Properties

Label 220.2.m.a.141.1
Level $220$
Weight $2$
Character 220.141
Analytic conductor $1.757$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,2,Mod(81,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.m (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.26265625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 2x^{6} + x^{4} + 8x^{2} - 24x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 141.1
Root \(1.33631 - 0.462894i\) of defining polynomial
Character \(\chi\) \(=\) 220.141
Dual form 220.2.m.a.181.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.18949 + 1.59076i) q^{3} +(-0.309017 - 0.951057i) q^{5} +(-3.04267 - 2.21063i) q^{7} +(1.33631 - 4.11275i) q^{9} +(2.98808 - 1.43922i) q^{11} +(1.01043 - 3.10977i) q^{13} +(2.18949 + 1.59076i) q^{15} +(-1.20785 - 3.71739i) q^{17} +(-3.49851 + 2.54182i) q^{19} +10.1785 q^{21} -6.41755 q^{23} +(-0.809017 + 0.587785i) q^{25} +(1.10761 + 3.40887i) q^{27} +(-5.25946 - 3.82122i) q^{29} +(1.69594 - 5.21956i) q^{31} +(-4.25294 + 7.90449i) q^{33} +(-1.16220 + 3.57688i) q^{35} +(8.10463 + 5.88836i) q^{37} +(2.73458 + 8.41617i) q^{39} +(-6.48659 + 4.71279i) q^{41} +0.906850 q^{43} -4.32440 q^{45} +(-4.47122 + 3.24853i) q^{47} +(2.20785 + 6.79507i) q^{49} +(8.55805 + 6.21779i) q^{51} +(0.337233 - 1.03790i) q^{53} +(-2.29215 - 2.39709i) q^{55} +(3.61654 - 11.1306i) q^{57} +(5.36707 + 3.89940i) q^{59} +(-2.78882 - 8.58309i) q^{61} +(-13.1577 + 9.55965i) q^{63} -3.26981 q^{65} +13.9684 q^{67} +(14.0512 - 10.2088i) q^{69} +(-3.20544 - 9.86533i) q^{71} +(2.97923 + 2.16454i) q^{73} +(0.836312 - 2.57390i) q^{75} +(-12.2734 - 2.22648i) q^{77} +(2.24798 - 6.91858i) q^{79} +(2.64774 + 1.92370i) q^{81} +(-1.88933 - 5.81476i) q^{83} +(-3.16220 + 2.29747i) q^{85} +17.5942 q^{87} -12.1209 q^{89} +(-9.94895 + 7.22834i) q^{91} +(4.58982 + 14.1260i) q^{93} +(3.49851 + 2.54182i) q^{95} +(-3.81305 + 11.7354i) q^{97} +(-1.92613 - 14.2125i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{3} + 2 q^{5} + q^{7} + 3 q^{9} + 5 q^{11} + 6 q^{13} + q^{15} - 13 q^{17} - 7 q^{19} + 28 q^{21} - 22 q^{23} - 2 q^{25} + 2 q^{27} + 3 q^{29} - 2 q^{31} - 15 q^{33} + 4 q^{35} + 16 q^{37} - 17 q^{39}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.18949 + 1.59076i −1.26410 + 0.918426i −0.998952 0.0457808i \(-0.985422\pi\)
−0.265153 + 0.964206i \(0.585422\pi\)
\(4\) 0 0
\(5\) −0.309017 0.951057i −0.138197 0.425325i
\(6\) 0 0
\(7\) −3.04267 2.21063i −1.15002 0.835540i −0.161539 0.986866i \(-0.551646\pi\)
−0.988484 + 0.151326i \(0.951646\pi\)
\(8\) 0 0
\(9\) 1.33631 4.11275i 0.445437 1.37092i
\(10\) 0 0
\(11\) 2.98808 1.43922i 0.900941 0.433941i
\(12\) 0 0
\(13\) 1.01043 3.10977i 0.280242 0.862495i −0.707543 0.706670i \(-0.750196\pi\)
0.987785 0.155825i \(-0.0498036\pi\)
\(14\) 0 0
\(15\) 2.18949 + 1.59076i 0.565325 + 0.410732i
\(16\) 0 0
\(17\) −1.20785 3.71739i −0.292947 0.901599i −0.983903 0.178702i \(-0.942810\pi\)
0.690956 0.722897i \(-0.257190\pi\)
\(18\) 0 0
\(19\) −3.49851 + 2.54182i −0.802613 + 0.583133i −0.911680 0.410902i \(-0.865214\pi\)
0.109066 + 0.994034i \(0.465214\pi\)
\(20\) 0 0
\(21\) 10.1785 2.22113
\(22\) 0 0
\(23\) −6.41755 −1.33815 −0.669075 0.743194i \(-0.733310\pi\)
−0.669075 + 0.743194i \(0.733310\pi\)
\(24\) 0 0
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 0 0
\(27\) 1.10761 + 3.40887i 0.213159 + 0.656037i
\(28\) 0 0
\(29\) −5.25946 3.82122i −0.976658 0.709583i −0.0196984 0.999806i \(-0.506271\pi\)
−0.956959 + 0.290223i \(0.906271\pi\)
\(30\) 0 0
\(31\) 1.69594 5.21956i 0.304599 0.937460i −0.675227 0.737610i \(-0.735954\pi\)
0.979826 0.199850i \(-0.0640455\pi\)
\(32\) 0 0
\(33\) −4.25294 + 7.90449i −0.740341 + 1.37599i
\(34\) 0 0
\(35\) −1.16220 + 3.57688i −0.196447 + 0.604603i
\(36\) 0 0
\(37\) 8.10463 + 5.88836i 1.33239 + 0.968040i 0.999687 + 0.0250091i \(0.00796149\pi\)
0.332705 + 0.943031i \(0.392039\pi\)
\(38\) 0 0
\(39\) 2.73458 + 8.41617i 0.437883 + 1.34767i
\(40\) 0 0
\(41\) −6.48659 + 4.71279i −1.01304 + 0.736014i −0.964844 0.262824i \(-0.915346\pi\)
−0.0481922 + 0.998838i \(0.515346\pi\)
\(42\) 0 0
\(43\) 0.906850 0.138293 0.0691467 0.997607i \(-0.477972\pi\)
0.0691467 + 0.997607i \(0.477972\pi\)
\(44\) 0 0
\(45\) −4.32440 −0.644643
\(46\) 0 0
\(47\) −4.47122 + 3.24853i −0.652194 + 0.473846i −0.864018 0.503461i \(-0.832060\pi\)
0.211824 + 0.977308i \(0.432060\pi\)
\(48\) 0 0
\(49\) 2.20785 + 6.79507i 0.315407 + 0.970724i
\(50\) 0 0
\(51\) 8.55805 + 6.21779i 1.19837 + 0.870665i
\(52\) 0 0
\(53\) 0.337233 1.03790i 0.0463225 0.142566i −0.925220 0.379431i \(-0.876120\pi\)
0.971543 + 0.236865i \(0.0761198\pi\)
\(54\) 0 0
\(55\) −2.29215 2.39709i −0.309073 0.323224i
\(56\) 0 0
\(57\) 3.61654 11.1306i 0.479023 1.47428i
\(58\) 0 0
\(59\) 5.36707 + 3.89940i 0.698733 + 0.507659i 0.879519 0.475863i \(-0.157864\pi\)
−0.180786 + 0.983522i \(0.557864\pi\)
\(60\) 0 0
\(61\) −2.78882 8.58309i −0.357071 1.09895i −0.954799 0.297253i \(-0.903929\pi\)
0.597727 0.801699i \(-0.296071\pi\)
\(62\) 0 0
\(63\) −13.1577 + 9.55965i −1.65772 + 1.20440i
\(64\) 0 0
\(65\) −3.26981 −0.405570
\(66\) 0 0
\(67\) 13.9684 1.70651 0.853254 0.521496i \(-0.174626\pi\)
0.853254 + 0.521496i \(0.174626\pi\)
\(68\) 0 0
\(69\) 14.0512 10.2088i 1.69156 1.22899i
\(70\) 0 0
\(71\) −3.20544 9.86533i −0.380416 1.17080i −0.939751 0.341858i \(-0.888944\pi\)
0.559336 0.828941i \(-0.311056\pi\)
\(72\) 0 0
