Properties

Label 35.2.e.a.11.1
Level $35$
Weight $2$
Character 35.11
Analytic conductor $0.279$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [35,2,Mod(11,35)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("35.11");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 35.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.279476407074\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 11.1
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 35.11
Dual form 35.2.e.a.16.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20711 - 2.09077i) q^{2} +(0.207107 - 0.358719i) q^{3} +(-1.91421 + 3.31552i) q^{4} +(-0.500000 - 0.866025i) q^{5} -1.00000 q^{6} +(2.62132 + 0.358719i) q^{7} +4.41421 q^{8} +(1.41421 + 2.44949i) q^{9} +O(q^{10})\) \(q+(-1.20711 - 2.09077i) q^{2} +(0.207107 - 0.358719i) q^{3} +(-1.91421 + 3.31552i) q^{4} +(-0.500000 - 0.866025i) q^{5} -1.00000 q^{6} +(2.62132 + 0.358719i) q^{7} +4.41421 q^{8} +(1.41421 + 2.44949i) q^{9} +(-1.20711 + 2.09077i) q^{10} +(0.414214 - 0.717439i) q^{11} +(0.792893 + 1.37333i) q^{12} -4.82843 q^{13} +(-2.41421 - 5.91359i) q^{14} -0.414214 q^{15} +(-1.50000 - 2.59808i) q^{16} +(-2.41421 + 4.18154i) q^{17} +(3.41421 - 5.91359i) q^{18} +(-1.41421 - 2.44949i) q^{19} +3.82843 q^{20} +(0.671573 - 0.866025i) q^{21} -2.00000 q^{22} +(-0.207107 - 0.358719i) q^{23} +(0.914214 - 1.58346i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(5.82843 + 10.0951i) q^{26} +2.41421 q^{27} +(-6.20711 + 8.00436i) q^{28} -1.00000 q^{29} +(0.500000 + 0.866025i) q^{30} +(3.00000 - 5.19615i) q^{31} +(0.792893 - 1.37333i) q^{32} +(-0.171573 - 0.297173i) q^{33} +11.6569 q^{34} +(-1.00000 - 2.44949i) q^{35} -10.8284 q^{36} +(-3.41421 + 5.91359i) q^{38} +(-1.00000 + 1.73205i) q^{39} +(-2.20711 - 3.82282i) q^{40} -7.82843 q^{41} +(-2.62132 - 0.358719i) q^{42} +3.58579 q^{43} +(1.58579 + 2.74666i) q^{44} +(1.41421 - 2.44949i) q^{45} +(-0.500000 + 0.866025i) q^{46} +(-1.00000 - 1.73205i) q^{47} -1.24264 q^{48} +(6.74264 + 1.88064i) q^{49} +2.41421 q^{50} +(1.00000 + 1.73205i) q^{51} +(9.24264 - 16.0087i) q^{52} +(0.585786 - 1.01461i) q^{53} +(-2.91421 - 5.04757i) q^{54} -0.828427 q^{55} +(11.5711 + 1.58346i) q^{56} -1.17157 q^{57} +(1.20711 + 2.09077i) q^{58} +(-2.24264 + 3.88437i) q^{59} +(0.792893 - 1.37333i) q^{60} +(-2.74264 - 4.75039i) q^{61} -14.4853 q^{62} +(2.82843 + 6.92820i) q^{63} -9.82843 q^{64} +(2.41421 + 4.18154i) q^{65} +(-0.414214 + 0.717439i) q^{66} +(-4.79289 + 8.30153i) q^{67} +(-9.24264 - 16.0087i) q^{68} -0.171573 q^{69} +(-3.91421 + 5.04757i) q^{70} +4.48528 q^{71} +(6.24264 + 10.8126i) q^{72} +(0.414214 - 0.717439i) q^{73} +(0.207107 + 0.358719i) q^{75} +10.8284 q^{76} +(1.34315 - 1.73205i) q^{77} +4.82843 q^{78} +(-7.41421 - 12.8418i) q^{79} +(-1.50000 + 2.59808i) q^{80} +(-3.74264 + 6.48244i) q^{81} +(9.44975 + 16.3674i) q^{82} +13.7279 q^{83} +(1.58579 + 3.88437i) q^{84} +4.82843 q^{85} +(-4.32843 - 7.49706i) q^{86} +(-0.207107 + 0.358719i) q^{87} +(1.82843 - 3.16693i) q^{88} +(4.32843 + 7.49706i) q^{89} -6.82843 q^{90} +(-12.6569 - 1.73205i) q^{91} +1.58579 q^{92} +(-1.24264 - 2.15232i) q^{93} +(-2.41421 + 4.18154i) q^{94} +(-1.41421 + 2.44949i) q^{95} +(-0.328427 - 0.568852i) q^{96} +11.6569 q^{97} +(-4.20711 - 16.3674i) q^{98} +2.34315 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{3} - 2 q^{4} - 2 q^{5} - 4 q^{6} + 2 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} - 2 q^{3} - 2 q^{4} - 2 q^{5} - 4 q^{6} + 2 q^{7} + 12 q^{8} - 2 q^{10} - 4 q^{11} + 6 q^{12} - 8 q^{13} - 4 q^{14} + 4 q^{15} - 6 q^{16} - 4 q^{17} + 8 q^{18} + 4 q^{20} + 14 q^{21} - 8 q^{22} + 2 q^{23} - 2 q^{24} - 2 q^{25} + 12 q^{26} + 4 q^{27} - 22 q^{28} - 4 q^{29} + 2 q^{30} + 12 q^{31} + 6 q^{32} - 12 q^{33} + 24 q^{34} - 4 q^{35} - 32 q^{36} - 8 q^{38} - 4 q^{39} - 6 q^{40} - 20 q^{41} - 2 q^{42} + 20 q^{43} + 12 q^{44} - 2 q^{46} - 4 q^{47} + 12 q^{48} + 10 q^{49} + 4 q^{50} + 4 q^{51} + 20 q^{52} + 8 q^{53} - 6 q^{54} + 8 q^{55} + 18 q^{56} - 16 q^{57} + 2 q^{58} + 8 q^{59} + 6 q^{60} + 6 q^{61} - 24 q^{62} - 28 q^{64} + 4 q^{65} + 4 q^{66} - 22 q^{67} - 20 q^{68} - 12 q^{69} - 10 q^{70} - 16 q^{71} + 8 q^{72} - 4 q^{73} - 2 q^{75} + 32 q^{76} + 28 q^{77} + 8 q^{78} - 24 q^{79} - 6 q^{80} + 2 q^{81} + 18 q^{82} + 4 q^{83} + 12 q^{84} + 8 q^{85} - 6 q^{86} + 2 q^{87} - 4 q^{88} + 6 q^{89} - 16 q^{90} - 28 q^{91} + 12 q^{92} + 12 q^{93} - 4 q^{94} + 10 q^{96} + 24 q^{97} - 14 q^{98} + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/35\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.20711 2.09077i −0.853553 1.47840i −0.877981 0.478696i \(-0.841110\pi\)
0.0244272 0.999702i \(-0.492224\pi\)
\(3\) 0.207107 0.358719i 0.119573 0.207107i −0.800025 0.599966i \(-0.795181\pi\)
0.919599 + 0.392859i \(0.128514\pi\)
\(4\) −1.91421 + 3.31552i −0.957107 + 1.65776i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) −1.00000 −0.408248
\(7\) 2.62132 + 0.358719i 0.990766 + 0.135583i
\(8\) 4.41421 1.56066
\(9\) 1.41421 + 2.44949i 0.471405 + 0.816497i
\(10\) −1.20711 + 2.09077i −0.381721 + 0.661160i
\(11\) 0.414214 0.717439i 0.124890 0.216316i −0.796800 0.604243i \(-0.793476\pi\)
0.921690 + 0.387927i \(0.126809\pi\)
\(12\) 0.792893 + 1.37333i 0.228889 + 0.396447i
\(13\) −4.82843 −1.33916 −0.669582 0.742738i \(-0.733527\pi\)
−0.669582 + 0.742738i \(0.733527\pi\)
\(14\) −2.41421 5.91359i −0.645226 1.58047i
\(15\) −0.414214 −0.106949
\(16\) −1.50000 2.59808i −0.375000 0.649519i
\(17\) −2.41421 + 4.18154i −0.585533 + 1.01417i 0.409276 + 0.912411i \(0.365781\pi\)
−0.994809 + 0.101762i \(0.967552\pi\)
\(18\) 3.41421 5.91359i 0.804738 1.39385i
\(19\) −1.41421 2.44949i −0.324443 0.561951i 0.656957 0.753928i \(-0.271843\pi\)
−0.981399 + 0.191977i \(0.938510\pi\)
\(20\) 3.82843 0.856062
\(21\) 0.671573 0.866025i 0.146549 0.188982i
\(22\) −2.00000 −0.426401
\(23\) −0.207107 0.358719i −0.0431847 0.0747982i 0.843625 0.536933i \(-0.180417\pi\)
−0.886810 + 0.462134i \(0.847084\pi\)
\(24\) 0.914214 1.58346i 0.186613 0.323223i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 5.82843 + 10.0951i 1.14305 + 1.97982i
\(27\) 2.41421 0.464616
\(28\) −6.20711 + 8.00436i −1.17303 + 1.51268i
\(29\) −1.00000 −0.185695 −0.0928477 0.995680i \(-0.529597\pi\)
−0.0928477 + 0.995680i \(0.529597\pi\)
\(30\) 0.500000 + 0.866025i 0.0912871 + 0.158114i
\(31\) 3.00000 5.19615i 0.538816 0.933257i −0.460152 0.887840i \(-0.652205\pi\)
0.998968 0.0454165i \(-0.0144615\pi\)
\(32\) 0.792893 1.37333i 0.140165 0.242773i
\(33\) −0.171573 0.297173i −0.0298670 0.0517312i
\(34\) 11.6569 1.99913
\(35\) −1.00000 2.44949i −0.169031 0.414039i
\(36\) −10.8284 −1.80474
\(37\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(38\) −3.41421 + 5.91359i −0.553859 + 0.959311i
\(39\) −1.00000 + 1.73205i −0.160128 + 0.277350i
\(40\) −2.20711 3.82282i −0.348974 0.604441i
\(41\) −7.82843 −1.22259 −0.611297 0.791401i \(-0.709352\pi\)
−0.611297 + 0.791401i \(0.709352\pi\)
\(42\) −2.62132 0.358719i −0.404479 0.0553516i
\(43\) 3.58579 0.546827 0.273414 0.961897i \(-0.411847\pi\)
0.273414 + 0.961897i \(0.411847\pi\)
\(44\) 1.58579 + 2.74666i 0.239066 + 0.414075i
\(45\) 1.41421 2.44949i 0.210819 0.365148i
\(46\) −0.500000 + 0.866025i −0.0737210 + 0.127688i
\(47\) −1.00000 1.73205i −0.145865 0.252646i 0.783830 0.620975i \(-0.213263\pi\)
−0.929695 + 0.368329i \(0.879930\pi\)
\(48\) −1.24264 −0.179360
\(49\) 6.74264 + 1.88064i 0.963234 + 0.268662i
