Properties

Label 880.2.bo.f.401.2
Level $880$
Weight $2$
Character 880.401
Analytic conductor $7.027$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,2,Mod(81,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bo (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.26265625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 2x^{6} + x^{4} + 8x^{2} - 24x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 401.2
Root \(1.33631 + 0.462894i\) of defining polynomial
Character \(\chi\) \(=\) 880.401
Dual form 880.2.bo.f.801.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.18949 + 1.59076i) q^{3} +(-0.309017 + 0.951057i) q^{5} +(3.04267 - 2.21063i) q^{7} +(1.33631 + 4.11275i) q^{9} +(-2.98808 - 1.43922i) q^{11} +(1.01043 + 3.10977i) q^{13} +(-2.18949 + 1.59076i) q^{15} +(-1.20785 + 3.71739i) q^{17} +(3.49851 + 2.54182i) q^{19} +10.1785 q^{21} +6.41755 q^{23} +(-0.809017 - 0.587785i) q^{25} +(-1.10761 + 3.40887i) q^{27} +(-5.25946 + 3.82122i) q^{29} +(-1.69594 - 5.21956i) q^{31} +(-4.25294 - 7.90449i) q^{33} +(1.16220 + 3.57688i) q^{35} +(8.10463 - 5.88836i) q^{37} +(-2.73458 + 8.41617i) q^{39} +(-6.48659 - 4.71279i) q^{41} -0.906850 q^{43} -4.32440 q^{45} +(4.47122 + 3.24853i) q^{47} +(2.20785 - 6.79507i) q^{49} +(-8.55805 + 6.21779i) q^{51} +(0.337233 + 1.03790i) q^{53} +(2.29215 - 2.39709i) q^{55} +(3.61654 + 11.1306i) q^{57} +(-5.36707 + 3.89940i) q^{59} +(-2.78882 + 8.58309i) q^{61} +(13.1577 + 9.55965i) q^{63} -3.26981 q^{65} -13.9684 q^{67} +(14.0512 + 10.2088i) q^{69} +(3.20544 - 9.86533i) q^{71} +(2.97923 - 2.16454i) q^{73} +(-0.836312 - 2.57390i) q^{75} +(-12.2734 + 2.22648i) q^{77} +(-2.24798 - 6.91858i) q^{79} +(2.64774 - 1.92370i) q^{81} +(1.88933 - 5.81476i) q^{83} +(-3.16220 - 2.29747i) q^{85} -17.5942 q^{87} -12.1209 q^{89} +(9.94895 + 7.22834i) q^{91} +(4.58982 - 14.1260i) q^{93} +(-3.49851 + 2.54182i) q^{95} +(-3.81305 - 11.7354i) q^{97} +(1.92613 - 14.2125i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{3} + 2 q^{5} - q^{7} + 3 q^{9} - 5 q^{11} + 6 q^{13} - q^{15} - 13 q^{17} + 7 q^{19} + 28 q^{21} + 22 q^{23} - 2 q^{25} - 2 q^{27} + 3 q^{29} + 2 q^{31} - 15 q^{33} - 4 q^{35} + 16 q^{37} + 17 q^{39}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.18949 + 1.59076i 1.26410 + 0.918426i 0.998952 0.0457808i \(-0.0145776\pi\)
0.265153 + 0.964206i \(0.414578\pi\)
\(4\) 0 0
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0 0
\(7\) 3.04267 2.21063i 1.15002 0.835540i 0.161539 0.986866i \(-0.448354\pi\)
0.988484 + 0.151326i \(0.0483543\pi\)
\(8\) 0 0
\(9\) 1.33631 + 4.11275i 0.445437 + 1.37092i
\(10\) 0 0
\(11\) −2.98808 1.43922i −0.900941 0.433941i
\(12\) 0 0
\(13\) 1.01043 + 3.10977i 0.280242 + 0.862495i 0.987785 + 0.155825i \(0.0498036\pi\)
−0.707543 + 0.706670i \(0.750196\pi\)
\(14\) 0 0
\(15\) −2.18949 + 1.59076i −0.565325 + 0.410732i
\(16\) 0 0
\(17\) −1.20785 + 3.71739i −0.292947 + 0.901599i 0.690956 + 0.722897i \(0.257190\pi\)
−0.983903 + 0.178702i \(0.942810\pi\)
\(18\) 0 0
\(19\) 3.49851 + 2.54182i 0.802613 + 0.583133i 0.911680 0.410902i \(-0.134786\pi\)
−0.109066 + 0.994034i \(0.534786\pi\)
\(20\) 0 0
\(21\) 10.1785 2.22113
\(22\) 0 0
\(23\) 6.41755 1.33815 0.669075 0.743194i \(-0.266690\pi\)
0.669075 + 0.743194i \(0.266690\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 0 0
\(27\) −1.10761 + 3.40887i −0.213159 + 0.656037i
\(28\) 0 0
\(29\) −5.25946 + 3.82122i −0.976658 + 0.709583i −0.956959 0.290223i \(-0.906271\pi\)
−0.0196984 + 0.999806i \(0.506271\pi\)
\(30\) 0 0
\(31\) −1.69594 5.21956i −0.304599 0.937460i −0.979826 0.199850i \(-0.935954\pi\)
0.675227 0.737610i \(-0.264046\pi\)
\(32\) 0 0
\(33\) −4.25294 7.90449i −0.740341 1.37599i
\(34\) 0 0
\(35\) 1.16220 + 3.57688i 0.196447 + 0.604603i
\(36\) 0 0
\(37\) 8.10463 5.88836i 1.33239 0.968040i 0.332705 0.943031i \(-0.392039\pi\)
0.999687 0.0250091i \(-0.00796149\pi\)
\(38\) 0 0
\(39\) −2.73458 + 8.41617i −0.437883 + 1.34767i
\(40\) 0 0
\(41\) −6.48659 4.71279i −1.01304 0.736014i −0.0481922 0.998838i \(-0.515346\pi\)
−0.964844 + 0.262824i \(0.915346\pi\)
\(42\) 0 0
\(43\) −0.906850 −0.138293 −0.0691467 0.997607i \(-0.522028\pi\)
−0.0691467 + 0.997607i \(0.522028\pi\)
\(44\) 0 0
\(45\) −4.32440 −0.644643
\(46\) 0 0
\(47\) 4.47122 + 3.24853i 0.652194 + 0.473846i 0.864018 0.503461i \(-0.167940\pi\)
−0.211824 + 0.977308i \(0.567940\pi\)
\(48\) 0 0
\(49\) 2.20785 6.79507i 0.315407 0.970724i
\(50\) 0 0
\(51\) −8.55805 + 6.21779i −1.19837 + 0.870665i
\(52\) 0 0
\(53\) 0.337233 + 1.03790i 0.0463225 + 0.142566i 0.971543 0.236865i \(-0.0761198\pi\)
−0.925220 + 0.379431i \(0.876120\pi\)
\(54\) 0 0
\(55\) 2.29215 2.39709i 0.309073 0.323224i
\(56\) 0 0
\(57\) 3.61654 + 11.1306i 0.479023 + 1.47428i
\(58\) 0 0
\(59\) −5.36707 + 3.89940i −0.698733 + 0.507659i −0.879519 0.475863i \(-0.842136\pi\)
0.180786 + 0.983522i \(0.442136\pi\)
\(60\) 0 0
\(61\) −2.78882 + 8.58309i −0.357071 + 1.09895i 0.597727 + 0.801699i \(0.296071\pi\)
−0.954799 + 0.297253i \(0.903929\pi\)
\(62\) 0 0
\(63\) 13.1577 + 9.55965i 1.65772 + 1.20440i
\(64\) 0 0
\(65\) −3.26981 −0.405570
\(66\) 0 0
\(67\) −13.9684 −1.70651 −0.853254 0.521496i \(-0.825374\pi\)
−0.853254 + 0.521496i \(0.825374\pi\)
\(68\) 0 0
\(69\) 14.0512 + 10.2088i 1.69156 + 1.22899i
\(70\) 0 0
\(71\) 3.20544 9.86533i 0.380416 1.17080i −0.559336 0.828941i \(-0.688944\pi\)
0.939751 0.341858i \(-0.111056\pi\)
\(72\) 0 0
