Properties

Label 315.2.j.e.226.2
Level $315$
Weight $2$
Character 315.226
Analytic conductor $2.515$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,2,Mod(46,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.46");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 226.2
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 315.226
Dual form 315.2.j.e.46.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.20711 - 2.09077i) q^{2} +(-1.91421 - 3.31552i) q^{4} +(0.500000 - 0.866025i) q^{5} +(2.62132 - 0.358719i) q^{7} -4.41421 q^{8} +(-1.20711 - 2.09077i) q^{10} +(-0.414214 - 0.717439i) q^{11} -4.82843 q^{13} +(2.41421 - 5.91359i) q^{14} +(-1.50000 + 2.59808i) q^{16} +(2.41421 + 4.18154i) q^{17} +(-1.41421 + 2.44949i) q^{19} -3.82843 q^{20} -2.00000 q^{22} +(0.207107 - 0.358719i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-5.82843 + 10.0951i) q^{26} +(-6.20711 - 8.00436i) q^{28} +1.00000 q^{29} +(3.00000 + 5.19615i) q^{31} +(-0.792893 - 1.37333i) q^{32} +11.6569 q^{34} +(1.00000 - 2.44949i) q^{35} +(3.41421 + 5.91359i) q^{38} +(-2.20711 + 3.82282i) q^{40} +7.82843 q^{41} +3.58579 q^{43} +(-1.58579 + 2.74666i) q^{44} +(-0.500000 - 0.866025i) q^{46} +(1.00000 - 1.73205i) q^{47} +(6.74264 - 1.88064i) q^{49} -2.41421 q^{50} +(9.24264 + 16.0087i) q^{52} +(-0.585786 - 1.01461i) q^{53} -0.828427 q^{55} +(-11.5711 + 1.58346i) q^{56} +(1.20711 - 2.09077i) q^{58} +(2.24264 + 3.88437i) q^{59} +(-2.74264 + 4.75039i) q^{61} +14.4853 q^{62} -9.82843 q^{64} +(-2.41421 + 4.18154i) q^{65} +(-4.79289 - 8.30153i) q^{67} +(9.24264 - 16.0087i) q^{68} +(-3.91421 - 5.04757i) q^{70} -4.48528 q^{71} +(0.414214 + 0.717439i) q^{73} +10.8284 q^{76} +(-1.34315 - 1.73205i) q^{77} +(-7.41421 + 12.8418i) q^{79} +(1.50000 + 2.59808i) q^{80} +(9.44975 - 16.3674i) q^{82} -13.7279 q^{83} +4.82843 q^{85} +(4.32843 - 7.49706i) q^{86} +(1.82843 + 3.16693i) q^{88} +(-4.32843 + 7.49706i) q^{89} +(-12.6569 + 1.73205i) q^{91} -1.58579 q^{92} +(-2.41421 - 4.18154i) q^{94} +(1.41421 + 2.44949i) q^{95} +11.6569 q^{97} +(4.20711 - 16.3674i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} + 2 q^{5} + 2 q^{7} - 12 q^{8} - 2 q^{10} + 4 q^{11} - 8 q^{13} + 4 q^{14} - 6 q^{16} + 4 q^{17} - 4 q^{20} - 8 q^{22} - 2 q^{23} - 2 q^{25} - 12 q^{26} - 22 q^{28} + 4 q^{29} + 12 q^{31}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.20711 2.09077i 0.853553 1.47840i −0.0244272 0.999702i \(-0.507776\pi\)
0.877981 0.478696i \(-0.158890\pi\)
\(3\) 0 0
\(4\) −1.91421 3.31552i −0.957107 1.65776i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) 2.62132 0.358719i 0.990766 0.135583i
\(8\) −4.41421 −1.56066
\(9\) 0 0
\(10\) −1.20711 2.09077i −0.381721 0.661160i
\(11\) −0.414214 0.717439i −0.124890 0.216316i 0.796800 0.604243i \(-0.206524\pi\)
−0.921690 + 0.387927i \(0.873191\pi\)
\(12\) 0 0
\(13\) −4.82843 −1.33916 −0.669582 0.742738i \(-0.733527\pi\)
−0.669582 + 0.742738i \(0.733527\pi\)
\(14\) 2.41421 5.91359i 0.645226 1.58047i
\(15\) 0 0
\(16\) −1.50000 + 2.59808i −0.375000 + 0.649519i
\(17\) 2.41421 + 4.18154i 0.585533 + 1.01417i 0.994809 + 0.101762i \(0.0324480\pi\)
−0.409276 + 0.912411i \(0.634219\pi\)
\(18\) 0 0
\(19\) −1.41421 + 2.44949i −0.324443 + 0.561951i −0.981399 0.191977i \(-0.938510\pi\)
0.656957 + 0.753928i \(0.271843\pi\)
\(20\) −3.82843 −0.856062
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 0.207107 0.358719i 0.0431847 0.0747982i −0.843625 0.536933i \(-0.819583\pi\)
0.886810 + 0.462134i \(0.152916\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −5.82843 + 10.0951i −1.14305 + 1.97982i
\(27\) 0 0
\(28\) −6.20711 8.00436i −1.17303 1.51268i
\(29\) 1.00000 0.185695 0.0928477 0.995680i \(-0.470403\pi\)
0.0928477 + 0.995680i \(0.470403\pi\)
\(30\) 0 0
\(31\) 3.00000 + 5.19615i 0.538816 + 0.933257i 0.998968 + 0.0454165i \(0.0144615\pi\)
−0.460152 + 0.887840i \(0.652205\pi\)
\(32\) −0.792893 1.37333i −0.140165 0.242773i
\(33\) 0 0
\(34\) 11.6569 1.99913
\(35\) 1.00000 2.44949i 0.169031 0.414039i
\(36\) 0 0
\(37\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(38\) 3.41421 + 5.91359i 0.553859 + 0.959311i
\(39\) 0 0
\(40\) −2.20711 + 3.82282i −0.348974 + 0.604441i
\(41\) 7.82843 1.22259 0.611297 0.791401i \(-0.290648\pi\)
0.611297 + 0.791401i \(0.290648\pi\)
\(42\) 0 0
\(43\) 3.58579 0.546827 0.273414 0.961897i \(-0.411847\pi\)
0.273414 + 0.961897i \(0.411847\pi\)
\(44\) −1.58579 + 2.74666i −0.239066 + 0.414075i
\(45\) 0 0
\(46\) −0.500000 0.866025i −0.0737210 0.127688i
\(47\) 1.00000 1.73205i 0.145865 0.252646i −0.783830 0.620975i \(-0.786737\pi\)
0.929695 + 0.368329i \(0.120070\pi\)
\(48\) 0 0
\(49\) 6.74264 1.88064i 0.963234 0.268662i
\(50\) −2.41421 −0.341421
\(51\) 0 0
\(52\) 9.24264 + 16.0087i 1.28172 + 2.22001i
\(53\) −0.585786 1.01461i −0.0804640 0.139368i 0.822985 0.568063i \(-0.192307\pi\)
−0.903449 + 0.428695i \(0.858974\pi\)
\(54\) 0 0
\(55\) −0.828427 −0.111705
\(56\) −11.5711 + 1.58346i −1.54625 + 0.211599i
\(57\) 0 0
\(58\) 1.20711 2.09077i 0.158501 0.274532i
\(59\) 2.24264 + 3.88437i 0.291967 + 0.505702i 0.974275 0.225363i \(-0.0723569\pi\)
−0.682308 + 0.731065i \(0.739024\pi\)
\(60\) 0 0
\(61\) −2.74264 + 4.75039i −0.351159 + 0.608226i −0.986453 0.164045i \(-0.947546\pi\)
0.635294 + 0.772271i \(0.280879\pi\)
\(62\) 14.4853 1.83963
\(63\) 0 0
\(64\) −9.82843 −1.22855
\(65\) −2.41421 + 4.18154i −0.299446 + 0.518656i
\(66\) 0 0
\(67\) −4.79289 8.30153i −0.585545 1.01419i −0.994807 0.101777i \(-0.967547\pi\)
