Properties

Label 648.2.n.k
Level $648$
Weight $2$
Character orbit 648.n
Analytic conductor $5.174$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [648,2,Mod(109,648)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(648, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("648.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{3} + \zeta_{12}^{2} + \zeta_{12}) q^{2} + 2 \zeta_{12} q^{4} + 2 \zeta_{12} q^{5} + 2 \zeta_{12}^{2} q^{7} + (2 \zeta_{12}^{3} + 2) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{12}^{3} + \zeta_{12}^{2} + \zeta_{12}) q^{2} + 2 \zeta_{12} q^{4} + 2 \zeta_{12} q^{5} + 2 \zeta_{12}^{2} q^{7} + (2 \zeta_{12}^{3} + 2) q^{8} + (2 \zeta_{12}^{3} + 2) q^{10} - 4 \zeta_{12} q^{13} + (2 \zeta_{12}^{2} + 2 \zeta_{12} - 2) q^{14} + 4 \zeta_{12}^{2} q^{16} - 2 q^{17} - 4 \zeta_{12}^{3} q^{19} + 4 \zeta_{12}^{2} q^{20} + (4 \zeta_{12}^{2} - 4) q^{23} - \zeta_{12}^{2} q^{25} + ( - 4 \zeta_{12}^{3} - 4) q^{26} + 4 \zeta_{12}^{3} q^{28} + ( - 6 \zeta_{12}^{3} + 6 \zeta_{12}) q^{29} + (2 \zeta_{12}^{2} - 2) q^{31} + (4 \zeta_{12}^{2} + 4 \zeta_{12} - 4) q^{32} + (2 \zeta_{12}^{3} + \cdots - 2 \zeta_{12}) q^{34} + \cdots + ( - 3 \zeta_{12}^{3} + 3) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 4 q^{7} + 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{2} + 4 q^{7} + 8 q^{8} + 8 q^{10} - 4 q^{14} + 8 q^{16} - 8 q^{17} + 8 q^{20} - 8 q^{23} - 2 q^{25} - 16 q^{26} - 4 q^{31} - 8 q^{32} - 4 q^{34} - 8 q^{38} - 8 q^{40} - 4 q^{41} - 16 q^{46} + 24 q^{47} + 6 q^{49} + 2 q^{50} - 16 q^{52} + 8 q^{56} + 12 q^{58} - 8 q^{62} - 16 q^{65} + 8 q^{70} + 48 q^{71} - 24 q^{73} - 16 q^{74} + 16 q^{76} - 20 q^{79} - 8 q^{82} + 8 q^{86} - 40 q^{89} - 24 q^{94} + 16 q^{95} + 4 q^{97} + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(-1 + \zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
−0.366025 + 1.36603i 0 −1.73205 1.00000i −1.73205 1.00000i 0 1.00000 + 1.73205i 2.00000 2.00000i 0 2.00000 2.00000i
109.2 1.36603 + 0.366025i 0 1.73205 + 1.00000i 1.73205 + 1.00000i 0 1.00000 + 1.73205i 2.00000 + 2.00000i 0 2.00000 + 2.00000i
541.1 −0.366025 1.36603i 0 −1.73205 + 1.00000i −1.73205 + 1.00000i 0 1.00000 1.73205i 2.00000 + 2.00000i 0 2.00000 + 2.00000i
541.2 1.36603 0.366025i 0 1.73205 1.00000i 1.73205 1.00000i 0 1.00000 1.73205i 2.00000 2.00000i 0 2.00000 2.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner
9.c even 3 1 inner
72.n even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 648.2.n.k 4
3.b odd 2 1 648.2.n.c 4
4.b odd 2 1 2592.2.r.f 4
8.b even 2 1 inner 648.2.n.k 4
8.d odd 2 1 2592.2.r.f 4
9.c even 3 1 24.2.d.a 2
9.c even 3 1 inner 648.2.n.k 4
9.d odd 6 1 72.2.d.b 2
9.d odd 6 1 648.2.n.c 4
12.b even 2 1 2592.2.r.g 4
24.f even 2 1 2592.2.r.g 4
24.h odd 2 1 648.2.n.c 4
36.f odd 6 1 96.2.d.a 2
36.f odd 6 1 2592.2.r.f 4
36.h even 6 1 288.2.d.b 2
36.h even 6 1 2592.2.r.g 4
45.h odd 6 1 1800.2.k.a 2
45.j even 6 1 600.2.k.b 2
45.k odd 12 1 600.2.d.b 2
45.k odd 12 1 600.2.d.c 2
45.l even 12 1 1800.2.d.b 2
45.l even 12 1 1800.2.d.i 2
63.l odd 6 1 1176.2.c.a 2
72.j odd 6 1 72.2.d.b 2
72.j odd 6 1 648.2.n.c 4
72.l even 6 1 288.2.d.b 2
72.l even 6 1 2592.2.r.g 4
72.n even 6 1 24.2.d.a 2
72.n even 6 1 inner 648.2.n.k 4
72.p odd 6 1 96.2.d.a 2
72.p odd 6 1 2592.2.r.f 4
144.u even 12 1 2304.2.a.b 1
144.u even 12 1 2304.2.a.l 1
144.v odd 12 1 768.2.a.d 1
