Properties

Label 1225.2.a.k.1.1
Level $1225$
Weight $2$
Character 1225.1
Self dual yes
Analytic conductor $9.782$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,2,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.78167424761\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.41421 q^{2} +0.414214 q^{3} +3.82843 q^{4} -1.00000 q^{6} -4.41421 q^{8} -2.82843 q^{9} +O(q^{10})\) \(q-2.41421 q^{2} +0.414214 q^{3} +3.82843 q^{4} -1.00000 q^{6} -4.41421 q^{8} -2.82843 q^{9} -0.828427 q^{11} +1.58579 q^{12} +4.82843 q^{13} +3.00000 q^{16} -4.82843 q^{17} +6.82843 q^{18} +2.82843 q^{19} +2.00000 q^{22} -0.414214 q^{23} -1.82843 q^{24} -11.6569 q^{26} -2.41421 q^{27} -1.00000 q^{29} -6.00000 q^{31} +1.58579 q^{32} -0.343146 q^{33} +11.6569 q^{34} -10.8284 q^{36} -6.82843 q^{38} +2.00000 q^{39} -7.82843 q^{41} -3.58579 q^{43} -3.17157 q^{44} +1.00000 q^{46} -2.00000 q^{47} +1.24264 q^{48} -2.00000 q^{51} +18.4853 q^{52} +1.17157 q^{53} +5.82843 q^{54} +1.17157 q^{57} +2.41421 q^{58} +4.48528 q^{59} +5.48528 q^{61} +14.4853 q^{62} -9.82843 q^{64} +0.828427 q^{66} -9.58579 q^{67} -18.4853 q^{68} -0.171573 q^{69} +4.48528 q^{71} +12.4853 q^{72} +0.828427 q^{73} +10.8284 q^{76} -4.82843 q^{78} +14.8284 q^{79} +7.48528 q^{81} +18.8995 q^{82} -13.7279 q^{83} +8.65685 q^{86} -0.414214 q^{87} +3.65685 q^{88} -8.65685 q^{89} -1.58579 q^{92} -2.48528 q^{93} +4.82843 q^{94} +0.656854 q^{96} -11.6569 q^{97} +2.34315 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{6} - 6 q^{8} + 4 q^{11} + 6 q^{12} + 4 q^{13} + 6 q^{16} - 4 q^{17} + 8 q^{18} + 4 q^{22} + 2 q^{23} + 2 q^{24} - 12 q^{26} - 2 q^{27} - 2 q^{29} - 12 q^{31} + 6 q^{32} - 12 q^{33} + 12 q^{34} - 16 q^{36} - 8 q^{38} + 4 q^{39} - 10 q^{41} - 10 q^{43} - 12 q^{44} + 2 q^{46} - 4 q^{47} - 6 q^{48} - 4 q^{51} + 20 q^{52} + 8 q^{53} + 6 q^{54} + 8 q^{57} + 2 q^{58} - 8 q^{59} - 6 q^{61} + 12 q^{62} - 14 q^{64} - 4 q^{66} - 22 q^{67} - 20 q^{68} - 6 q^{69} - 8 q^{71} + 8 q^{72} - 4 q^{73} + 16 q^{76} - 4 q^{78} + 24 q^{79} - 2 q^{81} + 18 q^{82} - 2 q^{83} + 6 q^{86} + 2 q^{87} - 4 q^{88} - 6 q^{89} - 6 q^{92} + 12 q^{93} + 4 q^{94} - 10 q^{96} - 12 q^{97} + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.41421 −1.70711 −0.853553 0.521005i \(-0.825557\pi\)
−0.853553 + 0.521005i \(0.825557\pi\)
\(3\) 0.414214 0.239146 0.119573 0.992825i \(-0.461847\pi\)
0.119573 + 0.992825i \(0.461847\pi\)
\(4\) 3.82843 1.91421
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 0 0
\(8\) −4.41421 −1.56066
\(9\) −2.82843 −0.942809
\(10\) 0 0
\(11\) −0.828427 −0.249780 −0.124890 0.992171i \(-0.539858\pi\)
−0.124890 + 0.992171i \(0.539858\pi\)
\(12\) 1.58579 0.457777
\(13\) 4.82843 1.33916 0.669582 0.742738i \(-0.266473\pi\)
0.669582 + 0.742738i \(0.266473\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) −4.82843 −1.17107 −0.585533 0.810649i \(-0.699115\pi\)
−0.585533 + 0.810649i \(0.699115\pi\)
\(18\) 6.82843 1.60948
\(19\) 2.82843 0.648886 0.324443 0.945905i \(-0.394823\pi\)
0.324443 + 0.945905i \(0.394823\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.00000 0.426401
\(23\) −0.414214 −0.0863695 −0.0431847 0.999067i \(-0.513750\pi\)
−0.0431847 + 0.999067i \(0.513750\pi\)
\(24\) −1.82843 −0.373226
\(25\) 0 0
\(26\) −11.6569 −2.28610
\(27\) −2.41421 −0.464616
\(28\) 0 0
\(29\) −1.00000 −0.185695 −0.0928477 0.995680i \(-0.529597\pi\)
−0.0928477 + 0.995680i \(0.529597\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 1.58579 0.280330
\(33\) −0.343146 −0.0597340
\(34\) 11.6569 1.99913
\(35\) 0 0
\(36\) −10.8284 −1.80474
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) −6.82843 −1.10772
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) −7.82843 −1.22259 −0.611297 0.791401i \(-0.709352\pi\)
−0.611297 + 0.791401i \(0.709352\pi\)
\(42\) 0 0
\(43\) −3.58579 −0.546827 −0.273414 0.961897i \(-0.588153\pi\)
−0.273414 + 0.961897i \(0.588153\pi\)
\(44\) −3.17157 −0.478133
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 1.24264 0.179360
\(49\) 0 0
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 18.4853 2.56345
\(53\) 1.17157 0.160928 0.0804640 0.996758i \(-0.474360\pi\)
0.0804640 + 0.996758i \(0.474360\pi\)
\(54\) 5.82843 0.793148
\(55\) 0 0
\(56\) 0 0
\(57\) 1.17157 0.155179
\(58\) 2.41421 0.317002
\(59\) 4.48528 0.583934 0.291967 0.956428i \(-0.405690\pi\)
0.291967 + 0.956428i \(0.405690\pi\)
\(60\) 0 0
\(61\) 5.48528 0.702318 0.351159 0.936316i \(-0.385788\pi\)
0.351159 + 0.936316i \(0.385788\pi\)
\(62\) 14.4853 1.83963
\(63\) 0 0
\(64\) −9.82843 −1.22855
\(65\) 0 0
\(66\) 0.828427 0.101972
\(67\) −9.58579 −1.17109 −0.585545 0.810640i \(-0.699119\pi\)
−0.585545 + 0.810640i \(0.699119\pi\)
\(68\) −18.4853 −2.24167
