.z.c.181.1 8
44.3 odd 10 880.2.bo.f.801.2 8
44.15 odd 10 880.2.bo.f.401.2 8
44.43 even 2 9680.2.a.cl.1.1 4
55.3 odd 20 1100.2.cb.c.449.1 16
55.4 even 10 1100.2.n.c.401.2 8
55.14 even 10 1100.2.n.c.801.2 8
55.37 odd 20 1100.2.cb.c.49.1 16
55.47 odd 20 1100.2.cb.c.449.4 16
55.48 odd 20 1100.2.cb.c.49.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.m.a.141.1 8 11.3 even 5
220.2.m.a.181.1 yes 8 11.4 even 5
880.2.bo.f.401.2 8 44.15 odd 10
880.2.bo.f.801.2 8 44.3 odd 10
1100.2.n.c.401.2 8 55.4 even 10
1100.2.n.c.801.2 8 55.14 even 10
1100.2.cb.c.49.1 16 55.37 odd 20
1100.2.cb.c.49.4 16 55.48 odd 20
1100.2.cb.c.449.1 16 55.3 odd 20
1100.2.cb.c.449.4 16 55.47 odd 20
1980.2.z.c.181.1 8 33.26 odd 10
1980.2.z.c.361.1 8 33.14 odd 10
2420.2.a.m.1.4 4 11.10 odd 2
2420.2.a.n.1.4 4 1.1 even 1 trivial
9680.2.a.ck.1.1 4 4.3 odd 2
9680.2.a.cl.1.1 4 44.43 even 2