0.409262 0.912417i \(-0.365786\pi\)
\(68\) 9.24264 16.0087i 1.12083 1.94134i
\(69\) 0 0
\(70\) −3.91421 5.04757i −0.467838 0.603300i
\(71\) −4.48528 −0.532305 −0.266152 0.963931i \(-0.585752\pi\)
−0.266152 + 0.963931i \(0.585752\pi\)
\(72\) 0 0
\(73\) 0.414214 + 0.717439i 0.0484800 + 0.0839699i 0.889247 0.457427i \(-0.151229\pi\)
−0.840767 + 0.541397i \(0.817896\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 10.8284 1.24211
\(77\) −1.34315 1.73205i −0.153066 0.197386i
\(78\) 0 0
\(79\) −7.41421 + 12.8418i −0.834164 + 1.44481i 0.0605449 + 0.998165i \(0.480716\pi\)
−0.894709 + 0.446649i \(0.852617\pi\)
\(80\) 1.50000 + 2.59808i 0.167705 + 0.290474i
\(81\) 0 0
\(82\) 9.44975 16.3674i 1.04355 1.80748i
\(83\) −13.7279 −1.50684 −0.753418 0.657542i \(-0.771596\pi\)
−0.753418 + 0.657542i \(0.771596\pi\)
\(84\) 0 0
\(85\) 4.82843 0.523716
\(86\) 4.32843 7.49706i 0.466746 0.808428i
\(87\) 0 0
\(88\) 1.82843 + 3.16693i 0.194911 + 0.337596i
\(89\) −4.32843 + 7.49706i −0.458812 + 0.794686i −0.998898 0.0469234i \(-0.985058\pi\)
0.540086 + 0.841610i \(0.318392\pi\)
\(90\) 0 0
\(91\) −12.6569 + 1.73205i −1.32680 + 0.181568i
\(92\) −1.58579 −0.165330
\(93\) 0 0
\(94\) −2.41421 4.18154i −0.249007 0.431293i
\(95\) 1.41421 + 2.44949i 0.145095 + 0.251312i
\(96\) 0 0
\(97\) 11.6569 1.18357 0.591787 0.806094i \(-0.298423\pi\)
0.591787 + 0.806094i \(0.298423\pi\)
\(98\) 4.20711 16.3674i 0.424982 1.65336i
\(99\) 0 0
\(100\) −1.91421 + 3.31552i −0.191421 + 0.331552i
\(101\) −5.15685 8.93193i −0.513126 0.888761i −0.999884 0.0152237i \(-0.995154\pi\)
0.486758 0.873537i \(-0.338179\pi\)
\(102\) 0 0
\(103\) 1.20711 2.09077i 0.118940 0.206010i −0.800408 0.599456i \(-0.795384\pi\)
0.919348 + 0.393446i \(0.128717\pi\)
\(104\) 21.3137 2.08998
\(105\) 0 0
\(106\) −2.82843 −0.274721
\(107\) 5.62132 9.73641i 0.543434 0.941255i −0.455270 0.890353i \(-0.650457\pi\)
0.998704 0.0509012i \(-0.0162093\pi\)
\(108\) 0 0
\(109\) 6.74264 + 11.6786i 0.645828 + 1.11861i 0.984110 + 0.177562i \(0.0568210\pi\)
−0.338282 + 0.941045i \(0.609846\pi\)
\(110\) −1.00000 + 1.73205i −0.0953463 + 0.165145i
\(111\) 0 0
\(112\) −3.00000 + 7.34847i −0.283473 + 0.694365i
\(113\) 4.48528 0.421940 0.210970 0.977493i \(-0.432338\pi\)
0.210970 + 0.977493i \(0.432338\pi\)
\(114\) 0 0
\(115\) −0.207107 0.358719i −0.0193128 0.0334508i
\(116\) −1.91421 3.31552i −0.177730 0.307838i
\(117\) 0 0
\(118\) 10.8284 0.996838
\(119\) 7.82843 + 10.0951i 0.717631 + 0.925419i
\(120\) 0 0
\(121\) 5.15685 8.93193i 0.468805 0.811994i
\(122\) 6.62132 + 11.4685i 0.599466 + 1.03831i
\(123\) 0 0
\(124\) 11.4853 19.8931i 1.03141 1.78645i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −9.31371 −0.826458 −0.413229 0.910627i \(-0.635599\pi\)
−0.413229 + 0.910627i \(0.635599\pi\)
\(128\) −10.2782 + 17.8023i −0.908471 + 1.57352i
\(129\) 0 0
\(130\) 5.82843 + 10.0951i 0.511187 + 0.885402i
\(131\) −9.65685 + 16.7262i −0.843723 + 1.46137i 0.0430021 + 0.999075i \(0.486308\pi\)
−0.886725 + 0.462297i \(0.847026\pi\)
\(132\) 0 0
\(133\) −2.82843 + 6.92820i −0.245256 + 0.600751i
\(134\) −23.1421 −1.99918
\(135\) 0 0
\(136\) −10.6569 18.4582i −0.913818 1.58278i
\(137\) −4.82843 8.36308i −0.412520 0.714506i 0.582644 0.812727i \(-0.302018\pi\)
−0.995165 + 0.0982211i \(0.968685\pi\)
\(138\) 0 0
\(139\) −16.1421 −1.36916 −0.684579 0.728939i \(-0.740014\pi\)
−0.684579 + 0.728939i \(0.740014\pi\)
\(140\) −10.0355 + 1.37333i −0.848157 + 0.116068i
\(141\) 0 0
\(142\) −5.41421 + 9.37769i −0.454351 + 0.786959i
\(143\) 2.00000 + 3.46410i 0.167248 + 0.289683i
\(144\) 0 0
\(145\) 0.500000 0.866025i 0.0415227 0.0719195i
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) 0 0
\(149\) −1.08579 + 1.88064i −0.0889511 + 0.154068i −0.907068 0.420984i \(-0.861685\pi\)
0.818117 + 0.575052i \(0.195018\pi\)
\(150\) 0 0
\(151\) −5.82843 10.0951i −0.474311 0.821530i 0.525257 0.850944i \(-0.323969\pi\)
−0.999567 + 0.0294137i \(0.990636\pi\)
\(152\) 6.24264 10.8126i 0.506345 0.877015i
\(153\) 0 0
\(154\) −5.24264 + 0.717439i −0.422464 + 0.0578129i
\(155\) 6.00000 0.481932
\(156\) 0 0
\(157\) −8.65685 14.9941i −0.690892 1.19666i −0.971546 0.236851i \(-0.923885\pi\)
0.280654 0.959809i \(-0.409449\pi\)
\(158\) 17.8995 + 31.0028i 1.42401 + 2.46645i
\(159\) 0 0
\(160\) −1.58579 −0.125367
\(161\) 0.414214 1.01461i 0.0326446 0.0799626i
\(162\) 0 0
\(163\) −6.17157 + 10.6895i −0.483395 + 0.837265i −0.999818 0.0190689i \(-0.993930\pi\)
0.516423 + 0.856333i \(0.327263\pi\)
\(164\) −14.9853 25.9553i −1.17015 2.02677i
\(165\) 0 0
\(166\) −16.5711 + 28.7019i −1.28616 + 2.22770i
\(167\) −22.4142 −1.73446 −0.867232 0.497904i \(-0.834103\pi\)
−0.867232 + 0.497904i \(0.834103\pi\)
\(168\) 0 0
\(169\) 10.3137 0.793362
\(170\) 5.82843 10.0951i 0.447020 0.774261i
\(171\) 0 0
\(172\) −6.86396 11.8887i −0.523372 0.906507i
\(173\) 1.65685 2.86976i 0.125968 0.218183i −0.796143 0.605109i \(-0.793130\pi\)
0.922111 + 0.386925i \(0.126463\pi\)
\(174\) 0 0
\(175\) −1.62132 2.09077i −0.122560 0.158047i
\(176\) 2.48528 0.187335
\(177\) 0 0
\(178\) 10.4497 + 18.0995i 0.783242 + 1.35661i
\(179\) −5.00000 8.66025i −0.373718 0.647298i 0.616417 0.787420i \(-0.288584\pi\)
−0.990134 + 0.140122i \(0.955250\pi\)
\(180\) 0 0
\(181\) 2.65685 0.197482 0.0987412 0.995113i \(-0.468518\pi\)
0.0987412 + 0.995113i \(0.468518\pi\)
\(182\) −11.6569 + 28.5533i −0.864064 + 2.11651i
\(183\) 0 0
\(184\) −0.914214 + 1.58346i −0.0673967 + 0.116735i
\(185\) 0 0
