Properties

Label 560.2.q.k.81.1
Level $560$
Weight $2$
Character 560.81
Analytic conductor $4.472$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,2,Mod(81,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 560.81
Dual form 560.2.q.k.401.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.207107 + 0.358719i) q^{3} +(-0.500000 - 0.866025i) q^{5} +(-2.62132 - 0.358719i) q^{7} +(1.41421 + 2.44949i) q^{9} +O(q^{10})\) \(q+(-0.207107 + 0.358719i) q^{3} +(-0.500000 - 0.866025i) q^{5} +(-2.62132 - 0.358719i) q^{7} +(1.41421 + 2.44949i) q^{9} +(-0.414214 + 0.717439i) q^{11} -4.82843 q^{13} +0.414214 q^{15} +(-2.41421 + 4.18154i) q^{17} +(1.41421 + 2.44949i) q^{19} +(0.671573 - 0.866025i) q^{21} +(0.207107 + 0.358719i) q^{23} +(-0.500000 + 0.866025i) q^{25} -2.41421 q^{27} -1.00000 q^{29} +(-3.00000 + 5.19615i) q^{31} +(-0.171573 - 0.297173i) q^{33} +(1.00000 + 2.44949i) q^{35} +(1.00000 - 1.73205i) q^{39} -7.82843 q^{41} -3.58579 q^{43} +(1.41421 - 2.44949i) q^{45} +(1.00000 + 1.73205i) q^{47} +(6.74264 + 1.88064i) q^{49} +(-1.00000 - 1.73205i) q^{51} +(0.585786 - 1.01461i) q^{53} +0.828427 q^{55} -1.17157 q^{57} +(2.24264 - 3.88437i) q^{59} +(-2.74264 - 4.75039i) q^{61} +(-2.82843 - 6.92820i) q^{63} +(2.41421 + 4.18154i) q^{65} +(4.79289 - 8.30153i) q^{67} -0.171573 q^{69} -4.48528 q^{71} +(0.414214 - 0.717439i) q^{73} +(-0.207107 - 0.358719i) q^{75} +(1.34315 - 1.73205i) q^{77} +(7.41421 + 12.8418i) q^{79} +(-3.74264 + 6.48244i) q^{81} -13.7279 q^{83} +4.82843 q^{85} +(0.207107 - 0.358719i) q^{87} +(4.32843 + 7.49706i) q^{89} +(12.6569 + 1.73205i) q^{91} +(-1.24264 - 2.15232i) q^{93} +(1.41421 - 2.44949i) q^{95} +11.6569 q^{97} -2.34315 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 2 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{3} - 2 q^{5} - 2 q^{7} + 4 q^{11} - 8 q^{13} - 4 q^{15} - 4 q^{17} + 14 q^{21} - 2 q^{23} - 2 q^{25} - 4 q^{27} - 4 q^{29} - 12 q^{31} - 12 q^{33} + 4 q^{35} + 4 q^{39} - 20 q^{41} - 20 q^{43} + 4 q^{47} + 10 q^{49} - 4 q^{51} + 8 q^{53} - 8 q^{55} - 16 q^{57} - 8 q^{59} + 6 q^{61} + 4 q^{65} + 22 q^{67} - 12 q^{69} + 16 q^{71} - 4 q^{73} + 2 q^{75} + 28 q^{77} + 24 q^{79} + 2 q^{81} - 4 q^{83} + 8 q^{85} - 2 q^{87} + 6 q^{89} + 28 q^{91} + 12 q^{93} + 24 q^{97} - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.207107 + 0.358719i −0.119573 + 0.207107i −0.919599 0.392859i \(-0.871486\pi\)
0.800025 + 0.599966i \(0.204819\pi\)
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) −2.62132 0.358719i −0.990766 0.135583i
\(8\) 0 0
\(9\) 1.41421 + 2.44949i 0.471405 + 0.816497i
\(10\) 0 0
\(11\) −0.414214 + 0.717439i −0.124890 + 0.216316i −0.921690 0.387927i \(-0.873191\pi\)
0.796800 + 0.604243i \(0.206524\pi\)
\(12\) 0 0
\(13\) −4.82843 −1.33916 −0.669582 0.742738i \(-0.733527\pi\)
−0.669582 + 0.742738i \(0.733527\pi\)
\(14\) 0 0
\(15\) 0.414214 0.106949
\(16\) 0 0
\(17\) −2.41421 + 4.18154i −0.585533 + 1.01417i 0.409276 + 0.912411i \(0.365781\pi\)
−0.994809 + 0.101762i \(0.967552\pi\)
\(18\) 0 0
\(19\) 1.41421 + 2.44949i 0.324443 + 0.561951i 0.981399 0.191977i \(-0.0614899\pi\)
−0.656957 + 0.753928i \(0.728157\pi\)
\(20\) 0 0
\(21\) 0.671573 0.866025i 0.146549 0.188982i
\(22\) 0 0
\(23\) 0.207107 + 0.358719i 0.0431847 + 0.0747982i 0.886810 0.462134i \(-0.152916\pi\)
−0.843625 + 0.536933i \(0.819583\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) −2.41421 −0.464616
\(28\) 0 0
\(29\) −1.00000 −0.185695 −0.0928477 0.995680i \(-0.529597\pi\)
−0.0928477 + 0.995680i \(0.529597\pi\)
\(30\) 0 0
\(31\) −3.00000 + 5.19615i −0.538816 + 0.933257i 0.460152 + 0.887840i \(0.347795\pi\)
−0.998968 + 0.0454165i \(0.985539\pi\)
\(32\) 0 0
\(33\) −0.171573 0.297173i −0.0298670 0.0517312i
\(34\) 0 0
\(35\) 1.00000 + 2.44949i 0.169031 + 0.414039i
\(36\) 0 0
\(37\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(38\) 0 0
\(39\) 1.00000 1.73205i 0.160128 0.277350i
\(40\) 0 0
\(41\) −7.82843 −1.22259 −0.611297 0.791401i \(-0.709352\pi\)
−0.611297 + 0.791401i \(0.709352\pi\)
\(42\) 0 0
\(43\) −3.58579 −0.546827 −0.273414 0.961897i \(-0.588153\pi\)
−0.273414 + 0.961897i \(0.588153\pi\)
\(44\) 0 0
\(45\) 1.41421 2.44949i 0.210819 0.365148i
\(46\) 0 0
\(47\) 1.00000 + 1.73205i 0.145865 + 0.252646i 0.929695 0.368329i \(-0.120070\pi\)
−0.783830 + 0.620975i \(0.786737\pi\)
\(48\) 0 0
\(49\) 6.74264 + 1.88064i 0.963234 + 0.268662i
\(50\) 0 0
\(51\) −1.00000 1.73205i −0.140028 0.242536i
\(52\) 0 0
\(53\) 0.585786 1.01461i 0.0804640 0.139368i −0.822985 0.568063i \(-0.807693\pi\)
0.903449 + 0.428695i \(0.141026\pi\)
\(54\) 0 0
\(55\) 0.828427 0.111705
\(56\) 0 0
\(57\) −1.17157 −0.155179
\(58\) 0 0
\(59\) 2.24264 3.88437i 0.291967 0.505702i −0.682308 0.731065i \(-0.739024\pi\)
0.974275 + 0.225363i \(0.0723569\pi\)
\(60\) 0 0
\(61\) −2.74264 4.75039i −0.351159 0.608226i 0.635294 0.772271i \(-0.280879\pi\)
−0.986453 + 0.164045i \(0.947546\pi\)
\(62\) 0 0
\(63\) −2.82843 6.92820i −0.356348 0.872872i
\(64\) 0 0
\(65\) 2.41421 + 4.18154i 0.299446 + 0.518656i
\(66\) 0 0
\(67\) 4.79289 8.30153i 0.585545 1.01419i −0.409262 0.912417i \(-0.634214\pi\)
0.994807 0.101777i \(-0.0324528\pi\)
\(68\) 0 0
\(69\) −0.171573 −0.0206549
\(70\) 0 0
\(71\) −4.48528 −0.532305 −0.266152 0.963931i \(-0.585752\pi\)
−0.266152 + 0.963931i \(0.585752\pi\)
\(72\) 0 0
\(73\) 0.414214 0.717439i 0.0484800 0.0839699i −0.840767 0.541397i \(-0.817896\pi\)
