Properties

Label 1224.2.l.d.1189.14
Level $1224$
Weight $2$
Character 1224.1189
Analytic conductor $9.774$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(1189,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.1189");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.l (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1189.14
Root \(0.937200 - 1.05908i\) of defining polynomial
Character \(\chi\) \(=\) 1224.1189
Dual form 1224.2.l.d.1189.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.937200 + 1.05908i) q^{2} +(-0.243310 + 1.98514i) q^{4} -4.06326 q^{5} -1.33474i q^{7} +(-2.33046 + 1.60279i) q^{8} +(-3.80809 - 4.30332i) q^{10} +1.38281 q^{11} +2.52933i q^{13} +(1.41360 - 1.25092i) q^{14} +(-3.88160 - 0.966013i) q^{16} +(-0.873177 - 4.02959i) q^{17} -4.60881i q^{19} +(0.988633 - 8.06616i) q^{20} +(1.29597 + 1.46451i) q^{22} -3.08302i q^{23} +11.5101 q^{25} +(-2.67877 + 2.37049i) q^{26} +(2.64966 + 0.324757i) q^{28} +4.59613 q^{29} -2.64041i q^{31} +(-2.61475 - 5.01628i) q^{32} +(3.44932 - 4.70130i) q^{34} +5.42340i q^{35} -7.56937 q^{37} +(4.88111 - 4.31938i) q^{38} +(9.46927 - 6.51256i) q^{40} +1.67814i q^{41} -10.9014i q^{43} +(-0.336451 + 2.74507i) q^{44} +(3.26517 - 2.88941i) q^{46} +2.19704 q^{47} +5.21846 q^{49} +(10.7872 + 12.1901i) q^{50} +(-5.02110 - 0.615414i) q^{52} +3.93905i q^{53} -5.61870 q^{55} +(2.13932 + 3.11057i) q^{56} +(4.30749 + 4.86768i) q^{58} -12.8504i q^{59} -7.00079 q^{61} +(2.79641 - 2.47459i) q^{62} +(2.86211 - 7.47050i) q^{64} -10.2773i q^{65} +2.01087i q^{67} +(8.21176 - 0.752942i) q^{68} +(-5.74383 + 5.08281i) q^{70} -3.38152i q^{71} -12.6981i q^{73} +(-7.09402 - 8.01658i) q^{74} +(9.14915 + 1.12137i) q^{76} -1.84569i q^{77} +10.0914i q^{79} +(15.7719 + 3.92516i) q^{80} +(-1.77729 + 1.57276i) q^{82} +13.3967i q^{83} +(3.54794 + 16.3732i) q^{85} +(11.5455 - 10.2168i) q^{86} +(-3.22258 + 2.21635i) q^{88} -10.8271 q^{89} +3.37601 q^{91} +(6.12024 + 0.750131i) q^{92} +(2.05906 + 2.32684i) q^{94} +18.7268i q^{95} +11.8383i q^{97} +(4.89075 + 5.52678i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{4} + 4 q^{5} - 8 q^{10} + 6 q^{14} + 10 q^{16} + 2 q^{17} + 2 q^{20} + 2 q^{22} + 22 q^{25} - 2 q^{26} - 10 q^{28} - 12 q^{29} + 6 q^{34} - 16 q^{37} + 34 q^{38} - 10 q^{40} - 12 q^{44} + 32 q^{46}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.937200 + 1.05908i 0.662701 + 0.748884i
\(3\) 0 0
\(4\) −0.243310 + 1.98514i −0.121655 + 0.992572i
\(5\) −4.06326 −1.81714 −0.908572 0.417728i \(-0.862827\pi\)
−0.908572 + 0.417728i \(0.862827\pi\)
\(6\) 0 0
\(7\) 1.33474i 0.504485i −0.967664 0.252243i \(-0.918832\pi\)
0.967664 0.252243i \(-0.0811681\pi\)
\(8\) −2.33046 + 1.60279i −0.823943 + 0.566673i
\(9\) 0 0
\(10\) −3.80809 4.30332i −1.20422 1.36083i
\(11\) 1.38281 0.416932 0.208466 0.978030i \(-0.433153\pi\)
0.208466 + 0.978030i \(0.433153\pi\)
\(12\) 0 0
\(13\) 2.52933i 0.701511i 0.936467 + 0.350756i \(0.114075\pi\)
−0.936467 + 0.350756i \(0.885925\pi\)
\(14\) 1.41360 1.25092i 0.377801 0.334323i
\(15\) 0 0
\(16\) −3.88160 0.966013i −0.970400 0.241503i
\(17\) −0.873177 4.02959i −0.211777 0.977318i
\(18\) 0 0
\(19\) 4.60881i 1.05733i −0.848830 0.528667i \(-0.822692\pi\)
0.848830 0.528667i \(-0.177308\pi\)
\(20\) 0.988633 8.06616i 0.221065 1.80365i
\(21\) 0 0
\(22\) 1.29597 + 1.46451i 0.276301 + 0.312234i
\(23\) 3.08302i 0.642854i −0.946934 0.321427i \(-0.895837\pi\)
0.946934 0.321427i \(-0.104163\pi\)
\(24\) 0 0
\(25\) 11.5101 2.30201
\(26\) −2.67877 + 2.37049i −0.525351 + 0.464892i
\(27\) 0 0
\(28\) 2.64966 + 0.324757i 0.500738 + 0.0613732i
\(29\) 4.59613 0.853479 0.426740 0.904374i \(-0.359662\pi\)
0.426740 + 0.904374i \(0.359662\pi\)
\(30\) 0 0
\(31\) 2.64041i 0.474231i −0.971481 0.237116i \(-0.923798\pi\)
0.971481 0.237116i \(-0.0762020\pi\)
\(32\) −2.61475 5.01628i −0.462227 0.886762i
\(33\) 0 0
\(34\) 3.44932 4.70130i 0.591554 0.806266i
\(35\) 5.42340i 0.916722i
\(36\) 0 0
\(37\) −7.56937 −1.24440 −0.622198 0.782860i \(-0.713760\pi\)
−0.622198 + 0.782860i \(0.713760\pi\)
\(38\) 4.88111 4.31938i 0.791820 0.700695i
\(39\) 0 0
\(40\) 9.46927 6.51256i 1.49722 1.02973i
\(41\) 1.67814i 0.262082i 0.991377 + 0.131041i \(0.0418320\pi\)
−0.991377 + 0.131041i \(0.958168\pi\)
\(42\) 0 0
\(43\) 10.9014i 1.66245i −0.555939 0.831223i \(-0.687641\pi\)
0.555939 0.831223i \(-0.312359\pi\)
\(44\) −0.336451 + 2.74507i −0.0507219 + 0.413835i
\(45\) 0 0
\(46\) 3.26517 2.88941i 0.481423 0.426020i
\(47\) 2.19704 0.320471 0.160235 0.987079i \(-0.448775\pi\)
0.160235 + 0.987079i \(0.448775\pi\)
\(48\) 0 0
\(49\) 5.21846 0.745495
\(50\) 10.7872 + 12.1901i 1.52555 + 1.72394i
\(51\) 0 0
\(52\) −5.02110 0.615414i −0.696301 0.0853425i
\(53\) 3.93905i 0.541070i 0.962710 + 0.270535i \(0.0872006\pi\)
−0.962710 + 0.270535i \(0.912799\pi\)
\(54\) 0 0
\(55\) −5.61870 −0.757625
\(56\) 2.13932 + 3.11057i 0.285878 + 0.415667i
\(57\) 0 0
\(58\) 4.30749 + 4.86768i 0.565602 + 0.639157i
\(59\) 12.8504i 1.67298i −0.547979 0.836492i \(-0.684603\pi\)
0.547979 0.836492i \(-0.315397\pi\)
\(60\) 0 0
\(61\) −7.00079 −0.896360 −0.448180 0.893943i \(-0.647928\pi\)
−0.448180 + 0.893943i \(0.647928\pi\)
\(62\) 2.79641 2.47459i 0.355144 0.314273i
\(63\) 0 0
\(64\) 2.86211 7.47050i 0.357764 0.933812i
\(65\) 10.2773i 1.27475i
\(66\) 0 0
\(67\) 2.01087i 0.245666i 0.992427 + 0.122833i \(0.0391980\pi\)
−0.992427 + 0.122833i \(0.960802\pi\)
\(68\) 8.21176 0.752942i 0.995823 0.0913077i
\(69\) 0 0
\(70\) −5.74383 + 5.08281i −0.686519 + 0.607513i
\(71\) 3.38152i 0.401312i −0.979662 0.200656i \(-0.935693\pi\)
0.979662 0.200656i \(-0.0643074\pi\)
\(72\) 0 0