\(186\) 0 0
\(187\) 2.00000 3.46410i 0.146254 0.253320i
\(188\) −7.65685 −0.558433
\(189\) 0 0
\(190\) 6.82843 0.495386
\(191\) −6.41421 + 11.1097i −0.464116 + 0.803873i −0.999161 0.0409507i \(-0.986961\pi\)
0.535045 + 0.844824i \(0.320295\pi\)
\(192\) 0 0
\(193\) 1.00000 + 1.73205i 0.0719816 + 0.124676i 0.899770 0.436365i \(-0.143734\pi\)
−0.827788 + 0.561041i \(0.810401\pi\)
\(194\) 14.0711 24.3718i 1.01024 1.74979i
\(195\) 0 0
\(196\) −19.1421 18.7554i −1.36730 1.33967i
\(197\) 12.3431 0.879413 0.439706 0.898142i \(-0.355083\pi\)
0.439706 + 0.898142i \(0.355083\pi\)
\(198\) 0 0
\(199\) 4.82843 + 8.36308i 0.342278 + 0.592843i 0.984855 0.173378i \(-0.0554682\pi\)
−0.642577 + 0.766221i \(0.722135\pi\)
\(200\) 2.20711 + 3.82282i 0.156066 + 0.270314i
\(201\) 0 0
\(202\) −24.8995 −1.75192
\(203\) 2.62132 0.358719i 0.183981 0.0251772i
\(204\) 0 0
\(205\) 3.91421 6.77962i 0.273381 0.473509i
\(206\) −2.91421 5.04757i −0.203043 0.351681i
\(207\) 0 0
\(208\) 7.24264 12.5446i 0.502187 0.869813i
\(209\) 2.34315 0.162079
\(210\) 0 0
\(211\) 20.4853 1.41026 0.705132 0.709076i \(-0.250888\pi\)
0.705132 + 0.709076i \(0.250888\pi\)
\(212\) −2.24264 + 3.88437i −0.154025 + 0.266779i
\(213\) 0 0
\(214\) −13.5711 23.5058i −0.927699 1.60682i
\(215\) 1.79289 3.10538i 0.122274 0.211785i
\(216\) 0 0
\(217\) 9.72792 + 12.5446i 0.660374 + 0.851584i
\(218\) 32.5563 2.20499
\(219\) 0 0
\(220\) 1.58579 + 2.74666i 0.106914 + 0.185180i
\(221\) −11.6569 20.1903i −0.784125 1.35814i
\(222\) 0 0
\(223\) 0.343146 0.0229787 0.0114894 0.999934i \(-0.496343\pi\)
0.0114894 + 0.999934i \(0.496343\pi\)
\(224\) −2.57107 3.31552i −0.171787 0.221527i
\(225\) 0 0
\(226\) 5.41421 9.37769i 0.360148 0.623795i
\(227\) −3.48528 6.03668i −0.231326 0.400669i 0.726872 0.686773i \(-0.240973\pi\)
−0.958199 + 0.286104i \(0.907640\pi\)
\(228\) 0 0
\(229\) 5.82843 10.0951i 0.385153 0.667105i −0.606637 0.794979i \(-0.707482\pi\)
0.991790 + 0.127874i \(0.0408152\pi\)
\(230\) −1.00000 −0.0659380
\(231\) 0 0
\(232\) −4.41421 −0.289807
\(233\) −8.41421 + 14.5738i −0.551233 + 0.954764i 0.446952 + 0.894558i \(0.352509\pi\)
−0.998186 + 0.0602067i \(0.980824\pi\)
\(234\) 0 0
\(235\) −1.00000 1.73205i −0.0652328 0.112987i
\(236\) 8.58579 14.8710i 0.558887 0.968021i
\(237\) 0 0
\(238\) 30.5563 4.18154i 1.98067 0.271049i
\(239\) 21.3137 1.37867 0.689335 0.724443i \(-0.257903\pi\)
0.689335 + 0.724443i \(0.257903\pi\)
\(240\) 0 0
\(241\) −13.8284 23.9515i −0.890767 1.54285i −0.838957 0.544197i \(-0.816834\pi\)
−0.0518100 0.998657i \(-0.516499\pi\)
\(242\) −12.4497 21.5636i −0.800300 1.38616i
\(243\) 0 0
\(244\) 21.0000 1.34439
\(245\) 1.74264 6.77962i 0.111333 0.433134i
\(246\) 0 0
\(247\) 6.82843 11.8272i 0.434482 0.752546i
\(248\) −13.2426 22.9369i −0.840909 1.45650i
\(249\) 0 0
\(250\) −1.20711 + 2.09077i −0.0763441 + 0.132232i
\(251\) 9.31371 0.587876 0.293938 0.955824i \(-0.405034\pi\)
0.293938 + 0.955824i \(0.405034\pi\)
\(252\) 0 0
\(253\) −0.343146 −0.0215734
\(254\) −11.2426 + 19.4728i −0.705426 + 1.22183i
\(255\) 0 0
\(256\) 14.9853 + 25.9553i 0.936580 + 1.62220i
\(257\) 3.17157 5.49333i 0.197837 0.342664i −0.749990 0.661450i \(-0.769942\pi\)
0.947827 + 0.318785i \(0.103275\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 18.4853 1.14641
\(261\) 0 0
\(262\) 23.3137 + 40.3805i 1.44033 + 2.49472i
\(263\) −14.5208 25.1508i −0.895392 1.55086i −0.833319 0.552793i \(-0.813562\pi\)
−0.0620729 0.998072i \(-0.519771\pi\)
\(264\) 0 0
\(265\) −1.17157 −0.0719691
\(266\) 11.0711 + 14.2767i 0.678811 + 0.875359i
\(267\) 0 0
\(268\) −18.3492 + 31.7818i −1.12086 + 1.94138i
\(269\) 10.2279 + 17.7153i 0.623607 + 1.08012i 0.988808 + 0.149191i \(0.0476669\pi\)
−0.365201 + 0.930929i \(0.619000\pi\)
\(270\) 0 0
\(271\) −8.24264 + 14.2767i −0.500705 + 0.867246i 0.499295 + 0.866432i \(0.333592\pi\)
−1.00000 0.000813982i \(0.999741\pi\)
\(272\) −14.4853 −0.878299
\(273\) 0 0
\(274\) −23.3137 −1.40843
\(275\) −0.414214 + 0.717439i −0.0249780 + 0.0432632i
\(276\) 0 0
\(277\) −8.07107 13.9795i −0.484943 0.839947i 0.514907 0.857246i \(-0.327826\pi\)
−0.999850 + 0.0172994i \(0.994493\pi\)
\(278\) −19.4853 + 33.7495i −1.16865 + 2.02416i
\(279\) 0 0
\(280\) −4.41421 + 10.8126i −0.263800 + 0.646175i
\(281\) 30.2843 1.80661 0.903304 0.429001i \(-0.141134\pi\)
0.903304 + 0.429001i \(0.141134\pi\)
\(282\) 0 0
\(283\) −7.00000 12.1244i −0.416107 0.720718i 0.579437 0.815017i \(-0.303272\pi\)
−0.995544 + 0.0942988i \(0.969939\pi\)
\(284\) 8.58579 + 14.8710i 0.509473 + 0.882433i
\(285\) 0 0
\(286\) 9.65685 0.571022
\(287\) 20.5208 2.80821i 1.21131 0.165763i
\(288\) 0 0
\(289\) −3.15685 + 5.46783i −0.185697 + 0.321637i
\(290\) −1.20711 2.09077i −0.0708838 0.122774i
\(291\) 0 0
\(292\) 1.58579 2.74666i 0.0928011 0.160736i
\(293\) 16.0000 0.934730 0.467365 0.884064i \(-0.345203\pi\)
0.467365 + 0.884064i \(0.345203\pi\)
\(294\) 0 0
\(295\) 4.48528 0.261143
\(296\) 0 0
\(297\) 0 0
\(298\) 2.62132 + 4.54026i 0.151849 + 0.263010i
\(299\) −1.00000 + 1.73205i −0.0578315 + 0.100167i
\(300\) 0 0
\(301\) 9.39949 1.28629i 0.541778 0.0741406i
\(302\) −28.1421 −1.61940
\(303\) 0 0
\(304\) −4.24264 7.34847i −0.243332 0.421464i
\(305\) 2.74264 + 4.75039i 0.157043 + 0.272007i
\(306\) 0 0
\(307\) −4.75736 −0.271517 −0.135758 0.990742i \(-0.543347\pi\)
−0.135758 + 0.990742i \(0.543347\pi\)
\(308\) −3.17157 + 7.76874i −0.180717 + 0.442665i
\(309\) 0 0
\(310\) 7.24264 12.5446i 0.411354 0.712487i