\(73\) 2.97923 2.16454i 0.348692 0.253340i −0.399628 0.916677i \(-0.630861\pi\)
0.748320 + 0.663338i \(0.230861\pi\)
\(74\) 0 0
\(75\) −0.836312 2.57390i −0.0965690 0.297209i
\(76\) 0 0
\(77\) −12.2734 + 2.22648i −1.39868 + 0.253731i
\(78\) 0 0
\(79\) −2.24798 6.91858i −0.252918 0.778401i −0.994233 0.107244i \(-0.965797\pi\)
0.741315 0.671157i \(-0.234203\pi\)
\(80\) 0 0
\(81\) 2.64774 1.92370i 0.294193 0.213744i
\(82\) 0 0
\(83\) 1.88933 5.81476i 0.207381 0.638253i −0.792226 0.610227i \(-0.791078\pi\)
0.999607 0.0280255i \(-0.00892195\pi\)
\(84\) 0 0
\(85\) −3.16220 2.29747i −0.342989 0.249196i
\(86\) 0 0
\(87\) −17.5942 −1.88630
\(88\) 0 0
\(89\) −12.1209 −1.28482 −0.642408 0.766363i \(-0.722064\pi\)
−0.642408 + 0.766363i \(0.722064\pi\)
\(90\) 0 0
\(91\) 9.94895 + 7.22834i 1.04293 + 0.757736i
\(92\) 0 0
\(93\) 4.58982 14.1260i 0.475942 1.46480i
\(94\) 0 0
\(95\) −3.49851 + 2.54182i −0.358940 + 0.260785i
\(96\) 0 0
\(97\) −3.81305 11.7354i −0.387157 1.19155i −0.934904 0.354901i \(-0.884514\pi\)
0.547747 0.836644i \(-0.315486\pi\)
\(98\) 0 0
\(99\) 1.92613 14.2125i 0.193583 1.42841i
\(100\) 0 0
\(101\) 0.0257235 + 0.0791689i 0.00255959 + 0.00787760i 0.952328 0.305076i \(-0.0986817\pi\)
−0.949769 + 0.312953i \(0.898682\pi\)
\(102\) 0 0
\(103\) 8.98269 6.52631i 0.885091 0.643056i −0.0495024 0.998774i \(-0.515764\pi\)
0.934593 + 0.355718i \(0.115764\pi\)
\(104\) 0 0
\(105\) −3.14533 + 9.68033i −0.306953 + 0.944703i
\(106\) 0 0
\(107\) −10.4112 7.56420i −1.00649 0.731259i −0.0430216 0.999074i \(-0.513698\pi\)
−0.963470 + 0.267815i \(0.913698\pi\)
\(108\) 0 0
\(109\) 7.51183 0.719503 0.359752 0.933048i \(-0.382861\pi\)
0.359752 + 0.933048i \(0.382861\pi\)
\(110\) 0 0
\(111\) 27.1120 2.57336
\(112\) 0 0
\(113\) −0.378065 0.274680i −0.0355654 0.0258398i 0.569861 0.821741i \(-0.306997\pi\)
−0.605426 + 0.795902i \(0.706997\pi\)
\(114\) 0 0
\(115\) −1.98313 + 6.10345i −0.184928 + 0.569150i
\(116\) 0 0
\(117\) −11.4395 + 8.31125i −1.05758 + 0.768375i
\(118\) 0 0
\(119\) 4.54267 + 13.9809i 0.416426 + 1.28163i
\(120\) 0 0
\(121\) 6.85729 + 8.60102i 0.623390 + 0.781911i
\(122\) 0 0
\(123\) −6.70544 20.6372i −0.604609 1.86080i
\(124\) 0 0
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0 0
\(127\) −5.57825 + 17.1681i −0.494990 + 1.52342i 0.321982 + 0.946746i \(0.395651\pi\)
−0.816972 + 0.576677i \(0.804349\pi\)
\(128\) 0 0
\(129\) −1.98554 1.44258i −0.174817 0.127012i
\(130\) 0 0
\(131\) −6.48010 −0.566169 −0.283085 0.959095i \(-0.591358\pi\)
−0.283085 + 0.959095i \(0.591358\pi\)
\(132\) 0 0
\(133\) 16.2638 1.41025
\(134\) 0 0
\(135\) −2.89976 2.10680i −0.249571 0.181324i
\(136\) 0 0
\(137\) 0.598754 1.84278i 0.0511550 0.157439i −0.922216 0.386676i \(-0.873623\pi\)
0.973371 + 0.229237i \(0.0736231\pi\)
\(138\) 0 0
\(139\) 11.1449 8.09724i 0.945297 0.686799i −0.00439260 0.999990i \(-0.501398\pi\)
0.949690 + 0.313192i \(0.101398\pi\)
\(140\) 0 0
\(141\) 4.62207 + 14.2253i 0.389248 + 1.19798i
\(142\) 0 0
\(143\) 1.45641 10.7465i 0.121791 0.898666i
\(144\) 0 0
\(145\) −2.00894 6.18287i −0.166833 0.513459i
\(146\) 0 0
\(147\) 15.6434 11.3656i 1.29025 0.937419i
\(148\) 0 0
\(149\) 2.99396 9.21446i 0.245275 0.754878i −0.750317 0.661079i \(-0.770099\pi\)
0.995591 0.0937990i \(-0.0299011\pi\)
\(150\) 0 0
\(151\) −13.4658 9.78349i −1.09583 0.796169i −0.115458 0.993312i \(-0.536834\pi\)
−0.980375 + 0.197143i \(0.936834\pi\)
\(152\) 0 0
\(153\) −16.9027 −1.36650
\(154\) 0 0
\(155\) 5.48817 0.440820
\(156\) 0 0
\(157\) −0.775197 0.563214i −0.0618675 0.0449494i 0.556422 0.830900i \(-0.312174\pi\)
−0.618289 + 0.785951i \(0.712174\pi\)
\(158\) 0 0
\(159\) −0.912674 + 2.80892i −0.0723798 + 0.222762i
\(160\) 0 0
\(161\) 19.5265 14.1868i 1.53890 1.11808i
\(162\) 0 0
\(163\) 1.37368 + 4.22775i 0.107595 + 0.331143i 0.990331 0.138726i \(-0.0443009\pi\)
−0.882736 + 0.469870i \(0.844301\pi\)
\(164\) 0 0
\(165\) 8.83184 1.60216i 0.687558 0.124728i
\(166\) 0 0
\(167\) −4.31059 13.2666i −0.333563 1.02660i −0.967425 0.253156i \(-0.918531\pi\)
0.633862 0.773446i \(-0.281469\pi\)
\(168\) 0 0
\(169\) 1.86751 1.35682i 0.143654 0.104371i
\(170\) 0 0
\(171\) −5.77874 + 17.7851i −0.441911 + 1.36006i
\(172\) 0 0
\(173\) 13.0770 + 9.50098i 0.994224 + 0.722346i 0.960842 0.277097i \(-0.0893722\pi\)
0.0333821 + 0.999443i \(0.489372\pi\)
\(174\) 0 0
\(175\) −3.76095 −0.284301
\(176\) 0 0
\(177\) −17.9542 −1.34952
\(178\) 0 0
\(179\) 14.8705 + 10.8041i 1.11148 + 0.807534i 0.982895 0.184165i \(-0.0589579\pi\)
0.128580 + 0.991699i \(0.458958\pi\)
\(180\) 0 0
\(181\) 3.42315 10.5354i 0.254441 0.783088i −0.739499 0.673158i \(-0.764937\pi\)
0.993939 0.109930i \(-0.0350627\pi\)
\(182\) 0 0
\(183\) −19.7597 + 14.3563i −1.46068 + 1.06125i
\(184\) 0 0
\(185\) 3.09569 + 9.52756i 0.227600 + 0.700480i
\(186\) 0 0
\(187\) 8.95930 9.36950i 0.655169 0.685166i
\(188\) 0 0
\(189\) 4.16566 + 12.8206i 0.303007 + 0.932561i
\(190\) 0 0
\(191\) 7.78172 5.65375i 0.563066 0.409091i −0.269514 0.962996i \(-0.586863\pi\)
0.832580 + 0.553905i \(0.186863\pi\)
\(192\) 0 0
\(193\) −6.07395 + 18.6937i −0.437213 + 1.34560i 0.453590 + 0.891211i \(0.350143\pi\)
−0.890802 + 0.454391i \(0.849857\pi\)
\(194\) 0 0
\(195\) −7.15922 5.20148i −0.512682 0.372485i
\(196\) 0 0
\(197\) −12.1768 −0.867562 −0.433781 0.901018i \(-0.642821\pi\)
−0.433781 + 0.901018i \(0.642821\pi\)
\(198\) 0 0
\(199\) −8.44164 −0.598412 −0.299206 0.954189i \(-0.596722\pi\)
−0.299206 + 0.954189i \(0.596722\pi\)
\(200\) 0 0