\(69\) −0.171573 −0.0206549
\(70\) 0 0
\(71\) 4.48528 0.532305 0.266152 0.963931i \(-0.414248\pi\)
0.266152 + 0.963931i \(0.414248\pi\)
\(72\) 12.4853 1.47140
\(73\) 0.828427 0.0969601 0.0484800 0.998824i \(-0.484562\pi\)
0.0484800 + 0.998824i \(0.484562\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 10.8284 1.24211
\(77\) 0 0
\(78\) −4.82843 −0.546712
\(79\) 14.8284 1.66833 0.834164 0.551516i \(-0.185951\pi\)
0.834164 + 0.551516i \(0.185951\pi\)
\(80\) 0 0
\(81\) 7.48528 0.831698
\(82\) 18.8995 2.08710
\(83\) −13.7279 −1.50684 −0.753418 0.657542i \(-0.771596\pi\)
−0.753418 + 0.657542i \(0.771596\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 8.65685 0.933493
\(87\) −0.414214 −0.0444084
\(88\) 3.65685 0.389822
\(89\) −8.65685 −0.917625 −0.458812 0.888533i \(-0.651725\pi\)
−0.458812 + 0.888533i \(0.651725\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.58579 −0.165330
\(93\) −2.48528 −0.257712
\(94\) 4.82843 0.498014
\(95\) 0 0
\(96\) 0.656854 0.0670399
\(97\) −11.6569 −1.18357 −0.591787 0.806094i \(-0.701577\pi\)
−0.591787 + 0.806094i \(0.701577\pi\)
\(98\) 0 0
\(99\) 2.34315 0.235495
\(100\) 0 0
\(101\) −10.3137 −1.02625 −0.513126 0.858313i \(-0.671513\pi\)
−0.513126 + 0.858313i \(0.671513\pi\)
\(102\) 4.82843 0.478086
\(103\) 2.41421 0.237880 0.118940 0.992901i \(-0.462050\pi\)
0.118940 + 0.992901i \(0.462050\pi\)
\(104\) −21.3137 −2.08998
\(105\) 0 0
\(106\) −2.82843 −0.274721
\(107\) −11.2426 −1.08687 −0.543434 0.839452i \(-0.682876\pi\)
−0.543434 + 0.839452i \(0.682876\pi\)
\(108\) −9.24264 −0.889374
\(109\) −13.4853 −1.29166 −0.645828 0.763483i \(-0.723488\pi\)
−0.645828 + 0.763483i \(0.723488\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.48528 0.421940 0.210970 0.977493i \(-0.432338\pi\)
0.210970 + 0.977493i \(0.432338\pi\)
\(114\) −2.82843 −0.264906
\(115\) 0 0
\(116\) −3.82843 −0.355461
\(117\) −13.6569 −1.26258
\(118\) −10.8284 −0.996838
\(119\) 0 0
\(120\) 0 0
\(121\) −10.3137 −0.937610
\(122\) −13.2426 −1.19893
\(123\) −3.24264 −0.292379
\(124\) −22.9706 −2.06282
\(125\) 0 0
\(126\) 0 0
\(127\) 9.31371 0.826458 0.413229 0.910627i \(-0.364401\pi\)
0.413229 + 0.910627i \(0.364401\pi\)
\(128\) 20.5563 1.81694
\(129\) −1.48528 −0.130772
\(130\) 0 0
\(131\) −19.3137 −1.68745 −0.843723 0.536778i \(-0.819641\pi\)
−0.843723 + 0.536778i \(0.819641\pi\)
\(132\) −1.31371 −0.114344
\(133\) 0 0
\(134\) 23.1421 1.99918
\(135\) 0 0
\(136\) 21.3137 1.82764
\(137\) 9.65685 0.825041 0.412520 0.910948i \(-0.364649\pi\)
0.412520 + 0.910948i \(0.364649\pi\)
\(138\) 0.414214 0.0352602
\(139\) −16.1421 −1.36916 −0.684579 0.728939i \(-0.740014\pi\)
−0.684579 + 0.728939i \(0.740014\pi\)
\(140\) 0 0
\(141\) −0.828427 −0.0697661
\(142\) −10.8284 −0.908701
\(143\) −4.00000 −0.334497
\(144\) −8.48528 −0.707107
\(145\) 0 0
\(146\) −2.00000 −0.165521
\(147\) 0 0
\(148\) 0 0
\(149\) −2.17157 −0.177902 −0.0889511 0.996036i \(-0.528351\pi\)
−0.0889511 + 0.996036i \(0.528351\pi\)
\(150\) 0 0
\(151\) 11.6569 0.948621 0.474311 0.880358i \(-0.342697\pi\)
0.474311 + 0.880358i \(0.342697\pi\)
\(152\) −12.4853 −1.01269
\(153\) 13.6569 1.10409
\(154\) 0 0
\(155\) 0 0
\(156\) 7.65685 0.613039
\(157\) −17.3137 −1.38178 −0.690892 0.722958i \(-0.742782\pi\)
−0.690892 + 0.722958i \(0.742782\pi\)
\(158\) −35.7990 −2.84801
\(159\) 0.485281 0.0384853
\(160\) 0 0
\(161\) 0 0
\(162\) −18.0711 −1.41980
\(163\) −12.3431 −0.966790 −0.483395 0.875402i \(-0.660596\pi\)
−0.483395 + 0.875402i \(0.660596\pi\)
\(164\) −29.9706 −2.34031
\(165\) 0 0
\(166\) 33.1421 2.57233
\(167\) −22.4142 −1.73446 −0.867232 0.497904i \(-0.834103\pi\)
−0.867232 + 0.497904i \(0.834103\pi\)
\(168\) 0 0
\(169\) 10.3137 0.793362
\(170\) 0 0
\(171\) −8.00000 −0.611775
\(172\) −13.7279 −1.04674
\(173\) −3.31371 −0.251937 −0.125968 0.992034i \(-0.540204\pi\)
−0.125968 + 0.992034i \(0.540204\pi\)
\(174\) 1.00000 0.0758098
\(175\) 0 0
\(176\) −2.48528 −0.187335
\(177\) 1.85786 0.139646
\(178\) 20.8995 1.56648
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) 0 0
\(181\) 2.65685 0.197482 0.0987412 0.995113i \(-0.468518\pi\)
0.0987412 + 0.995113i \(0.468518\pi\)
\(182\) 0 0
\(183\) 2.27208 0.167957
\(184\) 1.82843 0.134793
\(185\) 0 0
\(186\) 6.00000 0.439941
\(187\) 4.00000 0.292509
\(188\) −7.65685 −0.558433
\(189\) 0 0
\(190\) 0 0
\(191\) −12.8284 −0.928232 −0.464116 0.885774i \(-0.653628\pi\)
−0.464116 + 0.885774i \(0.653628\pi\)
\(192\) −4.07107 −0.293804
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 28.1421 2.02049
\(195\) 0 0
\(196\) 0 0
\(197\) 12.3431 0.879413 0.439706 0.898142i \(-0.355083\pi\)
0.439706 + 0.898142i \(0.355083\pi\)
\(198\) −5.65685 −0.402015