\(311\) −6.58579 11.4069i −0.373446 0.646827i 0.616647 0.787239i \(-0.288490\pi\)
−0.990093 + 0.140413i \(0.955157\pi\)
\(312\) 0 0
\(313\) 3.17157 5.49333i 0.179268 0.310501i −0.762362 0.647151i \(-0.775960\pi\)
0.941630 + 0.336650i \(0.109294\pi\)
\(314\) −41.7990 −2.35885
\(315\) 0 0
\(316\) 56.7696 3.19354
\(317\) −6.89949 + 11.9503i −0.387514 + 0.671194i −0.992115 0.125335i \(-0.960000\pi\)
0.604600 + 0.796529i \(0.293333\pi\)
\(318\) 0 0
\(319\) −0.414214 0.717439i −0.0231915 0.0401689i
\(320\) −4.91421 + 8.51167i −0.274713 + 0.475817i
\(321\) 0 0
\(322\) −1.62132 2.09077i −0.0903527 0.116514i
\(323\) −13.6569 −0.759888
\(324\) 0 0
\(325\) 2.41421 + 4.18154i 0.133916 + 0.231950i
\(326\) 14.8995 + 25.8067i 0.825207 + 1.42930i
\(327\) 0 0
\(328\) −34.5563 −1.90806
\(329\) 2.00000 4.89898i 0.110264 0.270089i
\(330\) 0 0
\(331\) −11.4853 + 19.8931i −0.631288 + 1.09342i 0.356001 + 0.934486i \(0.384140\pi\)
−0.987289 + 0.158937i \(0.949193\pi\)
\(332\) 26.2782 + 45.5151i 1.44220 + 2.49797i
\(333\) 0 0
\(334\) −27.0563 + 46.8630i −1.48046 + 2.56423i
\(335\) −9.58579 −0.523727
\(336\) 0 0
\(337\) 9.17157 0.499607 0.249804 0.968296i \(-0.419634\pi\)
0.249804 + 0.968296i \(0.419634\pi\)
\(338\) 12.4497 21.5636i 0.677177 1.17290i
\(339\) 0 0
\(340\) −9.24264 16.0087i −0.501253 0.868195i
\(341\) 2.48528 4.30463i 0.134586 0.233109i
\(342\) 0 0
\(343\) 17.0000 7.34847i 0.917914 0.396780i
\(344\) −15.8284 −0.853412
\(345\) 0 0
\(346\) −4.00000 6.92820i −0.215041 0.372463i
\(347\) 3.96447 + 6.86666i 0.212824 + 0.368621i 0.952597 0.304235i \(-0.0984007\pi\)
−0.739773 + 0.672856i \(0.765067\pi\)
\(348\) 0 0
\(349\) −15.3431 −0.821300 −0.410650 0.911793i \(-0.634698\pi\)
−0.410650 + 0.911793i \(0.634698\pi\)
\(350\) −6.32843 + 0.866025i −0.338269 + 0.0462910i
\(351\) 0 0
\(352\) −0.656854 + 1.13770i −0.0350104 + 0.0606399i
\(353\) −13.4142 23.2341i −0.713967 1.23663i −0.963357 0.268223i \(-0.913564\pi\)
0.249390 0.968403i \(-0.419770\pi\)
\(354\) 0 0
\(355\) −2.24264 + 3.88437i −0.119027 + 0.206161i
\(356\) 33.1421 1.75653
\(357\) 0 0
\(358\) −24.1421 −1.27595
\(359\) −5.00000 + 8.66025i −0.263890 + 0.457071i −0.967272 0.253741i \(-0.918339\pi\)
0.703382 + 0.710812i \(0.251672\pi\)
\(360\) 0 0
\(361\) 5.50000 + 9.52628i 0.289474 + 0.501383i
\(362\) 3.20711 5.55487i 0.168562 0.291958i
\(363\) 0 0
\(364\) 29.9706 + 38.6485i 1.57088 + 2.02573i
\(365\) 0.828427 0.0433619
\(366\) 0 0
\(367\) 1.37868 + 2.38794i 0.0719665 + 0.124650i 0.899763 0.436379i \(-0.143739\pi\)
−0.827797 + 0.561028i \(0.810406\pi\)
\(368\) 0.621320 + 1.07616i 0.0323886 + 0.0560986i
\(369\) 0 0
\(370\) 0 0
\(371\) −1.89949 2.44949i −0.0986169 0.127171i
\(372\) 0 0
\(373\) 10.4853 18.1610i 0.542907 0.940343i −0.455828 0.890068i \(-0.650657\pi\)
0.998735 0.0502752i \(-0.0160098\pi\)
\(374\) −4.82843 8.36308i −0.249672 0.432445i
\(375\) 0 0
\(376\) −4.41421 + 7.64564i −0.227646 + 0.394294i
\(377\) −4.82843 −0.248677
\(378\) 0 0
\(379\) 26.8284 1.37808 0.689042 0.724722i \(-0.258032\pi\)
0.689042 + 0.724722i \(0.258032\pi\)
\(380\) 5.41421 9.37769i 0.277743 0.481065i
\(381\) 0 0
\(382\) 15.4853 + 26.8213i 0.792296 + 1.37230i
\(383\) −1.44975 + 2.51104i −0.0740786 + 0.128308i −0.900685 0.434472i \(-0.856935\pi\)
0.826607 + 0.562780i \(0.190268\pi\)
\(384\) 0 0
\(385\) −2.17157 + 0.297173i −0.110674 + 0.0151453i
\(386\) 4.82843 0.245760
\(387\) 0 0
\(388\) −22.3137 38.6485i −1.13281 1.96208i
\(389\) 11.8284 + 20.4874i 0.599725 + 1.03875i 0.992861 + 0.119274i \(0.0380567\pi\)
−0.393136 + 0.919480i \(0.628610\pi\)
\(390\) 0 0
\(391\) 2.00000 0.101144
\(392\) −29.7635 + 8.30153i −1.50328 + 0.419291i
\(393\) 0 0
\(394\) 14.8995 25.8067i 0.750626 1.30012i
\(395\) 7.41421 + 12.8418i 0.373050 + 0.646141i
\(396\) 0 0
\(397\) 8.31371 14.3998i 0.417253 0.722704i −0.578409 0.815747i \(-0.696326\pi\)
0.995662 + 0.0930434i \(0.0296595\pi\)
\(398\) 23.3137 1.16861
\(399\) 0 0
\(400\) 3.00000 0.150000
\(401\) 15.1569 26.2524i 0.756897 1.31098i −0.187528 0.982259i \(-0.560048\pi\)
0.944426 0.328725i \(-0.106619\pi\)
\(402\) 0 0
\(403\) −14.4853 25.0892i −0.721563 1.24978i
\(404\) −19.7426 + 34.1953i −0.982233 + 1.70128i
\(405\) 0 0
\(406\) 2.41421 5.91359i 0.119815 0.293487i
\(407\) 0 0
\(408\) 0 0
\(409\) 7.39949 + 12.8163i 0.365881 + 0.633725i 0.988917 0.148468i \(-0.0474342\pi\)
−0.623036 + 0.782193i \(0.714101\pi\)
\(410\) −9.44975 16.3674i −0.466690 0.808330i
\(411\) 0 0
\(412\) −9.24264 −0.455352
\(413\) 7.27208 + 9.37769i 0.357836 + 0.461446i
\(414\) 0 0
\(415\) −6.86396 + 11.8887i −0.336939 + 0.583595i
\(416\) 3.82843 + 6.63103i 0.187704 + 0.325113i
\(417\) 0 0
\(418\) 2.82843 4.89898i 0.138343 0.239617i
\(419\) 0.686292 0.0335275 0.0167638 0.999859i \(-0.494664\pi\)
0.0167638 + 0.999859i \(0.494664\pi\)
\(420\) 0 0
\(421\) 13.4853 0.657232 0.328616 0.944464i \(-0.393418\pi\)
0.328616 + 0.944464i \(0.393418\pi\)
\(422\) 24.7279 42.8300i 1.20374 2.08493i
\(423\) 0 0
\(424\) 2.58579 + 4.47871i 0.125577 + 0.217506i
\(425\) 2.41421 4.18154i 0.117107 0.202835i
\(426\) 0 0
\(427\) −5.48528 + 13.4361i −0.265451 + 0.650220i
\(428\) −43.0416 −2.08050
\(429\) 0 0
\(430\) −4.32843 7.49706i −0.208735 0.361540i
\(431\) 8.89949 + 15.4144i 0.428674 + 0.742484i 0.996756 0.0804875i \(-0.0256477\pi\)
−0.568082 + 0.822972i \(0.692314\pi\)
\(432\) 0 0
\(433\) 7.79899 0.374796 0.187398 0.982284i \(-0.439995\pi\)
0.187398 + 0.982284i \(0.439995\pi\)
\(434\) 37.9706 5.19615i 1.82265 0.249423i