\(50\) 2.41421 0.341421
\(51\) 1.00000 + 1.73205i 0.140028 + 0.242536i
\(52\) 9.24264 16.0087i 1.28172 2.22001i
\(53\) 0.585786 1.01461i 0.0804640 0.139368i −0.822985 0.568063i \(-0.807693\pi\)
0.903449 + 0.428695i \(0.141026\pi\)
\(54\) −2.91421 5.04757i −0.396574 0.686887i
\(55\) −0.828427 −0.111705
\(56\) 11.5711 + 1.58346i 1.54625 + 0.211599i
\(57\) −1.17157 −0.155179
\(58\) 1.20711 + 2.09077i 0.158501 + 0.274532i
\(59\) −2.24264 + 3.88437i −0.291967 + 0.505702i −0.974275 0.225363i \(-0.927643\pi\)
0.682308 + 0.731065i \(0.260976\pi\)
\(60\) 0.792893 1.37333i 0.102362 0.177296i
\(61\) −2.74264 4.75039i −0.351159 0.608226i 0.635294 0.772271i \(-0.280879\pi\)
−0.986453 + 0.164045i \(0.947546\pi\)
\(62\) −14.4853 −1.83963
\(63\) 2.82843 + 6.92820i 0.356348 + 0.872872i
\(64\) −9.82843 −1.22855
\(65\) 2.41421 + 4.18154i 0.299446 + 0.518656i
\(66\) −0.414214 + 0.717439i −0.0509862 + 0.0883106i
\(67\) −4.79289 + 8.30153i −0.585545 + 1.01419i 0.409262 + 0.912417i \(0.365786\pi\)
−0.994807 + 0.101777i \(0.967547\pi\)
\(68\) −9.24264 16.0087i −1.12083 1.94134i
\(69\) −0.171573 −0.0206549
\(70\) −3.91421 + 5.04757i −0.467838 + 0.603300i
\(71\) 4.48528 0.532305 0.266152 0.963931i \(-0.414248\pi\)
0.266152 + 0.963931i \(0.414248\pi\)
\(72\) 6.24264 + 10.8126i 0.735702 + 1.27427i
\(73\) 0.414214 0.717439i 0.0484800 0.0839699i −0.840767 0.541397i \(-0.817896\pi\)
0.889247 + 0.457427i \(0.151229\pi\)
\(74\) 0 0
\(75\) 0.207107 + 0.358719i 0.0239146 + 0.0414214i
\(76\) 10.8284 1.24211
\(77\) 1.34315 1.73205i 0.153066 0.197386i
\(78\) 4.82843 0.546712
\(79\) −7.41421 12.8418i −0.834164 1.44481i −0.894709 0.446649i \(-0.852617\pi\)
0.0605449 0.998165i \(-0.480716\pi\)
\(80\) −1.50000 + 2.59808i −0.167705 + 0.290474i
\(81\) −3.74264 + 6.48244i −0.415849 + 0.720272i
\(82\) 9.44975 + 16.3674i 1.04355 + 1.80748i
\(83\) 13.7279 1.50684 0.753418 0.657542i \(-0.228404\pi\)
0.753418 + 0.657542i \(0.228404\pi\)
\(84\) 1.58579 + 3.88437i 0.173023 + 0.423819i
\(85\) 4.82843 0.523716
\(86\) −4.32843 7.49706i −0.466746 0.808428i
\(87\) −0.207107 + 0.358719i −0.0222042 + 0.0384588i
\(88\) 1.82843 3.16693i 0.194911 0.337596i
\(89\) 4.32843 + 7.49706i 0.458812 + 0.794686i 0.998898 0.0469234i \(-0.0149417\pi\)
−0.540086 + 0.841610i \(0.681608\pi\)
\(90\) −6.82843 −0.719779
\(91\) −12.6569 1.73205i −1.32680 0.181568i
\(92\) 1.58579 0.165330
\(93\) −1.24264 2.15232i −0.128856 0.223185i
\(94\) −2.41421 + 4.18154i −0.249007 + 0.431293i
\(95\) −1.41421 + 2.44949i −0.145095 + 0.251312i
\(96\) −0.328427 0.568852i −0.0335200 0.0580583i
\(97\) 11.6569 1.18357 0.591787 0.806094i \(-0.298423\pi\)
0.591787 + 0.806094i \(0.298423\pi\)
\(98\) −4.20711 16.3674i −0.424982 1.65336i
\(99\) 2.34315 0.235495
\(100\) −1.91421 3.31552i −0.191421 0.331552i
\(101\) 5.15685 8.93193i 0.513126 0.888761i −0.486758 0.873537i \(-0.661821\pi\)
0.999884 0.0152237i \(-0.00484604\pi\)
\(102\) 2.41421 4.18154i 0.239043 0.414034i
\(103\) 1.20711 + 2.09077i 0.118940 + 0.206010i 0.919348 0.393446i \(-0.128717\pi\)
−0.800408 + 0.599456i \(0.795384\pi\)
\(104\) −21.3137 −2.08998
\(105\) −1.08579 0.148586i −0.105962 0.0145006i
\(106\) −2.82843 −0.274721
\(107\) −5.62132 9.73641i −0.543434 0.941255i −0.998704 0.0509012i \(-0.983791\pi\)
0.455270 0.890353i \(-0.349543\pi\)
\(108\) −4.62132 + 8.00436i −0.444687 + 0.770220i
\(109\) 6.74264 11.6786i 0.645828 1.11861i −0.338282 0.941045i \(-0.609846\pi\)
0.984110 0.177562i \(-0.0568210\pi\)
\(110\) 1.00000 + 1.73205i 0.0953463 + 0.165145i
\(111\) 0 0
\(112\) −3.00000 7.34847i −0.283473 0.694365i
\(113\) −4.48528 −0.421940 −0.210970 0.977493i \(-0.567662\pi\)
−0.210970 + 0.977493i \(0.567662\pi\)
\(114\) 1.41421 + 2.44949i 0.132453 + 0.229416i
\(115\) −0.207107 + 0.358719i −0.0193128 + 0.0334508i
\(116\) 1.91421 3.31552i 0.177730 0.307838i
\(117\) −6.82843 11.8272i −0.631288 1.09342i
\(118\) 10.8284 0.996838
\(119\) −7.82843 + 10.0951i −0.717631 + 0.925419i
\(120\) −1.82843 −0.166912
\(121\) 5.15685 + 8.93193i 0.468805 + 0.811994i
\(122\) −6.62132 + 11.4685i −0.599466 + 1.03831i
\(123\) −1.62132 + 2.80821i −0.146190 + 0.253208i
\(124\) 11.4853 + 19.8931i 1.03141 + 1.78645i
\(125\) 1.00000 0.0894427
\(126\) 11.0711 14.2767i 0.986289 1.27187i
\(127\) −9.31371 −0.826458 −0.413229 0.910627i \(-0.635599\pi\)
−0.413229 + 0.910627i \(0.635599\pi\)
\(128\) 10.2782 + 17.8023i 0.908471 + 1.57352i
\(129\) 0.742641 1.28629i 0.0653859 0.113252i
\(130\) 5.82843 10.0951i 0.511187 0.885402i
\(131\) 9.65685 + 16.7262i 0.843723 + 1.46137i 0.886725 + 0.462297i \(0.152974\pi\)
−0.0430021 + 0.999075i \(0.513692\pi\)
\(132\) 1.31371 0.114344
\(133\) −2.82843 6.92820i −0.245256 0.600751i
\(134\) 23.1421 1.99918
\(135\) −1.20711 2.09077i −0.103891 0.179945i
\(136\) −10.6569 + 18.4582i −0.913818 + 1.58278i
\(137\) 4.82843 8.36308i 0.412520 0.714506i −0.582644 0.812727i \(-0.697982\pi\)
0.995165 + 0.0982211i \(0.0313152\pi\)
\(138\) 0.207107 + 0.358719i 0.0176301 + 0.0305362i
\(139\) −16.1421 −1.36916 −0.684579 0.728939i \(-0.740014\pi\)
−0.684579 + 0.728939i \(0.740014\pi\)
\(140\) 10.0355 + 1.37333i 0.848157 + 0.116068i
\(141\) −0.828427 −0.0697661
\(142\) −5.41421 9.37769i −0.454351 0.786959i
\(143\) −2.00000 + 3.46410i −0.167248 + 0.289683i
\(144\) 4.24264 7.34847i 0.353553 0.612372i
\(145\) 0.500000 + 0.866025i 0.0415227 + 0.0719195i
\(146\) −2.00000 −0.165521
\(147\) 2.07107 2.02922i 0.170819 0.167368i
\(148\) 0 0
\(149\) 1.08579 + 1.88064i 0.0889511 + 0.154068i 0.907068 0.420984i \(-0.138315\pi\)
−0.818117 + 0.575052i \(0.804982\pi\)
\(150\) 0.500000 0.866025i 0.0408248 0.0707107i
\(151\) −5.82843 + 10.0951i −0.474311 + 0.821530i −0.999567 0.0294137i \(-0.990636\pi\)
0.525257 + 0.850944i \(0.323969\pi\)
\(152\) −6.24264 10.8126i −0.506345 0.877015i
\(153\) −13.6569 −1.10409
\(154\) −5.24264 0.717439i −0.422464 0.0578129i
\(155\) −6.00000 −0.481932
\(156\) −3.82843 6.63103i −0.306519 0.530907i
\(157\) −8.65685 + 14.9941i −0.690892 + 1.19666i 0.280654 + 0.959809i \(0.409449\pi\)
−0.971546 + 0.236851i \(0.923885\pi\)
\(158\) −17.8995 + 31.0028i −1.42401 + 2.46645i
\(159\) −0.242641 0.420266i −0.0192427 0.0333293i
\(160\) −1.58579 −0.125367
\(161\) −0.414214 1.01461i −0.0326446 0.0799626i
\(162\) 18.0711 1.41980
\(163\) −6.17157 10.6895i −0.483395 0.837265i 0.516423 0.856333i \(-0.327263\pi\)
−0.999818 + 0.0190689i \(0.993930\pi\)
\(164\) 14.9853 25.9553i 1.17015 2.02677i
\(165\) −0.171573 + 0.297173i −0.0133569 + 0.0231349i
\(166\) −16.5711 28.7019i −1.28616 2.22770i
\(167\) 22.4142 1.73446 0.867232 0.497904i \(-0.165897\pi\)
0.867232 + 0.497904i \(0.165897\pi\)
\(168\) 2.96447 3.82282i 0.228714 0.294937i
\(169\) 10.3137 0.793362
\(170\) −5.82843 10.0951i −0.447020 0.774261i
\(171\) 4.00000 6.92820i 0.305888 0.529813i
\(172\) −6.86396 + 11.8887i −0.523372 + 0.906507i
\(173\) −1.65685 2.86976i −0.125968 0.218183i 0.796143 0.605109i \(-0.206870\pi\)
−0.922111 + 0.386925i \(0.873537\pi\)
\(174\) 1.00000 0.0758098
\(175\) −1.62132 + 2.09077i −0.122560 + 0.158047i
\(176\) −2.48528 −0.187335
\(177\) 0.928932 + 1.60896i 0.0698228 + 0.120937i
\(178\) 10.4497 18.0995i 0.783242 1.35661i
\(179\) 5.00000 8.66025i 0.373718 0.647298i −0.616417 0.787420i \(-0.711416\pi\)
0.990134 + 0.140122i \(0.0447496\pi\)
\(180\) 5.41421 + 9.37769i 0.403552 + 0.698972i
\(181\) 2.65685 0.197482 0.0987412 0.995113i \(-0.468518\pi\)
0.0987412 + 0.995113i \(0.468518\pi\)