\(199\) −9.65685 −0.684556 −0.342278 0.939599i \(-0.611199\pi\)
−0.342278 + 0.939599i \(0.611199\pi\)
\(200\) 0 0
\(201\) −3.97056 −0.280062
\(202\) 24.8995 1.75192
\(203\) 0 0
\(204\) −7.65685 −0.536087
\(205\) 0 0
\(206\) −5.82843 −0.406086
\(207\) 1.17157 0.0814299
\(208\) 14.4853 1.00437
\(209\) −2.34315 −0.162079
\(210\) 0 0
\(211\) 20.4853 1.41026 0.705132 0.709076i \(-0.250888\pi\)
0.705132 + 0.709076i \(0.250888\pi\)
\(212\) 4.48528 0.308050
\(213\) 1.85786 0.127299
\(214\) 27.1421 1.85540
\(215\) 0 0
\(216\) 10.6569 0.725107
\(217\) 0 0
\(218\) 32.5563 2.20499
\(219\) 0.343146 0.0231876
\(220\) 0 0
\(221\) −23.3137 −1.56825
\(222\) 0 0
\(223\) −0.343146 −0.0229787 −0.0114894 0.999934i \(-0.503657\pi\)
−0.0114894 + 0.999934i \(0.503657\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −10.8284 −0.720296
\(227\) 6.97056 0.462652 0.231326 0.972876i \(-0.425694\pi\)
0.231326 + 0.972876i \(0.425694\pi\)
\(228\) 4.48528 0.297045
\(229\) −11.6569 −0.770307 −0.385153 0.922853i \(-0.625851\pi\)
−0.385153 + 0.922853i \(0.625851\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4.41421 0.289807
\(233\) 16.8284 1.10247 0.551233 0.834351i \(-0.314157\pi\)
0.551233 + 0.834351i \(0.314157\pi\)
\(234\) 32.9706 2.15535
\(235\) 0 0
\(236\) 17.1716 1.11777
\(237\) 6.14214 0.398975
\(238\) 0 0
\(239\) −21.3137 −1.37867 −0.689335 0.724443i \(-0.742097\pi\)
−0.689335 + 0.724443i \(0.742097\pi\)
\(240\) 0 0
\(241\) 27.6569 1.78153 0.890767 0.454460i \(-0.150168\pi\)
0.890767 + 0.454460i \(0.150168\pi\)
\(242\) 24.8995 1.60060
\(243\) 10.3431 0.663513
\(244\) 21.0000 1.34439
\(245\) 0 0
\(246\) 7.82843 0.499122
\(247\) 13.6569 0.868965
\(248\) 26.4853 1.68182
\(249\) −5.68629 −0.360354
\(250\) 0 0
\(251\) −9.31371 −0.587876 −0.293938 0.955824i \(-0.594966\pi\)
−0.293938 + 0.955824i \(0.594966\pi\)
\(252\) 0 0
\(253\) 0.343146 0.0215734
\(254\) −22.4853 −1.41085
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) −6.34315 −0.395675 −0.197837 0.980235i \(-0.563392\pi\)
−0.197837 + 0.980235i \(0.563392\pi\)
\(258\) 3.58579 0.223241
\(259\) 0 0
\(260\) 0 0
\(261\) 2.82843 0.175075
\(262\) 46.6274 2.88065
\(263\) 29.0416 1.79078 0.895392 0.445279i \(-0.146896\pi\)
0.895392 + 0.445279i \(0.146896\pi\)
\(264\) 1.51472 0.0932245
\(265\) 0 0
\(266\) 0 0
\(267\) −3.58579 −0.219447
\(268\) −36.6985 −2.24172
\(269\) 20.4558 1.24721 0.623607 0.781738i \(-0.285666\pi\)
0.623607 + 0.781738i \(0.285666\pi\)
\(270\) 0 0
\(271\) 16.4853 1.00141 0.500705 0.865618i \(-0.333074\pi\)
0.500705 + 0.865618i \(0.333074\pi\)
\(272\) −14.4853 −0.878299
\(273\) 0 0
\(274\) −23.3137 −1.40843
\(275\) 0 0
\(276\) −0.656854 −0.0395380
\(277\) −16.1421 −0.969887 −0.484943 0.874546i \(-0.661160\pi\)
−0.484943 + 0.874546i \(0.661160\pi\)
\(278\) 38.9706 2.33730
\(279\) 16.9706 1.01600
\(280\) 0 0
\(281\) −30.2843 −1.80661 −0.903304 0.429001i \(-0.858866\pi\)
−0.903304 + 0.429001i \(0.858866\pi\)
\(282\) 2.00000 0.119098
\(283\) −14.0000 −0.832214 −0.416107 0.909316i \(-0.636606\pi\)
−0.416107 + 0.909316i \(0.636606\pi\)
\(284\) 17.1716 1.01895
\(285\) 0 0
\(286\) 9.65685 0.571022
\(287\) 0 0
\(288\) −4.48528 −0.264298
\(289\) 6.31371 0.371395
\(290\) 0 0
\(291\) −4.82843 −0.283047
\(292\) 3.17157 0.185602
\(293\) 16.0000 0.934730 0.467365 0.884064i \(-0.345203\pi\)
0.467365 + 0.884064i \(0.345203\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.00000 0.116052
\(298\) 5.24264 0.303698
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) 0 0
\(302\) −28.1421 −1.61940
\(303\) −4.27208 −0.245424
\(304\) 8.48528 0.486664
\(305\) 0 0
\(306\) −32.9706 −1.88480
\(307\) 4.75736 0.271517 0.135758 0.990742i \(-0.456653\pi\)
0.135758 + 0.990742i \(0.456653\pi\)
\(308\) 0 0
\(309\) 1.00000 0.0568880
\(310\) 0 0
\(311\) −13.1716 −0.746891 −0.373446 0.927652i \(-0.621824\pi\)
−0.373446 + 0.927652i \(0.621824\pi\)
\(312\) −8.82843 −0.499811
\(313\) 6.34315 0.358536 0.179268 0.983800i \(-0.442627\pi\)
0.179268 + 0.983800i \(0.442627\pi\)
\(314\) 41.7990 2.35885
\(315\) 0 0
\(316\) 56.7696 3.19354
\(317\) 13.7990 0.775028 0.387514 0.921864i \(-0.373334\pi\)
0.387514 + 0.921864i \(0.373334\pi\)
\(318\) −1.17157 −0.0656985
\(319\) 0.828427 0.0463830
\(320\) 0 0
\(321\) −4.65685 −0.259920
\(322\) 0 0
\(323\) −13.6569 −0.759888
\(324\) 28.6569 1.59205
\(325\) 0 0
\(326\) 29.7990 1.65041
\(327\) −5.58579 −0.308895
\(328\) 34.5563 1.90806
\(329\) 0 0
\(330\) 0 0
\(331\) 22.9706 1.26258 0.631288 0.775548i \(-0.282527\pi\)
0.631288 + 0.775548i \(0.282527\pi\)
\(332\) −52.5563 −2.88440
\(333\) 0 0
\(334\) 54.1127 2.96092
\(335\) 0 0
\(336\) 0 0
\(337\) −9.17157 −0.499607 −0.249804 0.968296i \(-0.580366\pi\)
−0.249804 + 0.968296i \(0.580366\pi\)
