Properties

Label 600.2.k.b
Level 600600
Weight 22
Character orbit 600.k
Analytic conductor 4.7914.791
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,2,Mod(301,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.301");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 600=23352 600 = 2^{3} \cdot 3 \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 600.k (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.791024121284.79102412128
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(i+1)q2+iq3+2iq4+(i1)q6+2q7+(2i2)q8q92q12+4iq13+(2i+2)q144q16+2q17+(i1)q18+4iq19+2iq21++(3i3)q98+O(q100) q + (i + 1) q^{2} + i q^{3} + 2 i q^{4} + (i - 1) q^{6} + 2 q^{7} + (2 i - 2) q^{8} - q^{9} - 2 q^{12} + 4 i q^{13} + (2 i + 2) q^{14} - 4 q^{16} + 2 q^{17} + ( - i - 1) q^{18} + 4 i q^{19} + 2 i q^{21}+ \cdots + ( - 3 i - 3) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q22q6+4q74q82q94q12+4q148q16+4q172q188q234q248q26+4q318q32+4q348q388q39+4q41+6q98+O(q100) 2 q + 2 q^{2} - 2 q^{6} + 4 q^{7} - 4 q^{8} - 2 q^{9} - 4 q^{12} + 4 q^{14} - 8 q^{16} + 4 q^{17} - 2 q^{18} - 8 q^{23} - 4 q^{24} - 8 q^{26} + 4 q^{31} - 8 q^{32} + 4 q^{34} - 8 q^{38} - 8 q^{39} + 4 q^{41}+ \cdots - 6 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/600Z)×\left(\mathbb{Z}/600\mathbb{Z}\right)^\times.

nn 151151 301301 401401 577577
χ(n)\chi(n) 11 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
301.1
1.00000i
1.00000i
1.00000 1.00000i 1.00000i 2.00000i 0 −1.00000 1.00000i 2.00000 −2.00000 2.00000i −1.00000 0
301.2 1.00000 + 1.00000i 1.00000i 2.00000i 0 −1.00000 + 1.00000i 2.00000 −2.00000 + 2.00000i −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.2.k.b 2
3.b odd 2 1 1800.2.k.a 2
4.b odd 2 1 2400.2.k.a 2
5.b even 2 1 24.2.d.a 2
5.c odd 4 1 600.2.d.b 2
5.c odd 4 1 600.2.d.c 2
8.b even 2 1 inner 600.2.k.b 2
8.d odd 2 1 2400.2.k.a 2
12.b even 2 1 7200.2.k.d 2
15.d odd 2 1 72.2.d.b 2
15.e even 4 1 1800.2.d.b 2
15.e even 4 1 1800.2.d.i 2
20.d odd 2 1 96.2.d.a 2
20.e even 4 1 2400.2.d.b 2
20.e even 4 1 2400.2.d.c 2
24.f even 2 1 7200.2.k.d 2
24.h odd 2 1 1800.2.k.a 2
35.c odd 2 1 1176.2.c.a 2
40.e odd 2 1 96.2.d.a 2
40.f even 2 1 24.2.d.a 2
40.i odd 4 1 600.2.d.b 2
40.i odd 4 1 600.2.d.c 2
40.k even 4 1 2400.2.d.b 2
40.k even 4 1 2400.2.d.c 2
45.h odd 6 2 648.2.n.c 4
45.j even 6 2 648.2.n.k 4
60.h even 2 1 288.2.d.b 2
60.l odd 4 1 7200.2.d.d 2
60.l odd 4 1 7200.2.d.g 2
80.k odd 4 1 768.2.a.d 1
80.k odd 4 1 768.2.a.e 1
80.q even 4 1 768.2.a.a 1
80.q even 4 1 768.2.a.h 1
120.i odd 2 1 72.2.d.b 2
120.m even 2 1 288.2.d.b 2
120.q odd 4 1 7200.2.d.d 2
120.q odd 4 1 7200.2.d.g 2
120.w even 4 1 1800.2.d.b 2
120.w even 4 1 1800.2.d.i 2
140.c even 2 1 4704.2.c.a 2
180.n even 6 2 2592.2.r.g 4
180.p odd 6 2 2592.2.r.f 4
240.t even 4 1 2304.2.a.b 1
240.t even 4 1 2304.2.a.l 1
240.bm odd 4 1 2304.2.a.e 1
240.bm odd 4 1 2304.2.a.o 1
280.c odd 2 1 1176.2.c.a 2
280.n even 2 1 4704.2.c.a 2
