Properties

Label 2400.2.d.b
Level $2400$
Weight $2$
Character orbit 2400.d
Analytic conductor $19.164$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,2,Mod(49,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2400.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1640964851\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + \beta q^{7} + q^{9} + 4 q^{13} - \beta q^{17} - 2 \beta q^{19} - \beta q^{21} + 2 \beta q^{23} - q^{27} - 3 \beta q^{29} - 2 q^{31} + 8 q^{37} - 4 q^{39} + 2 q^{41} - 4 q^{43} + 6 \beta q^{47} + \cdots - \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{9} + 8 q^{13} - 2 q^{27} - 4 q^{31} + 16 q^{37} - 8 q^{39} + 4 q^{41} - 8 q^{43} + 6 q^{49} - 12 q^{53} + 24 q^{67} - 24 q^{71} + 20 q^{79} + 2 q^{81} + 32 q^{83} + 20 q^{89} + 4 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
0 −1.00000 0 0 0 2.00000i 0 1.00000 0
49.2 0 −1.00000 0 0 0 2.00000i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2400.2.d.b 2
3.b odd 2 1 7200.2.d.g 2
4.b odd 2 1 600.2.d.b 2
5.b even 2 1 2400.2.d.c 2
5.c odd 4 1 96.2.d.a 2
5.c odd 4 1 2400.2.k.a 2
8.b even 2 1 2400.2.d.c 2
8.d odd 2 1 600.2.d.c 2
12.b even 2 1 1800.2.d.i 2
15.d odd 2 1 7200.2.d.d 2
15.e even 4 1 288.2.d.b 2
15.e even 4 1 7200.2.k.d 2
20.d odd 2 1 600.2.d.c 2
20.e even 4 1 24.2.d.a 2
20.e even 4 1 600.2.k.b 2
24.f even 2 1 1800.2.d.b 2
24.h odd 2 1 7200.2.d.d 2
35.f even 4 1 4704.2.c.a 2
40.e odd 2 1 600.2.d.b 2
40.f even 2 1 inner 2400.2.d.b 2
40.i odd 4 1 96.2.d.a 2
40.i odd 4 1 2400.2.k.a 2
40.k even 4 1 24.2.d.a 2
40.k even 4 1 600.2.k.b 2
45.k odd 12 2 2592.2.r.f 4
45.l even 12 2 2592.2.r.g 4
60.h even 2 1 1800.2.d.b 2
60.l odd 4 1 72.2.d.b 2
60.l odd 4 1 1800.2.k.a 2
80.i odd 4 1 768.2.a.e 1
80.j even 4 1 768.2.a.h 1
80.s even 4 1 768.2.a.a 1
80.t odd 4 1 768.2.a.d 1
120.i odd 2 1 7200.2.d.g 2
120.m even 2 1 1800.2.d.i 2
120.q odd 4 1 72.2.d.b 2
120.q odd 4 1 1800.2.k.a 2
120.w even 4 1 288.2.d.b 2
120.w even 4 1 7200.2.k.d 2
140.j odd 4 1 1176.2.c.a 2
180.v odd 12 2 648.2.n.c 4
180.x even 12 2 648.2.n.k 4
240.z odd 4 1 2304.2.a.o 1
240.bb even 4 1 2304.2.a.l 1
240.bd odd 4 1 2304.2.a.e 1
240.bf even 4 1 2304.2.a.b 1
280.s even 4 1 4704.2.c.a 2
280.y odd 4 1 1176.2.c.a 2
360.bo even 12 2 648.2.n.k 4
360.br even 12 2 2592.2.r.g 4
360.bt odd 12 2 648.2.n.c 4
360.bu odd 12 2 2592.2.r.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.2.d.a 2 20.e even 4 1
24.2.d.a 2 40.k even 4 1
72.2.d.b 2 60.l odd 4 1
72.2.d.b 2 120.q odd 4 1
96.2.d.a 2 5.c odd 4 1
96.2.d.a 2 40.i odd 4 1
288.2.d.b 2 15.e even 4 1
288.2.d.b 2 120.w even 4 1
600.2.d.b 2 4.b odd 2 1
600.2.d.b 2 40.e odd 2 1
600.2.d.c 2 8.d odd 2 1
600.2.d.c 2 20.d odd 2 1
600.2.k.b 2 20.e even 4 1
600.2.k.b 2 40.k even 4 1
648.2.n.c 4 180.v odd 12 2
648.2.n.c 4 360.bt odd 12 2
648.2.n.k 4 180.x even 12 2
648.2.n.k 4 360.bo even 12 2
768.2.a.a 1 80.s even 4 1
768.2.a.d 1 80.t odd 4 1
768.2.a.e 1 80.i odd 4 1
768.2.a.h 1 80.j even 4 1
1176.2.c.a 2 140.j odd 4 1
1176.2.c.a 2 280.y odd 4 1
1800.2.d.b 2 24.f even 2 1
1800.2.d.b 2 60.h even 2 1
1800.2.d.i 2 12.b even 2 1
1800.2.d.i 2 120.m even 2 1
1800.2.k.a 2 60.l odd 4 1
1800.2.k.a 2 120.q odd 4 1
2304.2.a.b 1 240.bf even 4 1
2304.2.a.e 1 240.bd odd 4 1
2304.2.a.l 1 240.bb even 4 1
2304.2.a.o 1 240.z odd 4 1
2400.2.d.b 2 1.a even 1 1 trivial
2400.2.d.b 2 40.f even 2 1 inner
2400.2.d.c 2 5.b even 2 1
2400.2.d.c 2 8.b even 2 1
2400.2.k.a 2 5.c odd 4 1
2400.2.k.a 2 40.i odd 4 1
2592.2.r.f 4 45.k odd 12 2
2592.2.r.f 4 360.bu odd 12 2
2592.2.r.g 4 45.l even 12 2
2592.2.r.g 4 360.br even 12 2
4704.2.c.a 2 35.f even 4 1
4704.2.c.a 2 280.s even 4 1
7200.2.d.d 2 15.d odd 2 1
7200.2.d.d 2 24.h odd 2 1
7200.2.d.g 2 3.b odd 2 1
7200.2.d.g 2 120.i odd 2 1
7200.2.k.d 2 15.e even 4 1
7200.2.k.d 2 120.w even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2400, [\chi])\):

\( T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13} - 4 \) Copy content Toggle raw display
\( T_{37} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( (T - 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 4 \) Copy content Toggle raw display
$19$ \( T^{2} + 16 \) Copy content Toggle raw display
$23$ \( T^{2} + 16 \) Copy content Toggle raw display
$29$ \( T^{2} + 36 \) Copy content Toggle raw display
$31$ \( (T + 2)^{2} \) Copy content Toggle raw display
$37$ \( (T - 8)^{2} \) Copy content Toggle raw display
$41$ \( (T - 2)^{2} \) Copy content Toggle raw display
$43$ \( (T + 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 144 \) Copy content Toggle raw display
$53$ \( (T + 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 16 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( (T - 12)^{2} \) Copy content Toggle raw display
$71$ \( (T + 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 36 \) Copy content Toggle raw display
$79$ \( (T - 10)^{2} \) Copy content Toggle raw display
$83$ \( (T - 16)^{2} \) Copy content Toggle raw display
$89$ \( (T - 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less