\(201\) −30.5836 22.2203i −2.15720 1.56730i
\(202\) 0 0
\(203\) −7.55551 + 23.2535i −0.530293 + 1.63207i
\(204\) 0 0
\(205\) 6.48659 4.71279i 0.453043 0.329155i
\(206\) 0 0
\(207\) 8.57584 + 26.3937i 0.596062 + 1.83449i
\(208\) 0 0
\(209\) −6.79561 12.6303i −0.470062 0.873655i
\(210\) 0 0
\(211\) 6.75302 + 20.7837i 0.464897 + 1.43081i 0.859112 + 0.511788i \(0.171016\pi\)
−0.394215 + 0.919018i \(0.628984\pi\)
\(212\) 0 0
\(213\) 22.7117 16.5010i 1.55618 1.13063i
\(214\) 0 0
\(215\) 0.280232 0.862466i 0.0191117 0.0588197i
\(216\) 0 0
\(217\) −16.6987 12.1323i −1.13358 0.823595i
\(218\) 0 0
\(219\) 9.96626 0.673458
\(220\) 0 0
\(221\) −12.7807 −0.859721
\(222\) 0 0
\(223\) −21.3778 15.5319i −1.43157 1.04009i −0.989722 0.143002i \(-0.954324\pi\)
−0.441844 0.897092i \(-0.645676\pi\)
\(224\) 0 0
\(225\) 1.33631 4.11275i 0.0890875 0.274183i
\(226\) 0 0
\(227\) 8.02445 5.83010i 0.532601 0.386957i −0.288729 0.957411i \(-0.593233\pi\)
0.821330 + 0.570454i \(0.193233\pi\)
\(228\) 0 0
\(229\) −4.01140 12.3458i −0.265081 0.815834i −0.991675 0.128767i \(-0.958898\pi\)
0.726594 0.687067i \(-0.241102\pi\)
\(230\) 0 0
\(231\) −30.4142 14.6491i −2.00111 0.963839i
\(232\) 0 0
\(233\) −2.05800 6.33388i −0.134824 0.414946i 0.860738 0.509048i \(-0.170002\pi\)
−0.995563 + 0.0941012i \(0.970002\pi\)
\(234\) 0 0
\(235\) −4.47122 + 3.24853i −0.291670 + 0.211911i
\(236\) 0 0
\(237\) 6.08386 18.7242i 0.395189 1.21627i
\(238\) 0 0
\(239\) −17.7108 12.8677i −1.14562 0.832340i −0.157726 0.987483i \(-0.550416\pi\)
−0.987892 + 0.155143i \(0.950416\pi\)
\(240\) 0 0
\(241\) 10.6517 0.686134 0.343067 0.939311i \(-0.388534\pi\)
0.343067 + 0.939311i \(0.388534\pi\)
\(242\) 0 0
\(243\) 19.6102 1.25800
\(244\) 0 0
\(245\) 5.78023 + 4.19958i 0.369285 + 0.268302i
\(246\) 0 0
\(247\) −4.36948 + 13.4479i −0.278023 + 0.855668i
\(248\) 0 0
\(249\) 13.3866 9.72591i 0.848339 0.616354i
\(250\) 0 0
\(251\) 3.75973 + 11.5713i 0.237312 + 0.730372i 0.996806 + 0.0798576i \(0.0254466\pi\)
−0.759494 + 0.650514i \(0.774553\pi\)
\(252\) 0 0
\(253\) −19.1762 9.23626i −1.20560 0.580679i
\(254\) 0 0
\(255\) −3.26889 10.0606i −0.204706 0.630019i
\(256\) 0 0
\(257\) −4.94633 + 3.59372i −0.308544 + 0.224170i −0.731271 0.682087i \(-0.761073\pi\)
0.422728 + 0.906257i \(0.361073\pi\)
\(258\) 0 0
\(259\) 11.6428 35.8327i 0.723445 2.22654i
\(260\) 0 0
\(261\) −22.7440 16.5245i −1.40782 1.02284i
\(262\) 0 0
\(263\) −0.446463 −0.0275301 −0.0137650 0.999905i \(-0.504382\pi\)
−0.0137650 + 0.999905i \(0.504382\pi\)
\(264\) 0 0
\(265\) −1.09131 −0.0670385
\(266\) 0 0
\(267\) −26.5387 19.2815i −1.62414 1.18001i
\(268\) 0 0
\(269\) 0.00246118 0.00757473i 0.000150061 0.000461840i −0.950981 0.309248i \(-0.899923\pi\)
0.951132 + 0.308786i \(0.0999227\pi\)
\(270\) 0 0
\(271\) 15.0380 10.9257i 0.913493 0.663691i −0.0284029 0.999597i \(-0.509042\pi\)
0.941896 + 0.335905i \(0.109042\pi\)
\(272\) 0 0
\(273\) 10.2846 + 31.6528i 0.622453 + 1.91571i
\(274\) 0 0
\(275\) 1.57146 + 2.92070i 0.0947625 + 0.176125i
\(276\) 0 0
\(277\) 2.15063 + 6.61897i 0.129219 + 0.397695i 0.994646 0.103339i \(-0.0329528\pi\)
−0.865427 + 0.501035i \(0.832953\pi\)
\(278\) 0 0
\(279\) 19.2004 13.9499i 1.14950 0.835159i
\(280\) 0 0
\(281\) −6.91031 + 21.2678i −0.412235 + 1.26873i 0.502466 + 0.864597i \(0.332426\pi\)
−0.914701 + 0.404131i \(0.867574\pi\)
\(282\) 0 0
\(283\) −18.8891 13.7237i −1.12284 0.815792i −0.138204 0.990404i \(-0.544133\pi\)
−0.984637 + 0.174612i \(0.944133\pi\)
\(284\) 0 0
\(285\) −11.7034 −0.693249
\(286\) 0 0
\(287\) −30.1548 −1.77998
\(288\) 0 0
\(289\) 1.39323 + 1.01224i 0.0819548 + 0.0595436i
\(290\) 0 0
\(291\) 10.3195 31.7601i 0.604939 1.86181i
\(292\) 0 0
\(293\) −2.83254 + 2.05796i −0.165479 + 0.120227i −0.667443 0.744661i \(-0.732611\pi\)
0.501964 + 0.864889i \(0.332611\pi\)
\(294\) 0 0
\(295\) −2.05004 6.30937i −0.119358 0.367346i
\(296\) 0 0
\(297\) 8.21574 8.59189i 0.476725 0.498552i
\(298\) 0 0
\(299\) 6.48445 + 19.9571i 0.375006 + 1.15415i
\(300\) 0 0
\(301\) −2.75925 + 2.00471i −0.159040 + 0.115550i
\(302\) 0 0
\(303\) −0.0696172 + 0.214260i −0.00399940 + 0.0123089i
\(304\) 0 0
\(305\) −7.30122 5.30464i −0.418066 0.303743i
\(306\) 0 0
\(307\) 8.26358 0.471628 0.235814 0.971798i \(-0.424224\pi\)
0.235814 + 0.971798i \(0.424224\pi\)
\(308\) 0 0
\(309\) 30.0493 1.70945
\(310\) 0 0
\(311\) 9.35397 + 6.79606i 0.530415 + 0.385369i 0.820513 0.571628i \(-0.193688\pi\)
−0.290098 + 0.956997i \(0.593688\pi\)
\(312\) 0 0
\(313\) −5.96859 + 18.3694i −0.337364 + 1.03830i 0.628181 + 0.778067i \(0.283800\pi\)
−0.965546 + 0.260234i \(0.916200\pi\)
\(314\) 0 0
\(315\) −13.1577 + 9.55965i −0.741354 + 0.538625i
\(316\) 0 0
\(317\) 6.91381 + 21.2785i 0.388318 + 1.19512i 0.934044 + 0.357157i \(0.116254\pi\)
−0.545726 + 0.837964i \(0.683746\pi\)
\(318\) 0 0
\(319\) 21.2153 3.84862i 1.18783 0.215481i
\(320\) 0 0
\(321\) −10.7625 33.1235i −0.600704 1.84878i
\(322\) 0 0
\(323\) −13.6746 + 9.93518i −0.760875 + 0.552808i
\(324\) 0 0
\(325\) 1.01043 3.10977i 0.0560483 0.172499i
\(326\) 0 0
\(327\) 16.4471 + 11.9495i 0.909527 + 0.660810i
\(328\) 0 0
\(329\) 20.7858 1.14596
\(330\) 0 0
\(331\) 5.17876 0.284650 0.142325 0.989820i \(-0.454542\pi\)
0.142325 + 0.989820i \(0.454542\pi\)
\(332\) 0 0
\(333\) 35.0476 + 25.4636i 1.92060 + 1.39540i
\(334\) 0 0
\(335\) 4.31646 13.2847i 0.235834 0.725821i
\(336\) 0 0
\(337\) −4.47108 + 3.24843i −0.243555 + 0.176953i −0.702866 0.711322i \(-0.748097\pi\)