\(182\) 11.6569 + 28.5533i 0.864064 + 2.11651i
\(183\) −2.27208 −0.167957
\(184\) −0.914214 1.58346i −0.0673967 0.116735i
\(185\) 0 0
\(186\) −3.00000 + 5.19615i −0.219971 + 0.381000i
\(187\) 2.00000 + 3.46410i 0.146254 + 0.253320i
\(188\) 7.65685 0.558433
\(189\) 6.32843 + 0.866025i 0.460325 + 0.0629941i
\(190\) 6.82843 0.495386
\(191\) 6.41421 + 11.1097i 0.464116 + 0.803873i 0.999161 0.0409507i \(-0.0130387\pi\)
−0.535045 + 0.844824i \(0.679705\pi\)
\(192\) −2.03553 + 3.52565i −0.146902 + 0.254442i
\(193\) 1.00000 1.73205i 0.0719816 0.124676i −0.827788 0.561041i \(-0.810401\pi\)
0.899770 + 0.436365i \(0.143734\pi\)
\(194\) −14.0711 24.3718i −1.01024 1.74979i
\(195\) 2.00000 0.143223
\(196\) −19.1421 + 18.7554i −1.36730 + 1.33967i
\(197\) −12.3431 −0.879413 −0.439706 0.898142i \(-0.644917\pi\)
−0.439706 + 0.898142i \(0.644917\pi\)
\(198\) −2.82843 4.89898i −0.201008 0.348155i
\(199\) 4.82843 8.36308i 0.342278 0.592843i −0.642577 0.766221i \(-0.722135\pi\)
0.984855 + 0.173378i \(0.0554682\pi\)
\(200\) −2.20711 + 3.82282i −0.156066 + 0.270314i
\(201\) 1.98528 + 3.43861i 0.140031 + 0.242541i
\(202\) −24.8995 −1.75192
\(203\) −2.62132 0.358719i −0.183981 0.0251772i
\(204\) −7.65685 −0.536087
\(205\) 3.91421 + 6.77962i 0.273381 + 0.473509i
\(206\) 2.91421 5.04757i 0.203043 0.351681i
\(207\) 0.585786 1.01461i 0.0407150 0.0705204i
\(208\) 7.24264 + 12.5446i 0.502187 + 0.869813i
\(209\) −2.34315 −0.162079
\(210\) 1.00000 + 2.44949i 0.0690066 + 0.169031i
\(211\) 20.4853 1.41026 0.705132 0.709076i \(-0.250888\pi\)
0.705132 + 0.709076i \(0.250888\pi\)
\(212\) 2.24264 + 3.88437i 0.154025 + 0.266779i
\(213\) 0.928932 1.60896i 0.0636494 0.110244i
\(214\) −13.5711 + 23.5058i −0.927699 + 1.60682i
\(215\) −1.79289 3.10538i −0.122274 0.211785i
\(216\) 10.6569 0.725107
\(217\) 9.72792 12.5446i 0.660374 0.851584i
\(218\) −32.5563 −2.20499
\(219\) −0.171573 0.297173i −0.0115938 0.0200811i
\(220\) 1.58579 2.74666i 0.106914 0.185180i
\(221\) 11.6569 20.1903i 0.784125 1.35814i
\(222\) 0 0
\(223\) 0.343146 0.0229787 0.0114894 0.999934i \(-0.496343\pi\)
0.0114894 + 0.999934i \(0.496343\pi\)
\(224\) 2.57107 3.31552i 0.171787 0.221527i
\(225\) −2.82843 −0.188562
\(226\) 5.41421 + 9.37769i 0.360148 + 0.623795i
\(227\) 3.48528 6.03668i 0.231326 0.400669i −0.726872 0.686773i \(-0.759027\pi\)
0.958199 + 0.286104i \(0.0923602\pi\)
\(228\) 2.24264 3.88437i 0.148523 0.257249i
\(229\) 5.82843 + 10.0951i 0.385153 + 0.667105i 0.991790 0.127874i \(-0.0408152\pi\)
−0.606637 + 0.794979i \(0.707482\pi\)
\(230\) 1.00000 0.0659380
\(231\) −0.343146 0.840532i −0.0225773 0.0553029i
\(232\) −4.41421 −0.289807
\(233\) 8.41421 + 14.5738i 0.551233 + 0.954764i 0.998186 + 0.0602067i \(0.0191760\pi\)
−0.446952 + 0.894558i \(0.647491\pi\)
\(234\) −16.4853 + 28.5533i −1.07768 + 1.86659i
\(235\) −1.00000 + 1.73205i −0.0652328 + 0.112987i
\(236\) −8.58579 14.8710i −0.558887 0.968021i
\(237\) −6.14214 −0.398975
\(238\) 30.5563 + 4.18154i 1.98067 + 0.271049i
\(239\) −21.3137 −1.37867 −0.689335 0.724443i \(-0.742097\pi\)
−0.689335 + 0.724443i \(0.742097\pi\)
\(240\) 0.621320 + 1.07616i 0.0401061 + 0.0694657i
\(241\) −13.8284 + 23.9515i −0.890767 + 1.54285i −0.0518100 + 0.998657i \(0.516499\pi\)
−0.838957 + 0.544197i \(0.816834\pi\)
\(242\) 12.4497 21.5636i 0.800300 1.38616i
\(243\) 5.17157 + 8.95743i 0.331757 + 0.574619i
\(244\) 21.0000 1.34439
\(245\) −1.74264 6.77962i −0.111333 0.433134i
\(246\) 7.82843 0.499122
\(247\) 6.82843 + 11.8272i 0.434482 + 0.752546i
\(248\) 13.2426 22.9369i 0.840909 1.45650i
\(249\) 2.84315 4.92447i 0.180177 0.312076i
\(250\) −1.20711 2.09077i −0.0763441 0.132232i
\(251\) −9.31371 −0.587876 −0.293938 0.955824i \(-0.594966\pi\)
−0.293938 + 0.955824i \(0.594966\pi\)
\(252\) −28.3848 3.88437i −1.78807 0.244692i
\(253\) −0.343146 −0.0215734
\(254\) 11.2426 + 19.4728i 0.705426 + 1.22183i
\(255\) 1.00000 1.73205i 0.0626224 0.108465i
\(256\) 14.9853 25.9553i 0.936580 1.62220i
\(257\) −3.17157 5.49333i −0.197837 0.342664i 0.749990 0.661450i \(-0.230058\pi\)
−0.947827 + 0.318785i \(0.896725\pi\)
\(258\) −3.58579 −0.223241
\(259\) 0 0
\(260\) −18.4853 −1.14641
\(261\) −1.41421 2.44949i −0.0875376 0.151620i
\(262\) 23.3137 40.3805i 1.44033 2.49472i
\(263\) 14.5208 25.1508i 0.895392 1.55086i 0.0620729 0.998072i \(-0.480229\pi\)
0.833319 0.552793i \(-0.186438\pi\)
\(264\) −0.757359 1.31178i −0.0466122 0.0807348i
\(265\) −1.17157 −0.0719691
\(266\) −11.0711 + 14.2767i −0.678811 + 0.875359i
\(267\) 3.58579 0.219447
\(268\) −18.3492 31.7818i −1.12086 1.94138i
\(269\) −10.2279 + 17.7153i −0.623607 + 1.08012i 0.365201 + 0.930929i \(0.381000\pi\)
−0.988808 + 0.149191i \(0.952333\pi\)
\(270\) −2.91421 + 5.04757i −0.177353 + 0.307185i
\(271\) −8.24264 14.2767i −0.500705 0.867246i −1.00000 0.000813982i \(-0.999741\pi\)
0.499295 0.866432i \(-0.333592\pi\)
\(272\) 14.4853 0.878299
\(273\) −3.24264 + 4.18154i −0.196254 + 0.253078i
\(274\) −23.3137 −1.40843
\(275\) 0.414214 + 0.717439i 0.0249780 + 0.0432632i
\(276\) 0.328427 0.568852i 0.0197690 0.0342409i
\(277\) −8.07107 + 13.9795i −0.484943 + 0.839947i −0.999850 0.0172994i \(-0.994493\pi\)
0.514907 + 0.857246i \(0.327826\pi\)
\(278\) 19.4853 + 33.7495i 1.16865 + 2.02416i
\(279\) 16.9706 1.01600
\(280\) −4.41421 10.8126i −0.263800 0.646175i
\(281\) −30.2843 −1.80661 −0.903304 0.429001i \(-0.858866\pi\)
−0.903304 + 0.429001i \(0.858866\pi\)
\(282\) 1.00000 + 1.73205i 0.0595491 + 0.103142i
\(283\) −7.00000 + 12.1244i −0.416107 + 0.720718i −0.995544 0.0942988i \(-0.969939\pi\)
0.579437 + 0.815017i \(0.303272\pi\)
\(284\) −8.58579 + 14.8710i −0.509473 + 0.882433i
\(285\) 0.585786 + 1.01461i 0.0346990 + 0.0601004i
\(286\) 9.65685 0.571022
\(287\) −20.5208 2.80821i −1.21131 0.165763i
\(288\) 4.48528 0.264298
\(289\) −3.15685 5.46783i −0.185697 0.321637i
\(290\) 1.20711 2.09077i 0.0708838 0.122774i
\(291\) 2.41421 4.18154i 0.141524 0.245126i
\(292\) 1.58579 + 2.74666i 0.0928011 + 0.160736i
\(293\) −16.0000 −0.934730 −0.467365 0.884064i \(-0.654797\pi\)
−0.467365 + 0.884064i \(0.654797\pi\)
\(294\) −6.74264 1.88064i −0.393239 0.109681i
\(295\) 4.48528 0.261143
\(296\) 0 0
\(297\) 1.00000 1.73205i 0.0580259 0.100504i
\(298\) 2.62132 4.54026i 0.151849 0.263010i
\(299\) 1.00000 + 1.73205i 0.0578315 + 0.100167i
\(300\) −1.58579 −0.0915554
\(301\) 9.39949 + 1.28629i 0.541778 + 0.0741406i
\(302\) 28.1421 1.61940
\(303\) −2.13604 3.69973i −0.122712 0.212544i
\(304\) −4.24264 + 7.34847i −0.243332 + 0.421464i
\(305\) −2.74264 + 4.75039i −0.157043 + 0.272007i
\(306\) 16.4853 + 28.5533i 0.942401 + 1.63229i
\(307\) −4.75736 −0.271517 −0.135758 0.990742i \(-0.543347\pi\)
−0.135758 + 0.990742i \(0.543347\pi\)
\(308\) 3.17157 + 7.76874i 0.180717 + 0.442665i
\(309\) 1.00000 0.0568880
\(310\) 7.24264 + 12.5446i 0.411354 + 0.712487i
\(311\) 6.58579 11.4069i 0.373446 0.646827i −0.616647 0.787239i \(-0.711510\pi\)
0.990093 + 0.140413i \(0.0448429\pi\)
\(312\) −4.41421 + 7.64564i −0.249906 + 0.432849i
\(313\) 3.17157 + 5.49333i 0.179268 + 0.310501i 0.941630 0.336650i \(-0.109294\pi\)
−0.762362 + 0.647151i \(0.775960\pi\)
\(314\) 41.7990 2.35885
\(315\) 4.58579 5.91359i 0.258380 0.333193i
\(316\) 56.7696 3.19354
\(317\) 6.89949 + 11.9503i 0.387514 + 0.671194i 0.992115 0.125335i \(-0.0400005\pi\)
−0.604600 + 0.796529i \(0.706667\pi\)
\(318\) −0.585786 + 1.01461i −0.0328493 + 0.0568966i
\(319\) −0.414214 + 0.717439i −0.0231915 + 0.0401689i