\(73\) 2.97923 + 2.16454i 0.348692 + 0.253340i 0.748320 0.663338i \(-0.230861\pi\)
−0.399628 + 0.916677i \(0.630861\pi\)
\(74\) 0 0
\(75\) 0.836312 2.57390i 0.0965690 0.297209i
\(76\) 0 0
\(77\) −12.2734 2.22648i −1.39868 0.253731i
\(78\) 0 0
\(79\) 2.24798 6.91858i 0.252918 0.778401i −0.741315 0.671157i \(-0.765797\pi\)
0.994233 0.107244i \(-0.0342026\pi\)
\(80\) 0 0
\(81\) 2.64774 + 1.92370i 0.294193 + 0.213744i
\(82\) 0 0
\(83\) −1.88933 5.81476i −0.207381 0.638253i −0.999607 0.0280255i \(-0.991078\pi\)
0.792226 0.610227i \(-0.208922\pi\)
\(84\) 0 0
\(85\) −3.16220 + 2.29747i −0.342989 + 0.249196i
\(86\) 0 0
\(87\) 17.5942 1.88630
\(88\) 0 0
\(89\) −12.1209 −1.28482 −0.642408 0.766363i \(-0.722064\pi\)
−0.642408 + 0.766363i \(0.722064\pi\)
\(90\) 0 0
\(91\) −9.94895 + 7.22834i −1.04293 + 0.757736i
\(92\) 0 0
\(93\) 4.58982 + 14.1260i 0.475942 + 1.46480i
\(94\) 0 0
\(95\) 3.49851 + 2.54182i 0.358940 + 0.260785i
\(96\) 0 0
\(97\) −3.81305 + 11.7354i −0.387157 + 1.19155i 0.547747 + 0.836644i \(0.315486\pi\)
−0.934904 + 0.354901i \(0.884514\pi\)
\(98\) 0 0
\(99\) −1.92613 14.2125i −0.193583 1.42841i
\(100\) 0 0
\(101\) 0.0257235 0.0791689i 0.00255959 0.00787760i −0.949769 0.312953i \(-0.898682\pi\)
0.952328 + 0.305076i \(0.0986817\pi\)
\(102\) 0 0
\(103\) −8.98269 6.52631i −0.885091 0.643056i 0.0495024 0.998774i \(-0.484236\pi\)
−0.934593 + 0.355718i \(0.884236\pi\)
\(104\) 0 0
\(105\) −3.14533 9.68033i −0.306953 0.944703i
\(106\) 0 0
\(107\) 10.4112 7.56420i 1.00649 0.731259i 0.0430216 0.999074i \(-0.486302\pi\)
0.963470 + 0.267815i \(0.0863016\pi\)
\(108\) 0 0
\(109\) 7.51183 0.719503 0.359752 0.933048i \(-0.382861\pi\)
0.359752 + 0.933048i \(0.382861\pi\)
\(110\) 0 0
\(111\) −27.1120 −2.57336
\(112\) 0 0
\(113\) −0.378065 + 0.274680i −0.0355654 + 0.0258398i −0.605426 0.795902i \(-0.706997\pi\)
0.569861 + 0.821741i \(0.306997\pi\)
\(114\) 0 0
\(115\) 1.98313 + 6.10345i 0.184928 + 0.569150i
\(116\) 0 0
\(117\) −11.4395 8.31125i −1.05758 0.768375i
\(118\) 0 0
\(119\) −4.54267 + 13.9809i −0.416426 + 1.28163i
\(120\) 0 0
\(121\) 6.85729 8.60102i 0.623390 0.781911i
\(122\) 0 0
\(123\) 6.70544 20.6372i 0.604609 1.86080i
\(124\) 0 0
\(125\) 0.809017 + 0.587785i 0.0723607 + 0.0525731i
\(126\) 0 0
\(127\) 5.57825 + 17.1681i 0.494990 + 1.52342i 0.816972 + 0.576677i \(0.195651\pi\)
−0.321982 + 0.946746i \(0.604349\pi\)
\(128\) 0 0
\(129\) −1.98554 + 1.44258i −0.174817 + 0.127012i
\(130\) 0 0
\(131\) 6.48010 0.566169 0.283085 0.959095i \(-0.408642\pi\)
0.283085 + 0.959095i \(0.408642\pi\)
\(132\) 0 0
\(133\) 16.2638 1.41025
\(134\) 0 0
\(135\) 2.89976 2.10680i 0.249571 0.181324i
\(136\) 0 0
\(137\) 0.598754 + 1.84278i 0.0511550 + 0.157439i 0.973371 0.229237i \(-0.0736231\pi\)
−0.922216 + 0.386676i \(0.873623\pi\)
\(138\) 0 0
\(139\) −11.1449 8.09724i −0.945297 0.686799i 0.00439260 0.999990i \(-0.498602\pi\)
−0.949690 + 0.313192i \(0.898602\pi\)
\(140\) 0 0
\(141\) 4.62207 14.2253i 0.389248 1.19798i
\(142\) 0 0
\(143\) −1.45641 10.7465i −0.121791 0.898666i
\(144\) 0 0
\(145\) −2.00894 + 6.18287i −0.166833 + 0.513459i
\(146\) 0 0
\(147\) −15.6434 11.3656i −1.29025 0.937419i
\(148\) 0 0
\(149\) 2.99396 + 9.21446i 0.245275 + 0.754878i 0.995591 + 0.0937990i \(0.0299011\pi\)
−0.750317 + 0.661079i \(0.770099\pi\)
\(150\) 0 0
\(151\) 13.4658 9.78349i 1.09583 0.796169i 0.115458 0.993312i \(-0.463166\pi\)
0.980375 + 0.197143i \(0.0631663\pi\)
\(152\) 0 0
\(153\) −16.9027 −1.36650
\(154\) 0 0
\(155\) −5.48817 −0.440820
\(156\) 0 0
\(157\) −0.775197 + 0.563214i −0.0618675 + 0.0449494i −0.618289 0.785951i \(-0.712174\pi\)
0.556422 + 0.830900i \(0.312174\pi\)
\(158\) 0 0
\(159\) 0.912674 + 2.80892i 0.0723798 + 0.222762i
\(160\) 0 0
\(161\) 19.5265 + 14.1868i 1.53890 + 1.11808i
\(162\) 0 0
\(163\) −1.37368 + 4.22775i −0.107595 + 0.331143i −0.990331 0.138726i \(-0.955699\pi\)
0.882736 + 0.469870i \(0.155699\pi\)
\(164\) 0 0
\(165\) 8.83184 + 1.60216i 0.687558 + 0.124728i
\(166\) 0 0
\(167\) 4.31059 13.2666i 0.333563 1.02660i −0.633862 0.773446i \(-0.718531\pi\)
0.967425 0.253156i \(-0.0814687\pi\)
\(168\) 0 0
\(169\) 1.86751 + 1.35682i 0.143654 + 0.104371i
\(170\) 0 0
\(171\) 5.77874 + 17.7851i 0.441911 + 1.36006i
\(172\) 0 0
\(173\) 13.0770 9.50098i 0.994224 0.722346i 0.0333821 0.999443i \(-0.489372\pi\)
0.960842 + 0.277097i \(0.0893722\pi\)
\(174\) 0 0
\(175\) 3.76095 0.284301
\(176\) 0 0
\(177\) −17.9542 −1.34952
\(178\) 0 0
\(179\) −14.8705 + 10.8041i −1.11148 + 0.807534i −0.982895 0.184165i \(-0.941042\pi\)
−0.128580 + 0.991699i \(0.541042\pi\)
\(180\) 0 0
\(181\) 3.42315 + 10.5354i 0.254441 + 0.783088i 0.993939 + 0.109930i \(0.0350627\pi\)
−0.739499 + 0.673158i \(0.764937\pi\)
\(182\) 0 0
\(183\) 19.7597 + 14.3563i 1.46068 + 1.06125i
\(184\) 0 0
\(185\) 3.09569 9.52756i 0.227600 0.700480i
\(186\) 0 0
\(187\) −8.95930 9.36950i −0.655169 0.685166i
\(188\) 0 0
\(189\) 4.16566 12.8206i 0.303007 0.932561i
\(190\) 0 0
\(191\) −7.78172 5.65375i −0.563066 0.409091i 0.269514 0.962996i \(-0.413137\pi\)
−0.832580 + 0.553905i \(0.813137\pi\)
\(192\) 0 0
\(193\) −6.07395 18.6937i −0.437213 1.34560i −0.890802 0.454391i \(-0.849857\pi\)
0.453590 0.891211i \(-0.350143\pi\)
\(194\) 0 0
\(195\) 7.15922 5.20148i 0.512682 0.372485i
\(196\) 0 0
\(197\) −12.1768 −0.867562 −0.433781 0.901018i \(-0.642821\pi\)
−0.433781 + 0.901018i \(0.642821\pi\)
\(198\) 0 0
\(199\) 8.44164 0.598412 0.299206 0.954189i \(-0.403278\pi\)
0.299206 + 0.954189i \(0.403278\pi\)