0.459310 + 0.888276i \(0.348097\pi\)
\(338\) 0 0
\(339\) −0.390820 1.20282i −0.0212264 0.0653283i
\(340\) 0 0
\(341\) −2.44448 + 18.0373i −0.132376 + 0.976774i
\(342\) 0 0
\(343\) −0.168240 0.517788i −0.00908408 0.0279579i
\(344\) 0 0
\(345\) −14.0512 + 10.2088i −0.756490 + 0.549622i
\(346\) 0 0
\(347\) −2.65383 + 8.16765i −0.142465 + 0.438463i −0.996676 0.0814636i \(-0.974041\pi\)
0.854211 + 0.519926i \(0.174041\pi\)
\(348\) 0 0
\(349\) −11.8706 8.62451i −0.635419 0.461659i 0.222854 0.974852i \(-0.428463\pi\)
−0.858273 + 0.513193i \(0.828463\pi\)
\(350\) 0 0
\(351\) −11.7200 −0.625565
\(352\) 0 0
\(353\) 5.79041 0.308192 0.154096 0.988056i \(-0.450753\pi\)
0.154096 + 0.988056i \(0.450753\pi\)
\(354\) 0 0
\(355\) 8.39195 + 6.09711i 0.445399 + 0.323601i
\(356\) 0 0
\(357\) −12.2941 + 37.8374i −0.650674 + 2.00257i
\(358\) 0 0
\(359\) −9.19282 + 6.67898i −0.485179 + 0.352503i −0.803327 0.595538i \(-0.796939\pi\)
0.318148 + 0.948041i \(0.396939\pi\)
\(360\) 0 0
\(361\) −0.0925809 0.284935i −0.00487268 0.0149966i
\(362\) 0 0
\(363\) 1.33185 + 29.7402i 0.0699038 + 1.56095i
\(364\) 0 0
\(365\) 1.13796 + 3.50229i 0.0595638 + 0.183318i
\(366\) 0 0
\(367\) −3.70890 + 2.69468i −0.193603 + 0.140661i −0.680364 0.732874i \(-0.738178\pi\)
0.486761 + 0.873535i \(0.338178\pi\)
\(368\) 0 0
\(369\) 10.7144 32.9755i 0.557768 1.71663i
\(370\) 0 0
\(371\) 3.32050 + 2.41248i 0.172392 + 0.125250i
\(372\) 0 0
\(373\) −22.8487 −1.18306 −0.591530 0.806283i \(-0.701476\pi\)
−0.591530 + 0.806283i \(0.701476\pi\)
\(374\) 0 0
\(375\) 2.70636 0.139756
\(376\) 0 0
\(377\) −17.1974 12.4947i −0.885712 0.643508i
\(378\) 0 0
\(379\) 6.50498 20.0203i 0.334139 1.02837i −0.633006 0.774147i \(-0.718179\pi\)
0.967145 0.254226i \(-0.0818208\pi\)
\(380\) 0 0
\(381\) −39.5239 + 28.7158i −2.02487 + 1.47115i
\(382\) 0 0
\(383\) 0.0803134 + 0.247179i 0.00410382 + 0.0126303i 0.953087 0.302695i \(-0.0978864\pi\)
−0.948984 + 0.315325i \(0.897886\pi\)
\(384\) 0 0
\(385\) 1.67517 12.3607i 0.0853744 0.629958i
\(386\) 0 0
\(387\) −1.21183 3.72964i −0.0616010 0.189588i
\(388\) 0 0
\(389\) 12.7514 9.26447i 0.646524 0.469727i −0.215561 0.976490i \(-0.569158\pi\)
0.862085 + 0.506763i \(0.169158\pi\)
\(390\) 0 0
\(391\) −7.75145 + 23.8565i −0.392008 + 1.20648i
\(392\) 0 0
\(393\) −14.1881 10.3083i −0.715697 0.519984i
\(394\) 0 0
\(395\) 7.27463 0.366026
\(396\) 0 0
\(397\) 7.62978 0.382928 0.191464 0.981500i \(-0.438677\pi\)
0.191464 + 0.981500i \(0.438677\pi\)
\(398\) 0 0
\(399\) 35.6096 + 25.8719i 1.78271 + 1.29521i
\(400\) 0 0
\(401\) −9.31703 + 28.6749i −0.465270 + 1.43195i 0.393372 + 0.919379i \(0.371309\pi\)
−0.858642 + 0.512575i \(0.828691\pi\)
\(402\) 0 0
\(403\) 14.5180 10.5479i 0.723193 0.525431i
\(404\) 0 0
\(405\) 1.01135 + 3.11260i 0.0502542 + 0.154667i
\(406\) 0 0
\(407\) −32.6919 + 5.93057i −1.62048 + 0.293967i
\(408\) 0 0
\(409\) 9.62526 + 29.6235i 0.475939 + 1.46479i 0.844688 + 0.535259i \(0.179786\pi\)
−0.368749 + 0.929529i \(0.620214\pi\)
\(410\) 0 0
\(411\) 4.24238 3.08227i 0.209261 0.152037i
\(412\) 0 0
\(413\) −7.71010 + 23.7292i −0.379389 + 1.16764i
\(414\) 0 0
\(415\) 4.94633 + 3.59372i 0.242806 + 0.176409i
\(416\) 0 0
\(417\) 37.2824 1.82573
\(418\) 0 0
\(419\) −13.3733 −0.653328 −0.326664 0.945141i \(-0.605925\pi\)
−0.326664 + 0.945141i \(0.605925\pi\)
\(420\) 0 0
\(421\) 8.87736 + 6.44978i 0.432656 + 0.314343i 0.782710 0.622386i \(-0.213837\pi\)
−0.350054 + 0.936730i \(0.613837\pi\)
\(422\) 0 0
\(423\) −7.38543 + 22.7300i −0.359092 + 1.10517i
\(424\) 0 0
\(425\) 3.16220 2.29747i 0.153389 0.111444i
\(426\) 0 0
\(427\) 10.4886 + 32.2806i 0.507579 + 1.56217i
\(428\) 0 0
\(429\) 20.2839 21.2126i 0.979314 1.02415i
\(430\) 0 0
\(431\) 5.01099 + 15.4223i 0.241371 + 0.742864i 0.996212 + 0.0869561i \(0.0277140\pi\)
−0.754841 + 0.655908i \(0.772286\pi\)
\(432\) 0 0
\(433\) 17.3649 12.6163i 0.834503 0.606302i −0.0863271 0.996267i \(-0.527513\pi\)
0.920830 + 0.389965i \(0.127513\pi\)
\(434\) 0 0
\(435\) 5.43691 16.7331i 0.260680 0.802290i
\(436\) 0 0
\(437\) 22.4518 + 16.3122i 1.07402 + 0.780319i
\(438\) 0 0
\(439\) −5.94741 −0.283855 −0.141927 0.989877i \(-0.545330\pi\)
−0.141927 + 0.989877i \(0.545330\pi\)
\(440\) 0 0
\(441\) 30.8968 1.47127
\(442\) 0 0
\(443\) −19.2068 13.9546i −0.912545 0.663003i 0.0291124 0.999576i \(-0.490732\pi\)
−0.941657 + 0.336574i \(0.890732\pi\)
\(444\) 0 0
\(445\) 3.74557 11.5277i 0.177557 0.546465i
\(446\) 0 0
\(447\) 21.2132 15.4123i 1.00335 0.728978i
\(448\) 0 0
\(449\) 10.6354 + 32.7325i 0.501917 + 1.54474i 0.805892 + 0.592063i \(0.201686\pi\)
−0.303975 + 0.952680i \(0.598314\pi\)
\(450\) 0 0
\(451\) 12.5998 + 23.4178i 0.593299 + 1.10270i
\(452\) 0 0
\(453\) −13.9201 42.8418i −0.654025 2.01288i
\(454\) 0 0
\(455\) −9.94895 + 7.22834i −0.466414 + 0.338870i
\(456\) 0 0
\(457\) 4.58276 14.1043i 0.214372 0.659770i −0.784825 0.619717i \(-0.787247\pi\)
0.999198 0.0400529i \(-0.0127526\pi\)
\(458\) 0 0
\(459\) −11.3343 8.23482i −0.529038 0.384368i
\(460\) 0 0
\(461\) 29.8441 1.38998 0.694990 0.719020i \(-0.255409\pi\)
0.694990 + 0.719020i \(0.255409\pi\)
\(462\) 0 0
\(463\) 6.87337 0.319433 0.159716 0.987163i \(-0.448942\pi\)
0.159716 + 0.987163i \(0.448942\pi\)
\(464\) 0 0
\(465\) 12.0163 + 8.73035i 0.557243 + 0.404860i
\(466\) 0 0
\(467\) 0.435503 1.34034i 0.0201527 0.0620236i −0.940474 0.339864i \(-0.889619\pi\)
0.960627 + 0.277841i \(0.0896188\pi\)
\(468\) 0 0
