Properties

Label 1176.2.c.a
Level $1176$
Weight $2$
Character orbit 1176.c
Analytic conductor $9.390$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1176,2,Mod(589,1176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1176.589");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (i - 1) q^{2} - i q^{3} - 2 i q^{4} + 2 i q^{5} + (i + 1) q^{6} + (2 i + 2) q^{8} - q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (i - 1) q^{2} - i q^{3} - 2 i q^{4} + 2 i q^{5} + (i + 1) q^{6} + (2 i + 2) q^{8} - q^{9} + ( - 2 i - 2) q^{10} - 2 q^{12} - 4 i q^{13} + 2 q^{15} - 4 q^{16} + 2 q^{17} + ( - i + 1) q^{18} + 4 i q^{19} + 4 q^{20} + 4 q^{23} + ( - 2 i + 2) q^{24} + q^{25} + (4 i + 4) q^{26} + i q^{27} + 6 i q^{29} + (2 i - 2) q^{30} - 2 q^{31} + ( - 4 i + 4) q^{32} + (2 i - 2) q^{34} + 2 i q^{36} - 8 i q^{37} + ( - 4 i - 4) q^{38} - 4 q^{39} + (4 i - 4) q^{40} - 2 q^{41} + 4 i q^{43} - 2 i q^{45} + (4 i - 4) q^{46} + 12 q^{47} + 4 i q^{48} + (i - 1) q^{50} - 2 i q^{51} - 8 q^{52} - 6 i q^{53} + ( - i - 1) q^{54} + 4 q^{57} + ( - 6 i - 6) q^{58} + 4 i q^{59} - 4 i q^{60} + ( - 2 i + 2) q^{62} + 8 i q^{64} + 8 q^{65} + 12 i q^{67} - 4 i q^{68} - 4 i q^{69} + 12 q^{71} + ( - 2 i - 2) q^{72} + 6 q^{73} + (8 i + 8) q^{74} - i q^{75} + 8 q^{76} + ( - 4 i + 4) q^{78} + 10 q^{79} - 8 i q^{80} + q^{81} + ( - 2 i + 2) q^{82} + 16 i q^{83} + 4 i q^{85} + ( - 4 i - 4) q^{86} + 6 q^{87} + 10 q^{89} + (2 i + 2) q^{90} - 8 i q^{92} + 2 i q^{93} + (12 i - 12) q^{94} - 8 q^{95} + ( - 4 i - 4) q^{96} + 2 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{6} + 4 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{6} + 4 q^{8} - 2 q^{9} - 4 q^{10} - 4 q^{12} + 4 q^{15} - 8 q^{16} + 4 q^{17} + 2 q^{18} + 8 q^{20} + 8 q^{23} + 4 q^{24} + 2 q^{25} + 8 q^{26} - 4 q^{30} - 4 q^{31} + 8 q^{32} - 4 q^{34} - 8 q^{38} - 8 q^{39} - 8 q^{40} - 4 q^{41} - 8 q^{46} + 24 q^{47} - 2 q^{50} - 16 q^{52} - 2 q^{54} + 8 q^{57} - 12 q^{58} + 4 q^{62} + 16 q^{65} + 24 q^{71} - 4 q^{72} + 12 q^{73} + 16 q^{74} + 16 q^{76} + 8 q^{78} + 20 q^{79} + 2 q^{81} + 4 q^{82} - 8 q^{86} + 12 q^{87} + 20 q^{89} + 4 q^{90} - 24 q^{94} - 16 q^{95} - 8 q^{96} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
589.1
1.00000i
1.00000i
−1.00000 1.00000i 1.00000i 2.00000i 2.00000i 1.00000 1.00000i 0 2.00000 2.00000i −1.00000 −2.00000 + 2.00000i
589.2 −1.00000 + 1.00000i 1.00000i 2.00000i 2.00000i 1.00000 + 1.00000i 0 2.00000 + 2.00000i −1.00000 −2.00000 2.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1176.2.c.a 2
4.b odd 2 1 4704.2.c.a 2
7.b odd 2 1 24.2.d.a 2
8.b even 2 1 inner 1176.2.c.a 2
8.d odd 2 1 4704.2.c.a 2
21.c even 2 1 72.2.d.b 2
28.d even 2 1 96.2.d.a 2
35.c odd 2 1 600.2.k.b 2
35.f even 4 1 600.2.d.b 2
35.f even 4 1 600.2.d.c 2
56.e even 2 1 96.2.d.a 2
56.h odd 2 1 24.2.d.a 2
63.l odd 6 2 648.2.n.k 4
63.o even 6 2 648.2.n.c 4
84.h odd 2 1 288.2.d.b 2
105.g even 2 1 1800.2.k.a 2
105.k odd 4 1 1800.2.d.b 2
105.k odd 4 1 1800.2.d.i 2
112.j even 4 1 768.2.a.d 1
112.j even 4 1 768.2.a.e 1
112.l odd 4 1 768.2.a.a 1
112.l odd 4 1 768.2.a.h 1
140.c even 2 1 2400.2.k.a 2
140.j odd 4 1 2400.2.d.b 2
140.j odd 4 1 2400.2.d.c 2
168.e odd 2 1 288.2.d.b 2
168.i even 2 1 72.2.d.b 2