\(320\) 4.91421 + 8.51167i 0.274713 + 0.475817i
\(321\) −4.65685 −0.259920
\(322\) −1.62132 + 2.09077i −0.0903527 + 0.116514i
\(323\) 13.6569 0.759888
\(324\) −14.3284 24.8176i −0.796024 1.37875i
\(325\) 2.41421 4.18154i 0.133916 0.231950i
\(326\) −14.8995 + 25.8067i −0.825207 + 1.42930i
\(327\) −2.79289 4.83743i −0.154447 0.267511i
\(328\) −34.5563 −1.90806
\(329\) −2.00000 4.89898i −0.110264 0.270089i
\(330\) 0.828427 0.0456034
\(331\) −11.4853 19.8931i −0.631288 1.09342i −0.987289 0.158937i \(-0.949193\pi\)
0.356001 0.934486i \(-0.384140\pi\)
\(332\) −26.2782 + 45.5151i −1.44220 + 2.49797i
\(333\) 0 0
\(334\) −27.0563 46.8630i −1.48046 2.56423i
\(335\) 9.58579 0.523727
\(336\) −3.25736 0.445759i −0.177704 0.0243182i
\(337\) 9.17157 0.499607 0.249804 0.968296i \(-0.419634\pi\)
0.249804 + 0.968296i \(0.419634\pi\)
\(338\) −12.4497 21.5636i −0.677177 1.17290i
\(339\) −0.928932 + 1.60896i −0.0504527 + 0.0873866i
\(340\) −9.24264 + 16.0087i −0.501253 + 0.868195i
\(341\) −2.48528 4.30463i −0.134586 0.233109i
\(342\) −19.3137 −1.04437
\(343\) 17.0000 + 7.34847i 0.917914 + 0.396780i
\(344\) 15.8284 0.853412
\(345\) 0.0857864 + 0.148586i 0.00461859 + 0.00799963i
\(346\) −4.00000 + 6.92820i −0.215041 + 0.372463i
\(347\) −3.96447 + 6.86666i −0.212824 + 0.368621i −0.952597 0.304235i \(-0.901599\pi\)
0.739773 + 0.672856i \(0.234933\pi\)
\(348\) −0.792893 1.37333i −0.0425035 0.0736183i
\(349\) −15.3431 −0.821300 −0.410650 0.911793i \(-0.634698\pi\)
−0.410650 + 0.911793i \(0.634698\pi\)
\(350\) 6.32843 + 0.866025i 0.338269 + 0.0462910i
\(351\) −11.6569 −0.622197
\(352\) −0.656854 1.13770i −0.0350104 0.0606399i
\(353\) 13.4142 23.2341i 0.713967 1.23663i −0.249390 0.968403i \(-0.580230\pi\)
0.963357 0.268223i \(-0.0864365\pi\)
\(354\) 2.24264 3.88437i 0.119195 0.206452i
\(355\) −2.24264 3.88437i −0.119027 0.206161i
\(356\) −33.1421 −1.75653
\(357\) 2.00000 + 4.89898i 0.105851 + 0.259281i
\(358\) −24.1421 −1.27595
\(359\) 5.00000 + 8.66025i 0.263890 + 0.457071i 0.967272 0.253741i \(-0.0816611\pi\)
−0.703382 + 0.710812i \(0.748328\pi\)
\(360\) 6.24264 10.8126i 0.329016 0.569873i
\(361\) 5.50000 9.52628i 0.289474 0.501383i
\(362\) −3.20711 5.55487i −0.168562 0.291958i
\(363\) 4.27208 0.224226
\(364\) 29.9706 38.6485i 1.57088 2.02573i
\(365\) −0.828427 −0.0433619
\(366\) 2.74264 + 4.75039i 0.143360 + 0.248307i
\(367\) 1.37868 2.38794i 0.0719665 0.124650i −0.827797 0.561028i \(-0.810406\pi\)
0.899763 + 0.436379i \(0.143739\pi\)
\(368\) −0.621320 + 1.07616i −0.0323886 + 0.0560986i
\(369\) −11.0711 19.1757i −0.576337 0.998245i
\(370\) 0 0
\(371\) 1.89949 2.44949i 0.0986169 0.127171i
\(372\) 9.51472 0.493315
\(373\) 10.4853 + 18.1610i 0.542907 + 0.940343i 0.998735 + 0.0502752i \(0.0160098\pi\)
−0.455828 + 0.890068i \(0.650657\pi\)
\(374\) 4.82843 8.36308i 0.249672 0.432445i
\(375\) 0.207107 0.358719i 0.0106949 0.0185242i
\(376\) −4.41421 7.64564i −0.227646 0.394294i
\(377\) 4.82843 0.248677
\(378\) −5.82843 14.2767i −0.299782 0.734313i
\(379\) 26.8284 1.37808 0.689042 0.724722i \(-0.258032\pi\)
0.689042 + 0.724722i \(0.258032\pi\)
\(380\) −5.41421 9.37769i −0.277743 0.481065i
\(381\) −1.92893 + 3.34101i −0.0988222 + 0.171165i
\(382\) 15.4853 26.8213i 0.792296 1.37230i
\(383\) 1.44975 + 2.51104i 0.0740786 + 0.128308i 0.900685 0.434472i \(-0.143065\pi\)
−0.826607 + 0.562780i \(0.809732\pi\)
\(384\) 8.51472 0.434515
\(385\) −2.17157 0.297173i −0.110674 0.0151453i
\(386\) −4.82843 −0.245760
\(387\) 5.07107 + 8.78335i 0.257777 + 0.446483i
\(388\) −22.3137 + 38.6485i −1.13281 + 1.96208i
\(389\) −11.8284 + 20.4874i −0.599725 + 1.03875i 0.393136 + 0.919480i \(0.371390\pi\)
−0.992861 + 0.119274i \(0.961943\pi\)
\(390\) −2.41421 4.18154i −0.122248 0.211741i
\(391\) 2.00000 0.101144
\(392\) 29.7635 + 8.30153i 1.50328 + 0.419291i
\(393\) 8.00000 0.403547
\(394\) 14.8995 + 25.8067i 0.750626 + 1.30012i
\(395\) −7.41421 + 12.8418i −0.373050 + 0.646141i
\(396\) −4.48528 + 7.76874i −0.225394 + 0.390394i
\(397\) 8.31371 + 14.3998i 0.417253 + 0.722704i 0.995662 0.0930434i \(-0.0296595\pi\)
−0.578409 + 0.815747i \(0.696326\pi\)
\(398\) −23.3137 −1.16861
\(399\) −3.07107 0.420266i −0.153746 0.0210396i
\(400\) 3.00000 0.150000
\(401\) −15.1569 26.2524i −0.756897 1.31098i −0.944426 0.328725i \(-0.893381\pi\)
0.187528 0.982259i \(-0.439952\pi\)
\(402\) 4.79289 8.30153i 0.239048 0.414043i
\(403\) −14.4853 + 25.0892i −0.721563 + 1.24978i
\(404\) 19.7426 + 34.1953i 0.982233 + 1.70128i
\(405\) 7.48528 0.371947
\(406\) 2.41421 + 5.91359i 0.119815 + 0.293487i
\(407\) 0 0
\(408\) 4.41421 + 7.64564i 0.218536 + 0.378516i
\(409\) 7.39949 12.8163i 0.365881 0.633725i −0.623036 0.782193i \(-0.714101\pi\)
0.988917 + 0.148468i \(0.0474342\pi\)
\(410\) 9.44975 16.3674i 0.466690 0.808330i
\(411\) −2.00000 3.46410i −0.0986527 0.170872i
\(412\) −9.24264 −0.455352
\(413\) −7.27208 + 9.37769i −0.357836 + 0.461446i
\(414\) −2.82843 −0.139010
\(415\) −6.86396 11.8887i −0.336939 0.583595i
\(416\) −3.82843 + 6.63103i −0.187704 + 0.325113i
\(417\) −3.34315 + 5.79050i −0.163715 + 0.283562i
\(418\) 2.82843 + 4.89898i 0.138343 + 0.239617i
\(419\) −0.686292 −0.0335275 −0.0167638 0.999859i \(-0.505336\pi\)
−0.0167638 + 0.999859i \(0.505336\pi\)
\(420\) 2.57107 3.31552i 0.125455 0.161781i
\(421\) 13.4853 0.657232 0.328616 0.944464i \(-0.393418\pi\)
0.328616 + 0.944464i \(0.393418\pi\)
\(422\) −24.7279 42.8300i −1.20374 2.08493i
\(423\) 2.82843 4.89898i 0.137523 0.238197i
\(424\) 2.58579 4.47871i 0.125577 0.217506i
\(425\) −2.41421 4.18154i −0.117107 0.202835i
\(426\) −4.48528 −0.217313
\(427\) −5.48528 13.4361i −0.265451 0.650220i
\(428\) 43.0416 2.08050
\(429\) 0.828427 + 1.43488i 0.0399968 + 0.0692766i
\(430\) −4.32843 + 7.49706i −0.208735 + 0.361540i
\(431\) −8.89949 + 15.4144i −0.428674 + 0.742484i −0.996756 0.0804875i \(-0.974352\pi\)
0.568082 + 0.822972i \(0.307686\pi\)
\(432\) −3.62132 6.27231i −0.174231 0.301777i
\(433\) 7.79899 0.374796 0.187398 0.982284i \(-0.439995\pi\)
0.187398 + 0.982284i \(0.439995\pi\)
\(434\) −37.9706 5.19615i −1.82265 0.249423i
\(435\) 0.414214 0.0198600
\(436\) 25.8137 + 44.7107i 1.23625 + 2.14125i
\(437\) −0.585786 + 1.01461i −0.0280220 + 0.0485355i
\(438\) −0.414214 + 0.717439i −0.0197919 + 0.0342806i
\(439\) 16.9706 + 29.3939i 0.809961 + 1.40289i 0.912890 + 0.408205i \(0.133845\pi\)
−0.102930 + 0.994689i \(0.532822\pi\)
\(440\) −3.65685 −0.174334
\(441\) 4.92893 + 19.1757i 0.234711 + 0.913126i
\(442\) −56.2843 −2.67717
\(443\) −15.1066 26.1654i −0.717736 1.24316i −0.961895 0.273420i \(-0.911845\pi\)
0.244158 0.969735i \(-0.421488\pi\)
\(444\) 0 0
\(445\) 4.32843 7.49706i 0.205187 0.355395i
\(446\) −0.414214 0.717439i −0.0196136 0.0339717i
\(447\) 0.899495 0.0425447
\(448\) −25.7635 3.52565i −1.21721 0.166571i
\(449\) 3.82843 0.180675 0.0903373 0.995911i \(-0.471205\pi\)
0.0903373 + 0.995911i \(0.471205\pi\)
\(450\) 3.41421 + 5.91359i 0.160948 + 0.278769i
\(451\) −3.24264 + 5.61642i −0.152690 + 0.264467i
\(452\) 8.58579 14.8710i 0.403841 0.699474i
\(453\) 2.41421 + 4.18154i 0.113430 + 0.196466i
\(454\) −16.8284 −0.789797
\(455\) 4.82843 + 11.8272i 0.226360 + 0.554467i
\(456\) −5.17157 −0.242181
\(457\) −12.1421 21.0308i −0.567985 0.983779i −0.996765 0.0803702i \(-0.974390\pi\)
0.428780 0.903409i \(-0.358944\pi\)
\(458\) 14.0711 24.3718i 0.657498 1.13882i
\(459\) −5.82843 + 10.0951i −0.272048 + 0.471200i
\(460\) −0.792893 1.37333i −0.0369688 0.0640319i