\(435\) 0 0
\(436\) 25.8137 44.7107i 1.23625 2.14125i
\(437\) 0.585786 + 1.01461i 0.0280220 + 0.0485355i
\(438\) 0 0
\(439\) 16.9706 29.3939i 0.809961 1.40289i −0.102930 0.994689i \(-0.532822\pi\)
0.912890 0.408205i \(-0.133845\pi\)
\(440\) 3.65685 0.174334
\(441\) 0 0
\(442\) −56.2843 −2.67717
\(443\) 15.1066 26.1654i 0.717736 1.24316i −0.244158 0.969735i \(-0.578512\pi\)
0.961895 0.273420i \(-0.0881550\pi\)
\(444\) 0 0
\(445\) 4.32843 + 7.49706i 0.205187 + 0.355395i
\(446\) 0.414214 0.717439i 0.0196136 0.0339717i
\(447\) 0 0
\(448\) −25.7635 + 3.52565i −1.21721 + 0.166571i
\(449\) −3.82843 −0.180675 −0.0903373 0.995911i \(-0.528795\pi\)
−0.0903373 + 0.995911i \(0.528795\pi\)
\(450\) 0 0
\(451\) −3.24264 5.61642i −0.152690 0.264467i
\(452\) −8.58579 14.8710i −0.403841 0.699474i
\(453\) 0 0
\(454\) −16.8284 −0.789797
\(455\) −4.82843 + 11.8272i −0.226360 + 0.554467i
\(456\) 0 0
\(457\) −12.1421 + 21.0308i −0.567985 + 0.983779i 0.428780 + 0.903409i \(0.358944\pi\)
−0.996765 + 0.0803702i \(0.974390\pi\)
\(458\) −14.0711 24.3718i −0.657498 1.13882i
\(459\) 0 0
\(460\) −0.792893 + 1.37333i −0.0369688 + 0.0640319i
\(461\) −41.3137 −1.92417 −0.962086 0.272748i \(-0.912068\pi\)
−0.962086 + 0.272748i \(0.912068\pi\)
\(462\) 0 0
\(463\) −37.0416 −1.72147 −0.860735 0.509053i \(-0.829996\pi\)
−0.860735 + 0.509053i \(0.829996\pi\)
\(464\) −1.50000 + 2.59808i −0.0696358 + 0.120613i
\(465\) 0 0
\(466\) 20.3137 + 35.1844i 0.941014 + 1.62988i
\(467\) −1.55025 + 2.68512i −0.0717371 + 0.124252i −0.899663 0.436586i \(-0.856188\pi\)
0.827926 + 0.560838i \(0.189521\pi\)
\(468\) 0 0
\(469\) −15.5416 20.0417i −0.717646 0.925439i
\(470\) −4.82843 −0.222719
\(471\) 0 0
\(472\) −9.89949 17.1464i −0.455661 0.789228i
\(473\) −1.48528 2.57258i −0.0682933 0.118287i
\(474\) 0 0
\(475\) 2.82843 0.129777
\(476\) 18.4853 45.2795i 0.847271 2.07538i
\(477\) 0 0
\(478\) 25.7279 44.5621i 1.17677 2.03822i
\(479\) −17.8284 30.8797i −0.814602 1.41093i −0.909614 0.415455i \(-0.863622\pi\)
0.0950120 0.995476i \(-0.469711\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −66.7696 −3.04127
\(483\) 0 0
\(484\) −39.4853 −1.79479
\(485\) 5.82843 10.0951i 0.264655 0.458396i
\(486\) 0 0
\(487\) −2.17157 3.76127i −0.0984034 0.170440i 0.812621 0.582793i \(-0.198040\pi\)
−0.911024 + 0.412353i \(0.864707\pi\)
\(488\) 12.1066 20.9692i 0.548040 0.949233i
\(489\) 0 0
\(490\) −12.0711 11.8272i −0.545315 0.534298i
\(491\) −9.31371 −0.420322 −0.210161 0.977667i \(-0.567399\pi\)
−0.210161 + 0.977667i \(0.567399\pi\)
\(492\) 0 0
\(493\) 2.41421 + 4.18154i 0.108731 + 0.188327i
\(494\) −16.4853 28.5533i −0.741708 1.28468i
\(495\) 0 0
\(496\) −18.0000 −0.808224
\(497\) −11.7574 + 1.60896i −0.527390 + 0.0721716i
\(498\) 0 0
\(499\) 0.414214 0.717439i 0.0185427 0.0321170i −0.856605 0.515973i \(-0.827431\pi\)
0.875148 + 0.483856i \(0.160764\pi\)
\(500\) 1.91421 + 3.31552i 0.0856062 + 0.148274i
\(501\) 0 0
\(502\) 11.2426 19.4728i 0.501784 0.869115i
\(503\) 15.8701 0.707611 0.353805 0.935319i \(-0.384887\pi\)
0.353805 + 0.935319i \(0.384887\pi\)
\(504\) 0 0
\(505\) −10.3137 −0.458954
\(506\) −0.414214 + 0.717439i −0.0184140 + 0.0318941i
\(507\) 0 0
\(508\) 17.8284 + 30.8797i 0.791009 + 1.37007i
\(509\) 6.67157 11.5555i 0.295712 0.512189i −0.679438 0.733733i \(-0.737776\pi\)
0.975150 + 0.221544i \(0.0711097\pi\)
\(510\) 0 0
\(511\) 1.34315 + 1.73205i 0.0594173 + 0.0766214i
\(512\) 31.2426 1.38074
\(513\) 0 0
\(514\) −7.65685 13.2621i −0.337729 0.584964i
\(515\) −1.20711 2.09077i −0.0531915 0.0921303i
\(516\) 0 0
\(517\) −1.65685 −0.0728684
\(518\) 0 0
\(519\) 0 0
\(520\) 10.6569 18.4582i 0.467334 0.809446i
\(521\) 7.48528 + 12.9649i 0.327936 + 0.568002i 0.982102 0.188349i \(-0.0603136\pi\)
−0.654166 + 0.756351i \(0.726980\pi\)
\(522\) 0 0
\(523\) −17.8284 + 30.8797i −0.779583 + 1.35028i 0.152600 + 0.988288i \(0.451235\pi\)
−0.932182 + 0.361989i \(0.882098\pi\)
\(524\) 73.9411 3.23013
\(525\) 0 0
\(526\) −70.1127 −3.05706
\(527\) −14.4853 + 25.0892i −0.630989 + 1.09290i
\(528\) 0 0
\(529\) 11.4142 + 19.7700i 0.496270 + 0.859565i
\(530\) −1.41421 + 2.44949i −0.0614295 + 0.106399i
\(531\) 0 0
\(532\) 28.3848 3.88437i 1.23064 0.168409i
\(533\) −37.7990 −1.63726
\(534\) 0 0
\(535\) −5.62132 9.73641i −0.243031 0.420942i
\(536\) 21.1569 + 36.6447i 0.913837 + 1.58281i
\(537\) 0 0
\(538\) 49.3848 2.12913
\(539\) −4.14214 4.05845i −0.178414 0.174810i
\(540\) 0 0
\(541\) −3.67157 + 6.35935i −0.157853 + 0.273410i −0.934094 0.357026i \(-0.883791\pi\)
0.776241 + 0.630436i \(0.217124\pi\)
\(542\) 19.8995 + 34.4669i 0.854756 + 1.48048i
\(543\) 0 0
\(544\) 3.82843 6.63103i 0.164142 0.284303i
\(545\) 13.4853 0.577646
\(546\) 0 0
\(547\) 24.8995 1.06463 0.532313 0.846548i \(-0.321323\pi\)
0.532313 + 0.846548i \(0.321323\pi\)
\(548\) −18.4853 + 32.0174i −0.789652 + 1.36772i
\(549\) 0 0
\(550\) 1.00000 + 1.73205i 0.0426401 + 0.0738549i
\(551\) −1.41421 + 2.44949i −0.0602475 + 0.104352i
\(552\) 0 0
\(553\) −14.8284 + 36.3221i −0.630569 + 1.54457i
\(554\) −38.9706 −1.65570
\(555\) 0 0
\(556\) 30.8995 + 53.5195i 1.31043 + 2.26973i
\(557\) 11.1421 + 19.2987i 0.472107 + 0.817714i 0.999491 0.0319135i \(-0.0101601\pi\)
−0.527383 + 0.849628i \(0.676827\pi\)
\(558\) 0 0
\(559\) −17.3137 −0.732292
\(560\) 4.86396 + 6.27231i 0.205540 + 0.265054i
\(561\) 0 0
\(562\) 36.5563 63.3175i 1.54204 2.67089i
\(563\) 20.8640 + 36.1374i 0.879311 + 1.52301i 0.852098 + 0.523382i \(0.175330\pi\)
0.0272129 + 0.999630i \(0.491337\pi\)