252.s odd 6 2 2592.2.r.g 4
252.bi even 6 2 2592.2.r.f 4
280.c odd 2 1 600.2.k.b 2
280.n even 2 1 2400.2.k.a 2
280.s even 4 1 600.2.d.b 2
280.s even 4 1 600.2.d.c 2
280.y odd 4 1 2400.2.d.b 2
280.y odd 4 1 2400.2.d.c 2
336.v odd 4 1 2304.2.a.b 1
336.v odd 4 1 2304.2.a.l 1
336.y even 4 1 2304.2.a.e 1
336.y even 4 1 2304.2.a.o 1
420.o odd 2 1 7200.2.k.d 2
420.w even 4 1 7200.2.d.d 2
420.w even 4 1 7200.2.d.g 2
504.be even 6 2 2592.2.r.f 4
504.bn odd 6 2 648.2.n.k 4
504.cc even 6 2 648.2.n.c 4
504.co odd 6 2 2592.2.r.g 4
840.b odd 2 1 7200.2.k.d 2
840.u even 2 1 1800.2.k.a 2
840.bm even 4 1 7200.2.d.d 2
840.bm even 4 1 7200.2.d.g 2
840.bp odd 4 1 1800.2.d.b 2
840.bp odd 4 1 1800.2.d.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.2.d.a 2 7.b odd 2 1
24.2.d.a 2 56.h odd 2 1
72.2.d.b 2 21.c even 2 1
72.2.d.b 2 168.i even 2 1
96.2.d.a 2 28.d even 2 1
96.2.d.a 2 56.e even 2 1
288.2.d.b 2 84.h odd 2 1
288.2.d.b 2 168.e odd 2 1
600.2.d.b 2 35.f even 4 1
600.2.d.b 2 280.s even 4 1
600.2.d.c 2 35.f even 4 1
600.2.d.c 2 280.s even 4 1
600.2.k.b 2 35.c odd 2 1
600.2.k.b 2 280.c odd 2 1
648.2.n.c 4 63.o even 6 2
648.2.n.c 4 504.cc even 6 2
648.2.n.k 4 63.l odd 6 2
648.2.n.k 4 504.bn odd 6 2
768.2.a.a 1 112.l odd 4 1
768.2.a.d 1 112.j even 4 1
768.2.a.e 1 112.j even 4 1
768.2.a.h 1 112.l odd 4 1
1176.2.c.a 2 1.a even 1 1 trivial
1176.2.c.a 2 8.b even 2 1 inner
1800.2.d.b 2 105.k odd 4 1
1800.2.d.b 2 840.bp odd 4 1
1800.2.d.i 2 105.k odd 4 1
1800.2.d.i 2 840.bp odd 4 1
1800.2.k.a 2 105.g even 2 1
1800.2.k.a 2 840.u even 2 1
2304.2.a.b 1 336.v odd 4 1
2304.2.a.e 1 336.y even 4 1
2304.2.a.l 1 336.v odd 4 1
2304.2.a.o 1 336.y even 4 1
2400.2.d.b 2 140.j odd 4 1
2400.2.d.b 2 280.y odd 4 1
2400.2.d.c 2 140.j odd 4 1
2400.2.d.c 2 280.y odd 4 1
2400.2.k.a 2 140.c even 2 1
2400.2.k.a 2 280.n even 2 1
2592.2.r.f 4 252.bi even 6 2
2592.2.r.f 4 504.be even 6 2
2592.2.r.g 4 252.s odd 6 2
2592.2.r.g 4 504.co odd 6 2
4704.2.c.a 2 4.b odd 2 1
4704.2.c.a 2 8.d odd 2 1
7200.2.d.d 2 420.w even 4 1
7200.2.d.d 2 840.bm even 4 1
7200.2.d.g 2 420.w even 4 1
7200.2.d.g 2 840.bm even 4 1
7200.2.k.d 2 420.o odd 2 1
7200.2.k.d 2 840.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1176, [\chi])\):

\( T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{17} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 16 \) Copy content Toggle raw display
$17$ \( (T - 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 16 \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 36 \) Copy content Toggle raw display
$31$ \( (T + 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 64 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( (T - 12)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 36 \) Copy content Toggle raw display
$59$ \( T^{2} + 16 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 144 \) Copy content Toggle raw display
$71$ \( (T - 12)^{2} \) Copy content Toggle raw display
$73$ \( (T - 6)^{2} \) Copy content Toggle raw display
$79$ \( (T - 10)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 256 \) Copy content Toggle raw display
$89$ \( (T - 10)^{2} \) Copy content Toggle raw display
$97$ \( (T - 2)^{2} \) Copy content Toggle raw display
show more
show less