\(73\) 12.6981i 1.48620i −0.669179 0.743101i \(-0.733354\pi\)
0.669179 0.743101i \(-0.266646\pi\)
\(74\) −7.09402 8.01658i −0.824663 0.931909i
\(75\) 0 0
\(76\) 9.14915 + 1.12137i 1.04948 + 0.128630i
\(77\) 1.84569i 0.210336i
\(78\) 0 0
\(79\) 10.0914i 1.13537i 0.823244 + 0.567687i \(0.192162\pi\)
−0.823244 + 0.567687i \(0.807838\pi\)
\(80\) 15.7719 + 3.92516i 1.76336 + 0.438846i
\(81\) 0 0
\(82\) −1.77729 + 1.57276i −0.196269 + 0.173682i
\(83\) 13.3967i 1.47048i 0.677808 + 0.735239i \(0.262930\pi\)
−0.677808 + 0.735239i \(0.737070\pi\)
\(84\) 0 0
\(85\) 3.54794 + 16.3732i 0.384829 + 1.77593i
\(86\) 11.5455 10.2168i 1.24498 1.10170i
\(87\) 0 0
\(88\) −3.22258 + 2.21635i −0.343528 + 0.236264i
\(89\) −10.8271 −1.14767 −0.573837 0.818970i \(-0.694546\pi\)
−0.573837 + 0.818970i \(0.694546\pi\)
\(90\) 0 0
\(91\) 3.37601 0.353902
\(92\) 6.12024 + 0.750131i 0.638079 + 0.0782066i
\(93\) 0 0
\(94\) 2.05906 + 2.32684i 0.212376 + 0.239996i
\(95\) 18.7268i 1.92133i
\(96\) 0 0
\(97\) 11.8383i 1.20200i 0.799248 + 0.601001i \(0.205231\pi\)
−0.799248 + 0.601001i \(0.794769\pi\)
\(98\) 4.89075 + 5.52678i 0.494040 + 0.558289i
\(99\) 0 0
\(100\) −2.80052 + 22.8491i −0.280052 + 2.28491i
\(101\) 19.2918i 1.91960i −0.280683 0.959801i \(-0.590561\pi\)
0.280683 0.959801i \(-0.409439\pi\)
\(102\) 0 0
\(103\) −11.3576 −1.11909 −0.559547 0.828799i \(-0.689025\pi\)
−0.559547 + 0.828799i \(0.689025\pi\)
\(104\) −4.05400 5.89452i −0.397527 0.578005i
\(105\) 0 0
\(106\) −4.17178 + 3.69168i −0.405199 + 0.358568i
\(107\) 0.539159 0.0521224 0.0260612 0.999660i \(-0.491704\pi\)
0.0260612 + 0.999660i \(0.491704\pi\)
\(108\) 0 0
\(109\) −9.10216 −0.871828 −0.435914 0.899988i \(-0.643575\pi\)
−0.435914 + 0.899988i \(0.643575\pi\)
\(110\) −5.26585 5.95067i −0.502079 0.567374i
\(111\) 0 0
\(112\) −1.28938 + 5.18094i −0.121835 + 0.489552i
\(113\) 6.53188i 0.614468i −0.951634 0.307234i \(-0.900597\pi\)
0.951634 0.307234i \(-0.0994034\pi\)
\(114\) 0 0
\(115\) 12.5271i 1.16816i
\(116\) −1.11829 + 9.12398i −0.103830 + 0.847140i
\(117\) 0 0
\(118\) 13.6097 12.0434i 1.25287 1.10869i
\(119\) −5.37846 + 1.16547i −0.493042 + 0.106838i
\(120\) 0 0
\(121\) −9.08785 −0.826168
\(122\) −6.56115 7.41442i −0.594018 0.671270i
\(123\) 0 0
\(124\) 5.24159 + 0.642439i 0.470709 + 0.0576927i
\(125\) −26.4521 −2.36595
\(126\) 0 0
\(127\) −12.5968 −1.11779 −0.558894 0.829239i \(-0.688774\pi\)
−0.558894 + 0.829239i \(0.688774\pi\)
\(128\) 10.5942 3.97014i 0.936408 0.350914i
\(129\) 0 0
\(130\) 10.8845 9.63193i 0.954638 0.844776i
\(131\) 15.0923 1.31862 0.659311 0.751870i \(-0.270848\pi\)
0.659311 + 0.751870i \(0.270848\pi\)
\(132\) 0 0
\(133\) −6.15157 −0.533409
\(134\) −2.12967 + 1.88459i −0.183976 + 0.162803i
\(135\) 0 0
\(136\) 8.49350 + 7.99128i 0.728311 + 0.685246i
\(137\) −1.12940 −0.0964912 −0.0482456 0.998836i \(-0.515363\pi\)
−0.0482456 + 0.998836i \(0.515363\pi\)
\(138\) 0 0
\(139\) −10.6515 −0.903450 −0.451725 0.892157i \(-0.649191\pi\)
−0.451725 + 0.892157i \(0.649191\pi\)
\(140\) −10.7662 1.31957i −0.909913 0.111524i
\(141\) 0 0
\(142\) 3.58131 3.16916i 0.300537 0.265950i
\(143\) 3.49758i 0.292482i
\(144\) 0 0
\(145\) −18.6753 −1.55090
\(146\) 13.4484 11.9007i 1.11299 0.984908i
\(147\) 0 0
\(148\) 1.84171 15.0263i 0.151387 1.23515i
\(149\) 0.280184i 0.0229536i 0.999934 + 0.0114768i \(0.00365325\pi\)
−0.999934 + 0.0114768i \(0.996347\pi\)
\(150\) 0 0
\(151\) 9.48355 0.771760 0.385880 0.922549i \(-0.373898\pi\)
0.385880 + 0.922549i \(0.373898\pi\)
\(152\) 7.38696 + 10.7407i 0.599162 + 0.871182i
\(153\) 0 0
\(154\) 1.95474 1.72978i 0.157517 0.139390i
\(155\) 10.7287i 0.861746i
\(156\) 0 0
\(157\) 23.6841i 1.89019i −0.326789 0.945097i \(-0.605967\pi\)
0.326789 0.945097i \(-0.394033\pi\)
\(158\) −10.6877 + 9.45769i −0.850264 + 0.752414i
\(159\) 0 0
\(160\) 10.6244 + 20.3824i 0.839933 + 1.61137i
\(161\) −4.11504 −0.324310
\(162\) 0 0
\(163\) −18.4216 −1.44289 −0.721446 0.692471i \(-0.756522\pi\)
−0.721446 + 0.692471i \(0.756522\pi\)
\(164\) −3.33136 0.408310i −0.260135 0.0318837i
\(165\) 0 0
\(166\) −14.1882 + 12.5554i −1.10122 + 0.974487i
\(167\) 9.89324i 0.765562i −0.923839 0.382781i \(-0.874966\pi\)
0.923839 0.382781i \(-0.125034\pi\)
\(168\) 0 0
\(169\) 6.60246 0.507882
\(170\) −14.0155 + 19.1026i −1.07494 + 1.46510i
\(171\) 0 0
\(172\) 21.6408 + 2.65242i 1.65010 + 0.202245i
\(173\) −18.5486 −1.41022 −0.705111 0.709097i \(-0.749103\pi\)
−0.705111 + 0.709097i \(0.749103\pi\)
\(174\) 0 0
\(175\) 15.3630i 1.16133i
\(176\) −5.36750 1.33581i −0.404591 0.100690i
\(177\) 0 0
\(178\) −10.1472 11.4668i −0.760564 0.859475i
\(179\) 9.68489i 0.723883i 0.932201 + 0.361941i \(0.117886\pi\)
−0.932201 + 0.361941i \(0.882114\pi\)
\(180\) 0 0
\(181\) 6.22823 0.462941 0.231470 0.972842i \(-0.425646\pi\)
0.231470 + 0.972842i \(0.425646\pi\)
\(182\) 3.16400 + 3.57547i 0.234531 + 0.265032i
\(183\) 0 0
\(184\) 4.94144 + 7.18486i 0.364288 + 0.529675i
\(185\) 30.7563 2.26125
\(186\) 0 0
\(187\) −1.20743 5.57214i −0.0882964 0.407475i
\(188\) −0.534562 + 4.36144i −0.0389870 + 0.318091i
\(189\) 0 0
\(190\) −19.8332 + 17.5507i −1.43885 + 1.27326i
\(191\) 18.5765 1.34415 0.672074 0.740484i \(-0.265404\pi\)
0.672074 + 0.740484i \(0.265404\pi\)
\(192\) 0 0
\(193\) 13.6072i 0.979471i 0.871871 + 0.489736i \(0.162907\pi\)
−0.871871 + 0.489736i \(0.837093\pi\)
\(194\) −12.5378 + 11.0949i −0.900160 + 0.796568i
\(195\) 0 0
\(196\) −1.26971 + 10.3594i −0.0906933 + 0.739958i
\(197\) 7.88624 0.561871 0.280936 0.959727i \(-0.409355\pi\)
0.280936 + 0.959727i \(0.409355\pi\)
\(198\) 0 0
\(199\) 19.7275i 1.39844i 0.714906 + 0.699221i \(0.246470\pi\)