\(200\) 0 0
\(201\) −30.5836 + 22.2203i −2.15720 + 1.56730i
\(202\) 0 0
\(203\) 7.55551 + 23.2535i 0.530293 + 1.63207i
\(204\) 0 0
\(205\) 6.48659 + 4.71279i 0.453043 + 0.329155i
\(206\) 0 0
\(207\) −8.57584 + 26.3937i −0.596062 + 1.83449i
\(208\) 0 0
\(209\) −6.79561 + 12.6303i −0.470062 + 0.873655i
\(210\) 0 0
\(211\) −6.75302 + 20.7837i −0.464897 + 1.43081i 0.394215 + 0.919018i \(0.371016\pi\)
−0.859112 + 0.511788i \(0.828984\pi\)
\(212\) 0 0
\(213\) 22.7117 + 16.5010i 1.55618 + 1.13063i
\(214\) 0 0
\(215\) −0.280232 0.862466i −0.0191117 0.0588197i
\(216\) 0 0
\(217\) −16.6987 + 12.1323i −1.13358 + 0.823595i
\(218\) 0 0
\(219\) −9.96626 −0.673458
\(220\) 0 0
\(221\) −12.7807 −0.859721
\(222\) 0 0
\(223\) 21.3778 15.5319i 1.43157 1.04009i 0.441844 0.897092i \(-0.354324\pi\)
0.989722 0.143002i \(-0.0456756\pi\)
\(224\) 0 0
\(225\) 1.33631 + 4.11275i 0.0890875 + 0.274183i
\(226\) 0 0
\(227\) −8.02445 5.83010i −0.532601 0.386957i 0.288729 0.957411i \(-0.406767\pi\)
−0.821330 + 0.570454i \(0.806767\pi\)
\(228\) 0 0
\(229\) −4.01140 + 12.3458i −0.265081 + 0.815834i 0.726594 + 0.687067i \(0.241102\pi\)
−0.991675 + 0.128767i \(0.958898\pi\)
\(230\) 0 0
\(231\) 30.4142 14.6491i 2.00111 0.963839i
\(232\) 0 0
\(233\) −2.05800 + 6.33388i −0.134824 + 0.414946i −0.995563 0.0941012i \(-0.970002\pi\)
0.860738 + 0.509048i \(0.170002\pi\)
\(234\) 0 0
\(235\) 4.47122 + 3.24853i 0.291670 + 0.211911i
\(236\) 0 0
\(237\) 6.08386 + 18.7242i 0.395189 + 1.21627i
\(238\) 0 0
\(239\) 17.7108 12.8677i 1.14562 0.832340i 0.157726 0.987483i \(-0.449584\pi\)
0.987892 + 0.155143i \(0.0495837\pi\)
\(240\) 0 0
\(241\) 10.6517 0.686134 0.343067 0.939311i \(-0.388534\pi\)
0.343067 + 0.939311i \(0.388534\pi\)
\(242\) 0 0
\(243\) −19.6102 −1.25800
\(244\) 0 0
\(245\) 5.78023 4.19958i 0.369285 0.268302i
\(246\) 0 0
\(247\) 4.36948 + 13.4479i 0.278023 + 0.855668i
\(248\) 0 0
\(249\) 13.3866 + 9.72591i 0.848339 + 0.616354i
\(250\) 0 0
\(251\) −3.75973 + 11.5713i −0.237312 + 0.730372i 0.759494 + 0.650514i \(0.225447\pi\)
−0.996806 + 0.0798576i \(0.974553\pi\)
\(252\) 0 0
\(253\) −19.1762 + 9.23626i −1.20560 + 0.580679i
\(254\) 0 0
\(255\) 3.26889 10.0606i 0.204706 0.630019i
\(256\) 0 0
\(257\) −4.94633 3.59372i −0.308544 0.224170i 0.422728 0.906257i \(-0.361073\pi\)
−0.731271 + 0.682087i \(0.761073\pi\)
\(258\) 0 0
\(259\) −11.6428 35.8327i −0.723445 2.22654i
\(260\) 0 0
\(261\) −22.7440 + 16.5245i −1.40782 + 1.02284i
\(262\) 0 0
\(263\) 0.446463 0.0275301 0.0137650 0.999905i \(-0.495618\pi\)
0.0137650 + 0.999905i \(0.495618\pi\)
\(264\) 0 0
\(265\) −1.09131 −0.0670385
\(266\) 0 0
\(267\) 26.5387 19.2815i 1.62414 1.18001i
\(268\) 0 0
\(269\) 0.00246118 + 0.00757473i 0.000150061 + 0.000461840i 0.951132 0.308786i \(-0.0999227\pi\)
−0.950981 + 0.309248i \(0.899923\pi\)
\(270\) 0 0
\(271\) −15.0380 10.9257i −0.913493 0.663691i 0.0284029 0.999597i \(-0.490958\pi\)
−0.941896 + 0.335905i \(0.890958\pi\)
\(272\) 0 0
\(273\) 10.2846 31.6528i 0.622453 1.91571i
\(274\) 0 0
\(275\) −1.57146 + 2.92070i −0.0947625 + 0.176125i
\(276\) 0 0
\(277\) 2.15063 6.61897i 0.129219 0.397695i −0.865427 0.501035i \(-0.832953\pi\)
0.994646 + 0.103339i \(0.0329528\pi\)
\(278\) 0 0
\(279\) −19.2004 13.9499i −1.14950 0.835159i
\(280\) 0 0
\(281\) −6.91031 21.2678i −0.412235 1.26873i −0.914701 0.404131i \(-0.867574\pi\)
0.502466 0.864597i \(-0.332426\pi\)
\(282\) 0 0
\(283\) 18.8891 13.7237i 1.12284 0.815792i 0.138204 0.990404i \(-0.455867\pi\)
0.984637 + 0.174612i \(0.0558671\pi\)
\(284\) 0 0
\(285\) −11.7034 −0.693249
\(286\) 0 0
\(287\) 30.1548 1.77998
\(288\) 0 0
\(289\) 1.39323 1.01224i 0.0819548 0.0595436i
\(290\) 0 0
\(291\) −10.3195 31.7601i −0.604939 1.86181i
\(292\) 0 0
\(293\) −2.83254 2.05796i −0.165479 0.120227i 0.501964 0.864889i \(-0.332611\pi\)
−0.667443 + 0.744661i \(0.732611\pi\)
\(294\) 0 0
\(295\) 2.05004 6.30937i 0.119358 0.367346i
\(296\) 0 0
\(297\) 8.21574 + 8.59189i 0.476725 + 0.498552i
\(298\) 0 0
\(299\) −6.48445 + 19.9571i −0.375006 + 1.15415i
\(300\) 0 0
\(301\) −2.75925 2.00471i −0.159040 0.115550i
\(302\) 0 0
\(303\) 0.0696172 + 0.214260i 0.00399940 + 0.0123089i
\(304\) 0 0
\(305\) −7.30122 + 5.30464i −0.418066 + 0.303743i
\(306\) 0 0
\(307\) −8.26358 −0.471628 −0.235814 0.971798i \(-0.575776\pi\)
−0.235814 + 0.971798i \(0.575776\pi\)
\(308\) 0 0
\(309\) 30.0493 1.70945
\(310\) 0 0
\(311\) −9.35397 + 6.79606i −0.530415 + 0.385369i −0.820513 0.571628i \(-0.806312\pi\)
0.290098 + 0.956997i \(0.406312\pi\)
\(312\) 0 0
\(313\) −5.96859 18.3694i −0.337364 1.03830i −0.965546 0.260234i \(-0.916200\pi\)
0.628181 0.778067i \(-0.283800\pi\)
\(314\) 0 0
\(315\) 13.1577 + 9.55965i 0.741354 + 0.538625i
\(316\) 0 0
\(317\) 6.91381 21.2785i 0.388318 1.19512i −0.545726 0.837964i \(-0.683746\pi\)
0.934044 0.357157i \(-0.116254\pi\)
\(318\) 0 0
\(319\) −21.2153 3.84862i −1.18783 0.215481i
\(320\) 0 0
\(321\) −10.7625 + 33.1235i −0.600704 + 1.84878i
\(322\) 0 0
\(323\) 13.6746 + 9.93518i 0.760875 + 0.552808i
\(324\) 0 0
\(325\) 1.01043 + 3.10977i 0.0560483 + 0.172499i
\(326\) 0 0
\(327\) −16.4471 + 11.9495i −0.909527 + 0.660810i
\(328\) 0 0
\(329\) 20.7858 1.14596
\(330\) 0 0
\(331\) −5.17876 −0.284650 −0.142325 0.989820i \(-0.545458\pi\)
−0.142325 + 0.989820i \(0.545458\pi\)
\(332\) 0 0
\(333\) 35.0476 25.4636i 1.92060 1.39540i
\(334\) 0 0
\(335\) −4.31646 13.2847i −0.235834 0.725821i
\(336\) 0 0