\(461\) 41.3137 1.92417 0.962086 0.272748i \(-0.0879324\pi\)
0.962086 + 0.272748i \(0.0879324\pi\)
\(462\) −1.34315 + 1.73205i −0.0624888 + 0.0805823i
\(463\) −37.0416 −1.72147 −0.860735 0.509053i \(-0.829996\pi\)
−0.860735 + 0.509053i \(0.829996\pi\)
\(464\) 1.50000 + 2.59808i 0.0696358 + 0.120613i
\(465\) −1.24264 + 2.15232i −0.0576261 + 0.0998113i
\(466\) 20.3137 35.1844i 0.941014 1.62988i
\(467\) 1.55025 + 2.68512i 0.0717371 + 0.124252i 0.899663 0.436586i \(-0.143812\pi\)
−0.827926 + 0.560838i \(0.810479\pi\)
\(468\) 52.2843 2.41684
\(469\) −15.5416 + 20.0417i −0.717646 + 0.925439i
\(470\) 4.82843 0.222719
\(471\) 3.58579 + 6.21076i 0.165224 + 0.286177i
\(472\) −9.89949 + 17.1464i −0.455661 + 0.789228i
\(473\) 1.48528 2.57258i 0.0682933 0.118287i
\(474\) 7.41421 + 12.8418i 0.340546 + 0.589843i
\(475\) 2.82843 0.129777
\(476\) −18.4853 45.2795i −0.847271 2.07538i
\(477\) 3.31371 0.151724
\(478\) 25.7279 + 44.5621i 1.17677 + 2.03822i
\(479\) 17.8284 30.8797i 0.814602 1.41093i −0.0950120 0.995476i \(-0.530289\pi\)
0.909614 0.415455i \(-0.136378\pi\)
\(480\) −0.328427 + 0.568852i −0.0149906 + 0.0259644i
\(481\) 0 0
\(482\) 66.7696 3.04127
\(483\) −0.449747 0.0615465i −0.0204642 0.00280046i
\(484\) −39.4853 −1.79479
\(485\) −5.82843 10.0951i −0.264655 0.458396i
\(486\) 12.4853 21.6251i 0.566344 0.980936i
\(487\) −2.17157 + 3.76127i −0.0984034 + 0.170440i −0.911024 0.412353i \(-0.864707\pi\)
0.812621 + 0.582793i \(0.198040\pi\)
\(488\) −12.1066 20.9692i −0.548040 0.949233i
\(489\) −5.11270 −0.231204
\(490\) −12.0711 + 11.8272i −0.545315 + 0.534298i
\(491\) 9.31371 0.420322 0.210161 0.977667i \(-0.432601\pi\)
0.210161 + 0.977667i \(0.432601\pi\)
\(492\) −6.20711 10.7510i −0.279838 0.484694i
\(493\) 2.41421 4.18154i 0.108731 0.188327i
\(494\) 16.4853 28.5533i 0.741708 1.28468i
\(495\) −1.17157 2.02922i −0.0526583 0.0912068i
\(496\) −18.0000 −0.808224
\(497\) 11.7574 + 1.60896i 0.527390 + 0.0721716i
\(498\) −13.7279 −0.615163
\(499\) 0.414214 + 0.717439i 0.0185427 + 0.0321170i 0.875148 0.483856i \(-0.160764\pi\)
−0.856605 + 0.515973i \(0.827431\pi\)
\(500\) −1.91421 + 3.31552i −0.0856062 + 0.148274i
\(501\) 4.64214 8.04041i 0.207395 0.359219i
\(502\) 11.2426 + 19.4728i 0.501784 + 0.869115i
\(503\) −15.8701 −0.707611 −0.353805 0.935319i \(-0.615113\pi\)
−0.353805 + 0.935319i \(0.615113\pi\)
\(504\) 12.4853 + 30.5826i 0.556139 + 1.36226i
\(505\) −10.3137 −0.458954
\(506\) 0.414214 + 0.717439i 0.0184140 + 0.0318941i
\(507\) 2.13604 3.69973i 0.0948648 0.164311i
\(508\) 17.8284 30.8797i 0.791009 1.37007i
\(509\) −6.67157 11.5555i −0.295712 0.512189i 0.679438 0.733733i \(-0.262224\pi\)
−0.975150 + 0.221544i \(0.928890\pi\)
\(510\) −4.82843 −0.213806
\(511\) 1.34315 1.73205i 0.0594173 0.0766214i
\(512\) −31.2426 −1.38074
\(513\) −3.41421 5.91359i −0.150741 0.261091i
\(514\) −7.65685 + 13.2621i −0.337729 + 0.584964i
\(515\) 1.20711 2.09077i 0.0531915 0.0921303i
\(516\) 2.84315 + 4.92447i 0.125163 + 0.216788i
\(517\) −1.65685 −0.0728684
\(518\) 0 0
\(519\) −1.37258 −0.0602497
\(520\) 10.6569 + 18.4582i 0.467334 + 0.809446i
\(521\) −7.48528 + 12.9649i −0.327936 + 0.568002i −0.982102 0.188349i \(-0.939686\pi\)
0.654166 + 0.756351i \(0.273020\pi\)
\(522\) −3.41421 + 5.91359i −0.149436 + 0.258831i
\(523\) −17.8284 30.8797i −0.779583 1.35028i −0.932182 0.361989i \(-0.882098\pi\)
0.152600 0.988288i \(-0.451235\pi\)
\(524\) −73.9411 −3.23013
\(525\) 0.414214 + 1.01461i 0.0180778 + 0.0442813i
\(526\) −70.1127 −3.05706
\(527\) 14.4853 + 25.0892i 0.630989 + 1.09290i
\(528\) −0.514719 + 0.891519i −0.0224003 + 0.0387984i
\(529\) 11.4142 19.7700i 0.496270 0.859565i
\(530\) 1.41421 + 2.44949i 0.0614295 + 0.106399i
\(531\) −12.6863 −0.550538
\(532\) 28.3848 + 3.88437i 1.23064 + 0.168409i
\(533\) 37.7990 1.63726
\(534\) −4.32843 7.49706i −0.187309 0.324429i
\(535\) −5.62132 + 9.73641i −0.243031 + 0.420942i
\(536\) −21.1569 + 36.6447i −0.913837 + 1.58281i
\(537\) −2.07107 3.58719i −0.0893732 0.154799i
\(538\) 49.3848 2.12913
\(539\) 4.14214 4.05845i 0.178414 0.174810i
\(540\) 9.24264 0.397740
\(541\) −3.67157 6.35935i −0.157853 0.273410i 0.776241 0.630436i \(-0.217124\pi\)
−0.934094 + 0.357026i \(0.883791\pi\)
\(542\) −19.8995 + 34.4669i −0.854756 + 1.48048i
\(543\) 0.550253 0.953065i 0.0236136 0.0408999i
\(544\) 3.82843 + 6.63103i 0.164142 + 0.284303i
\(545\) −13.4853 −0.577646
\(546\) 12.6569 + 1.73205i 0.541663 + 0.0741249i
\(547\) 24.8995 1.06463 0.532313 0.846548i \(-0.321323\pi\)
0.532313 + 0.846548i \(0.321323\pi\)
\(548\) 18.4853 + 32.0174i 0.789652 + 1.36772i
\(549\) 7.75736 13.4361i 0.331076 0.573441i
\(550\) 1.00000 1.73205i 0.0426401 0.0738549i
\(551\) 1.41421 + 2.44949i 0.0602475 + 0.104352i
\(552\) −0.757359 −0.0322354
\(553\) −14.8284 36.3221i −0.630569 1.54457i
\(554\) 38.9706 1.65570
\(555\) 0 0
\(556\) 30.8995 53.5195i 1.31043 2.26973i
\(557\) −11.1421 + 19.2987i −0.472107 + 0.817714i −0.999491 0.0319135i \(-0.989840\pi\)
0.527383 + 0.849628i \(0.323173\pi\)
\(558\) −20.4853 35.4815i −0.867211 1.50205i
\(559\) −17.3137 −0.732292
\(560\) −4.86396 + 6.27231i −0.205540 + 0.265054i
\(561\) 1.65685 0.0699524
\(562\) 36.5563 + 63.3175i 1.54204 + 2.67089i
\(563\) −20.8640 + 36.1374i −0.879311 + 1.52301i −0.0272129 + 0.999630i \(0.508663\pi\)
−0.852098 + 0.523382i \(0.824670\pi\)
\(564\) 1.58579 2.74666i 0.0667737 0.115655i
\(565\) 2.24264 + 3.88437i 0.0943486 + 0.163417i
\(566\) 33.7990 1.42068
\(567\) −12.1360 + 15.6500i −0.509666 + 0.657238i
\(568\) 19.7990 0.830747
\(569\) −3.82843 6.63103i −0.160496 0.277987i 0.774551 0.632512i \(-0.217976\pi\)
−0.935047 + 0.354525i \(0.884643\pi\)
\(570\) 1.41421 2.44949i 0.0592349 0.102598i
\(571\) −4.58579 + 7.94282i −0.191909 + 0.332396i −0.945883 0.324508i \(-0.894801\pi\)
0.753974 + 0.656905i \(0.228135\pi\)
\(572\) −7.65685 13.2621i −0.320149 0.554515i
\(573\) 5.31371 0.221983
\(574\) 18.8995 + 46.2941i 0.788850 + 1.93228i
\(575\) 0.414214 0.0172739
\(576\) −13.8995 24.0746i −0.579146 1.00311i
\(577\) 21.9706 38.0541i 0.914646 1.58421i 0.107228 0.994234i \(-0.465802\pi\)
0.807418 0.589980i \(-0.200864\pi\)
\(578\) −7.62132 + 13.2005i −0.317005 + 0.549069i
\(579\) −0.414214 0.717439i −0.0172141 0.0298157i
\(580\) −3.82843 −0.158967
\(581\) 35.9853 + 4.92447i 1.49292 + 0.204302i
\(582\) −11.6569 −0.483192
\(583\) −0.485281 0.840532i −0.0200983 0.0348113i
\(584\) 1.82843 3.16693i 0.0756609 0.131048i
\(585\) −6.82843 + 11.8272i −0.282321 + 0.488994i
\(586\) 19.3137 + 33.4523i 0.797842 + 1.38190i
\(587\) −34.2843 −1.41506 −0.707532 0.706682i \(-0.750191\pi\)
−0.707532 + 0.706682i \(0.750191\pi\)
\(588\) 2.76346 + 10.7510i 0.113963 + 0.443365i
\(589\) −16.9706 −0.699260
\(590\) −5.41421 9.37769i −0.222900 0.386074i
\(591\) −2.55635 + 4.42773i −0.105154 + 0.182132i
\(592\) 0 0
\(593\) −2.10051 3.63818i −0.0862574 0.149402i 0.819669 0.572838i \(-0.194157\pi\)
−0.905926 + 0.423435i \(0.860824\pi\)
\(594\) −4.82843 −0.198113
\(595\) 12.6569 + 1.73205i 0.518880 + 0.0710072i
\(596\) −8.31371 −0.340543
\(597\) −2.00000 3.46410i −0.0818546 0.141776i
\(598\) 2.41421 4.18154i 0.0987245 0.170996i
\(599\) −3.17157 + 5.49333i −0.129587 + 0.224451i −0.923517 0.383558i \(-0.874698\pi\)
0.793930 + 0.608010i \(0.208032\pi\)
\(600\) 0.914214 + 1.58346i 0.0373226 + 0.0646447i
\(601\) 19.6569 0.801820 0.400910 0.916117i \(-0.368694\pi\)
0.400910 + 0.916117i \(0.368694\pi\)
\(602\) −8.65685 21.2049i −0.352827 0.864246i