\(469\) −42.5012 + 30.8789i −1.96252 + 1.42586i
\(470\) 0 0
\(471\) −0.801351 2.46631i −0.0369243 0.113641i
\(472\) 0 0
\(473\) 2.70974 + 1.30516i 0.124594 + 0.0600111i
\(474\) 0 0
\(475\) −1.33631 4.11275i −0.0613142 0.188706i
\(476\) 0 0
\(477\) −3.81795 + 2.77391i −0.174812 + 0.127008i
\(478\) 0 0
\(479\) 7.19055 22.1302i 0.328544 1.01116i −0.641271 0.767315i \(-0.721592\pi\)
0.969815 0.243841i \(-0.0784075\pi\)
\(480\) 0 0
\(481\) 26.5006 + 19.2538i 1.20832 + 0.877897i
\(482\) 0 0
\(483\) 65.3210 2.97221
\(484\) 0 0
\(485\) 12.3393 0.560298
\(486\) 0 0
\(487\) 15.0917 + 10.9647i 0.683868 + 0.496859i 0.874639 0.484775i \(-0.161099\pi\)
−0.190770 + 0.981635i \(0.561099\pi\)
\(488\) 0 0
\(489\) −3.71768 + 11.4418i −0.168119 + 0.517418i
\(490\) 0 0
\(491\) −33.9898 + 24.6951i −1.53394 + 1.11447i −0.579943 + 0.814657i \(0.696925\pi\)
−0.953997 + 0.299815i \(0.903075\pi\)
\(492\) 0 0
\(493\) −7.85231 24.1669i −0.353650 1.08842i
\(494\) 0 0
\(495\) 12.9217 + 6.22375i 0.580785 + 0.279737i
\(496\) 0 0
\(497\) −12.0555 37.1030i −0.540764 1.66430i
\(498\) 0 0
\(499\) −4.22493 + 3.06959i −0.189134 + 0.137414i −0.678323 0.734764i \(-0.737293\pi\)
0.489189 + 0.872178i \(0.337293\pi\)
\(500\) 0 0
\(501\) 11.6660 35.9043i 0.521199 1.60409i
\(502\) 0 0
\(503\) 23.3289 + 16.9494i 1.04018 + 0.755737i 0.970321 0.241820i \(-0.0777443\pi\)
0.0698614 + 0.997557i \(0.477744\pi\)
\(504\) 0 0
\(505\) −0.0832431 −0.00370427
\(506\) 0 0
\(507\) 6.24728 0.277451
\(508\) 0 0
\(509\) −4.46973 3.24745i −0.198117 0.143940i 0.484304 0.874900i \(-0.339073\pi\)
−0.682421 + 0.730959i \(0.739073\pi\)
\(510\) 0 0
\(511\) 4.27983 13.1720i 0.189329 0.582693i
\(512\) 0 0
\(513\) −12.5397 + 9.11062i −0.553641 + 0.402244i
\(514\) 0 0
\(515\) 3.43108 + 10.5598i 0.151192 + 0.465320i
\(516\) 0 0
\(517\) −8.68502 16.1419i −0.381967 0.709921i
\(518\) 0 0
\(519\) 13.5182 + 41.6047i 0.593382 + 1.82624i
\(520\) 0 0
\(521\) 23.8297 17.3133i 1.04400 0.758509i 0.0729362 0.997337i \(-0.476763\pi\)
0.971062 + 0.238828i \(0.0767631\pi\)
\(522\) 0 0
\(523\) 0.684593 2.10696i 0.0299351 0.0921309i −0.934973 0.354720i \(-0.884576\pi\)
0.964908 + 0.262589i \(0.0845763\pi\)
\(524\) 0 0
\(525\) −8.23458 5.98277i −0.359386 0.261110i
\(526\) 0 0
\(527\) 21.4515 0.934444
\(528\) 0 0
\(529\) 18.1849 0.790648
\(530\) 0 0
\(531\) −23.2093 16.8626i −1.00720 0.731773i
\(532\) 0 0
\(533\) 8.10146 24.9337i 0.350913 1.08000i
\(534\) 0 0
\(535\) 10.4112 7.56420i 0.450117 0.327029i
\(536\) 0 0
\(537\) 15.3722 + 47.3109i 0.663361 + 2.04162i
\(538\) 0 0
\(539\) −16.3768 + 17.1267i −0.705401 + 0.737697i
\(540\) 0 0
\(541\) 10.4175 + 32.0616i 0.447882 + 1.37844i 0.879292 + 0.476282i \(0.158016\pi\)
−0.431411 + 0.902156i \(0.641984\pi\)
\(542\) 0 0
\(543\) 24.2542 17.6217i 1.04085 0.756220i
\(544\) 0 0
\(545\) −2.32128 + 7.14418i −0.0994329 + 0.306023i
\(546\) 0 0
\(547\) −22.7092 16.4992i −0.970976 0.705455i −0.0153018 0.999883i \(-0.504871\pi\)
−0.955674 + 0.294428i \(0.904871\pi\)
\(548\) 0 0
\(549\) −39.0268 −1.66562
\(550\) 0 0
\(551\) −28.1131 −1.19766
\(552\) 0 0
\(553\) −22.1343 16.0815i −0.941247 0.683856i
\(554\) 0 0
\(555\) −8.37807 + 25.7850i −0.355629 + 1.09451i
\(556\) 0 0
\(557\) −12.5552 + 9.12189i −0.531981 + 0.386507i −0.821098 0.570787i \(-0.806638\pi\)
0.289117 + 0.957294i \(0.406638\pi\)
\(558\) 0 0
\(559\) −0.916305 2.82010i −0.0387556 0.119277i
\(560\) 0 0
\(561\) 34.5209 6.26236i 1.45748 0.264397i
\(562\) 0 0
\(563\) 6.22486 + 19.1581i 0.262346 + 0.807419i 0.992293 + 0.123915i \(0.0395450\pi\)
−0.729946 + 0.683504i \(0.760455\pi\)
\(564\) 0 0
\(565\) 0.378065 0.274680i 0.0159053 0.0115559i
\(566\) 0 0
\(567\) 3.80363 11.7064i 0.159737 0.491621i
\(568\) 0 0
\(569\) −25.4623 18.4994i −1.06743 0.775536i −0.0919848 0.995760i \(-0.529321\pi\)
−0.975449 + 0.220224i \(0.929321\pi\)
\(570\) 0 0
\(571\) 14.3295 0.599673 0.299836 0.953991i \(-0.403068\pi\)
0.299836 + 0.953991i \(0.403068\pi\)
\(572\) 0 0
\(573\) 26.0318 1.08749
\(574\) 0 0
\(575\) −5.19190 3.77214i −0.216517 0.157309i
\(576\) 0 0
\(577\) −3.54175 + 10.9004i −0.147445 + 0.453789i −0.997317 0.0731994i \(-0.976679\pi\)
0.849872 + 0.526989i \(0.176679\pi\)
\(578\) 0 0
\(579\) −43.0361 + 31.2675i −1.78852 + 1.29943i
\(580\) 0 0
\(581\) −7.10568 21.8690i −0.294793 0.907281i
\(582\) 0 0
\(583\) 0.486080 3.58667i 0.0201314 0.148545i
\(584\) 0 0
\(585\) −4.36948 13.4479i −0.180656 0.556001i
\(586\) 0 0
\(587\) 7.62242 5.53801i 0.314611 0.228578i −0.419262 0.907865i \(-0.637711\pi\)
0.733872 + 0.679287i \(0.237711\pi\)
\(588\) 0 0
\(589\) 7.33390 22.5714i 0.302188 0.930039i
\(590\) 0 0
\(591\) −26.6611 19.3704i −1.09669 0.796792i
\(592\) 0 0
\(593\) −28.2270 −1.15914 −0.579571 0.814922i \(-0.696780\pi\)
−0.579571 + 0.814922i \(0.696780\pi\)
\(594\) 0 0
\(595\) −14.7004 −0.602658
\(596\) 0 0
\(597\) −18.4829 13.4286i −0.756455 0.549597i
\(598\) 0 0
\(599\) −1.24633 + 3.83580i −0.0509235 + 0.156726i −0.973284 0.229603i \(-0.926257\pi\)
0.922361 + 0.386329i \(0.126257\pi\)
\(600\) 0 0
\(601\) −30.0829 + 21.8565i −1.22711 + 0.891544i −0.996670 0.0815436i \(-0.974015\pi\)
−0.230435 + 0.973088i \(0.574015\pi\)
\(602\) 0 0
\(603\) −18.6661 57.4483i −0.760142 2.33948i
\(604\) 0 0
\(605\) −10.2991 + 3.86381i −0.418717 + 0.157086i
\(606\) 0 0
\(607\) 5.60247 + 17.2426i 0.227397 + 0.699856i 0.998039 + 0.0625883i \(0.0199355\pi\)
−0.770642 + 0.637268i \(0.780064\pi\)
\(608\) 0 0
\(609\) −53.5334 + 38.8943i −2.16928 + 1.57608i