360.z odd 6 2 2592.2.r.f 4
360.bd even 6 2 2592.2.r.g 4
360.bh odd 6 2 648.2.n.c 4
360.bk even 6 2 648.2.n.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.2.d.a 2 5.b even 2 1
24.2.d.a 2 40.f even 2 1
72.2.d.b 2 15.d odd 2 1
72.2.d.b 2 120.i odd 2 1
96.2.d.a 2 20.d odd 2 1
96.2.d.a 2 40.e odd 2 1
288.2.d.b 2 60.h even 2 1
288.2.d.b 2 120.m even 2 1
600.2.d.b 2 5.c odd 4 1
600.2.d.b 2 40.i odd 4 1
600.2.d.c 2 5.c odd 4 1
600.2.d.c 2 40.i odd 4 1
600.2.k.b 2 1.a even 1 1 trivial
600.2.k.b 2 8.b even 2 1 inner
648.2.n.c 4 45.h odd 6 2
648.2.n.c 4 360.bh odd 6 2
648.2.n.k 4 45.j even 6 2
648.2.n.k 4 360.bk even 6 2
768.2.a.a 1 80.q even 4 1
768.2.a.d 1 80.k odd 4 1
768.2.a.e 1 80.k odd 4 1
768.2.a.h 1 80.q even 4 1
1176.2.c.a 2 35.c odd 2 1
1176.2.c.a 2 280.c odd 2 1
1800.2.d.b 2 15.e even 4 1
1800.2.d.b 2 120.w even 4 1
1800.2.d.i 2 15.e even 4 1
1800.2.d.i 2 120.w even 4 1
1800.2.k.a 2 3.b odd 2 1
1800.2.k.a 2 24.h odd 2 1
2304.2.a.b 1 240.t even 4 1
2304.2.a.e 1 240.bm odd 4 1
2304.2.a.l 1 240.t even 4 1
2304.2.a.o 1 240.bm odd 4 1
2400.2.d.b 2 20.e even 4 1
2400.2.d.b 2 40.k even 4 1
2400.2.d.c 2 20.e even 4 1
2400.2.d.c 2 40.k even 4 1
2400.2.k.a 2 4.b odd 2 1
2400.2.k.a 2 8.d odd 2 1
2592.2.r.f 4 180.p odd 6 2
2592.2.r.f 4 360.z odd 6 2
2592.2.r.g 4 180.n even 6 2
2592.2.r.g 4 360.bd even 6 2
4704.2.c.a 2 140.c even 2 1
4704.2.c.a 2 280.n even 2 1
7200.2.d.d 2 60.l odd 4 1
7200.2.d.d 2 120.q odd 4 1
7200.2.d.g 2 60.l odd 4 1
7200.2.d.g 2 120.q odd 4 1
7200.2.k.d 2 12.b even 2 1
7200.2.k.d 2 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T72 T_{7} - 2 acting on S2new(600,[χ])S_{2}^{\mathrm{new}}(600, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
33 T2+1 T^{2} + 1 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 (T2)2 (T - 2)^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+16 T^{2} + 16 Copy content Toggle raw display
1717 (T2)2 (T - 2)^{2} Copy content Toggle raw display
1919 T2+16 T^{2} + 16 Copy content Toggle raw display
2323 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
2929 T2+36 T^{2} + 36 Copy content Toggle raw display
3131 (T2)2 (T - 2)^{2} Copy content Toggle raw display
3737 T2+64 T^{2} + 64 Copy content Toggle raw display
4141 (T2)2 (T - 2)^{2} Copy content Toggle raw display
4343 T2+16 T^{2} + 16 Copy content Toggle raw display
4747 (T12)2 (T - 12)^{2} Copy content Toggle raw display
5353 T2+36 T^{2} + 36 Copy content Toggle raw display
5959 T2+16 T^{2} + 16 Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2+144 T^{2} + 144 Copy content Toggle raw display
7171 (T12)2 (T - 12)^{2} Copy content Toggle raw display
7373 (T6)2 (T - 6)^{2} Copy content Toggle raw display
7979 (T10)2 (T - 10)^{2} Copy content Toggle raw display
8383 T2+256 T^{2} + 256 Copy content Toggle raw display
8989 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
9797 (T2)2 (T - 2)^{2} Copy content Toggle raw display
show more
show less