0.889247 + 0.457427i \(0.151229\pi\)
\(74\) 0 0
\(75\) −0.207107 0.358719i −0.0239146 0.0414214i
\(76\) 0 0
\(77\) 1.34315 1.73205i 0.153066 0.197386i
\(78\) 0 0
\(79\) 7.41421 + 12.8418i 0.834164 + 1.44481i 0.894709 + 0.446649i \(0.147383\pi\)
−0.0605449 + 0.998165i \(0.519284\pi\)
\(80\) 0 0
\(81\) −3.74264 + 6.48244i −0.415849 + 0.720272i
\(82\) 0 0
\(83\) −13.7279 −1.50684 −0.753418 0.657542i \(-0.771596\pi\)
−0.753418 + 0.657542i \(0.771596\pi\)
\(84\) 0 0
\(85\) 4.82843 0.523716
\(86\) 0 0
\(87\) 0.207107 0.358719i 0.0222042 0.0384588i
\(88\) 0 0
\(89\) 4.32843 + 7.49706i 0.458812 + 0.794686i 0.998898 0.0469234i \(-0.0149417\pi\)
−0.540086 + 0.841610i \(0.681608\pi\)
\(90\) 0 0
\(91\) 12.6569 + 1.73205i 1.32680 + 0.181568i
\(92\) 0 0
\(93\) −1.24264 2.15232i −0.128856 0.223185i
\(94\) 0 0
\(95\) 1.41421 2.44949i 0.145095 0.251312i
\(96\) 0 0
\(97\) 11.6569 1.18357 0.591787 0.806094i \(-0.298423\pi\)
0.591787 + 0.806094i \(0.298423\pi\)
\(98\) 0 0
\(99\) −2.34315 −0.235495
\(100\) 0 0
\(101\) 5.15685 8.93193i 0.513126 0.888761i −0.486758 0.873537i \(-0.661821\pi\)
0.999884 0.0152237i \(-0.00484604\pi\)
\(102\) 0 0
\(103\) −1.20711 2.09077i −0.118940 0.206010i 0.800408 0.599456i \(-0.204616\pi\)
−0.919348 + 0.393446i \(0.871283\pi\)
\(104\) 0 0
\(105\) −1.08579 0.148586i −0.105962 0.0145006i
\(106\) 0 0
\(107\) 5.62132 + 9.73641i 0.543434 + 0.941255i 0.998704 + 0.0509012i \(0.0162093\pi\)
−0.455270 + 0.890353i \(0.650457\pi\)
\(108\) 0 0
\(109\) 6.74264 11.6786i 0.645828 1.11861i −0.338282 0.941045i \(-0.609846\pi\)
0.984110 0.177562i \(-0.0568210\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.48528 −0.421940 −0.210970 0.977493i \(-0.567662\pi\)
−0.210970 + 0.977493i \(0.567662\pi\)
\(114\) 0 0
\(115\) 0.207107 0.358719i 0.0193128 0.0334508i
\(116\) 0 0
\(117\) −6.82843 11.8272i −0.631288 1.09342i
\(118\) 0 0
\(119\) 7.82843 10.0951i 0.717631 0.925419i
\(120\) 0 0
\(121\) 5.15685 + 8.93193i 0.468805 + 0.811994i
\(122\) 0 0
\(123\) 1.62132 2.80821i 0.146190 0.253208i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 9.31371 0.826458 0.413229 0.910627i \(-0.364401\pi\)
0.413229 + 0.910627i \(0.364401\pi\)
\(128\) 0 0
\(129\) 0.742641 1.28629i 0.0653859 0.113252i
\(130\) 0 0
\(131\) −9.65685 16.7262i −0.843723 1.46137i −0.886725 0.462297i \(-0.847026\pi\)
0.0430021 0.999075i \(-0.486308\pi\)
\(132\) 0 0
\(133\) −2.82843 6.92820i −0.245256 0.600751i
\(134\) 0 0
\(135\) 1.20711 + 2.09077i 0.103891 + 0.179945i
\(136\) 0 0
\(137\) 4.82843 8.36308i 0.412520 0.714506i −0.582644 0.812727i \(-0.697982\pi\)
0.995165 + 0.0982211i \(0.0313152\pi\)
\(138\) 0 0
\(139\) 16.1421 1.36916 0.684579 0.728939i \(-0.259986\pi\)
0.684579 + 0.728939i \(0.259986\pi\)
\(140\) 0 0
\(141\) −0.828427 −0.0697661
\(142\) 0 0
\(143\) 2.00000 3.46410i 0.167248 0.289683i
\(144\) 0 0
\(145\) 0.500000 + 0.866025i 0.0415227 + 0.0719195i
\(146\) 0 0
\(147\) −2.07107 + 2.02922i −0.170819 + 0.167368i
\(148\) 0 0
\(149\) 1.08579 + 1.88064i 0.0889511 + 0.154068i 0.907068 0.420984i \(-0.138315\pi\)
−0.818117 + 0.575052i \(0.804982\pi\)
\(150\) 0 0
\(151\) 5.82843 10.0951i 0.474311 0.821530i −0.525257 0.850944i \(-0.676031\pi\)
0.999567 + 0.0294137i \(0.00936401\pi\)
\(152\) 0 0
\(153\) −13.6569 −1.10409
\(154\) 0 0
\(155\) 6.00000 0.481932
\(156\) 0 0
\(157\) −8.65685 + 14.9941i −0.690892 + 1.19666i 0.280654 + 0.959809i \(0.409449\pi\)
−0.971546 + 0.236851i \(0.923885\pi\)
\(158\) 0 0
\(159\) 0.242641 + 0.420266i 0.0192427 + 0.0333293i
\(160\) 0 0
\(161\) −0.414214 1.01461i −0.0326446 0.0799626i
\(162\) 0 0
\(163\) 6.17157 + 10.6895i 0.483395 + 0.837265i 0.999818 0.0190689i \(-0.00607020\pi\)
−0.516423 + 0.856333i \(0.672737\pi\)
\(164\) 0 0
\(165\) −0.171573 + 0.297173i −0.0133569 + 0.0231349i
\(166\) 0 0
\(167\) −22.4142 −1.73446 −0.867232 0.497904i \(-0.834103\pi\)
−0.867232 + 0.497904i \(0.834103\pi\)
\(168\) 0 0
\(169\) 10.3137 0.793362
\(170\) 0 0
\(171\) −4.00000 + 6.92820i −0.305888 + 0.529813i
\(172\) 0 0
\(173\) −1.65685 2.86976i −0.125968 0.218183i 0.796143 0.605109i \(-0.206870\pi\)
−0.922111 + 0.386925i \(0.873537\pi\)
\(174\) 0 0
\(175\) 1.62132 2.09077i 0.122560 0.158047i
\(176\) 0 0
\(177\) 0.928932 + 1.60896i 0.0698228 + 0.120937i
\(178\) 0 0
\(179\) −5.00000 + 8.66025i −0.373718 + 0.647298i −0.990134 0.140122i \(-0.955250\pi\)
0.616417 + 0.787420i \(0.288584\pi\)
\(180\) 0 0
\(181\) 2.65685 0.197482 0.0987412 0.995113i \(-0.468518\pi\)
0.0987412 + 0.995113i \(0.468518\pi\)
\(182\) 0 0
\(183\) 2.27208 0.167957
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2.00000 3.46410i −0.146254 0.253320i
\(188\) 0 0
\(189\) 6.32843 + 0.866025i 0.460325 + 0.0629941i
\(190\) 0 0
\(191\) −6.41421 11.1097i −0.464116 0.803873i 0.535045 0.844824i \(-0.320295\pi\)
−0.999161 + 0.0409507i \(0.986961\pi\)
\(192\) 0 0
\(193\) 1.00000 1.73205i 0.0719816 0.124676i −0.827788 0.561041i \(-0.810401\pi\)
0.899770 + 0.436365i \(0.143734\pi\)
\(194\) 0 0
\(195\) −2.00000 −0.143223
\(196\) 0 0
\(197\) −12.3431 −0.879413 −0.439706 0.898142i \(-0.644917\pi\)
−0.439706 + 0.898142i \(0.644917\pi\)
\(198\) 0 0
\(199\) −4.82843 + 8.36308i −0.342278 + 0.592843i −0.984855 0.173378i \(-0.944532\pi\)
0.642577 + 0.766221i \(0.277865\pi\)
\(200\) 0 0
\(201\) 1.98528 + 3.43861i 0.140031 + 0.242541i
\(202\) 0 0