\(338\) −24.8995 −1.35435
\(339\) 1.85786 0.100905
\(340\) 0 0
\(341\) 4.97056 0.269171
\(342\) 19.3137 1.04437
\(343\) 0 0
\(344\) 15.8284 0.853412
\(345\) 0 0
\(346\) 8.00000 0.430083
\(347\) −7.92893 −0.425647 −0.212824 0.977091i \(-0.568266\pi\)
−0.212824 + 0.977091i \(0.568266\pi\)
\(348\) −1.58579 −0.0850071
\(349\) −15.3431 −0.821300 −0.410650 0.911793i \(-0.634698\pi\)
−0.410650 + 0.911793i \(0.634698\pi\)
\(350\) 0 0
\(351\) −11.6569 −0.622197
\(352\) −1.31371 −0.0700209
\(353\) 26.8284 1.42793 0.713967 0.700180i \(-0.246897\pi\)
0.713967 + 0.700180i \(0.246897\pi\)
\(354\) −4.48528 −0.238390
\(355\) 0 0
\(356\) −33.1421 −1.75653
\(357\) 0 0
\(358\) 24.1421 1.27595
\(359\) −10.0000 −0.527780 −0.263890 0.964553i \(-0.585006\pi\)
−0.263890 + 0.964553i \(0.585006\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) −6.41421 −0.337124
\(363\) −4.27208 −0.224226
\(364\) 0 0
\(365\) 0 0
\(366\) −5.48528 −0.286720
\(367\) 2.75736 0.143933 0.0719665 0.997407i \(-0.477073\pi\)
0.0719665 + 0.997407i \(0.477073\pi\)
\(368\) −1.24264 −0.0647771
\(369\) 22.1421 1.15267
\(370\) 0 0
\(371\) 0 0
\(372\) −9.51472 −0.493315
\(373\) 20.9706 1.08581 0.542907 0.839793i \(-0.317323\pi\)
0.542907 + 0.839793i \(0.317323\pi\)
\(374\) −9.65685 −0.499344
\(375\) 0 0
\(376\) 8.82843 0.455291
\(377\) −4.82843 −0.248677
\(378\) 0 0
\(379\) 26.8284 1.37808 0.689042 0.724722i \(-0.258032\pi\)
0.689042 + 0.724722i \(0.258032\pi\)
\(380\) 0 0
\(381\) 3.85786 0.197644
\(382\) 30.9706 1.58459
\(383\) 2.89949 0.148157 0.0740786 0.997252i \(-0.476398\pi\)
0.0740786 + 0.997252i \(0.476398\pi\)
\(384\) 8.51472 0.434515
\(385\) 0 0
\(386\) −4.82843 −0.245760
\(387\) 10.1421 0.515554
\(388\) −44.6274 −2.26561
\(389\) 23.6569 1.19945 0.599725 0.800206i \(-0.295277\pi\)
0.599725 + 0.800206i \(0.295277\pi\)
\(390\) 0 0
\(391\) 2.00000 0.101144
\(392\) 0 0
\(393\) −8.00000 −0.403547
\(394\) −29.7990 −1.50125
\(395\) 0 0
\(396\) 8.97056 0.450788
\(397\) 16.6274 0.834506 0.417253 0.908790i \(-0.362993\pi\)
0.417253 + 0.908790i \(0.362993\pi\)
\(398\) 23.3137 1.16861
\(399\) 0 0
\(400\) 0 0
\(401\) 30.3137 1.51379 0.756897 0.653534i \(-0.226714\pi\)
0.756897 + 0.653534i \(0.226714\pi\)
\(402\) 9.58579 0.478096
\(403\) −28.9706 −1.44313
\(404\) −39.4853 −1.96447
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 8.82843 0.437072
\(409\) −14.7990 −0.731763 −0.365881 0.930661i \(-0.619232\pi\)
−0.365881 + 0.930661i \(0.619232\pi\)
\(410\) 0 0
\(411\) 4.00000 0.197305
\(412\) 9.24264 0.455352
\(413\) 0 0
\(414\) −2.82843 −0.139010
\(415\) 0 0
\(416\) 7.65685 0.375408
\(417\) −6.68629 −0.327429
\(418\) 5.65685 0.276686
\(419\) −0.686292 −0.0335275 −0.0167638 0.999859i \(-0.505336\pi\)
−0.0167638 + 0.999859i \(0.505336\pi\)
\(420\) 0 0
\(421\) 13.4853 0.657232 0.328616 0.944464i \(-0.393418\pi\)
0.328616 + 0.944464i \(0.393418\pi\)
\(422\) −49.4558 −2.40747
\(423\) 5.65685 0.275046
\(424\) −5.17157 −0.251154
\(425\) 0 0
\(426\) −4.48528 −0.217313
\(427\) 0 0
\(428\) −43.0416 −2.08050
\(429\) −1.65685 −0.0799937
\(430\) 0 0
\(431\) 17.7990 0.857347 0.428674 0.903459i \(-0.358981\pi\)
0.428674 + 0.903459i \(0.358981\pi\)
\(432\) −7.24264 −0.348462
\(433\) −7.79899 −0.374796 −0.187398 0.982284i \(-0.560005\pi\)
−0.187398 + 0.982284i \(0.560005\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −51.6274 −2.47250
\(437\) −1.17157 −0.0560439
\(438\) −0.828427 −0.0395838
\(439\) −33.9411 −1.61992 −0.809961 0.586484i \(-0.800512\pi\)
−0.809961 + 0.586484i \(0.800512\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 56.2843 2.67717
\(443\) −30.2132 −1.43547 −0.717736 0.696315i \(-0.754822\pi\)
−0.717736 + 0.696315i \(0.754822\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0.828427 0.0392272
\(447\) −0.899495 −0.0425447
\(448\) 0 0
\(449\) 3.82843 0.180675 0.0903373 0.995911i \(-0.471205\pi\)
0.0903373 + 0.995911i \(0.471205\pi\)
\(450\) 0 0
\(451\) 6.48528 0.305380
\(452\) 17.1716 0.807683
\(453\) 4.82843 0.226859
\(454\) −16.8284 −0.789797
\(455\) 0 0
\(456\) −5.17157 −0.242181
\(457\) −24.2843 −1.13597 −0.567985 0.823039i \(-0.692277\pi\)
−0.567985 + 0.823039i \(0.692277\pi\)
\(458\) 28.1421 1.31500
\(459\) 11.6569 0.544095
\(460\) 0 0
\(461\) 41.3137 1.92417 0.962086 0.272748i \(-0.0879324\pi\)
0.962086 + 0.272748i \(0.0879324\pi\)
\(462\) 0 0
\(463\) 37.0416 1.72147 0.860735 0.509053i \(-0.170004\pi\)
0.860735 + 0.509053i \(0.170004\pi\)
\(464\) −3.00000 −0.139272
\(465\) 0 0
\(466\) −40.6274 −1.88203
\(467\) 3.10051 0.143474 0.0717371 0.997424i \(-0.477146\pi\)
0.0717371 + 0.997424i \(0.477146\pi\)
\(468\) −52.2843 −2.41684
\(469\) 0 0
\(470\) 0 0
\(471\) −7.17157 −0.330449
\(472\) −19.7990 −0.911322