−0.714906 + 0.699221i \(0.753530\pi\)
\(200\) −26.8238 + 18.4483i −1.89673 + 1.30449i
\(201\) 0 0
\(202\) 20.4316 18.0802i 1.43756 1.27212i
\(203\) 6.13465i 0.430568i
\(204\) 0 0
\(205\) 6.81873i 0.476241i
\(206\) −10.6443 12.0286i −0.741624 0.838071i
\(207\) 0 0
\(208\) 2.44337 9.81787i 0.169417 0.680747i
\(209\) 6.37309i 0.440836i
\(210\) 0 0
\(211\) 23.9727 1.65035 0.825175 0.564877i \(-0.191076\pi\)
0.825175 + 0.564877i \(0.191076\pi\)
\(212\) −7.81959 0.958412i −0.537051 0.0658240i
\(213\) 0 0
\(214\) 0.505300 + 0.571013i 0.0345416 + 0.0390337i
\(215\) 44.2952i 3.02090i
\(216\) 0 0
\(217\) −3.52426 −0.239243
\(218\) −8.53055 9.63993i −0.577761 0.652899i
\(219\) 0 0
\(220\) 1.36709 11.1539i 0.0921691 0.751998i
\(221\) 10.1922 2.20856i 0.685600 0.148564i
\(222\) 0 0
\(223\) 17.6208 1.17997 0.589987 0.807413i \(-0.299133\pi\)
0.589987 + 0.807413i \(0.299133\pi\)
\(224\) −6.69544 + 3.49002i −0.447358 + 0.233187i
\(225\) 0 0
\(226\) 6.91780 6.12168i 0.460165 0.407208i
\(227\) −14.7789 −0.980911 −0.490456 0.871466i \(-0.663170\pi\)
−0.490456 + 0.871466i \(0.663170\pi\)
\(228\) 0 0
\(229\) 21.7445i 1.43692i −0.695569 0.718459i \(-0.744848\pi\)
0.695569 0.718459i \(-0.255152\pi\)
\(230\) −13.2672 + 11.7404i −0.874816 + 0.774140i
\(231\) 0 0
\(232\) −10.7111 + 7.36664i −0.703218 + 0.483644i
\(233\) 10.4914i 0.687314i 0.939095 + 0.343657i \(0.111666\pi\)
−0.939095 + 0.343657i \(0.888334\pi\)
\(234\) 0 0
\(235\) −8.92713 −0.582342
\(236\) 25.5100 + 3.12664i 1.66056 + 0.203527i
\(237\) 0 0
\(238\) −6.27502 4.60395i −0.406749 0.298430i
\(239\) −14.7604 −0.954770 −0.477385 0.878694i \(-0.658415\pi\)
−0.477385 + 0.878694i \(0.658415\pi\)
\(240\) 0 0
\(241\) 21.7730i 1.40252i −0.712903 0.701262i \(-0.752620\pi\)
0.712903 0.701262i \(-0.247380\pi\)
\(242\) −8.51713 9.62478i −0.547502 0.618704i
\(243\) 0 0
\(244\) 1.70337 13.8976i 0.109047 0.889702i
\(245\) −21.2040 −1.35467
\(246\) 0 0
\(247\) 11.6572 0.741731
\(248\) 4.23203 + 6.15337i 0.268734 + 0.390739i
\(249\) 0 0
\(250\) −24.7909 28.0149i −1.56791 1.77182i
\(251\) 18.0029i 1.13634i −0.822913 0.568168i \(-0.807653\pi\)
0.822913 0.568168i \(-0.192347\pi\)
\(252\) 0 0
\(253\) 4.26322i 0.268026i
\(254\) −11.8058 13.3411i −0.740759 0.837094i
\(255\) 0 0
\(256\) 14.1336 + 7.49935i 0.883352 + 0.468709i
\(257\) −4.44516 −0.277281 −0.138641 0.990343i \(-0.544273\pi\)
−0.138641 + 0.990343i \(0.544273\pi\)
\(258\) 0 0
\(259\) 10.1032i 0.627780i
\(260\) 20.4020 + 2.50058i 1.26528 + 0.155080i
\(261\) 0 0
\(262\) 14.1445 + 15.9840i 0.873852 + 0.987495i
\(263\) 18.7200 1.15433 0.577163 0.816629i \(-0.304160\pi\)
0.577163 + 0.816629i \(0.304160\pi\)
\(264\) 0 0
\(265\) 16.0054i 0.983203i
\(266\) −5.76525 6.51502i −0.353490 0.399461i
\(267\) 0 0
\(268\) −3.99186 0.489265i −0.243842 0.0298866i
\(269\) −9.33536 −0.569187 −0.284594 0.958648i \(-0.591859\pi\)
−0.284594 + 0.958648i \(0.591859\pi\)
\(270\) 0 0
\(271\) 12.0895 0.734388 0.367194 0.930144i \(-0.380319\pi\)
0.367194 + 0.930144i \(0.380319\pi\)
\(272\) −0.503308 + 16.4847i −0.0305175 + 0.999534i
\(273\) 0 0
\(274\) −1.05847 1.19613i −0.0639448 0.0722607i
\(275\) 15.9162 0.959783
\(276\) 0 0
\(277\) −21.2973 −1.27963 −0.639816 0.768528i \(-0.720989\pi\)
−0.639816 + 0.768528i \(0.720989\pi\)
\(278\) −9.98261 11.2808i −0.598717 0.676580i
\(279\) 0 0
\(280\) −8.69259 12.6390i −0.519482 0.755327i
\(281\) −7.37238 −0.439799 −0.219900 0.975522i \(-0.570573\pi\)
−0.219900 + 0.975522i \(0.570573\pi\)
\(282\) 0 0
\(283\) 22.3443 1.32823 0.664114 0.747631i \(-0.268809\pi\)
0.664114 + 0.747631i \(0.268809\pi\)
\(284\) 6.71280 + 0.822759i 0.398332 + 0.0488217i
\(285\) 0 0
\(286\) −3.70423 + 3.27793i −0.219035 + 0.193828i
\(287\) 2.23989 0.132216
\(288\) 0 0
\(289\) −15.4751 + 7.03708i −0.910301 + 0.413946i
\(290\) −17.5025 19.7786i −1.02778 1.16144i
\(291\) 0 0
\(292\) 25.2076 + 3.08959i 1.47516 + 0.180804i
\(293\) 0.823580i 0.0481141i 0.999711 + 0.0240570i \(0.00765833\pi\)
−0.999711 + 0.0240570i \(0.992342\pi\)
\(294\) 0 0
\(295\) 52.2146i 3.04005i
\(296\) 17.6401 12.1321i 1.02531 0.705166i
\(297\) 0 0
\(298\) −0.296738 + 0.262588i −0.0171896 + 0.0152113i
\(299\) 7.79799 0.450969
\(300\) 0 0
\(301\) −14.5505 −0.838679
\(302\) 8.88799 + 10.0439i 0.511446 + 0.577959i
\(303\) 0 0
\(304\) −4.45217 + 17.8895i −0.255349 + 1.02604i
\(305\) 28.4460 1.62882
\(306\) 0 0
\(307\) 1.85701i 0.105985i 0.998595 + 0.0529925i \(0.0168759\pi\)
−0.998595 + 0.0529925i \(0.983124\pi\)
\(308\) 3.66396 + 0.449076i 0.208774 + 0.0255885i
\(309\) 0 0
\(310\) −11.3625 + 10.0549i −0.645348 + 0.571080i
\(311\) 4.96908i 0.281771i −0.990026 0.140885i \(-0.955005\pi\)
0.990026 0.140885i \(-0.0449949\pi\)
\(312\) 0 0
\(313\) 4.54467i 0.256880i 0.991717 + 0.128440i \(0.0409969\pi\)
−0.991717 + 0.128440i \(0.959003\pi\)
\(314\) 25.0834 22.1967i 1.41554 1.25263i
\(315\) 0 0
\(316\) −20.0330 2.45535i −1.12694 0.138124i
\(317\) 24.5554 1.37917 0.689585 0.724205i \(-0.257793\pi\)
0.689585 + 0.724205i \(0.257793\pi\)
\(318\) 0 0
\(319\) 6.35556 0.355843
\(320\) −11.6295 + 30.3546i −0.650108 + 1.69687i
\(321\) 0 0
\(322\) −3.85661 4.35816i −0.214921 0.242871i
\(323\) −18.5716 + 4.02431i −1.03335 + 0.223918i
\(324\) 0 0
\(325\) 29.1128i 1.61489i
\(326\) −17.2647 19.5100i −0.956205 1.08056i
\(327\) 0 0
\(328\) −2.68972 3.91085i −0.148515 0.215941i
\(329\) 2.93248i 0.161673i
\(330\) 0 0
\(331\) 23.9681i 1.31740i 0.752404 + 0.658702i \(0.228894\pi\)
−0.752404 + 0.658702i \(0.771106\pi\)
\(332\) −26.5944 3.25955i −1.45956 0.178891i
\(333\) 0 0
\(334\) 10.4778 9.27195i 0.573317 0.507339i
\(335\) 8.17067i 0.446411i
\(336\) 0 0