\(603\) −27.1127 −1.10411
\(604\) −22.3137 38.6485i −0.907932 1.57258i
\(605\) 5.15685 8.93193i 0.209656 0.363135i
\(606\) −5.15685 + 8.93193i −0.209483 + 0.362835i
\(607\) −19.1066 33.0936i −0.775513 1.34323i −0.934506 0.355948i \(-0.884158\pi\)
0.158993 0.987280i \(-0.449175\pi\)
\(608\) −4.48528 −0.181902
\(609\) −0.671573 + 0.866025i −0.0272135 + 0.0350931i
\(610\) 13.2426 0.536179
\(611\) 4.82843 + 8.36308i 0.195337 + 0.338334i
\(612\) 26.1421 45.2795i 1.05673 1.83032i
\(613\) −17.7279 + 30.7057i −0.716024 + 1.24019i 0.246539 + 0.969133i \(0.420707\pi\)
−0.962563 + 0.271057i \(0.912627\pi\)
\(614\) 5.74264 + 9.94655i 0.231754 + 0.401410i
\(615\) 3.24264 0.130756
\(616\) 5.92893 7.64564i 0.238883 0.308052i
\(617\) 11.3137 0.455473 0.227736 0.973723i \(-0.426868\pi\)
0.227736 + 0.973723i \(0.426868\pi\)
\(618\) −1.20711 2.09077i −0.0485570 0.0841031i
\(619\) −12.7574 + 22.0964i −0.512762 + 0.888129i 0.487129 + 0.873330i \(0.338044\pi\)
−0.999890 + 0.0147990i \(0.995289\pi\)
\(620\) 11.4853 19.8931i 0.461260 0.798926i
\(621\) −0.500000 0.866025i −0.0200643 0.0347524i
\(622\) −31.7990 −1.27502
\(623\) 8.65685 + 21.2049i 0.346830 + 0.849555i
\(624\) 6.00000 0.240192
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 7.65685 13.2621i 0.306029 0.530059i
\(627\) −0.485281 + 0.840532i −0.0193803 + 0.0335676i
\(628\) −33.1421 57.4039i −1.32252 2.29066i
\(629\) 0 0
\(630\) −17.8995 2.44949i −0.713133 0.0975900i
\(631\) −20.1421 −0.801846 −0.400923 0.916112i \(-0.631310\pi\)
−0.400923 + 0.916112i \(0.631310\pi\)
\(632\) −32.7279 56.6864i −1.30185 2.25486i
\(633\) 4.24264 7.34847i 0.168630 0.292075i
\(634\) 16.6569 28.8505i 0.661528 1.14580i
\(635\) 4.65685 + 8.06591i 0.184802 + 0.320086i
\(636\) 1.85786 0.0736691
\(637\) −32.5563 9.08052i −1.28993 0.359783i
\(638\) 2.00000 0.0791808
\(639\) 6.34315 + 10.9867i 0.250931 + 0.434625i
\(640\) 10.2782 17.8023i 0.406281 0.703699i
\(641\) −15.7426 + 27.2671i −0.621797 + 1.07698i 0.367354 + 0.930081i \(0.380264\pi\)
−0.989151 + 0.146903i \(0.953070\pi\)
\(642\) 5.62132 + 9.73641i 0.221856 + 0.384266i
\(643\) 26.2843 1.03655 0.518275 0.855214i \(-0.326574\pi\)
0.518275 + 0.855214i \(0.326574\pi\)
\(644\) 4.15685 + 0.568852i 0.163803 + 0.0224159i
\(645\) −1.48528 −0.0584829
\(646\) −16.4853 28.5533i −0.648605 1.12342i
\(647\) 15.5208 26.8828i 0.610186 1.05687i −0.381022 0.924566i \(-0.624428\pi\)
0.991209 0.132308i \(-0.0422387\pi\)
\(648\) −16.5208 + 28.6149i −0.648999 + 1.12410i
\(649\) 1.85786 + 3.21792i 0.0729276 + 0.126314i
\(650\) −11.6569 −0.457219
\(651\) −2.48528 6.08767i −0.0974059 0.238595i
\(652\) 47.2548 1.85064
\(653\) 9.58579 + 16.6031i 0.375121 + 0.649728i 0.990345 0.138624i \(-0.0442679\pi\)
−0.615224 + 0.788352i \(0.710935\pi\)
\(654\) −6.74264 + 11.6786i −0.263658 + 0.456669i
\(655\) 9.65685 16.7262i 0.377325 0.653545i
\(656\) 11.7426 + 20.3389i 0.458473 + 0.794099i
\(657\) 2.34315 0.0914148
\(658\) −7.82843 + 10.0951i −0.305184 + 0.393549i
\(659\) 21.1716 0.824727 0.412364 0.911019i \(-0.364703\pi\)
0.412364 + 0.911019i \(0.364703\pi\)
\(660\) −0.656854 1.13770i −0.0255680 0.0442851i
\(661\) −15.9142 + 27.5642i −0.618991 + 1.07212i 0.370679 + 0.928761i \(0.379125\pi\)
−0.989670 + 0.143363i \(0.954208\pi\)
\(662\) −27.7279 + 48.0262i −1.07768 + 1.86659i
\(663\) −4.82843 8.36308i −0.187521 0.324795i
\(664\) 60.5980 2.35166
\(665\) −4.58579 + 5.91359i −0.177829 + 0.229319i
\(666\) 0 0
\(667\) 0.207107 + 0.358719i 0.00801921 + 0.0138897i
\(668\) −42.9056 + 74.3147i −1.66007 + 2.87532i
\(669\) 0.0710678 0.123093i 0.00274764 0.00475905i
\(670\) −11.5711 20.0417i −0.447029 0.774278i
\(671\) −4.54416 −0.175425
\(672\) −0.656854 1.60896i −0.0253387 0.0620669i
\(673\) 29.6569 1.14319 0.571594 0.820537i \(-0.306325\pi\)
0.571594 + 0.820537i \(0.306325\pi\)
\(674\) −11.0711 19.1757i −0.426442 0.738619i
\(675\) −1.20711 + 2.09077i −0.0464616 + 0.0804738i
\(676\) −19.7426 + 34.1953i −0.759332 + 1.31520i
\(677\) 14.0711 + 24.3718i 0.540795 + 0.936685i 0.998859 + 0.0477651i \(0.0152099\pi\)
−0.458064 + 0.888919i \(0.651457\pi\)
\(678\) 4.48528 0.172256
\(679\) 30.5563 + 4.18154i 1.17265 + 0.160473i
\(680\) 21.3137 0.817343
\(681\) −1.44365 2.50048i −0.0553208 0.0958185i
\(682\) −6.00000 + 10.3923i −0.229752 + 0.397942i
\(683\) 17.3787 30.1008i 0.664977 1.15177i −0.314315 0.949319i \(-0.601775\pi\)
0.979292 0.202455i \(-0.0648919\pi\)
\(684\) 15.3137 + 26.5241i 0.585534 + 1.01418i
\(685\) −9.65685 −0.368969
\(686\) −5.15685 44.4135i −0.196890 1.69571i
\(687\) 4.82843 0.184216
\(688\) −5.37868 9.31615i −0.205060 0.355175i
\(689\) −2.82843 + 4.89898i −0.107754 + 0.186636i
\(690\) 0.207107 0.358719i 0.00788442 0.0136562i
\(691\) −0.414214 0.717439i −0.0157574 0.0272927i 0.858039 0.513584i \(-0.171683\pi\)
−0.873797 + 0.486292i \(0.838349\pi\)
\(692\) 12.6863 0.482260
\(693\) 6.14214 + 0.840532i 0.233320 + 0.0319292i
\(694\) 19.1421 0.726626
\(695\) 8.07107 + 13.9795i 0.306153 + 0.530273i
\(696\) −0.914214 + 1.58346i −0.0346532 + 0.0600211i
\(697\) 18.8995 32.7349i 0.715869 1.23992i
\(698\) 18.5208 + 32.0790i 0.701023 + 1.21421i
\(699\) 6.97056 0.263651
\(700\) −3.82843 9.37769i −0.144701 0.354443i
\(701\) −3.20101 −0.120900 −0.0604502 0.998171i \(-0.519254\pi\)
−0.0604502 + 0.998171i \(0.519254\pi\)
\(702\) 14.0711 + 24.3718i 0.531078 + 0.919854i
\(703\) 0 0
\(704\) −4.07107 + 7.05130i −0.153434 + 0.265756i
\(705\) 0.414214 + 0.717439i 0.0156002 + 0.0270203i
\(706\) −64.7696 −2.43763
\(707\) 16.7218 21.5636i 0.628889 0.810982i
\(708\) −7.11270 −0.267312
\(709\) −7.84315 13.5847i −0.294556 0.510185i 0.680326 0.732910i \(-0.261838\pi\)
−0.974881 + 0.222725i \(0.928505\pi\)
\(710\) −5.41421 + 9.37769i −0.203192 + 0.351939i
\(711\) 20.9706 36.3221i 0.786458 1.36218i
\(712\) 19.1066 + 33.0936i 0.716050 + 1.24024i
\(713\) −2.48528 −0.0930745
\(714\) 7.82843 10.0951i 0.292972 0.377801i
\(715\) 4.00000 0.149592
\(716\) 19.1421 + 33.1552i 0.715375 + 1.23907i
\(717\) −4.41421 + 7.64564i −0.164852 + 0.285532i
\(718\) 12.0711 20.9077i 0.450488 0.780269i
\(719\) −10.5563 18.2841i −0.393685 0.681883i 0.599247 0.800564i \(-0.295467\pi\)
−0.992932 + 0.118681i \(0.962133\pi\)
\(720\) −8.48528 −0.316228
\(721\) 2.41421 + 5.91359i 0.0899100 + 0.220234i
\(722\) −26.5563 −0.988325
\(723\) 5.72792 + 9.92105i 0.213024 + 0.368968i
\(724\) −5.08579 + 8.80884i −0.189012 + 0.327378i
\(725\) 0.500000 0.866025i 0.0185695 0.0321634i
\(726\) −5.15685 8.93193i −0.191389 0.331495i
\(727\) −37.5858 −1.39398 −0.696990 0.717081i \(-0.745478\pi\)
−0.696990 + 0.717081i \(0.745478\pi\)
\(728\) −55.8701 7.64564i −2.07068 0.283366i
\(729\) −18.1716 −0.673021
\(730\) 1.00000 + 1.73205i 0.0370117 + 0.0641061i
\(731\) −8.65685 + 14.9941i −0.320185 + 0.554577i
\(732\) 4.34924 7.53311i 0.160753 0.278432i
\(733\) 11.0000 + 19.0526i 0.406294 + 0.703722i 0.994471 0.105010i \(-0.0334875\pi\)
−0.588177 + 0.808732i \(0.700154\pi\)
\(734\) −6.65685 −0.245709
\(735\) −2.79289 0.778985i −0.103017 0.0287333i
\(736\) −0.656854 −0.0242120
\(737\) 3.97056 + 6.87722i 0.146258 + 0.253326i
\(738\) −26.7279 + 46.2941i −0.983868 + 1.70411i
\(739\) 10.5563 18.2841i 0.388322 0.672593i −0.603902 0.797058i \(-0.706388\pi\)
0.992224 + 0.124466i \(0.0397216\pi\)
\(740\) 0 0
\(741\) 5.65685 0.207810
\(742\) −7.41421 1.01461i −0.272184 0.0372476i
\(743\) −16.0711 −0.589590 −0.294795 0.955560i \(-0.595251\pi\)
−0.294795 + 0.955560i \(0.595251\pi\)