\(473\) 2.97056 0.136587
\(474\) −14.8284 −0.681092
\(475\) 0 0
\(476\) 0 0
\(477\) −3.31371 −0.151724
\(478\) 51.4558 2.35354
\(479\) −35.6569 −1.62920 −0.814602 0.580021i \(-0.803044\pi\)
−0.814602 + 0.580021i \(0.803044\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −66.7696 −3.04127
\(483\) 0 0
\(484\) −39.4853 −1.79479
\(485\) 0 0
\(486\) −24.9706 −1.13269
\(487\) −4.34315 −0.196807 −0.0984034 0.995147i \(-0.531374\pi\)
−0.0984034 + 0.995147i \(0.531374\pi\)
\(488\) −24.2132 −1.09608
\(489\) −5.11270 −0.231204
\(490\) 0 0
\(491\) 9.31371 0.420322 0.210161 0.977667i \(-0.432601\pi\)
0.210161 + 0.977667i \(0.432601\pi\)
\(492\) −12.4142 −0.559676
\(493\) 4.82843 0.217461
\(494\) −32.9706 −1.48342
\(495\) 0 0
\(496\) −18.0000 −0.808224
\(497\) 0 0
\(498\) 13.7279 0.615163
\(499\) −0.828427 −0.0370855 −0.0185427 0.999828i \(-0.505903\pi\)
−0.0185427 + 0.999828i \(0.505903\pi\)
\(500\) 0 0
\(501\) −9.28427 −0.414791
\(502\) 22.4853 1.00357
\(503\) 15.8701 0.707611 0.353805 0.935319i \(-0.384887\pi\)
0.353805 + 0.935319i \(0.384887\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −0.828427 −0.0368281
\(507\) 4.27208 0.189730
\(508\) 35.6569 1.58202
\(509\) 13.3431 0.591425 0.295712 0.955277i \(-0.404443\pi\)
0.295712 + 0.955277i \(0.404443\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 31.2426 1.38074
\(513\) −6.82843 −0.301482
\(514\) 15.3137 0.675459
\(515\) 0 0
\(516\) −5.68629 −0.250325
\(517\) 1.65685 0.0728684
\(518\) 0 0
\(519\) −1.37258 −0.0602497
\(520\) 0 0
\(521\) 14.9706 0.655872 0.327936 0.944700i \(-0.393647\pi\)
0.327936 + 0.944700i \(0.393647\pi\)
\(522\) −6.82843 −0.298872
\(523\) −35.6569 −1.55917 −0.779583 0.626299i \(-0.784569\pi\)
−0.779583 + 0.626299i \(0.784569\pi\)
\(524\) −73.9411 −3.23013
\(525\) 0 0
\(526\) −70.1127 −3.05706
\(527\) 28.9706 1.26198
\(528\) −1.02944 −0.0448005
\(529\) −22.8284 −0.992540
\(530\) 0 0
\(531\) −12.6863 −0.550538
\(532\) 0 0
\(533\) −37.7990 −1.63726
\(534\) 8.65685 0.374619
\(535\) 0 0
\(536\) 42.3137 1.82767
\(537\) −4.14214 −0.178746
\(538\) −49.3848 −2.12913
\(539\) 0 0
\(540\) 0 0
\(541\) 7.34315 0.315706 0.157853 0.987463i \(-0.449543\pi\)
0.157853 + 0.987463i \(0.449543\pi\)
\(542\) −39.7990 −1.70951
\(543\) 1.10051 0.0472272
\(544\) −7.65685 −0.328285
\(545\) 0 0
\(546\) 0 0
\(547\) −24.8995 −1.06463 −0.532313 0.846548i \(-0.678677\pi\)
−0.532313 + 0.846548i \(0.678677\pi\)
\(548\) 36.9706 1.57930
\(549\) −15.5147 −0.662152
\(550\) 0 0
\(551\) −2.82843 −0.120495
\(552\) 0.757359 0.0322354
\(553\) 0 0
\(554\) 38.9706 1.65570
\(555\) 0 0
\(556\) −61.7990 −2.62086
\(557\) −22.2843 −0.944215 −0.472107 0.881541i \(-0.656507\pi\)
−0.472107 + 0.881541i \(0.656507\pi\)
\(558\) −40.9706 −1.73442
\(559\) −17.3137 −0.732292
\(560\) 0 0
\(561\) 1.65685 0.0699524
\(562\) 73.1127 3.08407
\(563\) −41.7279 −1.75862 −0.879311 0.476248i \(-0.841997\pi\)
−0.879311 + 0.476248i \(0.841997\pi\)
\(564\) −3.17157 −0.133547
\(565\) 0 0
\(566\) 33.7990 1.42068
\(567\) 0 0
\(568\) −19.7990 −0.830747
\(569\) 7.65685 0.320992 0.160496 0.987036i \(-0.448691\pi\)
0.160496 + 0.987036i \(0.448691\pi\)
\(570\) 0 0
\(571\) 9.17157 0.383818 0.191909 0.981413i \(-0.438532\pi\)
0.191909 + 0.981413i \(0.438532\pi\)
\(572\) −15.3137 −0.640298
\(573\) −5.31371 −0.221983
\(574\) 0 0
\(575\) 0 0
\(576\) 27.7990 1.15829
\(577\) 43.9411 1.82929 0.914646 0.404255i \(-0.132469\pi\)
0.914646 + 0.404255i \(0.132469\pi\)
\(578\) −15.2426 −0.634010
\(579\) 0.828427 0.0344283
\(580\) 0 0
\(581\) 0 0
\(582\) 11.6569 0.483192
\(583\) −0.970563 −0.0401966
\(584\) −3.65685 −0.151322
\(585\) 0 0
\(586\) −38.6274 −1.59568
\(587\) 34.2843 1.41506 0.707532 0.706682i \(-0.249809\pi\)
0.707532 + 0.706682i \(0.249809\pi\)
\(588\) 0 0
\(589\) −16.9706 −0.699260
\(590\) 0 0
\(591\) 5.11270 0.210308
\(592\) 0 0
\(593\) −4.20101 −0.172515 −0.0862574 0.996273i \(-0.527491\pi\)
−0.0862574 + 0.996273i \(0.527491\pi\)
\(594\) −4.82843 −0.198113
\(595\) 0 0
\(596\) −8.31371 −0.340543
\(597\) −4.00000 −0.163709
\(598\) 4.82843 0.197449
\(599\) 6.34315 0.259174 0.129587 0.991568i \(-0.458635\pi\)
0.129587 + 0.991568i \(0.458635\pi\)
\(600\) 0 0
\(601\) 19.6569 0.801820 0.400910 0.916117i \(-0.368694\pi\)
0.400910 + 0.916117i \(0.368694\pi\)
\(602\) 0 0
\(603\) 27.1127 1.10411
\(604\) 44.6274 1.81586
\(605\) 0 0
\(606\) 10.3137 0.418966
\(607\) −38.2132 −1.55103 −0.775513 0.631332i \(-0.782509\pi\)
−0.775513 + 0.631332i \(0.782509\pi\)
\(608\) 4.48528 0.181902
\(609\) 0 0
\(610\) 0 0
\(611\) −9.65685 −0.390675
\(612\) 52.2843 2.11347
\(613\) −35.4558 −1.43205 −0.716024 0.698076i \(-0.754040\pi\)
−0.716024 + 0.698076i \(0.754040\pi\)
\(614\) −11.4853 −0.463508
\(615\) 0 0