\(337\) 31.1833i 1.69866i −0.527861 0.849331i \(-0.677006\pi\)
0.527861 0.849331i \(-0.322994\pi\)
\(338\) 6.18783 + 6.99255i 0.336574 + 0.380345i
\(339\) 0 0
\(340\) −33.3665 + 3.05940i −1.80955 + 0.165919i
\(341\) 3.65117i 0.197722i
\(342\) 0 0
\(343\) 16.3085i 0.880576i
\(344\) 17.4727 + 25.4053i 0.942063 + 1.36976i
\(345\) 0 0
\(346\) −17.3837 19.6445i −0.934555 1.05609i
\(347\) 29.7572 1.59745 0.798726 0.601695i \(-0.205508\pi\)
0.798726 + 0.601695i \(0.205508\pi\)
\(348\) 0 0
\(349\) 17.3027i 0.926191i −0.886308 0.463095i \(-0.846739\pi\)
0.886308 0.463095i \(-0.153261\pi\)
\(350\) 16.2706 14.3982i 0.869703 0.769615i
\(351\) 0 0
\(352\) −3.61569 6.93655i −0.192717 0.369719i
\(353\) −16.4532 −0.875713 −0.437857 0.899045i \(-0.644262\pi\)
−0.437857 + 0.899045i \(0.644262\pi\)
\(354\) 0 0
\(355\) 13.7400i 0.729242i
\(356\) 2.63435 21.4934i 0.139621 1.13915i
\(357\) 0 0
\(358\) −10.2571 + 9.07669i −0.542104 + 0.479718i
\(359\) −23.2851 −1.22894 −0.614472 0.788939i \(-0.710631\pi\)
−0.614472 + 0.788939i \(0.710631\pi\)
\(360\) 0 0
\(361\) −2.24111 −0.117953
\(362\) 5.83710 + 6.59621i 0.306791 + 0.346689i
\(363\) 0 0
\(364\) −0.821419 + 6.70187i −0.0430540 + 0.351273i
\(365\) 51.5958i 2.70065i
\(366\) 0 0
\(367\) 4.59048i 0.239621i −0.992797 0.119811i \(-0.961771\pi\)
0.992797 0.119811i \(-0.0382287\pi\)
\(368\) −2.97824 + 11.9671i −0.155251 + 0.623826i
\(369\) 0 0
\(370\) 28.8248 + 32.5735i 1.49853 + 1.69341i
\(371\) 5.25762 0.272962
\(372\) 0 0
\(373\) 15.3977i 0.797263i 0.917111 + 0.398631i \(0.130515\pi\)
−0.917111 + 0.398631i \(0.869485\pi\)
\(374\) 4.76974 6.50098i 0.246638 0.336158i
\(375\) 0 0
\(376\) −5.12011 + 3.52140i −0.264050 + 0.181602i
\(377\) 11.6251i 0.598726i
\(378\) 0 0
\(379\) 1.84157 0.0945951 0.0472975 0.998881i \(-0.484939\pi\)
0.0472975 + 0.998881i \(0.484939\pi\)
\(380\) −37.1754 4.55642i −1.90706 0.233739i
\(381\) 0 0
\(382\) 17.4099 + 19.6740i 0.890768 + 1.00661i
\(383\) −34.1856 −1.74680 −0.873401 0.487002i \(-0.838090\pi\)
−0.873401 + 0.487002i \(0.838090\pi\)
\(384\) 0 0
\(385\) 7.49952i 0.382211i
\(386\) −14.4112 + 12.7527i −0.733510 + 0.649096i
\(387\) 0 0
\(388\) −23.5008 2.88039i −1.19307 0.146230i
\(389\) 10.1711i 0.515693i −0.966186 0.257846i \(-0.916987\pi\)
0.966186 0.257846i \(-0.0830129\pi\)
\(390\) 0 0
\(391\) −12.4233 + 2.69202i −0.628273 + 0.136141i
\(392\) −12.1614 + 8.36412i −0.614245 + 0.422452i
\(393\) 0 0
\(394\) 7.39099 + 8.35218i 0.372353 + 0.420777i
\(395\) 41.0041i 2.06314i
\(396\) 0 0
\(397\) 24.1191 1.21050 0.605252 0.796034i \(-0.293072\pi\)
0.605252 + 0.796034i \(0.293072\pi\)
\(398\) −20.8930 + 18.4886i −1.04727 + 0.926749i
\(399\) 0 0
\(400\) −44.6775 11.1189i −2.23387 0.555944i
\(401\) 12.1154i 0.605013i 0.953147 + 0.302506i \(0.0978234\pi\)
−0.953147 + 0.302506i \(0.902177\pi\)
\(402\) 0 0
\(403\) 6.67847 0.332678
\(404\) 38.2969 + 4.69389i 1.90534 + 0.233530i
\(405\) 0 0
\(406\) 6.49709 5.74939i 0.322445 0.285338i
\(407\) −10.4670 −0.518829
\(408\) 0 0
\(409\) 5.35379 0.264728 0.132364 0.991201i \(-0.457743\pi\)
0.132364 + 0.991201i \(0.457743\pi\)
\(410\) 7.22160 6.39052i 0.356649 0.315605i
\(411\) 0 0
\(412\) 2.76341 22.5464i 0.136144 1.11078i
\(413\) −17.1520 −0.843995
\(414\) 0 0
\(415\) 54.4342i 2.67207i
\(416\) 12.6879 6.61358i 0.622073 0.324257i
\(417\) 0 0
\(418\) 6.74963 5.97286i 0.330135 0.292142i
\(419\) −18.3063 −0.894322 −0.447161 0.894454i \(-0.647565\pi\)
−0.447161 + 0.894454i \(0.647565\pi\)
\(420\) 0 0
\(421\) 2.57989i 0.125736i 0.998022 + 0.0628682i \(0.0200248\pi\)
−0.998022 + 0.0628682i \(0.979975\pi\)
\(422\) 22.4673 + 25.3891i 1.09369 + 1.23592i
\(423\) 0 0
\(424\) −6.31348 9.17981i −0.306610 0.445811i
\(425\) −10.0503 46.3808i −0.487512 2.24980i
\(426\) 0 0
\(427\) 9.34425i 0.452200i
\(428\) −0.131183 + 1.07031i −0.00634097 + 0.0517353i
\(429\) 0 0
\(430\) −46.9122 + 41.5134i −2.26231 + 2.00196i
\(431\) 23.8390i 1.14829i −0.818755 0.574143i \(-0.805335\pi\)
0.818755 0.574143i \(-0.194665\pi\)
\(432\) 0 0
\(433\) 19.7075 0.947084 0.473542 0.880771i \(-0.342975\pi\)
0.473542 + 0.880771i \(0.342975\pi\)
\(434\) −3.30294 3.73248i −0.158546 0.179165i
\(435\) 0 0
\(436\) 2.21465 18.0691i 0.106062 0.865353i
\(437\) −14.2090 −0.679711
\(438\) 0 0
\(439\) 11.3880i 0.543518i 0.962365 + 0.271759i \(0.0876054\pi\)
−0.962365 + 0.271759i \(0.912395\pi\)
\(440\) 13.0942 9.00561i 0.624240 0.429326i
\(441\) 0 0
\(442\) 11.8912 + 8.72449i 0.565604 + 0.414982i
\(443\) 3.77327i 0.179273i 0.995975 + 0.0896367i \(0.0285706\pi\)
−0.995975 + 0.0896367i \(0.971429\pi\)
\(444\) 0 0
\(445\) 43.9934 2.08549
\(446\) 16.5142 + 18.6618i 0.781970 + 0.883664i
\(447\) 0 0
\(448\) −9.97119 3.82018i −0.471094 0.180486i
\(449\) 16.5349i 0.780331i 0.920745 + 0.390165i \(0.127582\pi\)
−0.920745 + 0.390165i \(0.872418\pi\)
\(450\) 0 0
\(451\) 2.32055i 0.109270i
\(452\) 12.9667 + 1.58927i 0.609904 + 0.0747532i
\(453\) 0 0
\(454\) −13.8508 15.6521i −0.650051 0.734589i
\(455\) −13.7176 −0.643091
\(456\) 0 0
\(457\) −7.78148 −0.364002 −0.182001 0.983298i \(-0.558257\pi\)
−0.182001 + 0.983298i \(0.558257\pi\)
\(458\) 23.0292 20.3790i 1.07609 0.952247i
\(459\) 0 0
\(460\) −24.8681 3.04798i −1.15948 0.142113i
\(461\) 9.02457i 0.420316i 0.977667 + 0.210158i \(0.0673978\pi\)
−0.977667 + 0.210158i \(0.932602\pi\)
\(462\) 0 0
\(463\) 4.13029 0.191951 0.0959754 0.995384i \(-0.469403\pi\)
0.0959754 + 0.995384i \(0.469403\pi\)
\(464\) −17.8403 4.43992i −0.828217 0.206118i
\(465\) 0 0
\(466\) −11.1112 + 9.83253i −0.514718 + 0.455483i
\(467\) 26.5850i 1.23021i 0.788447 + 0.615103i \(0.210885\pi\)
−0.788447 + 0.615103i \(0.789115\pi\)