\(203\) 2.62132 + 0.358719i 0.183981 + 0.0251772i
\(204\) 0 0
\(205\) 3.91421 + 6.77962i 0.273381 + 0.473509i
\(206\) 0 0
\(207\) −0.585786 + 1.01461i −0.0407150 + 0.0705204i
\(208\) 0 0
\(209\) −2.34315 −0.162079
\(210\) 0 0
\(211\) −20.4853 −1.41026 −0.705132 0.709076i \(-0.749112\pi\)
−0.705132 + 0.709076i \(0.749112\pi\)
\(212\) 0 0
\(213\) 0.928932 1.60896i 0.0636494 0.110244i
\(214\) 0 0
\(215\) 1.79289 + 3.10538i 0.122274 + 0.211785i
\(216\) 0 0
\(217\) 9.72792 12.5446i 0.660374 0.851584i
\(218\) 0 0
\(219\) 0.171573 + 0.297173i 0.0115938 + 0.0200811i
\(220\) 0 0
\(221\) 11.6569 20.1903i 0.784125 1.35814i
\(222\) 0 0
\(223\) −0.343146 −0.0229787 −0.0114894 0.999934i \(-0.503657\pi\)
−0.0114894 + 0.999934i \(0.503657\pi\)
\(224\) 0 0
\(225\) −2.82843 −0.188562
\(226\) 0 0
\(227\) −3.48528 + 6.03668i −0.231326 + 0.400669i −0.958199 0.286104i \(-0.907640\pi\)
0.726872 + 0.686773i \(0.240973\pi\)
\(228\) 0 0
\(229\) 5.82843 + 10.0951i 0.385153 + 0.667105i 0.991790 0.127874i \(-0.0408152\pi\)
−0.606637 + 0.794979i \(0.707482\pi\)
\(230\) 0 0
\(231\) 0.343146 + 0.840532i 0.0225773 + 0.0553029i
\(232\) 0 0
\(233\) 8.41421 + 14.5738i 0.551233 + 0.954764i 0.998186 + 0.0602067i \(0.0191760\pi\)
−0.446952 + 0.894558i \(0.647491\pi\)
\(234\) 0 0
\(235\) 1.00000 1.73205i 0.0652328 0.112987i
\(236\) 0 0
\(237\) −6.14214 −0.398975
\(238\) 0 0
\(239\) 21.3137 1.37867 0.689335 0.724443i \(-0.257903\pi\)
0.689335 + 0.724443i \(0.257903\pi\)
\(240\) 0 0
\(241\) −13.8284 + 23.9515i −0.890767 + 1.54285i −0.0518100 + 0.998657i \(0.516499\pi\)
−0.838957 + 0.544197i \(0.816834\pi\)
\(242\) 0 0
\(243\) −5.17157 8.95743i −0.331757 0.574619i
\(244\) 0 0
\(245\) −1.74264 6.77962i −0.111333 0.433134i
\(246\) 0 0
\(247\) −6.82843 11.8272i −0.434482 0.752546i
\(248\) 0 0
\(249\) 2.84315 4.92447i 0.180177 0.312076i
\(250\) 0 0
\(251\) 9.31371 0.587876 0.293938 0.955824i \(-0.405034\pi\)
0.293938 + 0.955824i \(0.405034\pi\)
\(252\) 0 0
\(253\) −0.343146 −0.0215734
\(254\) 0 0
\(255\) −1.00000 + 1.73205i −0.0626224 + 0.108465i
\(256\) 0 0
\(257\) −3.17157 5.49333i −0.197837 0.342664i 0.749990 0.661450i \(-0.230058\pi\)
−0.947827 + 0.318785i \(0.896725\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.41421 2.44949i −0.0875376 0.151620i
\(262\) 0 0
\(263\) −14.5208 + 25.1508i −0.895392 + 1.55086i −0.0620729 + 0.998072i \(0.519771\pi\)
−0.833319 + 0.552793i \(0.813562\pi\)
\(264\) 0 0
\(265\) −1.17157 −0.0719691
\(266\) 0 0
\(267\) −3.58579 −0.219447
\(268\) 0 0
\(269\) −10.2279 + 17.7153i −0.623607 + 1.08012i 0.365201 + 0.930929i \(0.381000\pi\)
−0.988808 + 0.149191i \(0.952333\pi\)
\(270\) 0 0
\(271\) 8.24264 + 14.2767i 0.500705 + 0.867246i 1.00000 0.000813982i \(0.000259099\pi\)
−0.499295 + 0.866432i \(0.666408\pi\)
\(272\) 0 0
\(273\) −3.24264 + 4.18154i −0.196254 + 0.253078i
\(274\) 0 0
\(275\) −0.414214 0.717439i −0.0249780 0.0432632i
\(276\) 0 0
\(277\) −8.07107 + 13.9795i −0.484943 + 0.839947i −0.999850 0.0172994i \(-0.994493\pi\)
0.514907 + 0.857246i \(0.327826\pi\)
\(278\) 0 0
\(279\) −16.9706 −1.01600
\(280\) 0 0
\(281\) −30.2843 −1.80661 −0.903304 0.429001i \(-0.858866\pi\)
−0.903304 + 0.429001i \(0.858866\pi\)
\(282\) 0 0
\(283\) 7.00000 12.1244i 0.416107 0.720718i −0.579437 0.815017i \(-0.696728\pi\)
0.995544 + 0.0942988i \(0.0300609\pi\)
\(284\) 0 0
\(285\) 0.585786 + 1.01461i 0.0346990 + 0.0601004i
\(286\) 0 0
\(287\) 20.5208 + 2.80821i 1.21131 + 0.165763i
\(288\) 0 0
\(289\) −3.15685 5.46783i −0.185697 0.321637i
\(290\) 0 0
\(291\) −2.41421 + 4.18154i −0.141524 + 0.245126i
\(292\) 0 0
\(293\) −16.0000 −0.934730 −0.467365 0.884064i \(-0.654797\pi\)
−0.467365 + 0.884064i \(0.654797\pi\)
\(294\) 0 0
\(295\) −4.48528 −0.261143
\(296\) 0 0
\(297\) 1.00000 1.73205i 0.0580259 0.100504i
\(298\) 0 0
\(299\) −1.00000 1.73205i −0.0578315 0.100167i
\(300\) 0 0
\(301\) 9.39949 + 1.28629i 0.541778 + 0.0741406i
\(302\) 0 0
\(303\) 2.13604 + 3.69973i 0.122712 + 0.212544i
\(304\) 0 0
\(305\) −2.74264 + 4.75039i −0.157043 + 0.272007i
\(306\) 0 0
\(307\) 4.75736 0.271517 0.135758 0.990742i \(-0.456653\pi\)
0.135758 + 0.990742i \(0.456653\pi\)
\(308\) 0 0
\(309\) 1.00000 0.0568880
\(310\) 0 0
\(311\) −6.58579 + 11.4069i −0.373446 + 0.646827i −0.990093 0.140413i \(-0.955157\pi\)
0.616647 + 0.787239i \(0.288490\pi\)
\(312\) 0 0
\(313\) 3.17157 + 5.49333i 0.179268 + 0.310501i 0.941630 0.336650i \(-0.109294\pi\)
−0.762362 + 0.647151i \(0.775960\pi\)
\(314\) 0 0
\(315\) −4.58579 + 5.91359i −0.258380 + 0.333193i
\(316\) 0 0
\(317\) 6.89949 + 11.9503i 0.387514 + 0.671194i 0.992115 0.125335i \(-0.0400005\pi\)
−0.604600 + 0.796529i \(0.706667\pi\)
\(318\) 0 0
\(319\) 0.414214 0.717439i 0.0231915 0.0401689i
\(320\) 0 0
\(321\) −4.65685 −0.259920
\(322\) 0 0
\(323\) −13.6569 −0.759888
\(324\) 0 0
\(325\) 2.41421 4.18154i 0.133916 0.231950i
\(326\) 0 0
\(327\) 2.79289 + 4.83743i 0.154447 + 0.267511i
\(328\) 0 0
\(329\) −2.00000 4.89898i −0.110264 0.270089i
\(330\) 0 0
\(331\) 11.4853 + 19.8931i 0.631288 + 1.09342i 0.987289 + 0.158937i \(0.0508068\pi\)
−0.356001 + 0.934486i \(0.615860\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.58579 −0.523727
\(336\) 0 0
\(337\) 9.17157 0.499607 0.249804 0.968296i \(-0.419634\pi\)
0.249804 + 0.968296i \(0.419634\pi\)
\(338\) 0 0
\(339\) 0.928932 1.60896i 0.0504527 0.0873866i
\(340\) 0 0
\(341\) −2.48528 4.30463i −0.134586 0.233109i