144.v odd 12 1 768.2.a.e 1
144.w odd 12 1 2304.2.a.e 1
144.w odd 12 1 2304.2.a.o 1
144.x even 12 1 768.2.a.a 1
144.x even 12 1 768.2.a.h 1
180.n even 6 1 7200.2.k.d 2
180.p odd 6 1 2400.2.k.a 2
180.v odd 12 1 7200.2.d.d 2
180.v odd 12 1 7200.2.d.g 2
180.x even 12 1 2400.2.d.b 2
180.x even 12 1 2400.2.d.c 2
252.bi even 6 1 4704.2.c.a 2
360.z odd 6 1 2400.2.k.a 2
360.bd even 6 1 7200.2.k.d 2
360.bh odd 6 1 1800.2.k.a 2
360.bk even 6 1 600.2.k.b 2
360.bo even 12 1 2400.2.d.b 2
360.bo even 12 1 2400.2.d.c 2
360.br even 12 1 1800.2.d.b 2
360.br even 12 1 1800.2.d.i 2
360.bt odd 12 1 7200.2.d.d 2
360.bt odd 12 1 7200.2.d.g 2
360.bu odd 12 1 600.2.d.b 2
360.bu odd 12 1 600.2.d.c 2
504.be even 6 1 4704.2.c.a 2
504.bn odd 6 1 1176.2.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.2.d.a 2 9.c even 3 1
24.2.d.a 2 72.n even 6 1
72.2.d.b 2 9.d odd 6 1
72.2.d.b 2 72.j odd 6 1
96.2.d.a 2 36.f odd 6 1
96.2.d.a 2 72.p odd 6 1
288.2.d.b 2 36.h even 6 1
288.2.d.b 2 72.l even 6 1
600.2.d.b 2 45.k odd 12 1
600.2.d.b 2 360.bu odd 12 1
600.2.d.c 2 45.k odd 12 1
600.2.d.c 2 360.bu odd 12 1
600.2.k.b 2 45.j even 6 1
600.2.k.b 2 360.bk even 6 1
648.2.n.c 4 3.b odd 2 1
648.2.n.c 4 9.d odd 6 1
648.2.n.c 4 24.h odd 2 1
648.2.n.c 4 72.j odd 6 1
648.2.n.k 4 1.a even 1 1 trivial
648.2.n.k 4 8.b even 2 1 inner
648.2.n.k 4 9.c even 3 1 inner
648.2.n.k 4 72.n even 6 1 inner
768.2.a.a 1 144.x even 12 1
768.2.a.d 1 144.v odd 12 1
768.2.a.e 1 144.v odd 12 1
768.2.a.h 1 144.x even 12 1
1176.2.c.a 2 63.l odd 6 1
1176.2.c.a 2 504.bn odd 6 1
1800.2.d.b 2 45.l even 12 1
1800.2.d.b 2 360.br even 12 1
1800.2.d.i 2 45.l even 12 1
1800.2.d.i 2 360.br even 12 1
1800.2.k.a 2 45.h odd 6 1
1800.2.k.a 2 360.bh odd 6 1
2304.2.a.b 1 144.u even 12 1
2304.2.a.e 1 144.w odd 12 1
2304.2.a.l 1 144.u even 12 1
2304.2.a.o 1 144.w odd 12 1
2400.2.d.b 2 180.x even 12 1
2400.2.d.b 2 360.bo even 12 1
2400.2.d.c 2 180.x even 12 1
2400.2.d.c 2 360.bo even 12 1
2400.2.k.a 2 180.p odd 6 1
2400.2.k.a 2 360.z odd 6 1
2592.2.r.f 4 4.b odd 2 1
2592.2.r.f 4 8.d odd 2 1
2592.2.r.f 4 36.f odd 6 1
2592.2.r.f 4 72.p odd 6 1
2592.2.r.g 4 12.b even 2 1
2592.2.r.g 4 24.f even 2 1
2592.2.r.g 4 36.h even 6 1
2592.2.r.g 4 72.l even 6 1
4704.2.c.a 2 252.bi even 6 1
4704.2.c.a 2 504.be even 6 1
7200.2.d.d 2 180.v odd 12 1
7200.2.d.d 2 360.bt odd 12 1
7200.2.d.g 2 180.v odd 12 1
7200.2.d.g 2 360.bt odd 12 1
7200.2.k.d 2 180.n even 6 1
7200.2.k.d 2 360.bd even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(648, [\chi])\):

\( T_{5}^{4} - 4T_{5}^{2} + 16 \) Copy content Toggle raw display
\( T_{13}^{4} - 16T_{13}^{2} + 256 \) Copy content Toggle raw display
\( T_{17} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$7$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$17$ \( (T + 2)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$31$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$47$ \( (T^{2} - 12 T + 144)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} - 144 T^{2} + 20736 \) Copy content Toggle raw display
$71$ \( (T - 12)^{4} \) Copy content Toggle raw display
$73$ \( (T + 6)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 10 T + 100)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 256 T^{2} + 65536 \) Copy content Toggle raw display
$89$ \( (T + 10)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
show more
show less