\(610\) 0 0
\(611\) −5.58435 + 17.1868i −0.225918 + 0.695306i
\(612\) 0 0
\(613\) 6.90505 + 5.01682i 0.278893 + 0.202627i 0.718434 0.695595i \(-0.244859\pi\)
−0.439542 + 0.898222i \(0.644859\pi\)
\(614\) 0 0
\(615\) 21.6993 0.874999
\(616\) 0 0
\(617\) −24.5659 −0.988985 −0.494492 0.869182i \(-0.664646\pi\)
−0.494492 + 0.869182i \(0.664646\pi\)
\(618\) 0 0
\(619\) −30.9640 22.4967i −1.24455 0.904218i −0.246657 0.969103i \(-0.579332\pi\)
−0.997893 + 0.0648846i \(0.979332\pi\)
\(620\) 0 0
\(621\) −7.10813 + 21.8766i −0.285239 + 0.877876i
\(622\) 0 0
\(623\) −36.8800 + 26.7949i −1.47757 + 1.07352i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 0 0
\(627\) 5.21281 38.4641i 0.208179 1.53611i
\(628\) 0 0
\(629\) 12.1001 + 37.2403i 0.482463 + 1.48487i
\(630\) 0 0
\(631\) 16.7407 12.1628i 0.666435 0.484194i −0.202395 0.979304i \(-0.564872\pi\)
0.868830 + 0.495110i \(0.164872\pi\)
\(632\) 0 0
\(633\) −18.2761 + 56.2481i −0.726410 + 2.23566i
\(634\) 0 0
\(635\) −14.6041 10.6105i −0.579544 0.421064i
\(636\) 0 0
\(637\) 23.3620 0.925635
\(638\) 0 0
\(639\) 44.8571 1.77452
\(640\) 0 0
\(641\) 6.75967 + 4.91119i 0.266991 + 0.193980i 0.713223 0.700937i \(-0.247234\pi\)
−0.446232 + 0.894917i \(0.647234\pi\)
\(642\) 0 0
\(643\) −9.08552 + 27.9623i −0.358298 + 1.10273i 0.595775 + 0.803152i \(0.296845\pi\)
−0.954073 + 0.299576i \(0.903155\pi\)
\(644\) 0 0
\(645\) 1.98554 1.44258i 0.0781806 0.0568016i
\(646\) 0 0
\(647\) −7.26160 22.3489i −0.285483 0.878626i −0.986253 0.165240i \(-0.947160\pi\)
0.700770 0.713387i \(-0.252840\pi\)
\(648\) 0 0
\(649\) 21.6494 3.92736i 0.849812 0.154162i
\(650\) 0 0
\(651\) −17.2621 53.1272i −0.676554 2.08222i
\(652\) 0 0
\(653\) −12.4733 + 9.06240i −0.488119 + 0.354639i −0.804460 0.594006i \(-0.797545\pi\)
0.316342 + 0.948645i \(0.397545\pi\)
\(654\) 0 0
\(655\) 2.00246 6.16294i 0.0782426 0.240806i
\(656\) 0 0
\(657\) 12.8834 + 9.36032i 0.502628 + 0.365181i
\(658\) 0 0
\(659\) −12.2785 −0.478301 −0.239151 0.970982i \(-0.576869\pi\)
−0.239151 + 0.970982i \(0.576869\pi\)
\(660\) 0 0
\(661\) 25.8163 1.00414 0.502070 0.864827i \(-0.332572\pi\)
0.502070 + 0.864827i \(0.332572\pi\)
\(662\) 0 0
\(663\) −27.9832 20.3310i −1.08678 0.789589i
\(664\) 0 0
\(665\) −5.02580 + 15.4678i −0.194892 + 0.599817i
\(666\) 0 0
\(667\) −33.7528 + 24.5229i −1.30692 + 0.949529i
\(668\) 0 0
\(669\) −22.0991 68.0140i −0.854401 2.62957i
\(670\) 0 0
\(671\) 20.6862 21.6333i 0.798581 0.835144i
\(672\) 0 0
\(673\) 9.99147 + 30.7506i 0.385143 + 1.18535i 0.936377 + 0.350997i \(0.114157\pi\)
−0.551234 + 0.834351i \(0.685843\pi\)
\(674\) 0 0
\(675\) 2.89976 2.10680i 0.111612 0.0810906i
\(676\) 0 0
\(677\) −9.73155 + 29.9506i −0.374014 + 1.15110i 0.570128 + 0.821556i \(0.306894\pi\)
−0.944142 + 0.329540i \(0.893106\pi\)
\(678\) 0 0
\(679\) −37.5444 27.2776i −1.44082 1.04682i
\(680\) 0 0
\(681\) 26.8438 1.02866
\(682\) 0 0
\(683\) 13.3758 0.511812 0.255906 0.966702i \(-0.417626\pi\)
0.255906 + 0.966702i \(0.417626\pi\)
\(684\) 0 0
\(685\) 1.56756 + 1.13890i 0.0598933 + 0.0435150i
\(686\) 0 0
\(687\) 10.8563 33.4122i 0.414193 1.27476i
\(688\) 0 0
\(689\) −2.88687 + 2.09743i −0.109981 + 0.0799058i
\(690\) 0 0
\(691\) 8.48261 + 26.1068i 0.322694 + 0.993149i 0.972471 + 0.233024i \(0.0748622\pi\)
−0.649777 + 0.760125i \(0.725138\pi\)
\(692\) 0 0
\(693\) −25.5580 47.5019i −0.970867 1.80445i
\(694\) 0 0
\(695\) 4.25697 + 13.1016i 0.161476 + 0.496972i
\(696\) 0 0
\(697\) 25.3541 18.4208i 0.960355 0.697739i
\(698\) 0 0
\(699\) 5.56970 17.1418i 0.210665 0.648362i
\(700\) 0 0
\(701\) 0.175085 + 0.127207i 0.00661287 + 0.00480453i 0.591087 0.806608i \(-0.298699\pi\)
−0.584474 + 0.811413i \(0.698699\pi\)
\(702\) 0 0
\(703\) 43.3212 1.63389
\(704\) 0 0
\(705\) −14.9573 −0.563325
\(706\) 0 0
\(707\) 0.253282 + 0.184020i 0.00952564 + 0.00692078i
\(708\) 0 0
\(709\) −15.6953 + 48.3050i −0.589448 + 1.81413i −0.00882347 + 0.999961i \(0.502809\pi\)
−0.580624 + 0.814172i \(0.697191\pi\)
\(710\) 0 0
\(711\) 25.4504 18.4908i 0.954463 0.693458i
\(712\) 0 0
\(713\) −10.8838 33.4967i −0.407600 1.25446i
\(714\) 0 0
\(715\) 9.77046 + 4.70597i 0.365394 + 0.175993i
\(716\) 0 0
\(717\) −18.3084 56.3473i −0.683738 2.10433i
\(718\) 0 0
\(719\) −27.5398 + 20.0089i −1.02706 + 0.746204i −0.967719 0.252033i \(-0.918901\pi\)
−0.0593435 + 0.998238i \(0.518901\pi\)
\(720\) 0 0
\(721\) 12.9041 39.7149i 0.480575 1.47906i
\(722\) 0 0
\(723\) 23.3218 + 16.9443i 0.867346 + 0.630163i
\(724\) 0 0
\(725\) 6.50105 0.241443
\(726\) 0 0
\(727\) −16.2361 −0.602162 −0.301081 0.953599i \(-0.597348\pi\)
−0.301081 + 0.953599i \(0.597348\pi\)
\(728\) 0 0
\(729\) 34.9932 + 25.4241i 1.29605 + 0.941633i
\(730\) 0 0
\(731\) 1.09534 3.37111i 0.0405126 0.124685i
\(732\) 0 0
\(733\) 24.1078 17.5154i 0.890443 0.646944i −0.0455508 0.998962i \(-0.514504\pi\)
0.935993 + 0.352018i \(0.114504\pi\)
\(734\) 0 0
\(735\) 5.97525 + 18.3899i 0.220400 + 0.678322i
\(736\) 0 0
\(737\) 41.7387 + 20.1035i 1.53746 + 0.740524i
\(738\) 0 0
\(739\) 13.0551 + 40.1794i 0.480239 + 1.47802i 0.838760 + 0.544501i \(0.183281\pi\)
−0.358522 + 0.933521i \(0.616719\pi\)
\(740\) 0 0
\(741\) −30.9593 + 22.4932i −1.13732 + 0.826310i
\(742\) 0 0
\(743\) −6.46233 + 19.8890i −0.237080 + 0.729657i 0.759759 + 0.650205i \(0.225317\pi\)
−0.996839 + 0.0794519i \(0.974683\pi\)
\(744\) 0 0
\(745\) 7.83829 + 5.69485i 0.287173 + 0.208643i
\(746\) 0 0
\(747\) 26.4394 0.967366
\(748\) 0 0