\(337\) −4.47108 3.24843i −0.243555 0.176953i 0.459310 0.888276i \(-0.348097\pi\)
−0.702866 + 0.711322i \(0.748097\pi\)
\(338\) 0 0
\(339\) 0.390820 1.20282i 0.0212264 0.0653283i
\(340\) 0 0
\(341\) −2.44448 18.0373i −0.132376 0.976774i
\(342\) 0 0
\(343\) 0.168240 0.517788i 0.00908408 0.0279579i
\(344\) 0 0
\(345\) −14.0512 10.2088i −0.756490 0.549622i
\(346\) 0 0
\(347\) 2.65383 + 8.16765i 0.142465 + 0.438463i 0.996676 0.0814636i \(-0.0259594\pi\)
−0.854211 + 0.519926i \(0.825959\pi\)
\(348\) 0 0
\(349\) −11.8706 + 8.62451i −0.635419 + 0.461659i −0.858273 0.513193i \(-0.828463\pi\)
0.222854 + 0.974852i \(0.428463\pi\)
\(350\) 0 0
\(351\) 11.7200 0.625565
\(352\) 0 0
\(353\) 5.79041 0.308192 0.154096 0.988056i \(-0.450753\pi\)
0.154096 + 0.988056i \(0.450753\pi\)
\(354\) 0 0
\(355\) −8.39195 + 6.09711i −0.445399 + 0.323601i
\(356\) 0 0
\(357\) −12.2941 37.8374i −0.650674 2.00257i
\(358\) 0 0
\(359\) 9.19282 + 6.67898i 0.485179 + 0.352503i 0.803327 0.595538i \(-0.203061\pi\)
−0.318148 + 0.948041i \(0.603061\pi\)
\(360\) 0 0
\(361\) −0.0925809 + 0.284935i −0.00487268 + 0.0149966i
\(362\) 0 0
\(363\) −1.33185 + 29.7402i −0.0699038 + 1.56095i
\(364\) 0 0
\(365\) 1.13796 3.50229i 0.0595638 0.183318i
\(366\) 0 0
\(367\) 3.70890 + 2.69468i 0.193603 + 0.140661i 0.680364 0.732874i \(-0.261822\pi\)
−0.486761 + 0.873535i \(0.661822\pi\)
\(368\) 0 0
\(369\) 10.7144 + 32.9755i 0.557768 + 1.71663i
\(370\) 0 0
\(371\) −3.32050 + 2.41248i −0.172392 + 0.125250i
\(372\) 0 0
\(373\) −22.8487 −1.18306 −0.591530 0.806283i \(-0.701476\pi\)
−0.591530 + 0.806283i \(0.701476\pi\)
\(374\) 0 0
\(375\) −2.70636 −0.139756
\(376\) 0 0
\(377\) −17.1974 + 12.4947i −0.885712 + 0.643508i
\(378\) 0 0
\(379\) −6.50498 20.0203i −0.334139 1.02837i −0.967145 0.254226i \(-0.918179\pi\)
0.633006 0.774147i \(-0.281821\pi\)
\(380\) 0 0
\(381\) −39.5239 28.7158i −2.02487 1.47115i
\(382\) 0 0
\(383\) −0.0803134 + 0.247179i −0.00410382 + 0.0126303i −0.953087 0.302695i \(-0.902114\pi\)
0.948984 + 0.315325i \(0.102114\pi\)
\(384\) 0 0
\(385\) 1.67517 + 12.3607i 0.0853744 + 0.629958i
\(386\) 0 0
\(387\) 1.21183 3.72964i 0.0616010 0.189588i
\(388\) 0 0
\(389\) 12.7514 + 9.26447i 0.646524 + 0.469727i 0.862085 0.506763i \(-0.169158\pi\)
−0.215561 + 0.976490i \(0.569158\pi\)
\(390\) 0 0
\(391\) 7.75145 + 23.8565i 0.392008 + 1.20648i
\(392\) 0 0
\(393\) −14.1881 + 10.3083i −0.715697 + 0.519984i
\(394\) 0 0
\(395\) −7.27463 −0.366026
\(396\) 0 0
\(397\) 7.62978 0.382928 0.191464 0.981500i \(-0.438677\pi\)
0.191464 + 0.981500i \(0.438677\pi\)
\(398\) 0 0
\(399\) −35.6096 + 25.8719i −1.78271 + 1.29521i
\(400\) 0 0
\(401\) −9.31703 28.6749i −0.465270 1.43195i −0.858642 0.512575i \(-0.828691\pi\)
0.393372 0.919379i \(-0.371309\pi\)
\(402\) 0 0
\(403\) −14.5180 10.5479i −0.723193 0.525431i
\(404\) 0 0
\(405\) 1.01135 3.11260i 0.0502542 0.154667i
\(406\) 0 0
\(407\) 32.6919 + 5.93057i 1.62048 + 0.293967i
\(408\) 0 0
\(409\) 9.62526 29.6235i 0.475939 1.46479i −0.368749 0.929529i \(-0.620214\pi\)
0.844688 0.535259i \(-0.179786\pi\)
\(410\) 0 0
\(411\) −4.24238 3.08227i −0.209261 0.152037i
\(412\) 0 0
\(413\) −7.71010 23.7292i −0.379389 1.16764i
\(414\) 0 0
\(415\) −4.94633 + 3.59372i −0.242806 + 0.176409i
\(416\) 0 0
\(417\) 37.2824 1.82573
\(418\) 0 0
\(419\) 13.3733 0.653328 0.326664 0.945141i \(-0.394075\pi\)
0.326664 + 0.945141i \(0.394075\pi\)
\(420\) 0 0
\(421\) 8.87736 6.44978i 0.432656 0.314343i −0.350054 0.936730i \(-0.613837\pi\)
0.782710 + 0.622386i \(0.213837\pi\)
\(422\) 0 0
\(423\) 7.38543 + 22.7300i 0.359092 + 1.10517i
\(424\) 0 0
\(425\) 3.16220 + 2.29747i 0.153389 + 0.111444i
\(426\) 0 0
\(427\) −10.4886 + 32.2806i −0.507579 + 1.56217i
\(428\) 0 0
\(429\) 20.2839 + 21.2126i 0.979314 + 1.02415i
\(430\) 0 0
\(431\) −5.01099 + 15.4223i −0.241371 + 0.742864i 0.754841 + 0.655908i \(0.227714\pi\)
−0.996212 + 0.0869561i \(0.972286\pi\)
\(432\) 0 0
\(433\) 17.3649 + 12.6163i 0.834503 + 0.606302i 0.920830 0.389965i \(-0.127513\pi\)
−0.0863271 + 0.996267i \(0.527513\pi\)
\(434\) 0 0
\(435\) −5.43691 16.7331i −0.260680 0.802290i
\(436\) 0 0
\(437\) 22.4518 16.3122i 1.07402 0.780319i
\(438\) 0 0
\(439\) 5.94741 0.283855 0.141927 0.989877i \(-0.454670\pi\)
0.141927 + 0.989877i \(0.454670\pi\)
\(440\) 0 0
\(441\) 30.8968 1.47127
\(442\) 0 0
\(443\) 19.2068 13.9546i 0.912545 0.663003i −0.0291124 0.999576i \(-0.509268\pi\)
0.941657 + 0.336574i \(0.109268\pi\)
\(444\) 0 0
\(445\) 3.74557 + 11.5277i 0.177557 + 0.546465i
\(446\) 0 0
\(447\) −21.2132 15.4123i −1.00335 0.728978i
\(448\) 0 0
\(449\) 10.6354 32.7325i 0.501917 1.54474i −0.303975 0.952680i \(-0.598314\pi\)
0.805892 0.592063i \(-0.201686\pi\)
\(450\) 0 0
\(451\) −12.5998 + 23.4178i −0.593299 + 1.10270i
\(452\) 0 0
\(453\) −13.9201 + 42.8418i −0.654025 + 2.01288i
\(454\) 0 0
\(455\) 9.94895 + 7.22834i 0.466414 + 0.338870i
\(456\) 0 0
\(457\) 4.58276 + 14.1043i 0.214372 + 0.659770i 0.999198 + 0.0400529i \(0.0127526\pi\)
−0.784825 + 0.619717i \(0.787247\pi\)
\(458\) 0 0
\(459\) 11.3343 8.23482i 0.529038 0.384368i
\(460\) 0 0
\(461\) 29.8441 1.38998 0.694990 0.719020i \(-0.255409\pi\)
0.694990 + 0.719020i \(0.255409\pi\)
\(462\) 0 0
\(463\) −6.87337 −0.319433 −0.159716 0.987163i \(-0.551058\pi\)
−0.159716 + 0.987163i \(0.551058\pi\)
\(464\) 0 0
\(465\) 12.0163 8.73035i 0.557243 0.404860i
\(466\) 0 0
\(467\) −0.435503 1.34034i −0.0201527 0.0620236i 0.940474 0.339864i \(-0.110381\pi\)
−0.960627 + 0.277841i \(0.910381\pi\)