\(342\) 0 0
\(343\) −17.0000 7.34847i −0.917914 0.396780i
\(344\) 0 0
\(345\) 0.0857864 + 0.148586i 0.00461859 + 0.00799963i
\(346\) 0 0
\(347\) 3.96447 6.86666i 0.212824 0.368621i −0.739773 0.672856i \(-0.765067\pi\)
0.952597 + 0.304235i \(0.0984007\pi\)
\(348\) 0 0
\(349\) −15.3431 −0.821300 −0.410650 0.911793i \(-0.634698\pi\)
−0.410650 + 0.911793i \(0.634698\pi\)
\(350\) 0 0
\(351\) 11.6569 0.622197
\(352\) 0 0
\(353\) 13.4142 23.2341i 0.713967 1.23663i −0.249390 0.968403i \(-0.580230\pi\)
0.963357 0.268223i \(-0.0864365\pi\)
\(354\) 0 0
\(355\) 2.24264 + 3.88437i 0.119027 + 0.206161i
\(356\) 0 0
\(357\) 2.00000 + 4.89898i 0.105851 + 0.259281i
\(358\) 0 0
\(359\) −5.00000 8.66025i −0.263890 0.457071i 0.703382 0.710812i \(-0.251672\pi\)
−0.967272 + 0.253741i \(0.918339\pi\)
\(360\) 0 0
\(361\) 5.50000 9.52628i 0.289474 0.501383i
\(362\) 0 0
\(363\) −4.27208 −0.224226
\(364\) 0 0
\(365\) −0.828427 −0.0433619
\(366\) 0 0
\(367\) −1.37868 + 2.38794i −0.0719665 + 0.124650i −0.899763 0.436379i \(-0.856261\pi\)
0.827797 + 0.561028i \(0.189594\pi\)
\(368\) 0 0
\(369\) −11.0711 19.1757i −0.576337 0.998245i
\(370\) 0 0
\(371\) −1.89949 + 2.44949i −0.0986169 + 0.127171i
\(372\) 0 0
\(373\) 10.4853 + 18.1610i 0.542907 + 0.940343i 0.998735 + 0.0502752i \(0.0160098\pi\)
−0.455828 + 0.890068i \(0.650657\pi\)
\(374\) 0 0
\(375\) −0.207107 + 0.358719i −0.0106949 + 0.0185242i
\(376\) 0 0
\(377\) 4.82843 0.248677
\(378\) 0 0
\(379\) −26.8284 −1.37808 −0.689042 0.724722i \(-0.741968\pi\)
−0.689042 + 0.724722i \(0.741968\pi\)
\(380\) 0 0
\(381\) −1.92893 + 3.34101i −0.0988222 + 0.171165i
\(382\) 0 0
\(383\) −1.44975 2.51104i −0.0740786 0.128308i 0.826607 0.562780i \(-0.190268\pi\)
−0.900685 + 0.434472i \(0.856935\pi\)
\(384\) 0 0
\(385\) −2.17157 0.297173i −0.110674 0.0151453i
\(386\) 0 0
\(387\) −5.07107 8.78335i −0.257777 0.446483i
\(388\) 0 0
\(389\) −11.8284 + 20.4874i −0.599725 + 1.03875i 0.393136 + 0.919480i \(0.371390\pi\)
−0.992861 + 0.119274i \(0.961943\pi\)
\(390\) 0 0
\(391\) −2.00000 −0.101144
\(392\) 0 0
\(393\) 8.00000 0.403547
\(394\) 0 0
\(395\) 7.41421 12.8418i 0.373050 0.646141i
\(396\) 0 0
\(397\) 8.31371 + 14.3998i 0.417253 + 0.722704i 0.995662 0.0930434i \(-0.0296595\pi\)
−0.578409 + 0.815747i \(0.696326\pi\)
\(398\) 0 0
\(399\) 3.07107 + 0.420266i 0.153746 + 0.0210396i
\(400\) 0 0
\(401\) −15.1569 26.2524i −0.756897 1.31098i −0.944426 0.328725i \(-0.893381\pi\)
0.187528 0.982259i \(-0.439952\pi\)
\(402\) 0 0
\(403\) 14.4853 25.0892i 0.721563 1.24978i
\(404\) 0 0
\(405\) 7.48528 0.371947
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 7.39949 12.8163i 0.365881 0.633725i −0.623036 0.782193i \(-0.714101\pi\)
0.988917 + 0.148468i \(0.0474342\pi\)
\(410\) 0 0
\(411\) 2.00000 + 3.46410i 0.0986527 + 0.170872i
\(412\) 0 0
\(413\) −7.27208 + 9.37769i −0.357836 + 0.461446i
\(414\) 0 0
\(415\) 6.86396 + 11.8887i 0.336939 + 0.583595i
\(416\) 0 0
\(417\) −3.34315 + 5.79050i −0.163715 + 0.283562i
\(418\) 0 0
\(419\) 0.686292 0.0335275 0.0167638 0.999859i \(-0.494664\pi\)
0.0167638 + 0.999859i \(0.494664\pi\)
\(420\) 0 0
\(421\) 13.4853 0.657232 0.328616 0.944464i \(-0.393418\pi\)
0.328616 + 0.944464i \(0.393418\pi\)
\(422\) 0 0
\(423\) −2.82843 + 4.89898i −0.137523 + 0.238197i
\(424\) 0 0
\(425\) −2.41421 4.18154i −0.117107 0.202835i
\(426\) 0 0
\(427\) 5.48528 + 13.4361i 0.265451 + 0.650220i
\(428\) 0 0
\(429\) 0.828427 + 1.43488i 0.0399968 + 0.0692766i
\(430\) 0 0
\(431\) 8.89949 15.4144i 0.428674 0.742484i −0.568082 0.822972i \(-0.692314\pi\)
0.996756 + 0.0804875i \(0.0256477\pi\)
\(432\) 0 0
\(433\) 7.79899 0.374796 0.187398 0.982284i \(-0.439995\pi\)
0.187398 + 0.982284i \(0.439995\pi\)
\(434\) 0 0
\(435\) −0.414214 −0.0198600
\(436\) 0 0
\(437\) −0.585786 + 1.01461i −0.0280220 + 0.0485355i
\(438\) 0 0
\(439\) −16.9706 29.3939i −0.809961 1.40289i −0.912890 0.408205i \(-0.866155\pi\)
0.102930 0.994689i \(-0.467178\pi\)
\(440\) 0 0
\(441\) 4.92893 + 19.1757i 0.234711 + 0.913126i
\(442\) 0 0
\(443\) 15.1066 + 26.1654i 0.717736 + 1.24316i 0.961895 + 0.273420i \(0.0881550\pi\)
−0.244158 + 0.969735i \(0.578512\pi\)
\(444\) 0 0
\(445\) 4.32843 7.49706i 0.205187 0.355395i
\(446\) 0 0
\(447\) −0.899495 −0.0425447
\(448\) 0 0
\(449\) 3.82843 0.180675 0.0903373 0.995911i \(-0.471205\pi\)
0.0903373 + 0.995911i \(0.471205\pi\)
\(450\) 0 0
\(451\) 3.24264 5.61642i 0.152690 0.264467i
\(452\) 0 0
\(453\) 2.41421 + 4.18154i 0.113430 + 0.196466i
\(454\) 0 0
\(455\) −4.82843 11.8272i −0.226360 0.554467i
\(456\) 0 0
\(457\) −12.1421 21.0308i −0.567985 0.983779i −0.996765 0.0803702i \(-0.974390\pi\)
0.428780 0.903409i \(-0.358944\pi\)
\(458\) 0 0
\(459\) 5.82843 10.0951i 0.272048 0.471200i
\(460\) 0 0
\(461\) 41.3137 1.92417 0.962086 0.272748i \(-0.0879324\pi\)
0.962086 + 0.272748i \(0.0879324\pi\)
\(462\) 0 0
\(463\) 37.0416 1.72147 0.860735 0.509053i \(-0.170004\pi\)
0.860735 + 0.509053i \(0.170004\pi\)
\(464\) 0 0
\(465\) −1.24264 + 2.15232i −0.0576261 + 0.0998113i
\(466\) 0 0
\(467\) −1.55025 2.68512i −0.0717371 0.124252i 0.827926 0.560838i \(-0.189521\pi\)
−0.899663 + 0.436586i \(0.856188\pi\)
\(468\) 0 0
\(469\) −15.5416 + 20.0417i −0.717646 + 0.925439i
\(470\) 0 0
\(471\) −3.58579 6.21076i −0.165224 0.286177i
\(472\) 0 0
\(473\) 1.48528 2.57258i 0.0682933 0.118287i
\(474\) 0 0
\(475\) −2.82843 −0.129777