\(749\) −48.3997 −1.76849
\(750\) 0 0
\(751\) 23.0107 + 16.7182i 0.839672 + 0.610058i 0.922279 0.386525i \(-0.126325\pi\)
−0.0826069 + 0.996582i \(0.526325\pi\)
\(752\) 0 0
\(753\) −10.1752 + 31.3160i −0.370805 + 1.14122i
\(754\) 0 0
\(755\) 13.4658 9.78349i 0.490072 0.356058i
\(756\) 0 0
\(757\) −12.2589 37.7291i −0.445558 1.37129i −0.881870 0.471492i \(-0.843716\pi\)
0.436312 0.899795i \(-0.356284\pi\)
\(758\) 0 0
\(759\) −27.2934 50.7274i −0.990688 1.84129i
\(760\) 0 0
\(761\) −15.0740 46.3929i −0.546430 1.68174i −0.717565 0.696492i \(-0.754743\pi\)
0.171134 0.985248i \(-0.445257\pi\)
\(762\) 0 0
\(763\) 22.8561 16.6059i 0.827445 0.601174i
\(764\) 0 0
\(765\) 5.22323 16.0755i 0.188846 0.581209i
\(766\) 0 0
\(767\) −17.5493 12.7503i −0.633668 0.460387i
\(768\) 0 0
\(769\) −10.7632 −0.388132 −0.194066 0.980988i \(-0.562168\pi\)
−0.194066 + 0.980988i \(0.562168\pi\)
\(770\) 0 0
\(771\) −16.5467 −0.595915
\(772\) 0 0
\(773\) −19.7962 14.3828i −0.712021 0.517313i 0.171804 0.985131i \(-0.445040\pi\)
−0.883825 + 0.467818i \(0.845040\pi\)
\(774\) 0 0
\(775\) −1.69594 + 5.21956i −0.0609198 + 0.187492i
\(776\) 0 0
\(777\) 82.4929 59.9346i 2.95942 2.15014i
\(778\) 0 0
\(779\) −10.7144 32.9755i −0.383882 1.18147i
\(780\) 0 0
\(781\) −23.7765 + 24.8651i −0.850790 + 0.889744i
\(782\) 0 0
\(783\) −7.20062 22.1612i −0.257329 0.791978i
\(784\) 0 0
\(785\) 0.775197 0.563214i 0.0276680 0.0201020i
\(786\) 0 0
\(787\) 1.50000 4.61653i 0.0534692 0.164561i −0.920756 0.390139i \(-0.872427\pi\)
0.974225 + 0.225578i \(0.0724269\pi\)
\(788\) 0 0
\(789\) −0.977527 0.710215i −0.0348009 0.0252843i
\(790\) 0 0
\(791\) −1.75755 −0.0624911
\(792\) 0 0
\(793\) −29.5093 −1.04791
\(794\) 0 0
\(795\) −2.38941 1.73601i −0.0847437 0.0615699i
\(796\) 0 0
\(797\) −1.42359 + 4.38135i −0.0504261 + 0.155195i −0.973099 0.230389i \(-0.926000\pi\)
0.922673 + 0.385584i \(0.126000\pi\)
\(798\) 0 0
\(799\) −17.4766 + 12.6975i −0.618278 + 0.449205i
\(800\) 0 0
\(801\) −16.1973 49.8503i −0.572305 1.76137i
\(802\) 0 0
\(803\) −12.0174 + 2.18005i −0.424086 + 0.0769324i
\(804\) 0 0
\(805\) 7.45846 + 22.9548i 0.262876 + 0.809050i
\(806\) 0 0
\(807\) 0.0174383 0.0126697i 0.000613858 0.000445994i
\(808\) 0 0
\(809\) 9.79491 30.1456i 0.344371 1.05986i −0.617549 0.786532i \(-0.711874\pi\)
0.961920 0.273331i \(-0.0881256\pi\)
\(810\) 0 0
\(811\) 11.6743 + 8.48190i 0.409941 + 0.297840i 0.773578 0.633701i \(-0.218465\pi\)
−0.363637 + 0.931541i \(0.618465\pi\)
\(812\) 0 0
\(813\) 50.3058 1.76430
\(814\) 0 0
\(815\) −4.44532 −0.155713
\(816\) 0 0
\(817\) −3.17262 2.30505i −0.110996 0.0806434i
\(818\) 0 0
\(819\) −16.4334 + 50.5768i −0.574230 + 1.76730i
\(820\) 0 0
\(821\) −44.0551 + 32.0079i −1.53753 + 1.11708i −0.585677 + 0.810545i \(0.699171\pi\)
−0.951858 + 0.306539i \(0.900829\pi\)
\(822\) 0 0
\(823\) −0.0187612 0.0577411i −0.000653975 0.00201273i 0.950729 0.310023i \(-0.100337\pi\)
−0.951383 + 0.308010i \(0.900337\pi\)
\(824\) 0 0
\(825\) −1.20544 + 8.89468i −0.0419681 + 0.309673i
\(826\) 0 0
\(827\) 3.65486 + 11.2485i 0.127092 + 0.391149i 0.994276 0.106838i \(-0.0340726\pi\)
−0.867184 + 0.497987i \(0.834073\pi\)
\(828\) 0 0
\(829\) −13.5508 + 9.84525i −0.470640 + 0.341940i −0.797691 0.603067i \(-0.793945\pi\)
0.327051 + 0.945007i \(0.393945\pi\)
\(830\) 0 0
\(831\) −5.82039 + 17.9133i −0.201907 + 0.621407i
\(832\) 0 0
\(833\) 22.5931 + 16.4149i 0.782806 + 0.568742i
\(834\) 0 0
\(835\) 13.9494 0.482737
\(836\) 0 0
\(837\) 19.6712 0.679936
\(838\) 0 0
\(839\) −0.734439 0.533601i −0.0253557 0.0184220i 0.575035 0.818129i \(-0.304988\pi\)
−0.600391 + 0.799707i \(0.704988\pi\)
\(840\) 0 0
\(841\) 4.09870 12.6145i 0.141335 0.434983i
\(842\) 0 0
\(843\) −48.9620 + 35.5730i −1.68634 + 1.22520i
\(844\) 0 0
\(845\) 0.713324 + 2.19539i 0.0245391 + 0.0755236i
\(846\) 0 0
\(847\) 39.8782 + 11.0111i 1.37023 + 0.378347i
\(848\) 0 0
\(849\) −19.5264 60.0961i −0.670144 2.06249i
\(850\) 0 0
\(851\) 52.0118 37.7888i 1.78294 1.29538i
\(852\) 0 0
\(853\) 16.4634 50.6690i 0.563695 1.73487i −0.108103 0.994140i \(-0.534478\pi\)
0.671798 0.740735i \(-0.265522\pi\)
\(854\) 0 0
\(855\) −15.1289 10.9918i −0.517399 0.375912i
\(856\) 0 0
\(857\) 37.1487 1.26898 0.634488 0.772933i \(-0.281211\pi\)
0.634488 + 0.772933i \(0.281211\pi\)
\(858\) 0 0
\(859\) −26.8141 −0.914887 −0.457443 0.889239i \(-0.651235\pi\)
−0.457443 + 0.889239i \(0.651235\pi\)
\(860\) 0 0
\(861\) −66.0238 47.9691i −2.25008 1.63478i
\(862\) 0 0
\(863\) 5.41724 16.6726i 0.184405 0.567541i −0.815532 0.578711i \(-0.803556\pi\)
0.999938 + 0.0111706i \(0.00355580\pi\)
\(864\) 0 0
\(865\) −13.0770 + 9.50098i −0.444631 + 0.323043i
\(866\) 0 0
\(867\) 1.44024 + 4.43259i 0.0489130 + 0.150539i
\(868\) 0 0
\(869\) −3.24019 + 23.9086i −0.109916 + 0.811045i
\(870\) 0 0
\(871\) −14.1140 43.4384i −0.478235 1.47185i
\(872\) 0 0
\(873\) 43.1691 31.3642i 1.46105 1.06152i
\(874\) 0 0
\(875\) 1.16220 3.57688i 0.0392895 0.120921i
\(876\) 0 0
\(877\) −16.8079 12.2116i −0.567562 0.412358i 0.266657 0.963792i \(-0.414081\pi\)
−0.834219 + 0.551434i \(0.814081\pi\)
\(878\) 0 0
\(879\) −9.47556 −0.319603
\(880\) 0 0
\(881\) 36.3078 1.22324 0.611621 0.791151i \(-0.290518\pi\)
0.611621 + 0.791151i \(0.290518\pi\)
\(882\) 0 0
\(883\) −30.0147 21.8070i −1.01008 0.733863i −0.0458509 0.998948i \(-0.514600\pi\)
−0.964225 + 0.265085i \(0.914600\pi\)
\(884\) 0 0
\(885\) 5.54815 17.0754i 0.186499 0.573985i
\(886\) 0 0