\(744\) −5.48528 9.50079i −0.201100 0.348316i
\(745\) 1.08579 1.88064i 0.0397801 0.0689012i
\(746\) 25.3137 43.8446i 0.926801 1.60527i
\(747\) 19.4142 + 33.6264i 0.710329 + 1.23033i
\(748\) −15.3137 −0.559925
\(749\) −11.2426 27.5387i −0.410797 1.00624i
\(750\) −1.00000 −0.0365148
\(751\) 15.1716 + 26.2779i 0.553619 + 0.958895i 0.998010 + 0.0630625i \(0.0200868\pi\)
−0.444391 + 0.895833i \(0.646580\pi\)
\(752\) −3.00000 + 5.19615i −0.109399 + 0.189484i
\(753\) −1.92893 + 3.34101i −0.0702942 + 0.121753i
\(754\) −5.82843 10.0951i −0.212259 0.367643i
\(755\) 11.6569 0.424236
\(756\) −14.9853 + 19.3242i −0.545009 + 0.702816i
\(757\) −31.4558 −1.14328 −0.571641 0.820504i \(-0.693693\pi\)
−0.571641 + 0.820504i \(0.693693\pi\)
\(758\) −32.3848 56.0921i −1.17627 2.03736i
\(759\) −0.0710678 + 0.123093i −0.00257960 + 0.00446800i
\(760\) −6.24264 + 10.8126i −0.226444 + 0.392213i
\(761\) −4.65685 8.06591i −0.168811 0.292389i 0.769191 0.639019i \(-0.220659\pi\)
−0.938002 + 0.346630i \(0.887326\pi\)
\(762\) 9.31371 0.337400
\(763\) 21.8640 28.1946i 0.791529 1.02071i
\(764\) −49.1127 −1.77684
\(765\) 6.82843 + 11.8272i 0.246882 + 0.427613i
\(766\) 3.50000 6.06218i 0.126460 0.219035i
\(767\) 10.8284 18.7554i 0.390992 0.677218i
\(768\) −6.20711 10.7510i −0.223980 0.387944i
\(769\) −0.627417 −0.0226252 −0.0113126 0.999936i \(-0.503601\pi\)
−0.0113126 + 0.999936i \(0.503601\pi\)
\(770\) 2.00000 + 4.89898i 0.0720750 + 0.176547i
\(771\) −2.62742 −0.0946241
\(772\) 3.82843 + 6.63103i 0.137788 + 0.238656i
\(773\) 18.5563 32.1405i 0.667425 1.15601i −0.311196 0.950346i \(-0.600730\pi\)
0.978622 0.205669i \(-0.0659371\pi\)
\(774\) 12.2426 21.2049i 0.440053 0.762194i
\(775\) 3.00000 + 5.19615i 0.107763 + 0.186651i
\(776\) 51.4558 1.84716
\(777\) 0 0
\(778\) 57.1127 2.04759
\(779\) 11.0711 + 19.1757i 0.396662 + 0.687039i
\(780\) −3.82843 + 6.63103i −0.137080 + 0.237429i
\(781\) 1.85786 3.21792i 0.0664796 0.115146i
\(782\) −2.41421 4.18154i −0.0863321 0.149532i
\(783\) −2.41421 −0.0862770
\(784\) −5.22792 20.3389i −0.186712 0.726388i
\(785\) 17.3137 0.617953
\(786\) −9.65685 16.7262i −0.344449 0.596602i
\(787\) −1.27817 + 2.21386i −0.0455620 + 0.0789157i −0.887907 0.460023i \(-0.847841\pi\)
0.842345 + 0.538939i \(0.181175\pi\)
\(788\) 23.6274 40.9239i 0.841692 1.45785i
\(789\) −6.01472 10.4178i −0.214130 0.370883i
\(790\) 35.7990 1.27367
\(791\) −11.7574 1.60896i −0.418044 0.0572080i
\(792\) 10.3431 0.367528
\(793\) 13.2426 + 22.9369i 0.470260 + 0.814514i
\(794\) 20.0711 34.7641i 0.712296 1.23373i
\(795\) −0.242641 + 0.420266i −0.00860558 + 0.0149053i
\(796\) 18.4853 + 32.0174i 0.655193 + 1.13483i
\(797\) −8.00000 −0.283375 −0.141687 0.989911i \(-0.545253\pi\)
−0.141687 + 0.989911i \(0.545253\pi\)
\(798\) 2.82843 + 6.92820i 0.100125 + 0.245256i
\(799\) 9.65685 0.341635
\(800\) 0.792893 + 1.37333i 0.0280330 + 0.0485546i
\(801\) −12.2426 + 21.2049i −0.432572 + 0.749237i
\(802\) −36.5919 + 63.3790i −1.29210 + 2.23799i
\(803\) −0.343146 0.594346i −0.0121094 0.0209740i
\(804\) −15.2010 −0.536098
\(805\) −0.671573 + 0.866025i −0.0236698 + 0.0305234i
\(806\) 69.9411 2.46357
\(807\) 4.23654 + 7.33791i 0.149133 + 0.258307i
\(808\) 22.7635 39.4275i 0.800816 1.38705i
\(809\) −17.8137 + 30.8542i −0.626297 + 1.08478i 0.361992 + 0.932181i \(0.382097\pi\)
−0.988289 + 0.152596i \(0.951237\pi\)
\(810\) −9.03553 15.6500i −0.317476 0.549885i
\(811\) −20.6274 −0.724327 −0.362163 0.932115i \(-0.617962\pi\)
−0.362163 + 0.932115i \(0.617962\pi\)
\(812\) 6.20711 8.00436i 0.217827 0.280898i
\(813\) −6.82843 −0.239483
\(814\) 0 0
\(815\) −6.17157 + 10.6895i −0.216181 + 0.374436i
\(816\) 3.00000 5.19615i 0.105021 0.181902i
\(817\) −5.07107 8.78335i −0.177414 0.307290i
\(818\) −35.7279 −1.24920
\(819\) −13.6569 33.4523i −0.477209 1.16892i
\(820\) −29.9706 −1.04662
\(821\) −23.9706 41.5182i −0.836578 1.44900i −0.892739 0.450575i \(-0.851219\pi\)
0.0561604 0.998422i \(-0.482114\pi\)
\(822\) −4.82843 + 8.36308i −0.168411 + 0.291696i
\(823\) −1.03553 + 1.79360i −0.0360964 + 0.0625209i −0.883509 0.468414i \(-0.844826\pi\)
0.847413 + 0.530935i \(0.178159\pi\)
\(824\) 5.32843 + 9.22911i 0.185625 + 0.321511i
\(825\) 0.343146 0.0119468
\(826\) 28.3848 + 3.88437i 0.987633 + 0.135154i
\(827\) −26.2132 −0.911522 −0.455761 0.890102i \(-0.650633\pi\)
−0.455761 + 0.890102i \(0.650633\pi\)
\(828\) 2.24264 + 3.88437i 0.0779372 + 0.134991i
\(829\) −14.6569 + 25.3864i −0.509054 + 0.881707i 0.490891 + 0.871221i \(0.336671\pi\)
−0.999945 + 0.0104859i \(0.996662\pi\)
\(830\) −16.5711 + 28.7019i −0.575190 + 0.996259i
\(831\) 3.34315 + 5.79050i 0.115972 + 0.200870i
\(832\) 47.4558 1.64524
\(833\) −24.1421 + 23.6544i −0.836475 + 0.819575i
\(834\) 16.1421 0.558956
\(835\) −11.2071 19.4113i −0.387838 0.671755i
\(836\) 4.48528 7.76874i 0.155127 0.268687i
\(837\) 7.24264 12.5446i 0.250342 0.433606i
\(838\) 0.828427 + 1.43488i 0.0286175 + 0.0495670i
\(839\) 15.1716 0.523781 0.261890 0.965098i \(-0.415654\pi\)
0.261890 + 0.965098i \(0.415654\pi\)
\(840\) −4.79289 0.655892i −0.165371 0.0226304i
\(841\) −28.0000 −0.965517
\(842\) −16.2782 28.1946i −0.560983 0.971651i
\(843\) −6.27208 + 10.8636i −0.216022 + 0.374161i
\(844\) −39.2132 + 67.9193i −1.34977 + 2.33788i
\(845\) −5.15685 8.93193i −0.177401 0.307268i
\(846\) −13.6569 −0.469532
\(847\) 10.3137 + 25.2633i 0.354383 + 0.868058i
\(848\) −3.51472 −0.120696
\(849\) 2.89949 + 5.02207i 0.0995104 + 0.172357i
\(850\) −5.82843 + 10.0951i −0.199913 + 0.346260i
\(851\) 0 0
\(852\) 3.55635 + 6.15978i 0.121839 + 0.211030i
\(853\) 2.54416 0.0871102 0.0435551 0.999051i \(-0.486132\pi\)
0.0435551 + 0.999051i \(0.486132\pi\)
\(854\) −21.4706 + 27.6873i −0.734708 + 0.947441i
\(855\) −8.00000 −0.273594
\(856\) −24.8137 42.9786i −0.848115 1.46898i
\(857\) −17.1421 + 29.6910i −0.585564 + 1.01423i 0.409241 + 0.912426i \(0.365794\pi\)
−0.994805 + 0.101800i \(0.967540\pi\)
\(858\) 2.00000 3.46410i 0.0682789 0.118262i
\(859\) −0.686292 1.18869i −0.0234160 0.0405576i 0.854080 0.520142i \(-0.174121\pi\)
−0.877496 + 0.479584i \(0.840788\pi\)
\(860\) 13.7279 0.468118
\(861\) −5.25736 + 6.77962i −0.179170 + 0.231049i
\(862\) 42.9706 1.46358
\(863\) −7.27817 12.6062i −0.247752 0.429119i 0.715150 0.698971i \(-0.246358\pi\)
−0.962902 + 0.269852i \(0.913025\pi\)
\(864\) 1.91421 3.31552i 0.0651229 0.112796i
\(865\) −1.65685 + 2.86976i −0.0563347 + 0.0975746i
\(866\) −9.41421 16.3059i −0.319908 0.554097i
\(867\) −2.61522 −0.0888177
\(868\) 22.9706 + 56.2662i 0.779672 + 1.90980i
\(869\) −12.2843 −0.416715
\(870\) −0.500000 0.866025i −0.0169516 0.0293610i
\(871\) 23.1421 40.0834i 0.784141 1.35817i
\(872\) 29.7635 51.5518i 1.00792 1.74576i
\(873\) 16.4853 + 28.5533i 0.557942 + 0.966384i
\(874\) 2.82843 0.0956730
\(875\) 2.62132 + 0.358719i 0.0886168 + 0.0121269i
\(876\) 1.31371 0.0443861
\(877\) −12.5858 21.7992i −0.424992 0.736107i 0.571428 0.820652i \(-0.306390\pi\)
−0.996420 + 0.0845449i \(0.973056\pi\)
\(878\) 40.9706 70.9631i 1.38269 2.39489i
\(879\) −3.31371 + 5.73951i −0.111769 + 0.193589i
\(880\) 1.24264 + 2.15232i 0.0418894 + 0.0725546i
\(881\) 1.82843 0.0616013 0.0308006 0.999526i \(-0.490194\pi\)
0.0308006 + 0.999526i \(0.490194\pi\)
\(882\) 34.1421 33.4523i 1.14963 1.12640i
\(883\) 18.2843 0.615315 0.307657 0.951497i \(-0.400455\pi\)
0.307657 + 0.951497i \(0.400455\pi\)
\(884\) 44.6274 + 77.2970i 1.50098 + 2.59978i
\(885\) 0.928932 1.60896i 0.0312257 0.0540845i