\(476\) 0 0
\(477\) 3.31371 0.151724
\(478\) 0 0
\(479\) −17.8284 + 30.8797i −0.814602 + 1.41093i 0.0950120 + 0.995476i \(0.469711\pi\)
−0.909614 + 0.415455i \(0.863622\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0.449747 + 0.0615465i 0.0204642 + 0.00280046i
\(484\) 0 0
\(485\) −5.82843 10.0951i −0.264655 0.458396i
\(486\) 0 0
\(487\) 2.17157 3.76127i 0.0984034 0.170440i −0.812621 0.582793i \(-0.801960\pi\)
0.911024 + 0.412353i \(0.135293\pi\)
\(488\) 0 0
\(489\) −5.11270 −0.231204
\(490\) 0 0
\(491\) −9.31371 −0.420322 −0.210161 0.977667i \(-0.567399\pi\)
−0.210161 + 0.977667i \(0.567399\pi\)
\(492\) 0 0
\(493\) 2.41421 4.18154i 0.108731 0.188327i
\(494\) 0 0
\(495\) 1.17157 + 2.02922i 0.0526583 + 0.0912068i
\(496\) 0 0
\(497\) 11.7574 + 1.60896i 0.527390 + 0.0721716i
\(498\) 0 0
\(499\) −0.414214 0.717439i −0.0185427 0.0321170i 0.856605 0.515973i \(-0.172569\pi\)
−0.875148 + 0.483856i \(0.839236\pi\)
\(500\) 0 0
\(501\) 4.64214 8.04041i 0.207395 0.359219i
\(502\) 0 0
\(503\) 15.8701 0.707611 0.353805 0.935319i \(-0.384887\pi\)
0.353805 + 0.935319i \(0.384887\pi\)
\(504\) 0 0
\(505\) −10.3137 −0.458954
\(506\) 0 0
\(507\) −2.13604 + 3.69973i −0.0948648 + 0.164311i
\(508\) 0 0
\(509\) −6.67157 11.5555i −0.295712 0.512189i 0.679438 0.733733i \(-0.262224\pi\)
−0.975150 + 0.221544i \(0.928890\pi\)
\(510\) 0 0
\(511\) −1.34315 + 1.73205i −0.0594173 + 0.0766214i
\(512\) 0 0
\(513\) −3.41421 5.91359i −0.150741 0.261091i
\(514\) 0 0
\(515\) −1.20711 + 2.09077i −0.0531915 + 0.0921303i
\(516\) 0 0
\(517\) −1.65685 −0.0728684
\(518\) 0 0
\(519\) 1.37258 0.0602497
\(520\) 0 0
\(521\) −7.48528 + 12.9649i −0.327936 + 0.568002i −0.982102 0.188349i \(-0.939686\pi\)
0.654166 + 0.756351i \(0.273020\pi\)
\(522\) 0 0
\(523\) 17.8284 + 30.8797i 0.779583 + 1.35028i 0.932182 + 0.361989i \(0.117902\pi\)
−0.152600 + 0.988288i \(0.548765\pi\)
\(524\) 0 0
\(525\) 0.414214 + 1.01461i 0.0180778 + 0.0442813i
\(526\) 0 0
\(527\) −14.4853 25.0892i −0.630989 1.09290i
\(528\) 0 0
\(529\) 11.4142 19.7700i 0.496270 0.859565i
\(530\) 0 0
\(531\) 12.6863 0.550538
\(532\) 0 0
\(533\) 37.7990 1.63726
\(534\) 0 0
\(535\) 5.62132 9.73641i 0.243031 0.420942i
\(536\) 0 0
\(537\) −2.07107 3.58719i −0.0893732 0.154799i
\(538\) 0 0
\(539\) −4.14214 + 4.05845i −0.178414 + 0.174810i
\(540\) 0 0
\(541\) −3.67157 6.35935i −0.157853 0.273410i 0.776241 0.630436i \(-0.217124\pi\)
−0.934094 + 0.357026i \(0.883791\pi\)
\(542\) 0 0
\(543\) −0.550253 + 0.953065i −0.0236136 + 0.0408999i
\(544\) 0 0
\(545\) −13.4853 −0.577646
\(546\) 0 0
\(547\) −24.8995 −1.06463 −0.532313 0.846548i \(-0.678677\pi\)
−0.532313 + 0.846548i \(0.678677\pi\)
\(548\) 0 0
\(549\) 7.75736 13.4361i 0.331076 0.573441i
\(550\) 0 0
\(551\) −1.41421 2.44949i −0.0602475 0.104352i
\(552\) 0 0
\(553\) −14.8284 36.3221i −0.630569 1.54457i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11.1421 + 19.2987i −0.472107 + 0.817714i −0.999491 0.0319135i \(-0.989840\pi\)
0.527383 + 0.849628i \(0.323173\pi\)
\(558\) 0 0
\(559\) 17.3137 0.732292
\(560\) 0 0
\(561\) 1.65685 0.0699524
\(562\) 0 0
\(563\) 20.8640 36.1374i 0.879311 1.52301i 0.0272129 0.999630i \(-0.491337\pi\)
0.852098 0.523382i \(-0.175330\pi\)
\(564\) 0 0
\(565\) 2.24264 + 3.88437i 0.0943486 + 0.163417i
\(566\) 0 0
\(567\) 12.1360 15.6500i 0.509666 0.657238i
\(568\) 0 0
\(569\) −3.82843 6.63103i −0.160496 0.277987i 0.774551 0.632512i \(-0.217976\pi\)
−0.935047 + 0.354525i \(0.884643\pi\)
\(570\) 0 0
\(571\) 4.58579 7.94282i 0.191909 0.332396i −0.753974 0.656905i \(-0.771865\pi\)
0.945883 + 0.324508i \(0.105199\pi\)
\(572\) 0 0
\(573\) 5.31371 0.221983
\(574\) 0 0
\(575\) −0.414214 −0.0172739
\(576\) 0 0
\(577\) 21.9706 38.0541i 0.914646 1.58421i 0.107228 0.994234i \(-0.465802\pi\)
0.807418 0.589980i \(-0.200864\pi\)
\(578\) 0 0
\(579\) 0.414214 + 0.717439i 0.0172141 + 0.0298157i
\(580\) 0 0
\(581\) 35.9853 + 4.92447i 1.49292 + 0.204302i
\(582\) 0 0
\(583\) 0.485281 + 0.840532i 0.0200983 + 0.0348113i
\(584\) 0 0
\(585\) −6.82843 + 11.8272i −0.282321 + 0.488994i
\(586\) 0 0
\(587\) 34.2843 1.41506 0.707532 0.706682i \(-0.249809\pi\)
0.707532 + 0.706682i \(0.249809\pi\)
\(588\) 0 0
\(589\) −16.9706 −0.699260
\(590\) 0 0
\(591\) 2.55635 4.42773i 0.105154 0.182132i
\(592\) 0 0
\(593\) −2.10051 3.63818i −0.0862574 0.149402i 0.819669 0.572838i \(-0.194157\pi\)
−0.905926 + 0.423435i \(0.860824\pi\)
\(594\) 0 0
\(595\) −12.6569 1.73205i −0.518880 0.0710072i
\(596\) 0 0
\(597\) −2.00000 3.46410i −0.0818546 0.141776i
\(598\) 0 0
\(599\) 3.17157 5.49333i 0.129587 0.224451i −0.793930 0.608010i \(-0.791968\pi\)
0.923517 + 0.383558i \(0.125302\pi\)
\(600\) 0 0
\(601\) 19.6569 0.801820 0.400910 0.916117i \(-0.368694\pi\)
0.400910 + 0.916117i \(0.368694\pi\)
\(602\) 0 0
\(603\) 27.1127 1.10411
\(604\) 0 0
\(605\) 5.15685 8.93193i 0.209656 0.363135i
\(606\) 0 0
\(607\) 19.1066 + 33.0936i 0.775513 + 1.34323i 0.934506 + 0.355948i \(0.115842\pi\)
−0.158993 + 0.987280i \(0.550825\pi\)
\(608\) 0 0
\(609\) −0.671573 + 0.866025i −0.0272135 + 0.0350931i
\(610\) 0 0
\(611\) −4.82843 8.36308i −0.195337 0.338334i
\(612\) 0 0
\(613\) −17.7279 + 30.7057i −0.716024 + 1.24019i 0.246539 + 0.969133i \(0.420707\pi\)
−0.962563 + 0.271057i \(0.912627\pi\)
\(614\) 0 0
\(615\) −3.24264 −0.130756
\(616\) 0 0
\(617\) 11.3137 0.455473 0.227736 0.973723i \(-0.426868\pi\)