\(887\) 17.7834 12.9204i 0.597109 0.433825i −0.247742 0.968826i \(-0.579689\pi\)
0.844852 + 0.535001i \(0.179689\pi\)
\(888\) 0 0
\(889\) 20.9795 + 64.5684i 0.703631 + 2.16555i
\(890\) 0 0
\(891\) −10.6803 + 1.93749i −0.357803 + 0.0649082i
\(892\) 0 0
\(893\) 7.38543 + 22.7300i 0.247144 + 0.760631i
\(894\) 0 0
\(895\) −14.8705 + 10.8041i −0.497067 + 0.361140i
\(896\) 0 0
\(897\) −17.5493 + 54.0111i −0.585953 + 1.80338i
\(898\) 0 0
\(899\) 28.8648 + 20.9715i 0.962695 + 0.699439i
\(900\) 0 0
\(901\) −4.26559 −0.142107
\(902\) 0 0
\(903\) −9.23037 −0.307168
\(904\) 0 0
\(905\) 8.96192 + 6.51122i 0.297904 + 0.216440i
\(906\) 0 0
\(907\) −6.39045 + 19.6678i −0.212191 + 0.653058i 0.787150 + 0.616762i \(0.211556\pi\)
−0.999341 + 0.0362960i \(0.988444\pi\)
\(908\) 0 0
\(909\) −0.291227 + 0.211589i −0.00965939 + 0.00701796i
\(910\) 0 0
\(911\) 10.5882 + 32.5873i 0.350804 + 1.07966i 0.958403 + 0.285420i \(0.0921330\pi\)
−0.607598 + 0.794244i \(0.707867\pi\)
\(912\) 0 0
\(913\) −14.0142 + 14.6558i −0.463802 + 0.485037i
\(914\) 0 0
\(915\) −7.54755 23.2290i −0.249514 0.767926i
\(916\) 0 0
\(917\) −19.7168 + 14.3251i −0.651107 + 0.473057i
\(918\) 0 0
\(919\) −5.15152 + 15.8548i −0.169933 + 0.523000i −0.999366 0.0356062i \(-0.988664\pi\)
0.829433 + 0.558607i \(0.188664\pi\)
\(920\) 0 0
\(921\) 18.0931 + 13.1454i 0.596186 + 0.433155i
\(922\) 0 0
\(923\) 33.9178 1.11642
\(924\) 0 0
\(925\) −10.0179 −0.329386
\(926\) 0 0
\(927\) 38.8447 + 28.2223i 1.27583 + 0.926943i
\(928\) 0 0
\(929\) 11.4967 35.3832i 0.377194 1.16089i −0.564792 0.825234i \(-0.691043\pi\)
0.941986 0.335652i \(-0.108957\pi\)
\(930\) 0 0
\(931\) 24.9960 18.1607i 0.819211 0.595192i
\(932\) 0 0
\(933\) 9.66956 + 29.7598i 0.316567 + 0.974293i
\(934\) 0 0
\(935\) 6.14235 + 11.4161i 0.200876 + 0.373348i
\(936\) 0 0
\(937\) 4.83539 + 14.8818i 0.157965 + 0.486167i 0.998449 0.0556691i \(-0.0177292\pi\)
−0.840484 + 0.541836i \(0.817729\pi\)
\(938\) 0 0
\(939\) −42.2895 + 30.7251i −1.38007 + 1.00268i
\(940\) 0 0
\(941\) −4.47359 + 13.7683i −0.145835 + 0.448834i −0.997117 0.0758737i \(-0.975825\pi\)
0.851282 + 0.524708i \(0.175825\pi\)
\(942\) 0 0
\(943\) −41.6280 30.2445i −1.35559 0.984897i
\(944\) 0 0
\(945\) −13.4804 −0.438516
\(946\) 0 0
\(947\) 56.2394 1.82754 0.913768 0.406238i \(-0.133159\pi\)
0.913768 + 0.406238i \(0.133159\pi\)
\(948\) 0 0
\(949\) 9.74150 + 7.07762i 0.316223 + 0.229749i
\(950\) 0 0
\(951\) −18.7113 + 57.5874i −0.606755 + 1.86740i
\(952\) 0 0
\(953\) 17.9028 13.0071i 0.579928 0.421342i −0.258770 0.965939i \(-0.583317\pi\)
0.838698 + 0.544597i \(0.183317\pi\)
\(954\) 0 0
\(955\) 2.97235 + 9.14796i 0.0961831 + 0.296021i
\(956\) 0 0
\(957\) 52.5730 + 25.3219i 1.69944 + 0.818541i
\(958\) 0 0
\(959\) −2.25188 6.93059i −0.0727171 0.223800i
\(960\) 0 0
\(961\) 0.711966 0.517274i 0.0229666 0.0166862i
\(962\) 0 0
\(963\) 17.1970 52.9269i 0.554165 1.70555i
\(964\) 0 0
\(965\) −15.9018 11.5533i −0.511897 0.371915i
\(966\) 0 0
\(967\) −32.2808 −1.03808 −0.519039 0.854750i \(-0.673710\pi\)
−0.519039 + 0.854750i \(0.673710\pi\)
\(968\) 0 0
\(969\) −45.7449 −1.46954
\(970\) 0 0
\(971\) −22.5473 16.3816i −0.723576 0.525709i 0.163948 0.986469i \(-0.447577\pi\)
−0.887525 + 0.460760i \(0.847577\pi\)
\(972\) 0 0
\(973\) 16.0103 49.2745i 0.513265 1.57967i
\(974\) 0 0
\(975\) 7.15922 5.20148i 0.229278 0.166581i
\(976\) 0 0
\(977\) 3.29499 + 10.1409i 0.105416 + 0.324437i 0.989828 0.142270i \(-0.0454402\pi\)
−0.884412 + 0.466707i \(0.845440\pi\)
\(978\) 0 0
\(979\) 36.2184 + 17.4447i 1.15754 + 0.557534i
\(980\) 0 0
\(981\) 10.0382 + 30.8943i 0.320494 + 0.986378i
\(982\) 0 0
\(983\) 24.7691 17.9958i 0.790011 0.573977i −0.117955 0.993019i \(-0.537634\pi\)
0.907967 + 0.419042i \(0.137634\pi\)
\(984\) 0 0
\(985\) 3.76284 11.5808i 0.119894 0.368996i
\(986\) 0 0
\(987\) 45.5103 + 33.0651i 1.44861 + 1.05247i
\(988\) 0 0
\(989\) −5.81975 −0.185057
\(990\) 0 0
\(991\) −12.2099 −0.387859 −0.193929 0.981015i \(-0.562123\pi\)
−0.193929 + 0.981015i \(0.562123\pi\)
\(992\) 0 0
\(993\) 11.3389 + 8.23817i 0.359828 + 0.261430i
\(994\) 0 0
\(995\) 2.60861 8.02848i 0.0826985 0.254520i
\(996\) 0 0
\(997\) 10.9465 7.95313i 0.346681 0.251878i −0.400795 0.916168i \(-0.631266\pi\)
0.747475 + 0.664290i \(0.231266\pi\)
\(998\) 0 0
\(999\) 11.0959 + 34.1496i 0.351058 + 1.08045i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.bo.f.401.2 8
4.3 odd 2 220.2.m.a.181.1 yes 8
11.3 even 5 9680.2.a.ck.1.1 4
11.8 odd 10 9680.2.a.cl.1.1 4
11.9 even 5 inner 880.2.bo.f.801.2 8
12.11 even 2 1980.2.z.c.181.1 8
20.3 even 4 1100.2.cb.c.49.4 16
20.7 even 4 1100.2.cb.c.49.1 16
20.19 odd 2 1100.2.n.c.401.2 8
44.3 odd 10 2420.2.a.n.1.4 4
44.19 even 10 2420.2.a.m.1.4 4
44.31 odd 10 220.2.m.a.141.1 8
132.119 even 10 1980.2.z.c.361.1 8
220.119 odd 10 1100.2.n.c.801.2 8
220.163 even 20 1100.2.cb.c.449.1 16
220.207 even 20 1100.2.cb.c.449.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.m.a.141.1 8 44.31 odd 10
220.2.m.a.181.1 yes 8 4.3 odd 2
880.2.bo.f.401.2 8 1.1 even 1 trivial
880.2.bo.f.801.2 8 11.9 even 5 inner
1100.2.n.c.401.2 8 20.19 odd 2
1100.2.n.c.801.2 8 220.119 odd 10
1100.2.cb.c.49.1 16 20.7 even 4
1100.2.cb.c.49.4 16 20.3 even 4
1100.2.cb.c.449.1 16 220.163 even 20
1100.2.cb.c.449.4 16 220.207 even 20
1980.2.z.c.181.1 8 12.11 even 2
1980.2.z.c.361.1 8 132.119 even 10
2420.2.a.m.1.4 4 44.19 even 10
2420.2.a.n.1.4 4 44.3 odd 10
9680.2.a.ck.1.1 4 11.3 even 5
9680.2.a.cl.1.1 4 11.8 odd 10