\(564\) 0 0
\(565\) 2.24264 3.88437i 0.0943486 0.163417i
\(566\) −33.7990 −1.42068
\(567\) 0 0
\(568\) 19.7990 0.830747
\(569\) 3.82843 6.63103i 0.160496 0.277987i −0.774551 0.632512i \(-0.782024\pi\)
0.935047 + 0.354525i \(0.115357\pi\)
\(570\) 0 0
\(571\) −4.58579 7.94282i −0.191909 0.332396i 0.753974 0.656905i \(-0.228135\pi\)
−0.945883 + 0.324508i \(0.894801\pi\)
\(572\) 7.65685 13.2621i 0.320149 0.554515i
\(573\) 0 0
\(574\) 18.8995 46.2941i 0.788850 1.93228i
\(575\) −0.414214 −0.0172739
\(576\) 0 0
\(577\) 21.9706 + 38.0541i 0.914646 + 1.58421i 0.807418 + 0.589980i \(0.200864\pi\)
0.107228 + 0.994234i \(0.465802\pi\)
\(578\) 7.62132 + 13.2005i 0.317005 + 0.549069i
\(579\) 0 0
\(580\) −3.82843 −0.158967
\(581\) −35.9853 + 4.92447i −1.49292 + 0.204302i
\(582\) 0 0
\(583\) −0.485281 + 0.840532i −0.0200983 + 0.0348113i
\(584\) −1.82843 3.16693i −0.0756609 0.131048i
\(585\) 0 0
\(586\) 19.3137 33.4523i 0.797842 1.38190i
\(587\) 34.2843 1.41506 0.707532 0.706682i \(-0.249809\pi\)
0.707532 + 0.706682i \(0.249809\pi\)
\(588\) 0 0
\(589\) −16.9706 −0.699260
\(590\) 5.41421 9.37769i 0.222900 0.386074i
\(591\) 0 0
\(592\) 0 0
\(593\) 2.10051 3.63818i 0.0862574 0.149402i −0.819669 0.572838i \(-0.805843\pi\)
0.905926 + 0.423435i \(0.139176\pi\)
\(594\) 0 0
\(595\) 12.6569 1.73205i 0.518880 0.0710072i
\(596\) 8.31371 0.340543
\(597\) 0 0
\(598\) 2.41421 + 4.18154i 0.0987245 + 0.170996i
\(599\) 3.17157 + 5.49333i 0.129587 + 0.224451i 0.923517 0.383558i \(-0.125302\pi\)
−0.793930 + 0.608010i \(0.791968\pi\)
\(600\) 0 0
\(601\) 19.6569 0.801820 0.400910 0.916117i \(-0.368694\pi\)
0.400910 + 0.916117i \(0.368694\pi\)
\(602\) 8.65685 21.2049i 0.352827 0.864246i
\(603\) 0 0
\(604\) −22.3137 + 38.6485i −0.907932 + 1.57258i
\(605\) −5.15685 8.93193i −0.209656 0.363135i
\(606\) 0 0
\(607\) −19.1066 + 33.0936i −0.775513 + 1.34323i 0.158993 + 0.987280i \(0.449175\pi\)
−0.934506 + 0.355948i \(0.884158\pi\)
\(608\) 4.48528 0.181902
\(609\) 0 0
\(610\) 13.2426 0.536179
\(611\) −4.82843 + 8.36308i −0.195337 + 0.338334i
\(612\) 0 0
\(613\) −17.7279 30.7057i −0.716024 1.24019i −0.962563 0.271057i \(-0.912627\pi\)
0.246539 0.969133i \(-0.420707\pi\)
\(614\) −5.74264 + 9.94655i −0.231754 + 0.401410i
\(615\) 0 0
\(616\) 5.92893 + 7.64564i 0.238883 + 0.308052i
\(617\) −11.3137 −0.455473 −0.227736 0.973723i \(-0.573132\pi\)
−0.227736 + 0.973723i \(0.573132\pi\)
\(618\) 0 0
\(619\) −12.7574 22.0964i −0.512762 0.888129i −0.999890 0.0147990i \(-0.995289\pi\)
0.487129 0.873330i \(-0.338044\pi\)
\(620\) −11.4853 19.8931i −0.461260 0.798926i
\(621\) 0 0
\(622\) −31.7990 −1.27502
\(623\) −8.65685 + 21.2049i −0.346830 + 0.849555i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −7.65685 13.2621i −0.306029 0.530059i
\(627\) 0 0
\(628\) −33.1421 + 57.4039i −1.32252 + 2.29066i
\(629\) 0 0
\(630\) 0 0
\(631\) −20.1421 −0.801846 −0.400923 0.916112i \(-0.631310\pi\)
−0.400923 + 0.916112i \(0.631310\pi\)
\(632\) 32.7279 56.6864i 1.30185 2.25486i
\(633\) 0 0
\(634\) 16.6569 + 28.8505i 0.661528 + 1.14580i
\(635\) −4.65685 + 8.06591i −0.184802 + 0.320086i
\(636\) 0 0
\(637\) −32.5563 + 9.08052i −1.28993 + 0.359783i
\(638\) −2.00000 −0.0791808
\(639\) 0 0
\(640\) 10.2782 + 17.8023i 0.406281 + 0.703699i
\(641\) 15.7426 + 27.2671i 0.621797 + 1.07698i 0.989151 + 0.146903i \(0.0469304\pi\)
−0.367354 + 0.930081i \(0.619736\pi\)
\(642\) 0 0
\(643\) 26.2843 1.03655 0.518275 0.855214i \(-0.326574\pi\)
0.518275 + 0.855214i \(0.326574\pi\)
\(644\) −4.15685 + 0.568852i −0.163803 + 0.0224159i
\(645\) 0 0
\(646\) −16.4853 + 28.5533i −0.648605 + 1.12342i
\(647\) −15.5208 26.8828i −0.610186 1.05687i −0.991209 0.132308i \(-0.957761\pi\)
0.381022 0.924566i \(-0.375572\pi\)
\(648\) 0 0
\(649\) 1.85786 3.21792i 0.0729276 0.126314i
\(650\) 11.6569 0.457219
\(651\) 0 0
\(652\) 47.2548 1.85064
\(653\) −9.58579 + 16.6031i −0.375121 + 0.649728i −0.990345 0.138624i \(-0.955732\pi\)
0.615224 + 0.788352i \(0.289065\pi\)
\(654\) 0 0
\(655\) 9.65685 + 16.7262i 0.377325 + 0.653545i
\(656\) −11.7426 + 20.3389i −0.458473 + 0.794099i
\(657\) 0 0
\(658\) −7.82843 10.0951i −0.305184 0.393549i
\(659\) −21.1716 −0.824727 −0.412364 0.911019i \(-0.635297\pi\)
−0.412364 + 0.911019i \(0.635297\pi\)
\(660\) 0 0
\(661\) −15.9142 27.5642i −0.618991 1.07212i −0.989670 0.143363i \(-0.954208\pi\)
0.370679 0.928761i \(-0.379125\pi\)
\(662\) 27.7279 + 48.0262i 1.07768 + 1.86659i
\(663\) 0 0
\(664\) 60.5980 2.35166
\(665\) 4.58579 + 5.91359i 0.177829 + 0.229319i
\(666\) 0 0
\(667\) 0.207107 0.358719i 0.00801921 0.0138897i
\(668\) 42.9056 + 74.3147i 1.66007 + 2.87532i
\(669\) 0 0
\(670\) −11.5711 + 20.0417i −0.447029 + 0.774278i
\(671\) 4.54416 0.175425
\(672\) 0 0
\(673\) 29.6569 1.14319 0.571594 0.820537i \(-0.306325\pi\)
0.571594 + 0.820537i \(0.306325\pi\)
\(674\) 11.0711 19.1757i 0.426442 0.738619i
\(675\) 0 0
\(676\) −19.7426 34.1953i −0.759332 1.31520i
\(677\) −14.0711 + 24.3718i −0.540795 + 0.936685i 0.458064 + 0.888919i \(0.348543\pi\)
−0.998859 + 0.0477651i \(0.984790\pi\)
\(678\) 0 0
\(679\) 30.5563 4.18154i 1.17265 0.160473i
\(680\) −21.3137 −0.817343
\(681\) 0 0
\(682\) −6.00000 10.3923i −0.229752 0.397942i
\(683\) −17.3787 30.1008i −0.664977 1.15177i −0.979292 0.202455i \(-0.935108\pi\)
0.314315 0.949319i \(-0.398225\pi\)
\(684\) 0 0
\(685\) −9.65685 −0.368969
\(686\) 5.15685 44.4135i 0.196890 1.69571i
\(687\) 0 0
\(688\) −5.37868 + 9.31615i −0.205060 + 0.355175i