\(468\) 0 0
\(469\) 2.68399 0.123935
\(470\) −8.36651 9.45457i −0.385918 0.436107i
\(471\) 0 0
\(472\) 20.5966 + 29.9474i 0.948034 + 1.37844i
\(473\) 15.0745i 0.693127i
\(474\) 0 0
\(475\) 53.0477i 2.43399i
\(476\) −1.00498 10.9606i −0.0460634 0.502378i
\(477\) 0 0
\(478\) −13.8334 15.6325i −0.632727 0.715012i
\(479\) 9.58908i 0.438136i 0.975710 + 0.219068i \(0.0703017\pi\)
−0.975710 + 0.219068i \(0.929698\pi\)
\(480\) 0 0
\(481\) 19.1455i 0.872958i
\(482\) 23.0594 20.4057i 1.05033 0.929454i
\(483\) 0 0
\(484\) 2.21117 18.0407i 0.100508 0.820031i
\(485\) 48.1023i 2.18421i
\(486\) 0 0
\(487\) 11.3135i 0.512663i 0.966589 + 0.256331i \(0.0825138\pi\)
−0.966589 + 0.256331i \(0.917486\pi\)
\(488\) 16.3151 11.2208i 0.738549 0.507943i
\(489\) 0 0
\(490\) −19.8724 22.4567i −0.897742 1.01449i
\(491\) 12.2851i 0.554421i −0.960809 0.277210i \(-0.910590\pi\)
0.960809 0.277210i \(-0.0894099\pi\)
\(492\) 0 0
\(493\) −4.01323 18.5205i −0.180747 0.834121i
\(494\) 10.9252 + 12.3460i 0.491546 + 0.555471i
\(495\) 0 0
\(496\) −2.55067 + 10.2490i −0.114528 + 0.460194i
\(497\) −4.51345 −0.202456
\(498\) 0 0
\(499\) −7.65944 −0.342884 −0.171442 0.985194i \(-0.554843\pi\)
−0.171442 + 0.985194i \(0.554843\pi\)
\(500\) 6.43607 52.5112i 0.287830 2.34837i
\(501\) 0 0
\(502\) 19.0666 16.8724i 0.850983 0.753050i
\(503\) 39.8142i 1.77523i 0.460589 + 0.887614i \(0.347638\pi\)
−0.460589 + 0.887614i \(0.652362\pi\)
\(504\) 0 0
\(505\) 78.3874i 3.48819i
\(506\) 4.51510 3.99549i 0.200721 0.177621i
\(507\) 0 0
\(508\) 3.06494 25.0065i 0.135985 1.10949i
\(509\) 25.2357i 1.11855i 0.828982 + 0.559275i \(0.188921\pi\)
−0.828982 + 0.559275i \(0.811079\pi\)
\(510\) 0 0
\(511\) −16.9487 −0.749767
\(512\) 5.30362 + 21.9971i 0.234389 + 0.972143i
\(513\) 0 0
\(514\) −4.16600 4.70779i −0.183755 0.207652i
\(515\) 46.1487 2.03355
\(516\) 0 0
\(517\) 3.03808 0.133615
\(518\) −10.7001 + 9.46868i −0.470134 + 0.416030i
\(519\) 0 0
\(520\) 16.4724 + 23.9510i 0.722365 + 1.05032i
\(521\) 25.5294i 1.11846i −0.829012 0.559231i \(-0.811096\pi\)
0.829012 0.559231i \(-0.188904\pi\)
\(522\) 0 0
\(523\) 4.68453i 0.204840i −0.994741 0.102420i \(-0.967341\pi\)
0.994741 0.102420i \(-0.0326586\pi\)
\(524\) −3.67212 + 29.9604i −0.160417 + 1.30883i
\(525\) 0 0
\(526\) 17.5444 + 19.8260i 0.764972 + 0.864456i
\(527\) −10.6397 + 2.30554i −0.463475 + 0.100431i
\(528\) 0 0
\(529\) 13.4950 0.586739
\(530\) 16.9510 15.0002i 0.736305 0.651569i
\(531\) 0 0
\(532\) 1.49674 12.2118i 0.0648920 0.529447i
\(533\) −4.24459 −0.183854
\(534\) 0 0
\(535\) −2.19074 −0.0947140
\(536\) −3.22300 4.68625i −0.139213 0.202415i
\(537\) 0 0
\(538\) −8.74911 9.88692i −0.377201 0.426255i
\(539\) 7.21613 0.310821
\(540\) 0 0
\(541\) 30.5595 1.31386 0.656929 0.753953i \(-0.271855\pi\)
0.656929 + 0.753953i \(0.271855\pi\)
\(542\) 11.3303 + 12.8038i 0.486679 + 0.549971i
\(543\) 0 0
\(544\) −17.9304 + 14.9165i −0.768759 + 0.639538i
\(545\) 36.9844 1.58424
\(546\) 0 0
\(547\) 19.1292 0.817904 0.408952 0.912556i \(-0.365894\pi\)
0.408952 + 0.912556i \(0.365894\pi\)
\(548\) 0.274795 2.24202i 0.0117387 0.0957745i
\(549\) 0 0
\(550\) 14.9167 + 16.8566i 0.636049 + 0.718766i
\(551\) 21.1827i 0.902412i
\(552\) 0 0
\(553\) 13.4695 0.572780
\(554\) −19.9599 22.5556i −0.848013 0.958296i
\(555\) 0 0
\(556\) 2.59163 21.1448i 0.109909 0.896740i
\(557\) 14.9766i 0.634581i 0.948328 + 0.317290i \(0.102773\pi\)
−0.948328 + 0.317290i \(0.897227\pi\)
\(558\) 0 0
\(559\) 27.5733 1.16622
\(560\) 5.23908 21.0515i 0.221391 0.889587i
\(561\) 0 0
\(562\) −6.90940 7.80796i −0.291455 0.329359i
\(563\) 16.9215i 0.713157i 0.934265 + 0.356578i \(0.116057\pi\)
−0.934265 + 0.356578i \(0.883943\pi\)
\(564\) 0 0
\(565\) 26.5407i 1.11658i
\(566\) 20.9411 + 23.6644i 0.880218 + 0.994690i
\(567\) 0 0
\(568\) 5.41987 + 7.88050i 0.227413 + 0.330658i
\(569\) −2.45534 −0.102933 −0.0514667 0.998675i \(-0.516390\pi\)
−0.0514667 + 0.998675i \(0.516390\pi\)
\(570\) 0 0
\(571\) 16.2429 0.679744 0.339872 0.940472i \(-0.389616\pi\)
0.339872 + 0.940472i \(0.389616\pi\)
\(572\) −6.94321 0.850998i −0.290310 0.0355820i
\(573\) 0 0
\(574\) 2.09923 + 2.37223i 0.0876200 + 0.0990149i
\(575\) 35.4858i 1.47986i
\(576\) 0 0
\(577\) −19.8321 −0.825619 −0.412810 0.910817i \(-0.635453\pi\)
−0.412810 + 0.910817i \(0.635453\pi\)
\(578\) −21.9561 9.79427i −0.913255 0.407388i
\(579\) 0 0
\(580\) 4.54388 37.0731i 0.188675 1.53938i
\(581\) 17.8811 0.741834
\(582\) 0 0
\(583\) 5.44695i 0.225589i
\(584\) 20.3525 + 29.5925i 0.842191 + 1.22455i
\(585\) 0 0
\(586\) −0.872239 + 0.771860i −0.0360319 + 0.0318852i
\(587\) 16.1112i 0.664982i −0.943106 0.332491i \(-0.892111\pi\)
0.943106 0.332491i \(-0.107889\pi\)
\(588\) 0 0
\(589\) −12.1691 −0.501420
\(590\) −55.2996 + 48.9356i −2.27665 + 2.01465i
\(591\) 0 0
\(592\) 29.3813 + 7.31211i 1.20756 + 0.300526i
\(593\) −27.2516 −1.11909 −0.559544 0.828801i \(-0.689024\pi\)
−0.559544 + 0.828801i \(0.689024\pi\)
\(594\) 0 0
\(595\) 21.8541 4.73559i 0.895929 0.194140i
\(596\) −0.556206 0.0681717i −0.0227831 0.00279242i
\(597\) 0 0
\(598\) 7.30828 + 8.25871i 0.298858 + 0.337724i
\(599\) −20.5532 −0.839780 −0.419890 0.907575i \(-0.637931\pi\)
−0.419890 + 0.907575i \(0.637931\pi\)
\(600\) 0 0
\(601\) 9.92222i 0.404736i −0.979310 0.202368i \(-0.935136\pi\)
0.979310 0.202368i \(-0.0648637\pi\)
\(602\) −13.6368 15.4102i −0.555793 0.628074i
\(603\) 0 0
\(604\) −2.30745 + 18.8262i −0.0938887 + 0.766028i
\(605\) 36.9263 1.50127
\(606\) 0 0
\(607\) 21.2113i 0.860938i −0.902605 0.430469i \(-0.858348\pi\)
0.902605 0.430469i \(-0.141652\pi\)
\(608\) −23.1191 + 12.0509i −0.937602 + 0.488728i