\(468\) 0 0
\(469\) −42.5012 30.8789i −1.96252 1.42586i
\(470\) 0 0
\(471\) 0.801351 2.46631i 0.0369243 0.113641i
\(472\) 0 0
\(473\) 2.70974 1.30516i 0.124594 0.0600111i
\(474\) 0 0
\(475\) 1.33631 4.11275i 0.0613142 0.188706i
\(476\) 0 0
\(477\) −3.81795 2.77391i −0.174812 0.127008i
\(478\) 0 0
\(479\) −7.19055 22.1302i −0.328544 1.01116i −0.969815 0.243841i \(-0.921592\pi\)
0.641271 0.767315i \(-0.278408\pi\)
\(480\) 0 0
\(481\) 26.5006 19.2538i 1.20832 0.877897i
\(482\) 0 0
\(483\) −65.3210 −2.97221
\(484\) 0 0
\(485\) 12.3393 0.560298
\(486\) 0 0
\(487\) −15.0917 + 10.9647i −0.683868 + 0.496859i −0.874639 0.484775i \(-0.838901\pi\)
0.190770 + 0.981635i \(0.438901\pi\)
\(488\) 0 0
\(489\) −3.71768 11.4418i −0.168119 0.517418i
\(490\) 0 0
\(491\) 33.9898 + 24.6951i 1.53394 + 1.11447i 0.953997 + 0.299815i \(0.0969251\pi\)
0.579943 + 0.814657i \(0.303075\pi\)
\(492\) 0 0
\(493\) −7.85231 + 24.1669i −0.353650 + 1.08842i
\(494\) 0 0
\(495\) −12.9217 + 6.22375i −0.580785 + 0.279737i
\(496\) 0 0
\(497\) −12.0555 + 37.1030i −0.540764 + 1.66430i
\(498\) 0 0
\(499\) 4.22493 + 3.06959i 0.189134 + 0.137414i 0.678323 0.734764i \(-0.262707\pi\)
−0.489189 + 0.872178i \(0.662707\pi\)
\(500\) 0 0
\(501\) 11.6660 + 35.9043i 0.521199 + 1.60409i
\(502\) 0 0
\(503\) −23.3289 + 16.9494i −1.04018 + 0.755737i −0.970321 0.241820i \(-0.922256\pi\)
−0.0698614 + 0.997557i \(0.522256\pi\)
\(504\) 0 0
\(505\) −0.0832431 −0.00370427
\(506\) 0 0
\(507\) −6.24728 −0.277451
\(508\) 0 0
\(509\) −4.46973 + 3.24745i −0.198117 + 0.143940i −0.682421 0.730959i \(-0.739073\pi\)
0.484304 + 0.874900i \(0.339073\pi\)
\(510\) 0 0
\(511\) −4.27983 13.1720i −0.189329 0.582693i
\(512\) 0 0
\(513\) −12.5397 9.11062i −0.553641 0.402244i
\(514\) 0 0
\(515\) −3.43108 + 10.5598i −0.151192 + 0.465320i
\(516\) 0 0
\(517\) −8.68502 + 16.1419i −0.381967 + 0.709921i
\(518\) 0 0
\(519\) −13.5182 + 41.6047i −0.593382 + 1.82624i
\(520\) 0 0
\(521\) 23.8297 + 17.3133i 1.04400 + 0.758509i 0.971062 0.238828i \(-0.0767631\pi\)
0.0729362 + 0.997337i \(0.476763\pi\)
\(522\) 0 0
\(523\) −0.684593 2.10696i −0.0299351 0.0921309i 0.934973 0.354720i \(-0.115424\pi\)
−0.964908 + 0.262589i \(0.915424\pi\)
\(524\) 0 0
\(525\) −8.23458 + 5.98277i −0.359386 + 0.261110i
\(526\) 0 0
\(527\) −21.4515 −0.934444
\(528\) 0 0
\(529\) 18.1849 0.790648
\(530\) 0 0
\(531\) 23.2093 16.8626i 1.00720 0.731773i
\(532\) 0 0
\(533\) 8.10146 + 24.9337i 0.350913 + 1.08000i
\(534\) 0 0
\(535\) −10.4112 7.56420i −0.450117 0.327029i
\(536\) 0 0
\(537\) 15.3722 47.3109i 0.663361 2.04162i
\(538\) 0 0
\(539\) 16.3768 + 17.1267i 0.705401 + 0.737697i
\(540\) 0 0
\(541\) 10.4175 32.0616i 0.447882 1.37844i −0.431411 0.902156i \(-0.641984\pi\)
0.879292 0.476282i \(-0.158016\pi\)
\(542\) 0 0
\(543\) −24.2542 17.6217i −1.04085 0.756220i
\(544\) 0 0
\(545\) −2.32128 7.14418i −0.0994329 0.306023i
\(546\) 0 0
\(547\) 22.7092 16.4992i 0.970976 0.705455i 0.0153018 0.999883i \(-0.495129\pi\)
0.955674 + 0.294428i \(0.0951291\pi\)
\(548\) 0 0
\(549\) −39.0268 −1.66562
\(550\) 0 0
\(551\) 28.1131 1.19766
\(552\) 0 0
\(553\) −22.1343 + 16.0815i −0.941247 + 0.683856i
\(554\) 0 0
\(555\) 8.37807 + 25.7850i 0.355629 + 1.09451i
\(556\) 0 0
\(557\) −12.5552 9.12189i −0.531981 0.386507i 0.289117 0.957294i \(-0.406638\pi\)
−0.821098 + 0.570787i \(0.806638\pi\)
\(558\) 0 0
\(559\) 0.916305 2.82010i 0.0387556 0.119277i
\(560\) 0 0
\(561\) 34.5209 + 6.26236i 1.45748 + 0.264397i
\(562\) 0 0
\(563\) −6.22486 + 19.1581i −0.262346 + 0.807419i 0.729946 + 0.683504i \(0.239545\pi\)
−0.992293 + 0.123915i \(0.960455\pi\)
\(564\) 0 0
\(565\) 0.378065 + 0.274680i 0.0159053 + 0.0115559i
\(566\) 0 0
\(567\) −3.80363 11.7064i −0.159737 0.491621i
\(568\) 0 0
\(569\) −25.4623 + 18.4994i −1.06743 + 0.775536i −0.975449 0.220224i \(-0.929321\pi\)
−0.0919848 + 0.995760i \(0.529321\pi\)
\(570\) 0 0
\(571\) −14.3295 −0.599673 −0.299836 0.953991i \(-0.596932\pi\)
−0.299836 + 0.953991i \(0.596932\pi\)
\(572\) 0 0
\(573\) 26.0318 1.08749
\(574\) 0 0
\(575\) 5.19190 3.77214i 0.216517 0.157309i
\(576\) 0 0
\(577\) −3.54175 10.9004i −0.147445 0.453789i 0.849872 0.526989i \(-0.176679\pi\)
−0.997317 + 0.0731994i \(0.976679\pi\)
\(578\) 0 0
\(579\) 43.0361 + 31.2675i 1.78852 + 1.29943i
\(580\) 0 0
\(581\) −7.10568 + 21.8690i −0.294793 + 0.907281i
\(582\) 0 0
\(583\) −0.486080 3.58667i −0.0201314 0.148545i
\(584\) 0 0
\(585\) −4.36948 + 13.4479i −0.180656 + 0.556001i
\(586\) 0 0
\(587\) −7.62242 5.53801i −0.314611 0.228578i 0.419262 0.907865i \(-0.362289\pi\)
−0.733872 + 0.679287i \(0.762289\pi\)
\(588\) 0 0
\(589\) 7.33390 + 22.5714i 0.302188 + 0.930039i
\(590\) 0 0
\(591\) 26.6611 19.3704i 1.09669 0.796792i
\(592\) 0 0
\(593\) −28.2270 −1.15914 −0.579571 0.814922i \(-0.696780\pi\)
−0.579571 + 0.814922i \(0.696780\pi\)
\(594\) 0 0
\(595\) 14.7004 0.602658
\(596\) 0 0
\(597\) −18.4829 + 13.4286i −0.756455 + 0.549597i
\(598\) 0 0
\(599\) 1.24633 + 3.83580i 0.0509235 + 0.156726i 0.973284 0.229603i \(-0.0737428\pi\)
−0.922361 + 0.386329i \(0.873743\pi\)
\(600\) 0 0
\(601\) −30.0829 21.8565i −1.22711 0.891544i −0.230435 0.973088i \(-0.574015\pi\)
−0.996670 + 0.0815436i \(0.974015\pi\)
\(602\) 0 0
\(603\) 18.6661 57.4483i 0.760142 2.33948i
\(604\) 0 0
\(605\) −10.2991 3.86381i −0.418717 0.157086i
\(606\) 0 0
\(607\) −5.60247 + 17.2426i −0.227397 + 0.699856i 0.770642 + 0.637268i \(0.219936\pi\)
−0.998039 + 0.0625883i \(0.980064\pi\)