0.227736 + 0.973723i \(0.426868\pi\)
\(618\) 0 0
\(619\) 12.7574 22.0964i 0.512762 0.888129i −0.487129 0.873330i \(-0.661956\pi\)
0.999890 0.0147990i \(-0.00471084\pi\)
\(620\) 0 0
\(621\) −0.500000 0.866025i −0.0200643 0.0347524i
\(622\) 0 0
\(623\) −8.65685 21.2049i −0.346830 0.849555i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0.485281 0.840532i 0.0193803 0.0335676i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 20.1421 0.801846 0.400923 0.916112i \(-0.368690\pi\)
0.400923 + 0.916112i \(0.368690\pi\)
\(632\) 0 0
\(633\) 4.24264 7.34847i 0.168630 0.292075i
\(634\) 0 0
\(635\) −4.65685 8.06591i −0.184802 0.320086i
\(636\) 0 0
\(637\) −32.5563 9.08052i −1.28993 0.359783i
\(638\) 0 0
\(639\) −6.34315 10.9867i −0.250931 0.434625i
\(640\) 0 0
\(641\) −15.7426 + 27.2671i −0.621797 + 1.07698i 0.367354 + 0.930081i \(0.380264\pi\)
−0.989151 + 0.146903i \(0.953070\pi\)
\(642\) 0 0
\(643\) −26.2843 −1.03655 −0.518275 0.855214i \(-0.673426\pi\)
−0.518275 + 0.855214i \(0.673426\pi\)
\(644\) 0 0
\(645\) −1.48528 −0.0584829
\(646\) 0 0
\(647\) −15.5208 + 26.8828i −0.610186 + 1.05687i 0.381022 + 0.924566i \(0.375572\pi\)
−0.991209 + 0.132308i \(0.957761\pi\)
\(648\) 0 0
\(649\) 1.85786 + 3.21792i 0.0729276 + 0.126314i
\(650\) 0 0
\(651\) 2.48528 + 6.08767i 0.0974059 + 0.238595i
\(652\) 0 0
\(653\) 9.58579 + 16.6031i 0.375121 + 0.649728i 0.990345 0.138624i \(-0.0442679\pi\)
−0.615224 + 0.788352i \(0.710935\pi\)
\(654\) 0 0
\(655\) −9.65685 + 16.7262i −0.377325 + 0.653545i
\(656\) 0 0
\(657\) 2.34315 0.0914148
\(658\) 0 0
\(659\) −21.1716 −0.824727 −0.412364 0.911019i \(-0.635297\pi\)
−0.412364 + 0.911019i \(0.635297\pi\)
\(660\) 0 0
\(661\) −15.9142 + 27.5642i −0.618991 + 1.07212i 0.370679 + 0.928761i \(0.379125\pi\)
−0.989670 + 0.143363i \(0.954208\pi\)
\(662\) 0 0
\(663\) 4.82843 + 8.36308i 0.187521 + 0.324795i
\(664\) 0 0
\(665\) −4.58579 + 5.91359i −0.177829 + 0.229319i
\(666\) 0 0
\(667\) −0.207107 0.358719i −0.00801921 0.0138897i
\(668\) 0 0
\(669\) 0.0710678 0.123093i 0.00274764 0.00475905i
\(670\) 0 0
\(671\) 4.54416 0.175425
\(672\) 0 0
\(673\) 29.6569 1.14319 0.571594 0.820537i \(-0.306325\pi\)
0.571594 + 0.820537i \(0.306325\pi\)
\(674\) 0 0
\(675\) 1.20711 2.09077i 0.0464616 0.0804738i
\(676\) 0 0
\(677\) 14.0711 + 24.3718i 0.540795 + 0.936685i 0.998859 + 0.0477651i \(0.0152099\pi\)
−0.458064 + 0.888919i \(0.651457\pi\)
\(678\) 0 0
\(679\) −30.5563 4.18154i −1.17265 0.160473i
\(680\) 0 0
\(681\) −1.44365 2.50048i −0.0553208 0.0958185i
\(682\) 0 0
\(683\) −17.3787 + 30.1008i −0.664977 + 1.15177i 0.314315 + 0.949319i \(0.398225\pi\)
−0.979292 + 0.202455i \(0.935108\pi\)
\(684\) 0 0
\(685\) −9.65685 −0.368969
\(686\) 0 0
\(687\) −4.82843 −0.184216
\(688\) 0 0
\(689\) −2.82843 + 4.89898i −0.107754 + 0.186636i
\(690\) 0 0
\(691\) 0.414214 + 0.717439i 0.0157574 + 0.0272927i 0.873797 0.486292i \(-0.161651\pi\)
−0.858039 + 0.513584i \(0.828317\pi\)
\(692\) 0 0
\(693\) 6.14214 + 0.840532i 0.233320 + 0.0319292i
\(694\) 0 0
\(695\) −8.07107 13.9795i −0.306153 0.530273i
\(696\) 0 0
\(697\) 18.8995 32.7349i 0.715869 1.23992i
\(698\) 0 0
\(699\) −6.97056 −0.263651
\(700\) 0 0
\(701\) −3.20101 −0.120900 −0.0604502 0.998171i \(-0.519254\pi\)
−0.0604502 + 0.998171i \(0.519254\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0.414214 + 0.717439i 0.0156002 + 0.0270203i
\(706\) 0 0
\(707\) −16.7218 + 21.5636i −0.628889 + 0.810982i
\(708\) 0 0
\(709\) −7.84315 13.5847i −0.294556 0.510185i 0.680326 0.732910i \(-0.261838\pi\)
−0.974881 + 0.222725i \(0.928505\pi\)
\(710\) 0 0
\(711\) −20.9706 + 36.3221i −0.786458 + 1.36218i
\(712\) 0 0
\(713\) −2.48528 −0.0930745
\(714\) 0 0
\(715\) −4.00000 −0.149592
\(716\) 0 0
\(717\) −4.41421 + 7.64564i −0.164852 + 0.285532i
\(718\) 0 0
\(719\) 10.5563 + 18.2841i 0.393685 + 0.681883i 0.992932 0.118681i \(-0.0378666\pi\)
−0.599247 + 0.800564i \(0.704533\pi\)
\(720\) 0 0
\(721\) 2.41421 + 5.91359i 0.0899100 + 0.220234i
\(722\) 0 0
\(723\) −5.72792 9.92105i −0.213024 0.368968i
\(724\) 0 0
\(725\) 0.500000 0.866025i 0.0185695 0.0321634i
\(726\) 0 0
\(727\) 37.5858 1.39398 0.696990 0.717081i \(-0.254522\pi\)
0.696990 + 0.717081i \(0.254522\pi\)
\(728\) 0 0
\(729\) −18.1716 −0.673021
\(730\) 0 0
\(731\) 8.65685 14.9941i 0.320185 0.554577i
\(732\) 0 0
\(733\) 11.0000 + 19.0526i 0.406294 + 0.703722i 0.994471 0.105010i \(-0.0334875\pi\)
−0.588177 + 0.808732i \(0.700154\pi\)
\(734\) 0 0
\(735\) 2.79289 + 0.778985i 0.103017 + 0.0287333i
\(736\) 0 0
\(737\) 3.97056 + 6.87722i 0.146258 + 0.253326i
\(738\) 0 0
\(739\) −10.5563 + 18.2841i −0.388322 + 0.672593i −0.992224 0.124466i \(-0.960278\pi\)
0.603902 + 0.797058i \(0.293612\pi\)
\(740\) 0 0
\(741\) 5.65685 0.207810
\(742\) 0 0
\(743\) 16.0711 0.589590 0.294795 0.955560i \(-0.404749\pi\)
0.294795 + 0.955560i \(0.404749\pi\)
\(744\) 0 0
\(745\) 1.08579 1.88064i 0.0397801 0.0689012i
\(746\) 0 0
\(747\) −19.4142 33.6264i −0.710329 1.23033i
\(748\) 0 0
\(749\) −11.2426 27.5387i −0.410797 1.00624i
\(750\) 0 0
\(751\) −15.1716 26.2779i −0.553619 0.958895i −0.998010 0.0630625i \(-0.979913\pi\)
0.444391 0.895833i \(-0.353420\pi\)
\(752\) 0 0
\(753\) −1.92893 + 3.34101i −0.0702942 + 0.121753i
\(754\) 0 0
\(755\) −11.6569 −0.424236
\(756\) 0 0
\(757\) −31.4558 −1.14328 −0.571641 0.820504i \(-0.693693\pi\)
−0.571641 + 0.820504i \(0.693693\pi\)