\(609\) 0 0
\(610\) 26.6596 + 30.1267i 1.07942 + 1.21979i
\(611\) 5.55704i 0.224814i
\(612\) 0 0
\(613\) 5.72825i 0.231362i −0.993286 0.115681i \(-0.963095\pi\)
0.993286 0.115681i \(-0.0369050\pi\)
\(614\) −1.96672 + 1.74039i −0.0793705 + 0.0702364i
\(615\) 0 0
\(616\) 2.95826 + 4.30131i 0.119192 + 0.173305i
\(617\) 28.9519i 1.16556i 0.812631 + 0.582779i \(0.198035\pi\)
−0.812631 + 0.582779i \(0.801965\pi\)
\(618\) 0 0
\(619\) 33.2069 1.33470 0.667349 0.744746i \(-0.267429\pi\)
0.667349 + 0.744746i \(0.267429\pi\)
\(620\) −21.2979 2.61039i −0.855346 0.104836i
\(621\) 0 0
\(622\) 5.26266 4.65702i 0.211014 0.186730i
\(623\) 14.4514i 0.578984i
\(624\) 0 0
\(625\) 49.9313 1.99725
\(626\) −4.81317 + 4.25926i −0.192373 + 0.170234i
\(627\) 0 0
\(628\) 47.0163 + 5.76258i 1.87615 + 0.229952i
\(629\) 6.60940 + 30.5014i 0.263534 + 1.21617i
\(630\) 0 0
\(631\) −9.18742 −0.365745 −0.182873 0.983137i \(-0.558540\pi\)
−0.182873 + 0.983137i \(0.558540\pi\)
\(632\) −16.1745 23.5177i −0.643386 0.935484i
\(633\) 0 0
\(634\) 23.0133 + 26.0062i 0.913977 + 1.03284i
\(635\) 51.1842 2.03118
\(636\) 0 0
\(637\) 13.1992i 0.522973i
\(638\) 5.95643 + 6.73106i 0.235817 + 0.266485i
\(639\) 0 0
\(640\) −43.0471 + 16.1317i −1.70159 + 0.637662i
\(641\) 1.98751i 0.0785019i −0.999229 0.0392509i \(-0.987503\pi\)
0.999229 0.0392509i \(-0.0124972\pi\)
\(642\) 0 0
\(643\) −15.6525 −0.617274 −0.308637 0.951180i \(-0.599873\pi\)
−0.308637 + 0.951180i \(0.599873\pi\)
\(644\) 1.00123 8.16894i 0.0394540 0.321902i
\(645\) 0 0
\(646\) −21.6674 15.8973i −0.852491 0.625469i
\(647\) 50.3006 1.97752 0.988760 0.149512i \(-0.0477703\pi\)
0.988760 + 0.149512i \(0.0477703\pi\)
\(648\) 0 0
\(649\) 17.7697i 0.697520i
\(650\) −30.8329 + 27.2845i −1.20936 + 1.07019i
\(651\) 0 0
\(652\) 4.48217 36.5696i 0.175535 1.43217i
\(653\) 9.17554 0.359067 0.179533 0.983752i \(-0.442541\pi\)
0.179533 + 0.983752i \(0.442541\pi\)
\(654\) 0 0
\(655\) −61.3240 −2.39613
\(656\) 1.62111 6.51388i 0.0632937 0.254324i
\(657\) 0 0
\(658\) 3.10574 2.74832i 0.121074 0.107141i
\(659\) 20.4499i 0.796616i 0.917252 + 0.398308i \(0.130403\pi\)
−0.917252 + 0.398308i \(0.869597\pi\)
\(660\) 0 0
\(661\) 41.2625i 1.60492i 0.596703 + 0.802462i \(0.296477\pi\)
−0.596703 + 0.802462i \(0.703523\pi\)
\(662\) −25.3841 + 22.4629i −0.986583 + 0.873044i
\(663\) 0 0
\(664\) −21.4721 31.2205i −0.833280 1.21159i
\(665\) 24.9954 0.969281
\(666\) 0 0
\(667\) 14.1700i 0.548663i
\(668\) 19.6395 + 2.40713i 0.759876 + 0.0931346i
\(669\) 0 0
\(670\) 8.65341 7.65756i 0.334310 0.295837i
\(671\) −9.68074 −0.373721
\(672\) 0 0
\(673\) 23.7133i 0.914079i −0.889446 0.457040i \(-0.848910\pi\)
0.889446 0.457040i \(-0.151090\pi\)
\(674\) 33.0257 29.2250i 1.27210 1.12570i
\(675\) 0 0
\(676\) −1.60645 + 13.1068i −0.0617865 + 0.504110i
\(677\) 14.9173 0.573317 0.286659 0.958033i \(-0.407455\pi\)
0.286659 + 0.958033i \(0.407455\pi\)
\(678\) 0 0
\(679\) 15.8011 0.606392
\(680\) −34.5113 32.4706i −1.32345 1.24519i
\(681\) 0 0
\(682\) 3.86689 3.42188i 0.148071 0.131031i
\(683\) −7.24088 −0.277065 −0.138532 0.990358i \(-0.544238\pi\)
−0.138532 + 0.990358i \(0.544238\pi\)
\(684\) 0 0
\(685\) 4.58905 0.175338
\(686\) 17.2720 15.2843i 0.659450 0.583559i
\(687\) 0 0
\(688\) −10.5309 + 42.3148i −0.401486 + 1.61324i
\(689\) −9.96318 −0.379567
\(690\) 0 0
\(691\) −17.5509 −0.667666 −0.333833 0.942632i \(-0.608342\pi\)
−0.333833 + 0.942632i \(0.608342\pi\)
\(692\) 4.51306 36.8216i 0.171561 1.39975i
\(693\) 0 0
\(694\) 27.8885 + 31.5154i 1.05863 + 1.19631i
\(695\) 43.2799 1.64170
\(696\) 0 0
\(697\) 6.76223 1.46532i 0.256138 0.0555028i
\(698\) 18.3249 16.2161i 0.693610 0.613787i
\(699\) 0 0
\(700\) 30.4977 + 3.73797i 1.15271 + 0.141282i
\(701\) 22.1815i 0.837783i −0.908036 0.418891i \(-0.862419\pi\)
0.908036 0.418891i \(-0.137581\pi\)
\(702\) 0 0
\(703\) 34.8858i 1.31574i
\(704\) 3.95774 10.3303i 0.149163 0.389336i
\(705\) 0 0
\(706\) −15.4199 17.4253i −0.580336 0.655808i
\(707\) −25.7495 −0.968410
\(708\) 0 0
\(709\) −4.78270 −0.179618 −0.0898091 0.995959i \(-0.528626\pi\)
−0.0898091 + 0.995959i \(0.528626\pi\)
\(710\) −14.5518 + 12.8771i −0.546118 + 0.483270i
\(711\) 0 0
\(712\) 25.2322 17.3537i 0.945618 0.650356i
\(713\) −8.14043 −0.304861
\(714\) 0 0
\(715\) 14.2116i 0.531483i
\(716\) −19.2259 2.35644i −0.718506 0.0880641i
\(717\) 0 0
\(718\) −21.8229 24.6609i −0.814422 0.920336i
\(719\) 40.8961i 1.52517i −0.646889 0.762584i \(-0.723930\pi\)
0.646889 0.762584i \(-0.276070\pi\)
\(720\) 0 0
\(721\) 15.1594i 0.564566i
\(722\) −2.10037 2.37352i −0.0781677 0.0883333i
\(723\) 0 0
\(724\) −1.51539 + 12.3639i −0.0563192 + 0.459502i
\(725\) 52.9017 1.96472
\(726\) 0 0
\(727\) −10.7907 −0.400204 −0.200102 0.979775i \(-0.564127\pi\)
−0.200102 + 0.979775i \(0.564127\pi\)
\(728\) −7.86766 + 5.41104i −0.291595 + 0.200547i
\(729\) 0 0
\(730\) −54.6441 + 48.3556i −2.02247 + 1.78972i
\(731\) −43.9281 + 9.51884i −1.62474 + 0.352067i
\(732\) 0 0
\(733\) 8.86600i 0.327473i 0.986504 + 0.163737i \(0.0523547\pi\)
−0.986504 + 0.163737i \(0.947645\pi\)
\(734\) 4.86170 4.30220i 0.179449 0.158797i
\(735\) 0 0
\(736\) −15.4653 + 8.06133i −0.570058 + 0.297145i
\(737\) 2.78064i 0.102426i
\(738\) 0 0
\(739\) 14.2082i 0.522656i 0.965250 + 0.261328i \(0.0841604\pi\)
−0.965250 + 0.261328i \(0.915840\pi\)
\(740\) −7.48333 + 61.0557i −0.275093 + 2.24445i
\(741\) 0 0
\(742\) 4.92744 + 5.56825i 0.180892 + 0.204417i
\(743\) 33.9021i 1.24375i −0.783118 0.621874i \(-0.786372\pi\)
0.783118 0.621874i \(-0.213628\pi\)
\(744\) 0 0
\(745\) 1.13846i 0.0417099i
\(746\) −16.3074 + 14.4307i −0.597057 + 0.528347i
\(747\) 0 0