\(616\) 0 0
\(617\) −11.3137 −0.455473 −0.227736 0.973723i \(-0.573132\pi\)
−0.227736 + 0.973723i \(0.573132\pi\)
\(618\) −2.41421 −0.0971139
\(619\) 25.5147 1.02552 0.512762 0.858531i \(-0.328622\pi\)
0.512762 + 0.858531i \(0.328622\pi\)
\(620\) 0 0
\(621\) 1.00000 0.0401286
\(622\) 31.7990 1.27502
\(623\) 0 0
\(624\) 6.00000 0.240192
\(625\) 0 0
\(626\) −15.3137 −0.612059
\(627\) −0.970563 −0.0387605
\(628\) −66.2843 −2.64503
\(629\) 0 0
\(630\) 0 0
\(631\) −20.1421 −0.801846 −0.400923 0.916112i \(-0.631310\pi\)
−0.400923 + 0.916112i \(0.631310\pi\)
\(632\) −65.4558 −2.60369
\(633\) 8.48528 0.337260
\(634\) −33.3137 −1.32306
\(635\) 0 0
\(636\) 1.85786 0.0736691
\(637\) 0 0
\(638\) −2.00000 −0.0791808
\(639\) −12.6863 −0.501862
\(640\) 0 0
\(641\) 31.4853 1.24359 0.621797 0.783179i \(-0.286403\pi\)
0.621797 + 0.783179i \(0.286403\pi\)
\(642\) 11.2426 0.443712
\(643\) −26.2843 −1.03655 −0.518275 0.855214i \(-0.673426\pi\)
−0.518275 + 0.855214i \(0.673426\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 32.9706 1.29721
\(647\) 31.0416 1.22037 0.610186 0.792258i \(-0.291095\pi\)
0.610186 + 0.792258i \(0.291095\pi\)
\(648\) −33.0416 −1.29800
\(649\) −3.71573 −0.145855
\(650\) 0 0
\(651\) 0 0
\(652\) −47.2548 −1.85064
\(653\) 19.1716 0.750242 0.375121 0.926976i \(-0.377601\pi\)
0.375121 + 0.926976i \(0.377601\pi\)
\(654\) 13.4853 0.527316
\(655\) 0 0
\(656\) −23.4853 −0.916946
\(657\) −2.34315 −0.0914148
\(658\) 0 0
\(659\) 21.1716 0.824727 0.412364 0.911019i \(-0.364703\pi\)
0.412364 + 0.911019i \(0.364703\pi\)
\(660\) 0 0
\(661\) 31.8284 1.23798 0.618991 0.785398i \(-0.287542\pi\)
0.618991 + 0.785398i \(0.287542\pi\)
\(662\) −55.4558 −2.15535
\(663\) −9.65685 −0.375041
\(664\) 60.5980 2.35166
\(665\) 0 0
\(666\) 0 0
\(667\) 0.414214 0.0160384
\(668\) −85.8112 −3.32013
\(669\) −0.142136 −0.00549528
\(670\) 0 0
\(671\) −4.54416 −0.175425
\(672\) 0 0
\(673\) −29.6569 −1.14319 −0.571594 0.820537i \(-0.693675\pi\)
−0.571594 + 0.820537i \(0.693675\pi\)
\(674\) 22.1421 0.852883
\(675\) 0 0
\(676\) 39.4853 1.51866
\(677\) 28.1421 1.08159 0.540795 0.841154i \(-0.318123\pi\)
0.540795 + 0.841154i \(0.318123\pi\)
\(678\) −4.48528 −0.172256
\(679\) 0 0
\(680\) 0 0
\(681\) 2.88730 0.110642
\(682\) −12.0000 −0.459504
\(683\) 34.7574 1.32995 0.664977 0.746864i \(-0.268441\pi\)
0.664977 + 0.746864i \(0.268441\pi\)
\(684\) −30.6274 −1.17107
\(685\) 0 0
\(686\) 0 0
\(687\) −4.82843 −0.184216
\(688\) −10.7574 −0.410120
\(689\) 5.65685 0.215509
\(690\) 0 0
\(691\) 0.828427 0.0315149 0.0157574 0.999876i \(-0.494984\pi\)
0.0157574 + 0.999876i \(0.494984\pi\)
\(692\) −12.6863 −0.482260
\(693\) 0 0
\(694\) 19.1421 0.726626
\(695\) 0 0
\(696\) 1.82843 0.0693064
\(697\) 37.7990 1.43174
\(698\) 37.0416 1.40205
\(699\) 6.97056 0.263651
\(700\) 0 0
\(701\) −3.20101 −0.120900 −0.0604502 0.998171i \(-0.519254\pi\)
−0.0604502 + 0.998171i \(0.519254\pi\)
\(702\) 28.1421 1.06216
\(703\) 0 0
\(704\) 8.14214 0.306868
\(705\) 0 0
\(706\) −64.7696 −2.43763
\(707\) 0 0
\(708\) 7.11270 0.267312
\(709\) 15.6863 0.589111 0.294556 0.955634i \(-0.404828\pi\)
0.294556 + 0.955634i \(0.404828\pi\)
\(710\) 0 0
\(711\) −41.9411 −1.57292
\(712\) 38.2132 1.43210
\(713\) 2.48528 0.0930745
\(714\) 0 0
\(715\) 0 0
\(716\) −38.2843 −1.43075
\(717\) −8.82843 −0.329704
\(718\) 24.1421 0.900976
\(719\) 21.1127 0.787371 0.393685 0.919245i \(-0.371200\pi\)
0.393685 + 0.919245i \(0.371200\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 26.5563 0.988325
\(723\) 11.4558 0.426047
\(724\) 10.1716 0.378024
\(725\) 0 0
\(726\) 10.3137 0.382778
\(727\) 37.5858 1.39398 0.696990 0.717081i \(-0.254522\pi\)
0.696990 + 0.717081i \(0.254522\pi\)
\(728\) 0 0
\(729\) −18.1716 −0.673021
\(730\) 0 0
\(731\) 17.3137 0.640371
\(732\) 8.69848 0.321505
\(733\) 22.0000 0.812589 0.406294 0.913742i \(-0.366821\pi\)
0.406294 + 0.913742i \(0.366821\pi\)
\(734\) −6.65685 −0.245709
\(735\) 0 0
\(736\) −0.656854 −0.0242120
\(737\) 7.94113 0.292515
\(738\) −53.4558 −1.96774
\(739\) −21.1127 −0.776643 −0.388322 0.921524i \(-0.626945\pi\)
−0.388322 + 0.921524i \(0.626945\pi\)
\(740\) 0 0
\(741\) 5.65685 0.207810
\(742\) 0 0
\(743\) 16.0711 0.589590 0.294795 0.955560i \(-0.404749\pi\)
0.294795 + 0.955560i \(0.404749\pi\)
\(744\) 10.9706 0.402200
\(745\) 0 0
\(746\) −50.6274 −1.85360
\(747\) 38.8284 1.42066
\(748\) 15.3137 0.559925
\(749\) 0 0
\(750\) 0 0
\(751\) −30.3431 −1.10724 −0.553619 0.832770i \(-0.686753\pi\)
−0.553619 + 0.832770i \(0.686753\pi\)
\(752\) −6.00000 −0.218797
\(753\) −3.85786 −0.140588
\(754\) 11.6569 0.424518
\(755\) 0 0
\(756\) 0 0
\(757\) 31.4558 1.14328 0.571641 0.820504i \(-0.306307\pi\)
0.571641 + 0.820504i \(0.306307\pi\)