\(608\) 0 0
\(609\) −53.5334 38.8943i −2.16928 1.57608i
\(610\) 0 0
\(611\) 5.58435 + 17.1868i 0.225918 + 0.695306i
\(612\) 0 0
\(613\) 6.90505 5.01682i 0.278893 0.202627i −0.439542 0.898222i \(-0.644859\pi\)
0.718434 + 0.695595i \(0.244859\pi\)
\(614\) 0 0
\(615\) −21.6993 −0.874999
\(616\) 0 0
\(617\) −24.5659 −0.988985 −0.494492 0.869182i \(-0.664646\pi\)
−0.494492 + 0.869182i \(0.664646\pi\)
\(618\) 0 0
\(619\) 30.9640 22.4967i 1.24455 0.904218i 0.246657 0.969103i \(-0.420668\pi\)
0.997893 + 0.0648846i \(0.0206679\pi\)
\(620\) 0 0
\(621\) −7.10813 21.8766i −0.285239 0.877876i
\(622\) 0 0
\(623\) 36.8800 + 26.7949i 1.47757 + 1.07352i
\(624\) 0 0
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) 0 0
\(627\) −5.21281 38.4641i −0.208179 1.53611i
\(628\) 0 0
\(629\) 12.1001 37.2403i 0.482463 1.48487i
\(630\) 0 0
\(631\) −16.7407 12.1628i −0.666435 0.484194i 0.202395 0.979304i \(-0.435128\pi\)
−0.868830 + 0.495110i \(0.835128\pi\)
\(632\) 0 0
\(633\) −18.2761 56.2481i −0.726410 2.23566i
\(634\) 0 0
\(635\) 14.6041 10.6105i 0.579544 0.421064i
\(636\) 0 0
\(637\) 23.3620 0.925635
\(638\) 0 0
\(639\) −44.8571 −1.77452
\(640\) 0 0
\(641\) 6.75967 4.91119i 0.266991 0.193980i −0.446232 0.894917i \(-0.647234\pi\)
0.713223 + 0.700937i \(0.247234\pi\)
\(642\) 0 0
\(643\) 9.08552 + 27.9623i 0.358298 + 1.10273i 0.954073 + 0.299576i \(0.0968451\pi\)
−0.595775 + 0.803152i \(0.703155\pi\)
\(644\) 0 0
\(645\) 1.98554 + 1.44258i 0.0781806 + 0.0568016i
\(646\) 0 0
\(647\) 7.26160 22.3489i 0.285483 0.878626i −0.700770 0.713387i \(-0.747160\pi\)
0.986253 0.165240i \(-0.0528397\pi\)
\(648\) 0 0
\(649\) 21.6494 + 3.92736i 0.849812 + 0.154162i
\(650\) 0 0
\(651\) 17.2621 53.1272i 0.676554 2.08222i
\(652\) 0 0
\(653\) −12.4733 9.06240i −0.488119 0.354639i 0.316342 0.948645i \(-0.397545\pi\)
−0.804460 + 0.594006i \(0.797545\pi\)
\(654\) 0 0
\(655\) −2.00246 6.16294i −0.0782426 0.240806i
\(656\) 0 0
\(657\) 12.8834 9.36032i 0.502628 0.365181i
\(658\) 0 0
\(659\) 12.2785 0.478301 0.239151 0.970982i \(-0.423131\pi\)
0.239151 + 0.970982i \(0.423131\pi\)
\(660\) 0 0
\(661\) 25.8163 1.00414 0.502070 0.864827i \(-0.332572\pi\)
0.502070 + 0.864827i \(0.332572\pi\)
\(662\) 0 0
\(663\) 27.9832 20.3310i 1.08678 0.789589i
\(664\) 0 0
\(665\) −5.02580 15.4678i −0.194892 0.599817i
\(666\) 0 0
\(667\) 33.7528 + 24.5229i 1.30692 + 0.949529i
\(668\) 0 0
\(669\) −22.0991 + 68.0140i −0.854401 + 2.62957i
\(670\) 0 0
\(671\) −20.6862 21.6333i −0.798581 0.835144i
\(672\) 0 0
\(673\) 9.99147 30.7506i 0.385143 1.18535i −0.551234 0.834351i \(-0.685843\pi\)
0.936377 0.350997i \(-0.114157\pi\)
\(674\) 0 0
\(675\) −2.89976 2.10680i −0.111612 0.0810906i
\(676\) 0 0
\(677\) −9.73155 29.9506i −0.374014 1.15110i −0.944142 0.329540i \(-0.893106\pi\)
0.570128 0.821556i \(-0.306894\pi\)
\(678\) 0 0
\(679\) 37.5444 27.2776i 1.44082 1.04682i
\(680\) 0 0
\(681\) 26.8438 1.02866
\(682\) 0 0
\(683\) −13.3758 −0.511812 −0.255906 0.966702i \(-0.582374\pi\)
−0.255906 + 0.966702i \(0.582374\pi\)
\(684\) 0 0
\(685\) 1.56756 1.13890i 0.0598933 0.0435150i
\(686\) 0 0
\(687\) −10.8563 33.4122i −0.414193 1.27476i
\(688\) 0 0
\(689\) −2.88687 2.09743i −0.109981 0.0799058i
\(690\) 0 0
\(691\) −8.48261 + 26.1068i −0.322694 + 0.993149i 0.649777 + 0.760125i \(0.274862\pi\)
−0.972471 + 0.233024i \(0.925138\pi\)
\(692\) 0 0
\(693\) −25.5580 + 47.5019i −0.970867 + 1.80445i
\(694\) 0 0
\(695\) −4.25697 + 13.1016i −0.161476 + 0.496972i
\(696\) 0 0
\(697\) 25.3541 + 18.4208i 0.960355 + 0.697739i
\(698\) 0 0
\(699\) −5.56970 17.1418i −0.210665 0.648362i
\(700\) 0 0
\(701\) 0.175085 0.127207i 0.00661287 0.00480453i −0.584474 0.811413i \(-0.698699\pi\)
0.591087 + 0.806608i \(0.298699\pi\)
\(702\) 0 0
\(703\) −43.3212 −1.63389
\(704\) 0 0
\(705\) −14.9573 −0.563325
\(706\) 0 0
\(707\) −0.253282 + 0.184020i −0.00952564 + 0.00692078i
\(708\) 0 0
\(709\) −15.6953 48.3050i −0.589448 1.81413i −0.580624 0.814172i \(-0.697191\pi\)
−0.00882347 0.999961i \(-0.502809\pi\)
\(710\) 0 0
\(711\) −25.4504 18.4908i −0.954463 0.693458i
\(712\) 0 0
\(713\) −10.8838 + 33.4967i −0.407600 + 1.25446i
\(714\) 0 0
\(715\) −9.77046 + 4.70597i −0.365394 + 0.175993i
\(716\) 0 0
\(717\) −18.3084 + 56.3473i −0.683738 + 2.10433i
\(718\) 0 0
\(719\) 27.5398 + 20.0089i 1.02706 + 0.746204i 0.967719 0.252033i \(-0.0810993\pi\)
0.0593435 + 0.998238i \(0.481099\pi\)
\(720\) 0 0
\(721\) 12.9041 + 39.7149i 0.480575 + 1.47906i
\(722\) 0 0
\(723\) −23.3218 + 16.9443i −0.867346 + 0.630163i
\(724\) 0 0
\(725\) 6.50105 0.241443
\(726\) 0 0
\(727\) 16.2361 0.602162 0.301081 0.953599i \(-0.402652\pi\)
0.301081 + 0.953599i \(0.402652\pi\)
\(728\) 0 0
\(729\) 34.9932 25.4241i 1.29605 0.941633i
\(730\) 0 0
\(731\) −1.09534 3.37111i −0.0405126 0.124685i
\(732\) 0 0
\(733\) 24.1078 + 17.5154i 0.890443 + 0.646944i 0.935993 0.352018i \(-0.114504\pi\)
−0.0455508 + 0.998962i \(0.514504\pi\)
\(734\) 0 0
\(735\) −5.97525 + 18.3899i −0.220400 + 0.678322i
\(736\) 0 0
\(737\) 41.7387 20.1035i 1.53746 0.740524i
\(738\) 0 0
\(739\) −13.0551 + 40.1794i −0.480239 + 1.47802i 0.358522 + 0.933521i \(0.383281\pi\)
−0.838760 + 0.544501i \(0.816719\pi\)
\(740\) 0 0
\(741\) −30.9593 22.4932i −1.13732 0.826310i
\(742\) 0 0
\(743\) 6.46233 + 19.8890i 0.237080 + 0.729657i 0.996839 + 0.0794519i \(0.0253170\pi\)
−0.759759 + 0.650205i \(0.774683\pi\)
\(744\) 0 0
\(745\) 7.83829 5.69485i 0.287173 0.208643i
\(746\) 0 0