\(748\) 11.3553 1.04117i 0.415190 0.0380691i
\(749\) 0.719638i 0.0262950i
\(750\) 0 0
\(751\) 0.832425i 0.0303756i −0.999885 0.0151878i \(-0.995165\pi\)
0.999885 0.0151878i \(-0.00483462\pi\)
\(752\) −8.52802 2.12237i −0.310985 0.0773947i
\(753\) 0 0
\(754\) −12.3120 + 10.8951i −0.448376 + 0.396776i
\(755\) −38.5341 −1.40240
\(756\) 0 0
\(757\) 26.1220i 0.949420i −0.880142 0.474710i \(-0.842553\pi\)
0.880142 0.474710i \(-0.157447\pi\)
\(758\) 1.72592 + 1.95037i 0.0626882 + 0.0708408i
\(759\) 0 0
\(760\) −30.0151 43.6420i −1.08876 1.58306i
\(761\) 36.9537 1.33957 0.669784 0.742556i \(-0.266386\pi\)
0.669784 + 0.742556i \(0.266386\pi\)
\(762\) 0 0
\(763\) 12.1490i 0.439824i
\(764\) −4.51985 + 36.8770i −0.163523 + 1.33416i
\(765\) 0 0
\(766\) −32.0387 36.2053i −1.15761 1.30815i
\(767\) 32.5030 1.17362
\(768\) 0 0
\(769\) −51.3629 −1.85219 −0.926097 0.377285i \(-0.876858\pi\)
−0.926097 + 0.377285i \(0.876858\pi\)
\(770\) −7.94260 + 7.02855i −0.286232 + 0.253291i
\(771\) 0 0
\(772\) −27.0124 3.31079i −0.972196 0.119158i
\(773\) 47.0804i 1.69336i −0.532100 0.846682i \(-0.678597\pi\)
0.532100 0.846682i \(-0.321403\pi\)
\(774\) 0 0
\(775\) 30.3913i 1.09169i
\(776\) −18.9744 27.5888i −0.681142 0.990381i
\(777\) 0 0
\(778\) 10.7720 9.53232i 0.386194 0.341750i
\(779\) 7.73424 0.277108
\(780\) 0 0
\(781\) 4.67599i 0.167320i
\(782\) −14.4942 10.6343i −0.518311 0.380283i
\(783\) 0 0
\(784\) −20.2560 5.04110i −0.723428 0.180039i
\(785\) 96.2345i 3.43476i
\(786\) 0 0
\(787\) −21.2273 −0.756671 −0.378336 0.925669i \(-0.623503\pi\)
−0.378336 + 0.925669i \(0.623503\pi\)
\(788\) −1.91880 + 15.6553i −0.0683546 + 0.557698i
\(789\) 0 0
\(790\) 43.4267 38.4291i 1.54505 1.36724i
\(791\) −8.71838 −0.309990
\(792\) 0 0
\(793\) 17.7074i 0.628807i
\(794\) 22.6044 + 25.5441i 0.802202 + 0.906527i
\(795\) 0 0
\(796\) −39.1618 4.79989i −1.38805 0.170128i
\(797\) 1.24847i 0.0442232i 0.999756 + 0.0221116i \(0.00703891\pi\)
−0.999756 + 0.0221116i \(0.992961\pi\)
\(798\) 0 0
\(799\) −1.91840 8.85315i −0.0678682 0.313202i
\(800\) −30.0960 57.7377i −1.06405 2.04134i
\(801\) 0 0
\(802\) −12.8312 + 11.3545i −0.453085 + 0.400943i
\(803\) 17.5591i 0.619645i
\(804\) 0 0
\(805\) 16.7205 0.589319
\(806\) 6.25907 + 7.07305i 0.220466 + 0.249138i
\(807\) 0 0
\(808\) 30.9207 + 44.9587i 1.08779 + 1.58164i
\(809\) 3.89688i 0.137007i −0.997651 0.0685034i \(-0.978178\pi\)
0.997651 0.0685034i \(-0.0218224\pi\)
\(810\) 0 0
\(811\) 39.7545 1.39597 0.697985 0.716112i \(-0.254080\pi\)
0.697985 + 0.716112i \(0.254080\pi\)
\(812\) 12.1782 + 1.49262i 0.427370 + 0.0523808i
\(813\) 0 0
\(814\) −9.80965 11.0854i −0.343828 0.388543i
\(815\) 74.8517 2.62194
\(816\) 0 0
\(817\) −50.2424 −1.75776
\(818\) 5.01757 + 5.67010i 0.175435 + 0.198250i
\(819\) 0 0
\(820\) 13.5362 + 1.65907i 0.472704 + 0.0579372i
\(821\) 7.68119 0.268076 0.134038 0.990976i \(-0.457206\pi\)
0.134038 + 0.990976i \(0.457206\pi\)
\(822\) 0 0
\(823\) 23.9730i 0.835647i −0.908528 0.417824i \(-0.862793\pi\)
0.908528 0.417824i \(-0.137207\pi\)
\(824\) 26.4684 18.2038i 0.922069 0.634160i
\(825\) 0 0
\(826\) −16.0749 18.1654i −0.559316 0.632055i
\(827\) −53.2001 −1.84995 −0.924974 0.380030i \(-0.875914\pi\)
−0.924974 + 0.380030i \(0.875914\pi\)
\(828\) 0 0
\(829\) 5.80159i 0.201498i −0.994912 0.100749i \(-0.967876\pi\)
0.994912 0.100749i \(-0.0321238\pi\)
\(830\) 57.6503 51.0158i 2.00107 1.77078i
\(831\) 0 0
\(832\) 18.8954 + 7.23923i 0.655080 + 0.250975i
\(833\) −4.55664 21.0282i −0.157878 0.728586i
\(834\) 0 0
\(835\) 40.1988i 1.39114i
\(836\) 12.6515 + 1.55064i 0.437562 + 0.0536300i
\(837\) 0 0
\(838\) −17.1567 19.3879i −0.592668 0.669743i
\(839\) 21.8766i 0.755264i 0.925956 + 0.377632i \(0.123262\pi\)
−0.925956 + 0.377632i \(0.876738\pi\)
\(840\) 0 0
\(841\) −7.87561 −0.271573
\(842\) −2.73232 + 2.41788i −0.0941620 + 0.0833256i
\(843\) 0 0
\(844\) −5.83282 + 47.5893i −0.200774 + 1.63809i
\(845\) −26.8275 −0.922895
\(846\) 0 0
\(847\) 12.1299i 0.416789i
\(848\) 3.80517 15.2898i 0.130670 0.525055i
\(849\) 0 0
\(850\) 39.7019 54.1122i 1.36176 1.85603i
\(851\) 23.3365i 0.799966i
\(852\) 0 0
\(853\) 13.3416 0.456809 0.228405 0.973566i \(-0.426649\pi\)
0.228405 + 0.973566i \(0.426649\pi\)
\(854\) −9.89633 + 8.75744i −0.338646 + 0.299673i
\(855\) 0 0
\(856\) −1.25649 + 0.864160i −0.0429459 + 0.0295364i
\(857\) 0.322155i 0.0110046i 0.999985 + 0.00550230i \(0.00175145\pi\)
−0.999985 + 0.00550230i \(0.998249\pi\)
\(858\) 0 0
\(859\) 28.0802i 0.958085i 0.877792 + 0.479043i \(0.159016\pi\)
−0.877792 + 0.479043i \(0.840984\pi\)
\(860\) −87.9323 10.7775i −2.99847 0.367509i
\(861\) 0 0
\(862\) 25.2475 22.3419i 0.859933 0.760970i
\(863\) 27.1517 0.924255 0.462127 0.886814i \(-0.347086\pi\)
0.462127 + 0.886814i \(0.347086\pi\)
\(864\) 0 0
\(865\) 75.3676 2.56258
\(866\) 18.4699 + 20.8719i 0.627633 + 0.709256i
\(867\) 0 0
\(868\) 0.857490 6.99617i 0.0291051 0.237466i
\(869\) 13.9545i 0.473374i
\(870\) 0 0
\(871\) −5.08616 −0.172338
\(872\) 21.2122 14.5889i 0.718337 0.494042i
\(873\) 0 0
\(874\) −13.3167 15.0486i −0.450445 0.509025i
\(875\) 35.3067i 1.19358i
\(876\) 0 0
\(877\) 25.4455 0.859233 0.429617 0.903011i \(-0.358649\pi\)
0.429617 + 0.903011i \(0.358649\pi\)
\(878\) −12.0608 + 10.6728i −0.407032 + 0.360190i
\(879\) 0 0
\(880\) 21.8095 + 5.42774i 0.735200 + 0.182969i
\(881\) 15.2859i 0.514995i −0.966279 0.257498i \(-0.917102\pi\)
0.966279 0.257498i \(-0.0828979\pi\)
\(882\) 0 0
\(883\) 13.6008i 0.457703i −0.973461 0.228852i \(-0.926503\pi\)
0.973461 0.228852i \(-0.0734970\pi\)
\(884\) 1.90444 + 20.7703i 0.0640534 + 0.698581i
\(885\) 0 0