\(758\) −64.7696 −2.35254
\(759\) 0.142136 0.00515920
\(760\) 0 0
\(761\) 9.31371 0.337622 0.168811 0.985648i \(-0.446007\pi\)
0.168811 + 0.985648i \(0.446007\pi\)
\(762\) −9.31371 −0.337400
\(763\) 0 0
\(764\) −49.1127 −1.77684
\(765\) 0 0
\(766\) −7.00000 −0.252920
\(767\) 21.6569 0.781984
\(768\) −12.4142 −0.447959
\(769\) −0.627417 −0.0226252 −0.0113126 0.999936i \(-0.503601\pi\)
−0.0113126 + 0.999936i \(0.503601\pi\)
\(770\) 0 0
\(771\) −2.62742 −0.0946241
\(772\) 7.65685 0.275576
\(773\) 37.1127 1.33485 0.667425 0.744677i \(-0.267396\pi\)
0.667425 + 0.744677i \(0.267396\pi\)
\(774\) −24.4853 −0.880105
\(775\) 0 0
\(776\) 51.4558 1.84716
\(777\) 0 0
\(778\) −57.1127 −2.04759
\(779\) −22.1421 −0.793324
\(780\) 0 0
\(781\) −3.71573 −0.132959
\(782\) −4.82843 −0.172664
\(783\) 2.41421 0.0862770
\(784\) 0 0
\(785\) 0 0
\(786\) 19.3137 0.688897
\(787\) −2.55635 −0.0911240 −0.0455620 0.998962i \(-0.514508\pi\)
−0.0455620 + 0.998962i \(0.514508\pi\)
\(788\) 47.2548 1.68338
\(789\) 12.0294 0.428259
\(790\) 0 0
\(791\) 0 0
\(792\) −10.3431 −0.367528
\(793\) 26.4853 0.940520
\(794\) −40.1421 −1.42459
\(795\) 0 0
\(796\) −36.9706 −1.31039
\(797\) 8.00000 0.283375 0.141687 0.989911i \(-0.454747\pi\)
0.141687 + 0.989911i \(0.454747\pi\)
\(798\) 0 0
\(799\) 9.65685 0.341635
\(800\) 0 0
\(801\) 24.4853 0.865145
\(802\) −73.1838 −2.58421
\(803\) −0.686292 −0.0242187
\(804\) −15.2010 −0.536098
\(805\) 0 0
\(806\) 69.9411 2.46357
\(807\) 8.47309 0.298267
\(808\) 45.5269 1.60163
\(809\) 35.6274 1.25259 0.626297 0.779585i \(-0.284570\pi\)
0.626297 + 0.779585i \(0.284570\pi\)
\(810\) 0 0
\(811\) −20.6274 −0.724327 −0.362163 0.932115i \(-0.617962\pi\)
−0.362163 + 0.932115i \(0.617962\pi\)
\(812\) 0 0
\(813\) 6.82843 0.239483
\(814\) 0 0
\(815\) 0 0
\(816\) −6.00000 −0.210042
\(817\) −10.1421 −0.354828
\(818\) 35.7279 1.24920
\(819\) 0 0
\(820\) 0 0
\(821\) 47.9411 1.67316 0.836578 0.547847i \(-0.184552\pi\)
0.836578 + 0.547847i \(0.184552\pi\)
\(822\) −9.65685 −0.336821
\(823\) −2.07107 −0.0721929 −0.0360964 0.999348i \(-0.511492\pi\)
−0.0360964 + 0.999348i \(0.511492\pi\)
\(824\) −10.6569 −0.371249
\(825\) 0 0
\(826\) 0 0
\(827\) 26.2132 0.911522 0.455761 0.890102i \(-0.349367\pi\)
0.455761 + 0.890102i \(0.349367\pi\)
\(828\) 4.48528 0.155874
\(829\) 29.3137 1.01811 0.509054 0.860735i \(-0.329995\pi\)
0.509054 + 0.860735i \(0.329995\pi\)
\(830\) 0 0
\(831\) −6.68629 −0.231945
\(832\) −47.4558 −1.64524
\(833\) 0 0
\(834\) 16.1421 0.558956
\(835\) 0 0
\(836\) −8.97056 −0.310253
\(837\) 14.4853 0.500685
\(838\) 1.65685 0.0572351
\(839\) 15.1716 0.523781 0.261890 0.965098i \(-0.415654\pi\)
0.261890 + 0.965098i \(0.415654\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) −32.5563 −1.12197
\(843\) −12.5442 −0.432044
\(844\) 78.4264 2.69955
\(845\) 0 0
\(846\) −13.6569 −0.469532
\(847\) 0 0
\(848\) 3.51472 0.120696
\(849\) −5.79899 −0.199021
\(850\) 0 0
\(851\) 0 0
\(852\) 7.11270 0.243677
\(853\) −2.54416 −0.0871102 −0.0435551 0.999051i \(-0.513868\pi\)
−0.0435551 + 0.999051i \(0.513868\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 49.6274 1.69623
\(857\) −34.2843 −1.17113 −0.585564 0.810626i \(-0.699127\pi\)
−0.585564 + 0.810626i \(0.699127\pi\)
\(858\) 4.00000 0.136558
\(859\) 1.37258 0.0468319 0.0234160 0.999726i \(-0.492546\pi\)
0.0234160 + 0.999726i \(0.492546\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −42.9706 −1.46358
\(863\) −14.5563 −0.495504 −0.247752 0.968823i \(-0.579692\pi\)
−0.247752 + 0.968823i \(0.579692\pi\)
\(864\) −3.82843 −0.130246
\(865\) 0 0
\(866\) 18.8284 0.639816
\(867\) 2.61522 0.0888177
\(868\) 0 0
\(869\) −12.2843 −0.416715
\(870\) 0 0
\(871\) −46.2843 −1.56828
\(872\) 59.5269 2.01584
\(873\) 32.9706 1.11588
\(874\) 2.82843 0.0956730
\(875\) 0 0
\(876\) 1.31371 0.0443861
\(877\) −25.1716 −0.849984 −0.424992 0.905197i \(-0.639723\pi\)
−0.424992 + 0.905197i \(0.639723\pi\)
\(878\) 81.9411 2.76538
\(879\) 6.62742 0.223537
\(880\) 0 0
\(881\) 1.82843 0.0616013 0.0308006 0.999526i \(-0.490194\pi\)
0.0308006 + 0.999526i \(0.490194\pi\)
\(882\) 0 0
\(883\) −18.2843 −0.615315 −0.307657 0.951497i \(-0.599545\pi\)
−0.307657 + 0.951497i \(0.599545\pi\)
\(884\) −89.2548 −3.00196
\(885\) 0 0
\(886\) 72.9411 2.45051
\(887\) −29.9289 −1.00492 −0.502458 0.864602i \(-0.667571\pi\)
−0.502458 + 0.864602i \(0.667571\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −6.20101 −0.207742
\(892\) −1.31371 −0.0439862
\(893\) −5.65685 −0.189299
\(894\) 2.17157 0.0726283
\(895\) 0 0
\(896\) 0 0
\(897\) −0.828427 −0.0276604
\(898\) −9.24264 −0.308431
\(899\) 6.00000 0.200111
\(900\) 0 0
\(901\) −5.65685 −0.188457
\(902\) −15.6569 −0.521316
\(903\) 0 0