\(747\) −26.4394 −0.967366
\(748\) 0 0
\(749\) −48.3997 −1.76849
\(750\) 0 0
\(751\) −23.0107 + 16.7182i −0.839672 + 0.610058i −0.922279 0.386525i \(-0.873675\pi\)
0.0826069 + 0.996582i \(0.473675\pi\)
\(752\) 0 0
\(753\) −10.1752 31.3160i −0.370805 1.14122i
\(754\) 0 0
\(755\) −13.4658 9.78349i −0.490072 0.356058i
\(756\) 0 0
\(757\) −12.2589 + 37.7291i −0.445558 + 1.37129i 0.436312 + 0.899795i \(0.356284\pi\)
−0.881870 + 0.471492i \(0.843716\pi\)
\(758\) 0 0
\(759\) 27.2934 50.7274i 0.990688 1.84129i
\(760\) 0 0
\(761\) −15.0740 + 46.3929i −0.546430 + 1.68174i 0.171134 + 0.985248i \(0.445257\pi\)
−0.717565 + 0.696492i \(0.754743\pi\)
\(762\) 0 0
\(763\) −22.8561 16.6059i −0.827445 0.601174i
\(764\) 0 0
\(765\) 5.22323 + 16.0755i 0.188846 + 0.581209i
\(766\) 0 0
\(767\) 17.5493 12.7503i 0.633668 0.460387i
\(768\) 0 0
\(769\) −10.7632 −0.388132 −0.194066 0.980988i \(-0.562168\pi\)
−0.194066 + 0.980988i \(0.562168\pi\)
\(770\) 0 0
\(771\) 16.5467 0.595915
\(772\) 0 0
\(773\) −19.7962 + 14.3828i −0.712021 + 0.517313i −0.883825 0.467818i \(-0.845040\pi\)
0.171804 + 0.985131i \(0.445040\pi\)
\(774\) 0 0
\(775\) 1.69594 + 5.21956i 0.0609198 + 0.187492i
\(776\) 0 0
\(777\) 82.4929 + 59.9346i 2.95942 + 2.15014i
\(778\) 0 0
\(779\) 10.7144 32.9755i 0.383882 1.18147i
\(780\) 0 0
\(781\) −23.7765 24.8651i −0.850790 0.889744i
\(782\) 0 0
\(783\) 7.20062 22.1612i 0.257329 0.791978i
\(784\) 0 0
\(785\) 0.775197 + 0.563214i 0.0276680 + 0.0201020i
\(786\) 0 0
\(787\) −1.50000 4.61653i −0.0534692 0.164561i 0.920756 0.390139i \(-0.127573\pi\)
−0.974225 + 0.225578i \(0.927573\pi\)
\(788\) 0 0
\(789\) −0.977527 + 0.710215i −0.0348009 + 0.0252843i
\(790\) 0 0
\(791\) 1.75755 0.0624911
\(792\) 0 0
\(793\) −29.5093 −1.04791
\(794\) 0 0
\(795\) 2.38941 1.73601i 0.0847437 0.0615699i
\(796\) 0 0
\(797\) −1.42359 4.38135i −0.0504261 0.155195i 0.922673 0.385584i \(-0.126000\pi\)
−0.973099 + 0.230389i \(0.926000\pi\)
\(798\) 0 0
\(799\) 17.4766 + 12.6975i 0.618278 + 0.449205i
\(800\) 0 0
\(801\) −16.1973 + 49.8503i −0.572305 + 1.76137i
\(802\) 0 0
\(803\) 12.0174 + 2.18005i 0.424086 + 0.0769324i
\(804\) 0 0
\(805\) 7.45846 22.9548i 0.262876 0.809050i
\(806\) 0 0
\(807\) −0.0174383 0.0126697i −0.000613858 0.000445994i
\(808\) 0 0
\(809\) 9.79491 + 30.1456i 0.344371 + 1.05986i 0.961920 + 0.273331i \(0.0881256\pi\)
−0.617549 + 0.786532i \(0.711874\pi\)
\(810\) 0 0
\(811\) −11.6743 + 8.48190i −0.409941 + 0.297840i −0.773578 0.633701i \(-0.781535\pi\)
0.363637 + 0.931541i \(0.381535\pi\)
\(812\) 0 0
\(813\) 50.3058 1.76430
\(814\) 0 0
\(815\) 4.44532 0.155713
\(816\) 0 0
\(817\) −3.17262 + 2.30505i −0.110996 + 0.0806434i
\(818\) 0 0
\(819\) 16.4334 + 50.5768i 0.574230 + 1.76730i
\(820\) 0 0
\(821\) −44.0551 32.0079i −1.53753 1.11708i −0.951858 0.306539i \(-0.900829\pi\)
−0.585677 0.810545i \(-0.699171\pi\)
\(822\) 0 0
\(823\) 0.0187612 0.0577411i 0.000653975 0.00201273i −0.950729 0.310023i \(-0.899663\pi\)
0.951383 + 0.308010i \(0.0996632\pi\)
\(824\) 0 0
\(825\) −1.20544 8.89468i −0.0419681 0.309673i
\(826\) 0 0
\(827\) −3.65486 + 11.2485i −0.127092 + 0.391149i −0.994276 0.106838i \(-0.965927\pi\)
0.867184 + 0.497987i \(0.165927\pi\)
\(828\) 0 0
\(829\) −13.5508 9.84525i −0.470640 0.341940i 0.327051 0.945007i \(-0.393945\pi\)
−0.797691 + 0.603067i \(0.793945\pi\)
\(830\) 0 0
\(831\) 5.82039 + 17.9133i 0.201907 + 0.621407i
\(832\) 0 0
\(833\) 22.5931 16.4149i 0.782806 0.568742i
\(834\) 0 0
\(835\) −13.9494 −0.482737
\(836\) 0 0
\(837\) 19.6712 0.679936
\(838\) 0 0
\(839\) 0.734439 0.533601i 0.0253557 0.0184220i −0.575035 0.818129i \(-0.695012\pi\)
0.600391 + 0.799707i \(0.295012\pi\)
\(840\) 0 0
\(841\) 4.09870 + 12.6145i 0.141335 + 0.434983i
\(842\) 0 0
\(843\) 48.9620 + 35.5730i 1.68634 + 1.22520i
\(844\) 0 0
\(845\) 0.713324 2.19539i 0.0245391 0.0755236i
\(846\) 0 0
\(847\) −39.8782 + 11.0111i −1.37023 + 0.378347i
\(848\) 0 0
\(849\) −19.5264 + 60.0961i −0.670144 + 2.06249i
\(850\) 0 0
\(851\) −52.0118 37.7888i −1.78294 1.29538i
\(852\) 0 0
\(853\) 16.4634 + 50.6690i 0.563695 + 1.73487i 0.671798 + 0.740735i \(0.265522\pi\)
−0.108103 + 0.994140i \(0.534478\pi\)
\(854\) 0 0
\(855\) 15.1289 10.9918i 0.517399 0.375912i
\(856\) 0 0
\(857\) 37.1487 1.26898 0.634488 0.772933i \(-0.281211\pi\)
0.634488 + 0.772933i \(0.281211\pi\)
\(858\) 0 0
\(859\) 26.8141 0.914887 0.457443 0.889239i \(-0.348765\pi\)
0.457443 + 0.889239i \(0.348765\pi\)
\(860\) 0 0
\(861\) −66.0238 + 47.9691i −2.25008 + 1.63478i
\(862\) 0 0
\(863\) −5.41724 16.6726i −0.184405 0.567541i 0.815532 0.578711i \(-0.196444\pi\)
−0.999938 + 0.0111706i \(0.996444\pi\)
\(864\) 0 0
\(865\) −13.0770 9.50098i −0.444631 0.323043i
\(866\) 0 0
\(867\) −1.44024 + 4.43259i −0.0489130 + 0.150539i
\(868\) 0 0
\(869\) −3.24019 23.9086i −0.109916 0.811045i
\(870\) 0 0
\(871\) 14.1140 43.4384i 0.478235 1.47185i
\(872\) 0 0
\(873\) 43.1691 + 31.3642i 1.46105 + 1.06152i
\(874\) 0 0
\(875\) −1.16220 3.57688i −0.0392895 0.120921i
\(876\) 0 0
\(877\) −16.8079 + 12.2116i −0.567562 + 0.412358i −0.834219 0.551434i \(-0.814081\pi\)
0.266657 + 0.963792i \(0.414081\pi\)
\(878\) 0 0
\(879\) 9.47556 0.319603
\(880\) 0 0
\(881\) 36.3078 1.22324 0.611621 0.791151i \(-0.290518\pi\)
0.611621 + 0.791151i \(0.290518\pi\)
\(882\) 0 0
\(883\) 30.0147 21.8070i 1.01008 0.733863i 0.0458509 0.998948i \(-0.485400\pi\)
0.964225 + 0.265085i \(0.0854001\pi\)
\(884\) 0 0