\(886\) −36.4706 + 63.1689i −1.22525 + 2.12220i
\(887\) −14.9645 25.9192i −0.502458 0.870282i −0.999996 0.00284012i \(-0.999096\pi\)
0.497538 0.867442i \(-0.334237\pi\)
\(888\) 0 0
\(889\) −24.4142 3.34101i −0.818826 0.112054i
\(890\) −20.8995 −0.700553
\(891\) 3.10051 + 5.37023i 0.103871 + 0.179910i
\(892\) −0.656854 + 1.13770i −0.0219931 + 0.0380932i
\(893\) −2.82843 + 4.89898i −0.0946497 + 0.163938i
\(894\) −1.08579 1.88064i −0.0363141 0.0628979i
\(895\) −10.0000 −0.334263
\(896\) 20.5563 + 50.3526i 0.686739 + 1.68216i
\(897\) 0.828427 0.0276604
\(898\) −4.62132 8.00436i −0.154215 0.267109i
\(899\) −3.00000 + 5.19615i −0.100056 + 0.173301i
\(900\) 5.41421 9.37769i 0.180474 0.312590i
\(901\) 2.82843 + 4.89898i 0.0942286 + 0.163209i
\(902\) 15.6569 0.521316
\(903\) 2.40812 3.10538i 0.0801371 0.103341i
\(904\) −19.7990 −0.658505
\(905\) −1.32843 2.30090i −0.0441584 0.0764846i
\(906\) 5.82843 10.0951i 0.193637 0.335388i
\(907\) 7.10660 12.3090i 0.235971 0.408713i −0.723584 0.690237i \(-0.757506\pi\)
0.959554 + 0.281523i \(0.0908397\pi\)
\(908\) 13.3431 + 23.1110i 0.442808 + 0.766966i
\(909\) 29.1716 0.967560
\(910\) 18.8995 24.3718i 0.626512 0.807917i
\(911\) −10.2010 −0.337975 −0.168987 0.985618i \(-0.554050\pi\)
−0.168987 + 0.985618i \(0.554050\pi\)
\(912\) 1.75736 + 3.04384i 0.0581920 + 0.100791i
\(913\) 5.68629 9.84895i 0.188189 0.325953i
\(914\) −29.3137 + 50.7728i −0.969611 + 1.67942i
\(915\) 1.13604 + 1.96768i 0.0375563 + 0.0650494i
\(916\) −44.6274 −1.47453
\(917\) 19.3137 + 47.3087i 0.637795 + 1.56227i
\(918\) 28.1421 0.928829
\(919\) 21.5563 + 37.3367i 0.711078 + 1.23162i 0.964453 + 0.264256i \(0.0851262\pi\)
−0.253374 + 0.967368i \(0.581540\pi\)
\(920\) −0.914214 + 1.58346i −0.0301407 + 0.0522053i
\(921\) −0.985281 + 1.70656i −0.0324661 + 0.0562330i
\(922\) −49.8701 86.3775i −1.64238 2.84469i
\(923\) −21.6569 −0.712844
\(924\) 3.44365 + 0.471253i 0.113288 + 0.0155031i
\(925\) 0 0
\(926\) 44.7132 + 77.4455i 1.46937 + 2.54502i
\(927\) −3.41421 + 5.91359i −0.112137 + 0.194228i
\(928\) −0.792893 + 1.37333i −0.0260280 + 0.0450818i
\(929\) −2.74264 4.75039i −0.0899831 0.155855i 0.817521 0.575899i \(-0.195348\pi\)
−0.907504 + 0.420044i \(0.862015\pi\)
\(930\) 6.00000 0.196748
\(931\) −4.92893 19.1757i −0.161539 0.628457i
\(932\) −64.4264 −2.11036
\(933\) −2.72792 4.72490i −0.0893082 0.154686i
\(934\) 3.74264 6.48244i 0.122463 0.212112i
\(935\) 2.00000 3.46410i 0.0654070 0.113288i
\(936\) −30.1421 52.2077i −0.985227 1.70646i
\(937\) 34.6274 1.13123 0.565614 0.824670i \(-0.308639\pi\)
0.565614 + 0.824670i \(0.308639\pi\)
\(938\) 60.6630 + 8.30153i 1.98072 + 0.271055i
\(939\) 2.62742 0.0857425
\(940\) −3.82843 6.63103i −0.124870 0.216280i
\(941\) 23.1421 40.0834i 0.754412 1.30668i −0.191254 0.981541i \(-0.561255\pi\)
0.945666 0.325139i \(-0.105411\pi\)
\(942\) 8.65685 14.9941i 0.282056 0.488535i
\(943\) 1.62132 + 2.80821i 0.0527975 + 0.0914479i
\(944\) 13.4558 0.437950
\(945\) −2.41421 5.91359i −0.0785344 0.192369i
\(946\) −7.17157 −0.233168
\(947\) −16.5919 28.7380i −0.539164 0.933859i −0.998949 0.0458290i \(-0.985407\pi\)
0.459786 0.888030i \(-0.347926\pi\)
\(948\) 11.7574 20.3643i 0.381861 0.661403i
\(949\) −2.00000 + 3.46410i −0.0649227 + 0.112449i
\(950\) −3.41421 5.91359i −0.110772 0.191862i
\(951\) 5.71573 0.185345
\(952\) −34.5563 + 44.5621i −1.11998 + 1.44426i
\(953\) −13.6569 −0.442389 −0.221194 0.975230i \(-0.570996\pi\)
−0.221194 + 0.975230i \(0.570996\pi\)
\(954\) −4.00000 6.92820i −0.129505 0.224309i
\(955\) 6.41421 11.1097i 0.207559 0.359503i
\(956\) 40.7990 70.6659i 1.31953 2.28550i
\(957\) 0.171573 + 0.297173i 0.00554616 + 0.00960624i
\(958\) −86.0833 −2.78122
\(959\) 15.6569 20.1903i 0.505586 0.651978i
\(960\) 4.07107 0.131393
\(961\) −2.50000 4.33013i −0.0806452 0.139682i
\(962\) 0 0
\(963\) 15.8995 27.5387i 0.512354 0.887423i
\(964\) −52.9411 91.6967i −1.70512 2.95335i
\(965\) −2.00000 −0.0643823
\(966\) 0.414214 + 1.01461i 0.0133271 + 0.0326446i
\(967\) 37.5269 1.20678 0.603392 0.797445i \(-0.293815\pi\)
0.603392 + 0.797445i \(0.293815\pi\)
\(968\) 22.7635 + 39.4275i 0.731645 + 1.26725i
\(969\) 2.82843 4.89898i 0.0908622 0.157378i
\(970\) −14.0711 + 24.3718i −0.451795 + 0.782531i
\(971\) 12.0000 + 20.7846i 0.385098 + 0.667010i 0.991783 0.127933i \(-0.0408342\pi\)
−0.606685 + 0.794943i \(0.707501\pi\)
\(972\) −39.5980 −1.27011
\(973\) −42.3137 5.79050i −1.35652 0.185635i
\(974\) 10.4853 0.335970
\(975\) −1.00000 1.73205i −0.0320256 0.0554700i
\(976\) −8.22792 + 14.2512i −0.263369 + 0.456169i
\(977\) 0.656854 1.13770i 0.0210146 0.0363984i −0.855327 0.518089i \(-0.826644\pi\)
0.876341 + 0.481690i \(0.159977\pi\)
\(978\) 6.17157 + 10.6895i 0.197345 + 0.341812i
\(979\) 7.17157 0.229204
\(980\) 25.8137 + 7.19988i 0.824589 + 0.229992i
\(981\) 38.1421 1.21778
\(982\) −11.2426 19.4728i −0.358767 0.621403i
\(983\) −14.1066 + 24.4334i −0.449931 + 0.779303i −0.998381 0.0568803i \(-0.981885\pi\)
0.548450 + 0.836183i \(0.315218\pi\)
\(984\) −7.15685 + 12.3960i −0.228152 + 0.395171i
\(985\) 6.17157 + 10.6895i 0.196643 + 0.340595i
\(986\) −11.6569 −0.371230
\(987\) −2.17157 0.297173i −0.0691219 0.00945912i
\(988\) −52.2843 −1.66338
\(989\) −0.742641 1.28629i −0.0236146 0.0409017i
\(990\) −2.82843 + 4.89898i −0.0898933 + 0.155700i
\(991\) 2.17157 3.76127i 0.0689823 0.119481i −0.829471 0.558549i \(-0.811358\pi\)
0.898454 + 0.439069i \(0.144691\pi\)
\(992\) −4.75736 8.23999i −0.151046 0.261620i
\(993\) −9.51472 −0.301940
\(994\) −10.8284 26.5241i −0.343457 0.841294i
\(995\) −9.65685 −0.306143
\(996\) 10.8848 + 18.8530i 0.344897 + 0.597380i
\(997\) −16.7279 + 28.9736i −0.529779 + 0.917603i 0.469618 + 0.882870i \(0.344392\pi\)
−0.999397 + 0.0347337i \(0.988942\pi\)
\(998\) 1.00000 1.73205i 0.0316544 0.0548271i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.2.e.a.11.1 4
3.2 odd 2 315.2.j.e.46.2 4
4.3 odd 2 560.2.q.k.81.1 4
5.2 odd 4 175.2.k.a.74.4 8
5.3 odd 4 175.2.k.a.74.1 8
5.4 even 2 175.2.e.c.151.2 4
7.2 even 3 inner 35.2.e.a.16.1 yes 4
7.3 odd 6 245.2.a.g.1.2 2
7.4 even 3 245.2.a.h.1.2 2
7.5 odd 6 245.2.e.e.226.1 4
7.6 odd 2 245.2.e.e.116.1 4
21.2 odd 6 315.2.j.e.226.2 4
21.11 odd 6 2205.2.a.n.1.1 2
21.17 even 6 2205.2.a.q.1.1 2
28.3 even 6 3920.2.a.bv.1.1 2
28.11 odd 6 3920.2.a.bq.1.2 2
28.23 odd 6 560.2.q.k.401.1 4
35.2 odd 12 175.2.k.a.149.1 8
35.3 even 12 1225.2.b.h.99.1 4
35.4 even 6 1225.2.a.k.1.1 2
35.9 even 6 175.2.e.c.51.2 4
35.17 even 12 1225.2.b.h.99.4 4
35.18 odd 12 1225.2.b.g.99.1 4
35.23 odd 12 175.2.k.a.149.4 8
35.24 odd 6 1225.2.a.m.1.1 2
35.32 odd 12 1225.2.b.g.99.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.e.a.11.1 4 1.1 even 1 trivial
35.2.e.a.16.1 yes 4 7.2 even 3 inner
175.2.e.c.51.2 4 35.9 even 6
175.2.e.c.151.2 4 5.4 even 2
175.2.k.a.74.1 8 5.3 odd 4
175.2.k.a.74.4 8 5.2 odd 4
175.2.k.a.149.1 8 35.2 odd 12
175.2.k.a.149.4 8 35.23 odd 12
245.2.a.g.1.2 2 7.3 odd 6
245.2.a.h.1.2 2 7.4 even 3
245.2.e.e.116.1 4 7.6 odd 2
245.2.e.e.226.1 4 7.5 odd 6
315.2.j.e.46.2 4 3.2 odd 2
315.2.j.e.226.2 4 21.2 odd 6
560.2.q.k.81.1 4 4.3 odd 2
560.2.q.k.401.1 4 28.23 odd 6
1225.2.a.k.1.1 2 35.4 even 6
1225.2.a.m.1.1 2 35.24 odd 6
1225.2.b.g.99.1 4 35.18 odd 12
1225.2.b.g.99.4 4 35.32 odd 12
1225.2.b.h.99.1 4 35.3 even 12
1225.2.b.h.99.4 4 35.17 even 12
2205.2.a.n.1.1 2 21.11 odd 6
2205.2.a.q.1.1 2 21.17 even 6
3920.2.a.bq.1.2 2 28.11 odd 6
3920.2.a.bv.1.1 2 28.3 even 6