\(689\) 2.82843 + 4.89898i 0.107754 + 0.186636i
\(690\) 0 0
\(691\) −0.414214 + 0.717439i −0.0157574 + 0.0272927i −0.873797 0.486292i \(-0.838349\pi\)
0.858039 + 0.513584i \(0.171683\pi\)
\(692\) −12.6863 −0.482260
\(693\) 0 0
\(694\) 19.1421 0.726626
\(695\) −8.07107 + 13.9795i −0.306153 + 0.530273i
\(696\) 0 0
\(697\) 18.8995 + 32.7349i 0.715869 + 1.23992i
\(698\) −18.5208 + 32.0790i −0.701023 + 1.21421i
\(699\) 0 0
\(700\) −3.82843 + 9.37769i −0.144701 + 0.354443i
\(701\) 3.20101 0.120900 0.0604502 0.998171i \(-0.480746\pi\)
0.0604502 + 0.998171i \(0.480746\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 4.07107 + 7.05130i 0.153434 + 0.265756i
\(705\) 0 0
\(706\) −64.7696 −2.43763
\(707\) −16.7218 21.5636i −0.628889 0.810982i
\(708\) 0 0
\(709\) −7.84315 + 13.5847i −0.294556 + 0.510185i −0.974881 0.222725i \(-0.928505\pi\)
0.680326 + 0.732910i \(0.261838\pi\)
\(710\) 5.41421 + 9.37769i 0.203192 + 0.351939i
\(711\) 0 0
\(712\) 19.1066 33.0936i 0.716050 1.24024i
\(713\) 2.48528 0.0930745
\(714\) 0 0
\(715\) 4.00000 0.149592
\(716\) −19.1421 + 33.1552i −0.715375 + 1.23907i
\(717\) 0 0
\(718\) 12.0711 + 20.9077i 0.450488 + 0.780269i
\(719\) 10.5563 18.2841i 0.393685 0.681883i −0.599247 0.800564i \(-0.704533\pi\)
0.992932 + 0.118681i \(0.0378666\pi\)
\(720\) 0 0
\(721\) 2.41421 5.91359i 0.0899100 0.220234i
\(722\) 26.5563 0.988325
\(723\) 0 0
\(724\) −5.08579 8.80884i −0.189012 0.327378i
\(725\) −0.500000 0.866025i −0.0185695 0.0321634i
\(726\) 0 0
\(727\) −37.5858 −1.39398 −0.696990 0.717081i \(-0.745478\pi\)
−0.696990 + 0.717081i \(0.745478\pi\)
\(728\) 55.8701 7.64564i 2.07068 0.283366i
\(729\) 0 0
\(730\) 1.00000 1.73205i 0.0370117 0.0641061i
\(731\) 8.65685 + 14.9941i 0.320185 + 0.554577i
\(732\) 0 0
\(733\) 11.0000 19.0526i 0.406294 0.703722i −0.588177 0.808732i \(-0.700154\pi\)
0.994471 + 0.105010i \(0.0334875\pi\)
\(734\) 6.65685 0.245709
\(735\) 0 0
\(736\) −0.656854 −0.0242120
\(737\) −3.97056 + 6.87722i −0.146258 + 0.253326i
\(738\) 0 0
\(739\) 10.5563 + 18.2841i 0.388322 + 0.672593i 0.992224 0.124466i \(-0.0397216\pi\)
−0.603902 + 0.797058i \(0.706388\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −7.41421 + 1.01461i −0.272184 + 0.0372476i
\(743\) 16.0711 0.589590 0.294795 0.955560i \(-0.404749\pi\)
0.294795 + 0.955560i \(0.404749\pi\)
\(744\) 0 0
\(745\) 1.08579 + 1.88064i 0.0397801 + 0.0689012i
\(746\) −25.3137 43.8446i −0.926801 1.60527i
\(747\) 0 0
\(748\) −15.3137 −0.559925
\(749\) 11.2426 27.5387i 0.410797 1.00624i
\(750\) 0 0
\(751\) 15.1716 26.2779i 0.553619 0.958895i −0.444391 0.895833i \(-0.646580\pi\)
0.998010 0.0630625i \(-0.0200868\pi\)
\(752\) 3.00000 + 5.19615i 0.109399 + 0.189484i
\(753\) 0 0
\(754\) −5.82843 + 10.0951i −0.212259 + 0.367643i
\(755\) −11.6569 −0.424236
\(756\) 0 0
\(757\) −31.4558 −1.14328 −0.571641 0.820504i \(-0.693693\pi\)
−0.571641 + 0.820504i \(0.693693\pi\)
\(758\) 32.3848 56.0921i 1.17627 2.03736i
\(759\) 0 0
\(760\) −6.24264 10.8126i −0.226444 0.392213i
\(761\) 4.65685 8.06591i 0.168811 0.292389i −0.769191 0.639019i \(-0.779341\pi\)
0.938002 + 0.346630i \(0.112674\pi\)
\(762\) 0 0
\(763\) 21.8640 + 28.1946i 0.791529 + 1.02071i
\(764\) 49.1127 1.77684
\(765\) 0 0
\(766\) 3.50000 + 6.06218i 0.126460 + 0.219035i
\(767\) −10.8284 18.7554i −0.390992 0.677218i
\(768\) 0 0
\(769\) −0.627417 −0.0226252 −0.0113126 0.999936i \(-0.503601\pi\)
−0.0113126 + 0.999936i \(0.503601\pi\)
\(770\) −2.00000 + 4.89898i −0.0720750 + 0.176547i
\(771\) 0 0
\(772\) 3.82843 6.63103i 0.137788 0.238656i
\(773\) −18.5563 32.1405i −0.667425 1.15601i −0.978622 0.205669i \(-0.934063\pi\)
0.311196 0.950346i \(-0.399270\pi\)
\(774\) 0 0
\(775\) 3.00000 5.19615i 0.107763 0.186651i
\(776\) −51.4558 −1.84716
\(777\) 0 0
\(778\) 57.1127 2.04759
\(779\) −11.0711 + 19.1757i −0.396662 + 0.687039i
\(780\) 0 0
\(781\) 1.85786 + 3.21792i 0.0664796 + 0.115146i
\(782\) 2.41421 4.18154i 0.0863321 0.149532i
\(783\) 0 0
\(784\) −5.22792 + 20.3389i −0.186712 + 0.726388i
\(785\) −17.3137 −0.617953
\(786\) 0 0
\(787\) −1.27817 2.21386i −0.0455620 0.0789157i 0.842345 0.538939i \(-0.181175\pi\)
−0.887907 + 0.460023i \(0.847841\pi\)
\(788\) −23.6274 40.9239i −0.841692 1.45785i
\(789\) 0 0
\(790\) 35.7990 1.27367
\(791\) 11.7574 1.60896i 0.418044 0.0572080i
\(792\) 0 0
\(793\) 13.2426 22.9369i 0.470260 0.814514i
\(794\) −20.0711 34.7641i −0.712296 1.23373i
\(795\) 0 0
\(796\) 18.4853 32.0174i 0.655193 1.13483i
\(797\) 8.00000 0.283375 0.141687 0.989911i \(-0.454747\pi\)
0.141687 + 0.989911i \(0.454747\pi\)
\(798\) 0 0
\(799\) 9.65685 0.341635
\(800\) −0.792893 + 1.37333i −0.0280330 + 0.0485546i
\(801\) 0 0
\(802\) −36.5919 63.3790i −1.29210 2.23799i
\(803\) 0.343146 0.594346i 0.0121094 0.0209740i
\(804\) 0 0
\(805\) −0.671573 0.866025i −0.0236698 0.0305234i
\(806\) −69.9411 −2.46357
\(807\) 0 0
\(808\) 22.7635 + 39.4275i 0.800816 + 1.38705i
\(809\) 17.8137 + 30.8542i 0.626297 + 1.08478i 0.988289 + 0.152596i \(0.0487634\pi\)
−0.361992 + 0.932181i \(0.617903\pi\)
\(810\) 0 0
\(811\) −20.6274 −0.724327 −0.362163 0.932115i \(-0.617962\pi\)
−0.362163 + 0.932115i \(0.617962\pi\)
\(812\) −6.20711 8.00436i −0.217827 0.280898i
\(813\) 0 0
\(814\) 0 0
\(815\) 6.17157 + 10.6895i 0.216181 + 0.374436i
\(816\) 0 0
\(817\) −5.07107 + 8.78335i −0.177414 + 0.307290i
\(818\) 35.7279 1.24920
\(819\) 0 0
\(820\) −29.9706 −1.04662
\(821\) 23.9706 41.5182i 0.836578 1.44900i −0.0561604 0.998422i \(-0.517886\pi\)