\(886\) −3.99620 + 3.53631i −0.134255 + 0.118805i
\(887\) 22.2405i 0.746764i −0.927678 0.373382i \(-0.878198\pi\)
0.927678 0.373382i \(-0.121802\pi\)
\(888\) 0 0
\(889\) 16.8135i 0.563908i
\(890\) 41.2307 + 46.5927i 1.38206 + 1.56179i
\(891\) 0 0
\(892\) −4.28732 + 34.9798i −0.143550 + 1.17121i
\(893\) 10.1257i 0.338844i
\(894\) 0 0
\(895\) 39.3522i 1.31540i
\(896\) −5.29912 14.1406i −0.177031 0.472404i
\(897\) 0 0
\(898\) −17.5118 + 15.4965i −0.584377 + 0.517126i
\(899\) 12.1356i 0.404747i
\(900\) 0 0
\(901\) 15.8727 3.43949i 0.528798 0.114586i
\(902\) −2.45765 + 2.17482i −0.0818309 + 0.0724136i
\(903\) 0 0
\(904\) 10.4693 + 15.2223i 0.348202 + 0.506286i
\(905\) −25.3069 −0.841230
\(906\) 0 0
\(907\) 1.22779 0.0407680 0.0203840 0.999792i \(-0.493511\pi\)
0.0203840 + 0.999792i \(0.493511\pi\)
\(908\) 3.59587 29.3383i 0.119333 0.973626i
\(909\) 0 0
\(910\) −12.8561 14.5281i −0.426177 0.481601i
\(911\) 4.50510i 0.149261i −0.997211 0.0746304i \(-0.976222\pi\)
0.997211 0.0746304i \(-0.0237777\pi\)
\(912\) 0 0
\(913\) 18.5250i 0.613089i
\(914\) −7.29281 8.24123i −0.241225 0.272596i
\(915\) 0 0
\(916\) 43.1660 + 5.29067i 1.42625 + 0.174809i
\(917\) 20.1444i 0.665225i
\(918\) 0 0
\(919\) 24.2454 0.799781 0.399890 0.916563i \(-0.369048\pi\)
0.399890 + 0.916563i \(0.369048\pi\)
\(920\) −20.0784 29.1940i −0.661964 0.962496i
\(921\) 0 0
\(922\) −9.55776 + 8.45783i −0.314768 + 0.278544i
\(923\) 8.55299 0.281525
\(924\) 0 0
\(925\) −87.1239 −2.86462
\(926\) 3.87091 + 4.37431i 0.127206 + 0.143749i
\(927\) 0 0
\(928\) −12.0177 23.0555i −0.394501 0.756833i
\(929\) 55.5044i 1.82104i −0.413463 0.910521i \(-0.635681\pi\)
0.413463 0.910521i \(-0.364319\pi\)
\(930\) 0 0
\(931\) 24.0509i 0.788236i
\(932\) −20.8269 2.55266i −0.682209 0.0836153i
\(933\) 0 0
\(934\) −28.1557 + 24.9154i −0.921281 + 0.815258i
\(935\) 4.90612 + 22.6410i 0.160447 + 0.740441i
\(936\) 0 0
\(937\) −18.5511 −0.606038 −0.303019 0.952985i \(-0.597995\pi\)
−0.303019 + 0.952985i \(0.597995\pi\)
\(938\) 2.51544 + 2.84256i 0.0821319 + 0.0928130i
\(939\) 0 0
\(940\) 2.17206 17.7216i 0.0708449 0.578016i
\(941\) 35.9106 1.17065 0.585327 0.810798i \(-0.300966\pi\)
0.585327 + 0.810798i \(0.300966\pi\)
\(942\) 0 0
\(943\) 5.17375 0.168481
\(944\) −12.4137 + 49.8802i −0.404031 + 1.62346i
\(945\) 0 0
\(946\) 15.9651 14.1278i 0.519072 0.459336i
\(947\) −13.4238 −0.436216 −0.218108 0.975925i \(-0.569988\pi\)
−0.218108 + 0.975925i \(0.569988\pi\)
\(948\) 0 0
\(949\) 32.1178 1.04259
\(950\) 56.1819 49.7163i 1.82278 1.61301i
\(951\) 0 0
\(952\) 10.6663 11.3366i 0.345697 0.367422i
\(953\) −52.8115 −1.71073 −0.855366 0.518024i \(-0.826668\pi\)
−0.855366 + 0.518024i \(0.826668\pi\)
\(954\) 0 0
\(955\) −75.4811 −2.44251
\(956\) 3.59135 29.3015i 0.116153 0.947678i
\(957\) 0 0
\(958\) −10.1556 + 8.98689i −0.328113 + 0.290353i
\(959\) 1.50746i 0.0486784i
\(960\) 0 0
\(961\) 24.0282 0.775105
\(962\) 20.2766 17.9431i 0.653745 0.578510i
\(963\) 0 0
\(964\) 43.2226 + 5.29761i 1.39211 + 0.170624i
\(965\) 55.2898i 1.77984i
\(966\) 0 0
\(967\) −7.20225 −0.231609 −0.115804 0.993272i \(-0.536945\pi\)
−0.115804 + 0.993272i \(0.536945\pi\)
\(968\) 21.1789 14.5659i 0.680715 0.468167i
\(969\) 0 0
\(970\) 50.9442 45.0815i 1.63572 1.44748i
\(971\) 53.5069i 1.71712i 0.512715 + 0.858559i \(0.328640\pi\)
−0.512715 + 0.858559i \(0.671360\pi\)
\(972\) 0 0
\(973\) 14.2170i 0.455777i
\(974\) −11.9819 + 10.6030i −0.383925 + 0.339742i
\(975\) 0 0
\(976\) 27.1743 + 6.76286i 0.869828 + 0.216474i
\(977\) 0.640518 0.0204920 0.0102460 0.999948i \(-0.496739\pi\)
0.0102460 + 0.999948i \(0.496739\pi\)
\(978\) 0 0
\(979\) −14.9718 −0.478502
\(980\) 5.15915 42.0929i 0.164803 1.34461i
\(981\) 0 0
\(982\) 13.0110 11.5136i 0.415197 0.367415i
\(983\) 16.1739i 0.515866i 0.966163 + 0.257933i \(0.0830414\pi\)
−0.966163 + 0.257933i \(0.916959\pi\)
\(984\) 0 0
\(985\) −32.0438 −1.02100
\(986\) 15.8535 21.6078i 0.504879 0.688131i
\(987\) 0 0
\(988\) −2.83632 + 23.1413i −0.0902355 + 0.736222i
\(989\) −33.6092 −1.06871
\(990\) 0 0
\(991\) 4.18546i 0.132955i −0.997788 0.0664777i \(-0.978824\pi\)
0.997788 0.0664777i \(-0.0211761\pi\)
\(992\) −13.2450 + 6.90401i −0.420530 + 0.219202i
\(993\) 0 0
\(994\) −4.23001 4.78012i −0.134168 0.151616i
\(995\) 80.1577i 2.54117i
\(996\) 0 0
\(997\) −36.1353 −1.14442 −0.572209 0.820108i \(-0.693913\pi\)
−0.572209 + 0.820108i \(0.693913\pi\)
\(998\) −7.17843 8.11198i −0.227229 0.256780i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.l.d.1189.14 18
3.2 odd 2 408.2.l.b.373.5 yes 18
4.3 odd 2 4896.2.l.d.3025.2 18
8.3 odd 2 4896.2.l.c.3025.18 18
8.5 even 2 1224.2.l.c.1189.13 18
12.11 even 2 1632.2.l.a.1393.18 18
17.16 even 2 1224.2.l.c.1189.14 18
24.5 odd 2 408.2.l.a.373.6 yes 18
24.11 even 2 1632.2.l.b.1393.2 18
51.50 odd 2 408.2.l.a.373.5 18
68.67 odd 2 4896.2.l.c.3025.17 18
136.67 odd 2 4896.2.l.d.3025.1 18
136.101 even 2 inner 1224.2.l.d.1189.13 18
204.203 even 2 1632.2.l.b.1393.1 18
408.101 odd 2 408.2.l.b.373.6 yes 18
408.203 even 2 1632.2.l.a.1393.17 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.l.a.373.5 18 51.50 odd 2
408.2.l.a.373.6 yes 18 24.5 odd 2
408.2.l.b.373.5 yes 18 3.2 odd 2
408.2.l.b.373.6 yes 18 408.101 odd 2
1224.2.l.c.1189.13 18 8.5 even 2
1224.2.l.c.1189.14 18 17.16 even 2
1224.2.l.d.1189.13 18 136.101 even 2 inner
1224.2.l.d.1189.14 18 1.1 even 1 trivial
1632.2.l.a.1393.17 18 408.203 even 2
1632.2.l.a.1393.18 18 12.11 even 2
1632.2.l.b.1393.1 18 204.203 even 2
1632.2.l.b.1393.2 18 24.11 even 2
4896.2.l.c.3025.17 18 68.67 odd 2
4896.2.l.c.3025.18 18 8.3 odd 2
4896.2.l.d.3025.1 18 136.67 odd 2
4896.2.l.d.3025.2 18 4.3 odd 2