\(758\) 0 0
\(759\) 0.0710678 0.123093i 0.00257960 0.00446800i
\(760\) 0 0
\(761\) −4.65685 8.06591i −0.168811 0.292389i 0.769191 0.639019i \(-0.220659\pi\)
−0.938002 + 0.346630i \(0.887326\pi\)
\(762\) 0 0
\(763\) −21.8640 + 28.1946i −0.791529 + 1.02071i
\(764\) 0 0
\(765\) 6.82843 + 11.8272i 0.246882 + 0.427613i
\(766\) 0 0
\(767\) −10.8284 + 18.7554i −0.390992 + 0.677218i
\(768\) 0 0
\(769\) −0.627417 −0.0226252 −0.0113126 0.999936i \(-0.503601\pi\)
−0.0113126 + 0.999936i \(0.503601\pi\)
\(770\) 0 0
\(771\) 2.62742 0.0946241
\(772\) 0 0
\(773\) 18.5563 32.1405i 0.667425 1.15601i −0.311196 0.950346i \(-0.600730\pi\)
0.978622 0.205669i \(-0.0659371\pi\)
\(774\) 0 0
\(775\) −3.00000 5.19615i −0.107763 0.186651i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −11.0711 19.1757i −0.396662 0.687039i
\(780\) 0 0
\(781\) 1.85786 3.21792i 0.0664796 0.115146i
\(782\) 0 0
\(783\) 2.41421 0.0862770
\(784\) 0 0
\(785\) 17.3137 0.617953
\(786\) 0 0
\(787\) 1.27817 2.21386i 0.0455620 0.0789157i −0.842345 0.538939i \(-0.818825\pi\)
0.887907 + 0.460023i \(0.152159\pi\)
\(788\) 0 0
\(789\) −6.01472 10.4178i −0.214130 0.370883i
\(790\) 0 0
\(791\) 11.7574 + 1.60896i 0.418044 + 0.0572080i
\(792\) 0 0
\(793\) 13.2426 + 22.9369i 0.470260 + 0.814514i
\(794\) 0 0
\(795\) 0.242641 0.420266i 0.00860558 0.0149053i
\(796\) 0 0
\(797\) −8.00000 −0.283375 −0.141687 0.989911i \(-0.545253\pi\)
−0.141687 + 0.989911i \(0.545253\pi\)
\(798\) 0 0
\(799\) −9.65685 −0.341635
\(800\) 0 0
\(801\) −12.2426 + 21.2049i −0.432572 + 0.749237i
\(802\) 0 0
\(803\) 0.343146 + 0.594346i 0.0121094 + 0.0209740i
\(804\) 0 0
\(805\) −0.671573 + 0.866025i −0.0236698 + 0.0305234i
\(806\) 0 0
\(807\) −4.23654 7.33791i −0.149133 0.258307i
\(808\) 0 0
\(809\) −17.8137 + 30.8542i −0.626297 + 1.08478i 0.361992 + 0.932181i \(0.382097\pi\)
−0.988289 + 0.152596i \(0.951237\pi\)
\(810\) 0 0
\(811\) 20.6274 0.724327 0.362163 0.932115i \(-0.382038\pi\)
0.362163 + 0.932115i \(0.382038\pi\)
\(812\) 0 0
\(813\) −6.82843 −0.239483
\(814\) 0 0
\(815\) 6.17157 10.6895i 0.216181 0.374436i
\(816\) 0 0
\(817\) −5.07107 8.78335i −0.177414 0.307290i
\(818\) 0 0
\(819\) 13.6569 + 33.4523i 0.477209 + 1.16892i
\(820\) 0 0
\(821\) −23.9706 41.5182i −0.836578 1.44900i −0.892739 0.450575i \(-0.851219\pi\)
0.0561604 0.998422i \(-0.482114\pi\)
\(822\) 0 0
\(823\) 1.03553 1.79360i 0.0360964 0.0625209i −0.847413 0.530935i \(-0.821841\pi\)
0.883509 + 0.468414i \(0.155174\pi\)
\(824\) 0 0
\(825\) 0.343146 0.0119468
\(826\) 0 0
\(827\) 26.2132 0.911522 0.455761 0.890102i \(-0.349367\pi\)
0.455761 + 0.890102i \(0.349367\pi\)
\(828\) 0 0
\(829\) −14.6569 + 25.3864i −0.509054 + 0.881707i 0.490891 + 0.871221i \(0.336671\pi\)
−0.999945 + 0.0104859i \(0.996662\pi\)
\(830\) 0 0
\(831\) −3.34315 5.79050i −0.115972 0.200870i
\(832\) 0 0
\(833\) −24.1421 + 23.6544i −0.836475 + 0.819575i
\(834\) 0 0
\(835\) 11.2071 + 19.4113i 0.387838 + 0.671755i
\(836\) 0 0
\(837\) 7.24264 12.5446i 0.250342 0.433606i
\(838\) 0 0
\(839\) −15.1716 −0.523781 −0.261890 0.965098i \(-0.584346\pi\)
−0.261890 + 0.965098i \(0.584346\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) 0 0
\(843\) 6.27208 10.8636i 0.216022 0.374161i
\(844\) 0 0
\(845\) −5.15685 8.93193i −0.177401 0.307268i
\(846\) 0 0
\(847\) −10.3137 25.2633i −0.354383 0.868058i
\(848\) 0 0
\(849\) 2.89949 + 5.02207i 0.0995104 + 0.172357i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 2.54416 0.0871102 0.0435551 0.999051i \(-0.486132\pi\)
0.0435551 + 0.999051i \(0.486132\pi\)
\(854\) 0 0
\(855\) 8.00000 0.273594
\(856\) 0 0
\(857\) −17.1421 + 29.6910i −0.585564 + 1.01423i 0.409241 + 0.912426i \(0.365794\pi\)
−0.994805 + 0.101800i \(0.967540\pi\)
\(858\) 0 0
\(859\) 0.686292 + 1.18869i 0.0234160 + 0.0405576i 0.877496 0.479584i \(-0.159212\pi\)
−0.854080 + 0.520142i \(0.825879\pi\)
\(860\) 0 0
\(861\) −5.25736 + 6.77962i −0.179170 + 0.231049i
\(862\) 0 0
\(863\) 7.27817 + 12.6062i 0.247752 + 0.429119i 0.962902 0.269852i \(-0.0869749\pi\)
−0.715150 + 0.698971i \(0.753642\pi\)
\(864\) 0 0
\(865\) −1.65685 + 2.86976i −0.0563347 + 0.0975746i
\(866\) 0 0
\(867\) 2.61522 0.0888177
\(868\) 0 0
\(869\) −12.2843 −0.416715
\(870\) 0 0
\(871\) −23.1421 + 40.0834i −0.784141 + 1.35817i
\(872\) 0 0
\(873\) 16.4853 + 28.5533i 0.557942 + 0.966384i
\(874\) 0 0
\(875\) −2.62132 0.358719i −0.0886168 0.0121269i
\(876\) 0 0
\(877\) −12.5858 21.7992i −0.424992 0.736107i 0.571428 0.820652i \(-0.306390\pi\)
−0.996420 + 0.0845449i \(0.973056\pi\)
\(878\) 0 0
\(879\) 3.31371 5.73951i 0.111769 0.193589i
\(880\) 0 0
\(881\) 1.82843 0.0616013 0.0308006 0.999526i \(-0.490194\pi\)
0.0308006 + 0.999526i \(0.490194\pi\)
\(882\) 0 0
\(883\) −18.2843 −0.615315 −0.307657 0.951497i \(-0.599545\pi\)
−0.307657 + 0.951497i \(0.599545\pi\)
\(884\) 0 0
\(885\) 0.928932 1.60896i 0.0312257 0.0540845i
\(886\) 0 0
\(887\) 14.9645 + 25.9192i 0.502458 + 0.870282i 0.999996 + 0.00284012i \(0.000904038\pi\)
−0.497538 + 0.867442i \(0.665763\pi\)
\(888\) 0 0
\(889\) −24.4142 3.34101i −0.818826 0.112054i
\(890\) 0 0
\(891\) −3.10051 5.37023i −0.103871 0.179910i
\(892\) 0 0
\(893\) −2.82843 + 4.89898i −0.0946497 + 0.163938i
\(894\) 0 0
\(895\) 10.0000 0.334263
\(896\) 0 0
\(897\) 0.828427 0.0276604
\(898\) 0 0
\(899\) 3.00000 5.19615i 0.100056 0.173301i
\(900\) 0 0
\(901\) 2.82843 + 4.89898i 0.0942286 + 0.163209i