\(904\) −19.7990 −0.658505
\(905\) 0 0
\(906\) −11.6569 −0.387273
\(907\) 14.2132 0.471942 0.235971 0.971760i \(-0.424173\pi\)
0.235971 + 0.971760i \(0.424173\pi\)
\(908\) 26.6863 0.885616
\(909\) 29.1716 0.967560
\(910\) 0 0
\(911\) −10.2010 −0.337975 −0.168987 0.985618i \(-0.554050\pi\)
−0.168987 + 0.985618i \(0.554050\pi\)
\(912\) 3.51472 0.116384
\(913\) 11.3726 0.376378
\(914\) 58.6274 1.93922
\(915\) 0 0
\(916\) −44.6274 −1.47453
\(917\) 0 0
\(918\) −28.1421 −0.928829
\(919\) −43.1127 −1.42216 −0.711078 0.703113i \(-0.751793\pi\)
−0.711078 + 0.703113i \(0.751793\pi\)
\(920\) 0 0
\(921\) 1.97056 0.0649323
\(922\) −99.7401 −3.28477
\(923\) 21.6569 0.712844
\(924\) 0 0
\(925\) 0 0
\(926\) −89.4264 −2.93873
\(927\) −6.82843 −0.224275
\(928\) −1.58579 −0.0520560
\(929\) 5.48528 0.179966 0.0899831 0.995943i \(-0.471319\pi\)
0.0899831 + 0.995943i \(0.471319\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 64.4264 2.11036
\(933\) −5.45584 −0.178616
\(934\) −7.48528 −0.244926
\(935\) 0 0
\(936\) 60.2843 1.97045
\(937\) −34.6274 −1.13123 −0.565614 0.824670i \(-0.691361\pi\)
−0.565614 + 0.824670i \(0.691361\pi\)
\(938\) 0 0
\(939\) 2.62742 0.0857425
\(940\) 0 0
\(941\) −46.2843 −1.50882 −0.754412 0.656401i \(-0.772078\pi\)
−0.754412 + 0.656401i \(0.772078\pi\)
\(942\) 17.3137 0.564111
\(943\) 3.24264 0.105595
\(944\) 13.4558 0.437950
\(945\) 0 0
\(946\) −7.17157 −0.233168
\(947\) −33.1838 −1.07833 −0.539164 0.842201i \(-0.681260\pi\)
−0.539164 + 0.842201i \(0.681260\pi\)
\(948\) 23.5147 0.763723
\(949\) 4.00000 0.129845
\(950\) 0 0
\(951\) 5.71573 0.185345
\(952\) 0 0
\(953\) 13.6569 0.442389 0.221194 0.975230i \(-0.429004\pi\)
0.221194 + 0.975230i \(0.429004\pi\)
\(954\) 8.00000 0.259010
\(955\) 0 0
\(956\) −81.5980 −2.63907
\(957\) 0.343146 0.0110923
\(958\) 86.0833 2.78122
\(959\) 0 0
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) 31.7990 1.02471
\(964\) 105.882 3.41024
\(965\) 0 0
\(966\) 0 0
\(967\) −37.5269 −1.20678 −0.603392 0.797445i \(-0.706185\pi\)
−0.603392 + 0.797445i \(0.706185\pi\)
\(968\) 45.5269 1.46329
\(969\) −5.65685 −0.181724
\(970\) 0 0
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 39.5980 1.27011
\(973\) 0 0
\(974\) 10.4853 0.335970
\(975\) 0 0
\(976\) 16.4558 0.526739
\(977\) 1.31371 0.0420293 0.0210146 0.999779i \(-0.493310\pi\)
0.0210146 + 0.999779i \(0.493310\pi\)
\(978\) 12.3431 0.394690
\(979\) 7.17157 0.229204
\(980\) 0 0
\(981\) 38.1421 1.21778
\(982\) −22.4853 −0.717534
\(983\) −28.2132 −0.899861 −0.449931 0.893063i \(-0.648551\pi\)
−0.449931 + 0.893063i \(0.648551\pi\)
\(984\) 14.3137 0.456304
\(985\) 0 0
\(986\) −11.6569 −0.371230
\(987\) 0 0
\(988\) 52.2843 1.66338
\(989\) 1.48528 0.0472292
\(990\) 0 0
\(991\) −4.34315 −0.137965 −0.0689823 0.997618i \(-0.521975\pi\)
−0.0689823 + 0.997618i \(0.521975\pi\)
\(992\) −9.51472 −0.302093
\(993\) 9.51472 0.301940
\(994\) 0 0
\(995\) 0 0
\(996\) −21.7696 −0.689795
\(997\) −33.4558 −1.05956 −0.529779 0.848136i \(-0.677725\pi\)
−0.529779 + 0.848136i \(0.677725\pi\)
\(998\) 2.00000 0.0633089
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.2.a.k.1.1 2
5.2 odd 4 1225.2.b.g.99.1 4
5.3 odd 4 1225.2.b.g.99.4 4
5.4 even 2 245.2.a.h.1.2 2
7.2 even 3 175.2.e.c.151.2 4
7.4 even 3 175.2.e.c.51.2 4
7.6 odd 2 1225.2.a.m.1.1 2
15.14 odd 2 2205.2.a.n.1.1 2
20.19 odd 2 3920.2.a.bq.1.2 2
35.2 odd 12 175.2.k.a.74.1 8
35.4 even 6 35.2.e.a.16.1 yes 4
35.9 even 6 35.2.e.a.11.1 4
35.13 even 4 1225.2.b.h.99.4 4
35.18 odd 12 175.2.k.a.149.1 8
35.19 odd 6 245.2.e.e.116.1 4
35.23 odd 12 175.2.k.a.74.4 8
35.24 odd 6 245.2.e.e.226.1 4
35.27 even 4 1225.2.b.h.99.1 4
35.32 odd 12 175.2.k.a.149.4 8
35.34 odd 2 245.2.a.g.1.2 2
105.44 odd 6 315.2.j.e.46.2 4
105.74 odd 6 315.2.j.e.226.2 4
105.104 even 2 2205.2.a.q.1.1 2
140.39 odd 6 560.2.q.k.401.1 4
140.79 odd 6 560.2.q.k.81.1 4
140.139 even 2 3920.2.a.bv.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.e.a.11.1 4 35.9 even 6
35.2.e.a.16.1 yes 4 35.4 even 6
175.2.e.c.51.2 4 7.4 even 3
175.2.e.c.151.2 4 7.2 even 3
175.2.k.a.74.1 8 35.2 odd 12
175.2.k.a.74.4 8 35.23 odd 12
175.2.k.a.149.1 8 35.18 odd 12
175.2.k.a.149.4 8 35.32 odd 12
245.2.a.g.1.2 2 35.34 odd 2
245.2.a.h.1.2 2 5.4 even 2
245.2.e.e.116.1 4 35.19 odd 6
245.2.e.e.226.1 4 35.24 odd 6
315.2.j.e.46.2 4 105.44 odd 6
315.2.j.e.226.2 4 105.74 odd 6
560.2.q.k.81.1 4 140.79 odd 6
560.2.q.k.401.1 4 140.39 odd 6
1225.2.a.k.1.1 2 1.1 even 1 trivial
1225.2.a.m.1.1 2 7.6 odd 2
1225.2.b.g.99.1 4 5.2 odd 4
1225.2.b.g.99.4 4 5.3 odd 4
1225.2.b.h.99.1 4 35.27 even 4
1225.2.b.h.99.4 4 35.13 even 4
2205.2.a.n.1.1 2 15.14 odd 2
2205.2.a.q.1.1 2 105.104 even 2
3920.2.a.bq.1.2 2 20.19 odd 2
3920.2.a.bv.1.1 2 140.139 even 2