\(885\) 5.54815 + 17.0754i 0.186499 + 0.573985i
\(886\) 0 0
\(887\) −17.7834 12.9204i −0.597109 0.433825i 0.247742 0.968826i \(-0.420311\pi\)
−0.844852 + 0.535001i \(0.820311\pi\)
\(888\) 0 0
\(889\) 20.9795 64.5684i 0.703631 2.16555i
\(890\) 0 0
\(891\) 10.6803 + 1.93749i 0.357803 + 0.0649082i
\(892\) 0 0
\(893\) 7.38543 22.7300i 0.247144 0.760631i
\(894\) 0 0
\(895\) 14.8705 + 10.8041i 0.497067 + 0.361140i
\(896\) 0 0
\(897\) −17.5493 54.0111i −0.585953 1.80338i
\(898\) 0 0
\(899\) −28.8648 + 20.9715i −0.962695 + 0.699439i
\(900\) 0 0
\(901\) −4.26559 −0.142107
\(902\) 0 0
\(903\) 9.23037 0.307168
\(904\) 0 0
\(905\) 8.96192 6.51122i 0.297904 0.216440i
\(906\) 0 0
\(907\) 6.39045 + 19.6678i 0.212191 + 0.653058i 0.999341 + 0.0362960i \(0.0115559\pi\)
−0.787150 + 0.616762i \(0.788444\pi\)
\(908\) 0 0
\(909\) −0.291227 0.211589i −0.00965939 0.00701796i
\(910\) 0 0
\(911\) −10.5882 + 32.5873i −0.350804 + 1.07966i 0.607598 + 0.794244i \(0.292133\pi\)
−0.958403 + 0.285420i \(0.907867\pi\)
\(912\) 0 0
\(913\) −14.0142 14.6558i −0.463802 0.485037i
\(914\) 0 0
\(915\) 7.54755 23.2290i 0.249514 0.767926i
\(916\) 0 0
\(917\) −19.7168 14.3251i −0.651107 0.473057i
\(918\) 0 0
\(919\) 5.15152 + 15.8548i 0.169933 + 0.523000i 0.999366 0.0356062i \(-0.0113362\pi\)
−0.829433 + 0.558607i \(0.811336\pi\)
\(920\) 0 0
\(921\) 18.0931 13.1454i 0.596186 0.433155i
\(922\) 0 0
\(923\) −33.9178 −1.11642
\(924\) 0 0
\(925\) −10.0179 −0.329386
\(926\) 0 0
\(927\) −38.8447 + 28.2223i −1.27583 + 0.926943i
\(928\) 0 0
\(929\) 11.4967 + 35.3832i 0.377194 + 1.16089i 0.941986 + 0.335652i \(0.108957\pi\)
−0.564792 + 0.825234i \(0.691043\pi\)
\(930\) 0 0
\(931\) −24.9960 18.1607i −0.819211 0.595192i
\(932\) 0 0
\(933\) 9.66956 29.7598i 0.316567 0.974293i
\(934\) 0 0
\(935\) −6.14235 + 11.4161i −0.200876 + 0.373348i
\(936\) 0 0
\(937\) 4.83539 14.8818i 0.157965 0.486167i −0.840484 0.541836i \(-0.817729\pi\)
0.998449 + 0.0556691i \(0.0177292\pi\)
\(938\) 0 0
\(939\) 42.2895 + 30.7251i 1.38007 + 1.00268i
\(940\) 0 0
\(941\) −4.47359 13.7683i −0.145835 0.448834i 0.851282 0.524708i \(-0.175825\pi\)
−0.997117 + 0.0758737i \(0.975825\pi\)
\(942\) 0 0
\(943\) 41.6280 30.2445i 1.35559 0.984897i
\(944\) 0 0
\(945\) −13.4804 −0.438516
\(946\) 0 0
\(947\) −56.2394 −1.82754 −0.913768 0.406238i \(-0.866841\pi\)
−0.913768 + 0.406238i \(0.866841\pi\)
\(948\) 0 0
\(949\) 9.74150 7.07762i 0.316223 0.229749i
\(950\) 0 0
\(951\) 18.7113 + 57.5874i 0.606755 + 1.86740i
\(952\) 0 0
\(953\) 17.9028 + 13.0071i 0.579928 + 0.421342i 0.838698 0.544597i \(-0.183317\pi\)
−0.258770 + 0.965939i \(0.583317\pi\)
\(954\) 0 0
\(955\) −2.97235 + 9.14796i −0.0961831 + 0.296021i
\(956\) 0 0
\(957\) 52.5730 25.3219i 1.69944 0.818541i
\(958\) 0 0
\(959\) 2.25188 6.93059i 0.0727171 0.223800i
\(960\) 0 0
\(961\) 0.711966 + 0.517274i 0.0229666 + 0.0166862i
\(962\) 0 0
\(963\) −17.1970 52.9269i −0.554165 1.70555i
\(964\) 0 0
\(965\) −15.9018 + 11.5533i −0.511897 + 0.371915i
\(966\) 0 0
\(967\) 32.2808 1.03808 0.519039 0.854750i \(-0.326290\pi\)
0.519039 + 0.854750i \(0.326290\pi\)
\(968\) 0 0
\(969\) −45.7449 −1.46954
\(970\) 0 0
\(971\) 22.5473 16.3816i 0.723576 0.525709i −0.163948 0.986469i \(-0.552423\pi\)
0.887525 + 0.460760i \(0.152423\pi\)
\(972\) 0 0
\(973\) 16.0103 + 49.2745i 0.513265 + 1.57967i
\(974\) 0 0
\(975\) −7.15922 5.20148i −0.229278 0.166581i
\(976\) 0 0
\(977\) 3.29499 10.1409i 0.105416 0.324437i −0.884412 0.466707i \(-0.845440\pi\)
0.989828 + 0.142270i \(0.0454402\pi\)
\(978\) 0 0
\(979\) −36.2184 + 17.4447i −1.15754 + 0.557534i
\(980\) 0 0
\(981\) 10.0382 30.8943i 0.320494 0.986378i
\(982\) 0 0
\(983\) −24.7691 17.9958i −0.790011 0.573977i 0.117955 0.993019i \(-0.462366\pi\)
−0.907967 + 0.419042i \(0.862366\pi\)
\(984\) 0 0
\(985\) 3.76284 + 11.5808i 0.119894 + 0.368996i
\(986\) 0 0
\(987\) −45.5103 + 33.0651i −1.44861 + 1.05247i
\(988\) 0 0
\(989\) −5.81975 −0.185057
\(990\) 0 0
\(991\) 12.2099 0.387859 0.193929 0.981015i \(-0.437877\pi\)
0.193929 + 0.981015i \(0.437877\pi\)
\(992\) 0 0
\(993\) 11.3389 8.23817i 0.359828 0.261430i
\(994\) 0 0
\(995\) −2.60861 8.02848i −0.0826985 0.254520i
\(996\) 0 0
\(997\) 10.9465 + 7.95313i 0.346681 + 0.251878i 0.747475 0.664290i \(-0.231266\pi\)
−0.400795 + 0.916168i \(0.631266\pi\)
\(998\) 0 0
\(999\) −11.0959 + 34.1496i −0.351058 + 1.08045i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.m.a.141.1 8
3.2 odd 2 1980.2.z.c.361.1 8
4.3 odd 2 880.2.bo.f.801.2 8
5.2 odd 4 1100.2.cb.c.449.4 16
5.3 odd 4 1100.2.cb.c.449.1 16
5.4 even 2 1100.2.n.c.801.2 8
11.4 even 5 2420.2.a.n.1.4 4
11.5 even 5 inner 220.2.m.a.181.1 yes 8
11.7 odd 10 2420.2.a.m.1.4 4
33.5 odd 10 1980.2.z.c.181.1 8
44.7 even 10 9680.2.a.cl.1.1 4
44.15 odd 10 9680.2.a.ck.1.1 4
44.27 odd 10 880.2.bo.f.401.2 8
55.27 odd 20 1100.2.cb.c.49.1 16
55.38 odd 20 1100.2.cb.c.49.4 16
55.49 even 10 1100.2.n.c.401.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.m.a.141.1 8 1.1 even 1 trivial
220.2.m.a.181.1 yes 8 11.5 even 5 inner
880.2.bo.f.401.2 8 44.27 odd 10
880.2.bo.f.801.2 8 4.3 odd 2
1100.2.n.c.401.2 8 55.49 even 10
1100.2.n.c.801.2 8 5.4 even 2
1100.2.cb.c.49.1 16 55.27 odd 20
1100.2.cb.c.49.4 16 55.38 odd 20
1100.2.cb.c.449.1 16 5.3 odd 4
1100.2.cb.c.449.4 16 5.2 odd 4
1980.2.z.c.181.1 8 33.5 odd 10
1980.2.z.c.361.1 8 3.2 odd 2
2420.2.a.m.1.4 4 11.7 odd 10
2420.2.a.n.1.4 4 11.4 even 5
9680.2.a.ck.1.1 4 44.15 odd 10
9680.2.a.cl.1.1 4 44.7 even 10