\(902\) 0 0
\(903\) −2.40812 + 3.10538i −0.0801371 + 0.103341i
\(904\) 0 0
\(905\) −1.32843 2.30090i −0.0441584 0.0764846i
\(906\) 0 0
\(907\) −7.10660 + 12.3090i −0.235971 + 0.408713i −0.959554 0.281523i \(-0.909160\pi\)
0.723584 + 0.690237i \(0.242494\pi\)
\(908\) 0 0
\(909\) 29.1716 0.967560
\(910\) 0 0
\(911\) 10.2010 0.337975 0.168987 0.985618i \(-0.445950\pi\)
0.168987 + 0.985618i \(0.445950\pi\)
\(912\) 0 0
\(913\) 5.68629 9.84895i 0.188189 0.325953i
\(914\) 0 0
\(915\) −1.13604 1.96768i −0.0375563 0.0650494i
\(916\) 0 0
\(917\) 19.3137 + 47.3087i 0.637795 + 1.56227i
\(918\) 0 0
\(919\) −21.5563 37.3367i −0.711078 1.23162i −0.964453 0.264256i \(-0.914874\pi\)
0.253374 0.967368i \(-0.418460\pi\)
\(920\) 0 0
\(921\) −0.985281 + 1.70656i −0.0324661 + 0.0562330i
\(922\) 0 0
\(923\) 21.6569 0.712844
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 3.41421 5.91359i 0.112137 0.194228i
\(928\) 0 0
\(929\) −2.74264 4.75039i −0.0899831 0.155855i 0.817521 0.575899i \(-0.195348\pi\)
−0.907504 + 0.420044i \(0.862015\pi\)
\(930\) 0 0
\(931\) 4.92893 + 19.1757i 0.161539 + 0.628457i
\(932\) 0 0
\(933\) −2.72792 4.72490i −0.0893082 0.154686i
\(934\) 0 0
\(935\) −2.00000 + 3.46410i −0.0654070 + 0.113288i
\(936\) 0 0
\(937\) 34.6274 1.13123 0.565614 0.824670i \(-0.308639\pi\)
0.565614 + 0.824670i \(0.308639\pi\)
\(938\) 0 0
\(939\) −2.62742 −0.0857425
\(940\) 0 0
\(941\) 23.1421 40.0834i 0.754412 1.30668i −0.191254 0.981541i \(-0.561255\pi\)
0.945666 0.325139i \(-0.105411\pi\)
\(942\) 0 0
\(943\) −1.62132 2.80821i −0.0527975 0.0914479i
\(944\) 0 0
\(945\) −2.41421 5.91359i −0.0785344 0.192369i
\(946\) 0 0
\(947\) 16.5919 + 28.7380i 0.539164 + 0.933859i 0.998949 + 0.0458290i \(0.0145929\pi\)
−0.459786 + 0.888030i \(0.652074\pi\)
\(948\) 0 0
\(949\) −2.00000 + 3.46410i −0.0649227 + 0.112449i
\(950\) 0 0
\(951\) −5.71573 −0.185345
\(952\) 0 0
\(953\) −13.6569 −0.442389 −0.221194 0.975230i \(-0.570996\pi\)
−0.221194 + 0.975230i \(0.570996\pi\)
\(954\) 0 0
\(955\) −6.41421 + 11.1097i −0.207559 + 0.359503i
\(956\) 0 0
\(957\) 0.171573 + 0.297173i 0.00554616 + 0.00960624i
\(958\) 0 0
\(959\) −15.6569 + 20.1903i −0.505586 + 0.651978i
\(960\) 0 0
\(961\) −2.50000 4.33013i −0.0806452 0.139682i
\(962\) 0 0
\(963\) −15.8995 + 27.5387i −0.512354 + 0.887423i
\(964\) 0 0
\(965\) −2.00000 −0.0643823
\(966\) 0 0
\(967\) −37.5269 −1.20678 −0.603392 0.797445i \(-0.706185\pi\)
−0.603392 + 0.797445i \(0.706185\pi\)
\(968\) 0 0
\(969\) 2.82843 4.89898i 0.0908622 0.157378i
\(970\) 0 0
\(971\) −12.0000 20.7846i −0.385098 0.667010i 0.606685 0.794943i \(-0.292499\pi\)
−0.991783 + 0.127933i \(0.959166\pi\)
\(972\) 0 0
\(973\) −42.3137 5.79050i −1.35652 0.185635i
\(974\) 0 0
\(975\) 1.00000 + 1.73205i 0.0320256 + 0.0554700i
\(976\) 0 0
\(977\) 0.656854 1.13770i 0.0210146 0.0363984i −0.855327 0.518089i \(-0.826644\pi\)
0.876341 + 0.481690i \(0.159977\pi\)
\(978\) 0 0
\(979\) −7.17157 −0.229204
\(980\) 0 0
\(981\) 38.1421 1.21778
\(982\) 0 0
\(983\) 14.1066 24.4334i 0.449931 0.779303i −0.548450 0.836183i \(-0.684782\pi\)
0.998381 + 0.0568803i \(0.0181153\pi\)
\(984\) 0 0
\(985\) 6.17157 + 10.6895i 0.196643 + 0.340595i
\(986\) 0 0
\(987\) 2.17157 + 0.297173i 0.0691219 + 0.00945912i
\(988\) 0 0
\(989\) −0.742641 1.28629i −0.0236146 0.0409017i
\(990\) 0 0
\(991\) −2.17157 + 3.76127i −0.0689823 + 0.119481i −0.898454 0.439069i \(-0.855309\pi\)
0.829471 + 0.558549i \(0.188642\pi\)
\(992\) 0 0
\(993\) −9.51472 −0.301940
\(994\) 0 0
\(995\) 9.65685 0.306143
\(996\) 0 0
\(997\) −16.7279 + 28.9736i −0.529779 + 0.917603i 0.469618 + 0.882870i \(0.344392\pi\)
−0.999397 + 0.0347337i \(0.988942\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.2.q.k.81.1 4
4.3 odd 2 35.2.e.a.11.1 4
7.2 even 3 inner 560.2.q.k.401.1 4
7.3 odd 6 3920.2.a.bv.1.1 2
7.4 even 3 3920.2.a.bq.1.2 2
12.11 even 2 315.2.j.e.46.2 4
20.3 even 4 175.2.k.a.74.1 8
20.7 even 4 175.2.k.a.74.4 8
20.19 odd 2 175.2.e.c.151.2 4
28.3 even 6 245.2.a.g.1.2 2
28.11 odd 6 245.2.a.h.1.2 2
28.19 even 6 245.2.e.e.226.1 4
28.23 odd 6 35.2.e.a.16.1 yes 4
28.27 even 2 245.2.e.e.116.1 4
84.11 even 6 2205.2.a.n.1.1 2
84.23 even 6 315.2.j.e.226.2 4
84.59 odd 6 2205.2.a.q.1.1 2
140.3 odd 12 1225.2.b.h.99.1 4
140.23 even 12 175.2.k.a.149.4 8
140.39 odd 6 1225.2.a.k.1.1 2
140.59 even 6 1225.2.a.m.1.1 2
140.67 even 12 1225.2.b.g.99.4 4
140.79 odd 6 175.2.e.c.51.2 4
140.87 odd 12 1225.2.b.h.99.4 4
140.107 even 12 175.2.k.a.149.1 8
140.123 even 12 1225.2.b.g.99.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.e.a.11.1 4 4.3 odd 2
35.2.e.a.16.1 yes 4 28.23 odd 6
175.2.e.c.51.2 4 140.79 odd 6
175.2.e.c.151.2 4 20.19 odd 2
175.2.k.a.74.1 8 20.3 even 4
175.2.k.a.74.4 8 20.7 even 4
175.2.k.a.149.1 8 140.107 even 12
175.2.k.a.149.4 8 140.23 even 12
245.2.a.g.1.2 2 28.3 even 6
245.2.a.h.1.2 2 28.11 odd 6
245.2.e.e.116.1 4 28.27 even 2
245.2.e.e.226.1 4 28.19 even 6
315.2.j.e.46.2 4 12.11 even 2
315.2.j.e.226.2 4 84.23 even 6
560.2.q.k.81.1 4 1.1 even 1 trivial
560.2.q.k.401.1 4 7.2 even 3 inner
1225.2.a.k.1.1 2 140.39 odd 6
1225.2.a.m.1.1 2 140.59 even 6
1225.2.b.g.99.1 4 140.123 even 12
1225.2.b.g.99.4 4 140.67 even 12
1225.2.b.h.99.1 4 140.3 odd 12
1225.2.b.h.99.4 4 140.87 odd 12
2205.2.a.n.1.1 2 84.11 even 6
2205.2.a.q.1.1 2 84.59 odd 6
3920.2.a.bq.1.2 2 7.4 even 3
3920.2.a.bv.1.1 2 7.3 odd 6