0.892739 0.450575i \(-0.148781\pi\)
\(822\) 0 0
\(823\) −1.03553 1.79360i −0.0360964 0.0625209i 0.847413 0.530935i \(-0.178159\pi\)
−0.883509 + 0.468414i \(0.844826\pi\)
\(824\) −5.32843 + 9.22911i −0.185625 + 0.321511i
\(825\) 0 0
\(826\) 28.3848 3.88437i 0.987633 0.135154i
\(827\) 26.2132 0.911522 0.455761 0.890102i \(-0.349367\pi\)
0.455761 + 0.890102i \(0.349367\pi\)
\(828\) 0 0
\(829\) −14.6569 25.3864i −0.509054 0.881707i −0.999945 0.0104859i \(-0.996662\pi\)
0.490891 0.871221i \(-0.336671\pi\)
\(830\) 16.5711 + 28.7019i 0.575190 + 0.996259i
\(831\) 0 0
\(832\) 47.4558 1.64524
\(833\) 24.1421 + 23.6544i 0.836475 + 0.819575i
\(834\) 0 0
\(835\) −11.2071 + 19.4113i −0.387838 + 0.671755i
\(836\) −4.48528 7.76874i −0.155127 0.268687i
\(837\) 0 0
\(838\) 0.828427 1.43488i 0.0286175 0.0495670i
\(839\) −15.1716 −0.523781 −0.261890 0.965098i \(-0.584346\pi\)
−0.261890 + 0.965098i \(0.584346\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) 16.2782 28.1946i 0.560983 0.971651i
\(843\) 0 0
\(844\) −39.2132 67.9193i −1.34977 2.33788i
\(845\) 5.15685 8.93193i 0.177401 0.307268i
\(846\) 0 0
\(847\) 10.3137 25.2633i 0.354383 0.868058i
\(848\) 3.51472 0.120696
\(849\) 0 0
\(850\) −5.82843 10.0951i −0.199913 0.346260i
\(851\) 0 0
\(852\) 0 0
\(853\) 2.54416 0.0871102 0.0435551 0.999051i \(-0.486132\pi\)
0.0435551 + 0.999051i \(0.486132\pi\)
\(854\) 21.4706 + 27.6873i 0.734708 + 0.947441i
\(855\) 0 0
\(856\) −24.8137 + 42.9786i −0.848115 + 1.46898i
\(857\) 17.1421 + 29.6910i 0.585564 + 1.01423i 0.994805 + 0.101800i \(0.0324603\pi\)
−0.409241 + 0.912426i \(0.634206\pi\)
\(858\) 0 0
\(859\) −0.686292 + 1.18869i −0.0234160 + 0.0405576i −0.877496 0.479584i \(-0.840788\pi\)
0.854080 + 0.520142i \(0.174121\pi\)
\(860\) −13.7279 −0.468118
\(861\) 0 0
\(862\) 42.9706 1.46358
\(863\) 7.27817 12.6062i 0.247752 0.429119i −0.715150 0.698971i \(-0.753642\pi\)
0.962902 + 0.269852i \(0.0869749\pi\)
\(864\) 0 0
\(865\) −1.65685 2.86976i −0.0563347 0.0975746i
\(866\) 9.41421 16.3059i 0.319908 0.554097i
\(867\) 0 0
\(868\) 22.9706 56.2662i 0.779672 1.90980i
\(869\) 12.2843 0.416715
\(870\) 0 0
\(871\) 23.1421 + 40.0834i 0.784141 + 1.35817i
\(872\) −29.7635 51.5518i −1.00792 1.74576i
\(873\) 0 0
\(874\) 2.82843 0.0956730
\(875\) −2.62132 + 0.358719i −0.0886168 + 0.0121269i
\(876\) 0 0
\(877\) −12.5858 + 21.7992i −0.424992 + 0.736107i −0.996420 0.0845449i \(-0.973056\pi\)
0.571428 + 0.820652i \(0.306390\pi\)
\(878\) −40.9706 70.9631i −1.38269 2.39489i
\(879\) 0 0
\(880\) 1.24264 2.15232i 0.0418894 0.0725546i
\(881\) −1.82843 −0.0616013 −0.0308006 0.999526i \(-0.509806\pi\)
−0.0308006 + 0.999526i \(0.509806\pi\)
\(882\) 0 0
\(883\) 18.2843 0.615315 0.307657 0.951497i \(-0.400455\pi\)
0.307657 + 0.951497i \(0.400455\pi\)
\(884\) −44.6274 + 77.2970i −1.50098 + 2.59978i
\(885\) 0 0
\(886\) −36.4706 63.1689i −1.22525 2.12220i
\(887\) 14.9645 25.9192i 0.502458 0.870282i −0.497538 0.867442i \(-0.665763\pi\)
0.999996 0.00284012i \(-0.000904038\pi\)
\(888\) 0 0
\(889\) −24.4142 + 3.34101i −0.818826 + 0.112054i
\(890\) 20.8995 0.700553
\(891\) 0 0
\(892\) −0.656854 1.13770i −0.0219931 0.0380932i
\(893\) 2.82843 + 4.89898i 0.0946497 + 0.163938i
\(894\) 0 0
\(895\) −10.0000 −0.334263
\(896\) −20.5563 + 50.3526i −0.686739 + 1.68216i
\(897\) 0 0
\(898\) −4.62132 + 8.00436i −0.154215 + 0.267109i
\(899\) 3.00000 + 5.19615i 0.100056 + 0.173301i
\(900\) 0 0
\(901\) 2.82843 4.89898i 0.0942286 0.163209i
\(902\) −15.6569 −0.521316
\(903\) 0 0
\(904\) −19.7990 −0.658505
\(905\) 1.32843 2.30090i 0.0441584 0.0764846i
\(906\) 0 0
\(907\) 7.10660 + 12.3090i 0.235971 + 0.408713i 0.959554 0.281523i \(-0.0908397\pi\)
−0.723584 + 0.690237i \(0.757506\pi\)
\(908\) −13.3431 + 23.1110i −0.442808 + 0.766966i
\(909\) 0 0
\(910\) 18.8995 + 24.3718i 0.626512 + 0.807917i
\(911\) 10.2010 0.337975 0.168987 0.985618i \(-0.445950\pi\)
0.168987 + 0.985618i \(0.445950\pi\)
\(912\) 0 0
\(913\) 5.68629 + 9.84895i 0.188189 + 0.325953i
\(914\) 29.3137 + 50.7728i 0.969611 + 1.67942i
\(915\) 0 0
\(916\) −44.6274 −1.47453
\(917\) −19.3137 + 47.3087i −0.637795 + 1.56227i
\(918\) 0 0
\(919\) 21.5563 37.3367i 0.711078 1.23162i −0.253374 0.967368i \(-0.581540\pi\)
0.964453 0.264256i \(-0.0851262\pi\)
\(920\) 0.914214 + 1.58346i 0.0301407 + 0.0522053i
\(921\) 0 0
\(922\) −49.8701 + 86.3775i −1.64238 + 2.84469i
\(923\) 21.6569 0.712844
\(924\) 0 0
\(925\) 0 0
\(926\) −44.7132 + 77.4455i −1.46937 + 2.54502i
\(927\) 0 0
\(928\) −0.792893 1.37333i −0.0260280 0.0450818i
\(929\) 2.74264 4.75039i 0.0899831 0.155855i −0.817521 0.575899i \(-0.804652\pi\)
0.907504 + 0.420044i \(0.137985\pi\)
\(930\) 0 0
\(931\) −4.92893 + 19.1757i −0.161539 + 0.628457i
\(932\) 64.4264 2.11036
\(933\) 0 0
\(934\) 3.74264 + 6.48244i 0.122463 + 0.212112i
\(935\) −2.00000 3.46410i −0.0654070 0.113288i
\(936\) 0 0
\(937\) 34.6274 1.13123 0.565614 0.824670i \(-0.308639\pi\)
0.565614 + 0.824670i \(0.308639\pi\)
\(938\) −60.6630 + 8.30153i −1.98072 + 0.271055i
\(939\) 0 0
\(940\) −3.82843 + 6.63103i −0.124870 + 0.216280i
\(941\) −23.1421 40.0834i −0.754412 1.30668i −0.945666 0.325139i \(-0.894589\pi\)
0.191254 0.981541i \(-0.438745\pi\)
\(942\) 0 0
\(943\) 1.62132 2.80821i 0.0527975 0.0914479i
\(944\) −13.4558 −0.437950
\(945\) 0 0
\(946\) −7.17157 −0.233168
\(947\) 16.5919 28.7380i 0.539164 0.933859i −0.459786 0.888030i \(-0.652074\pi\)
0.998949 0.0458290i \(-0.0145929\pi\)
\(948\) 0 0
\(949\) −2.00000 3.46410i −0.0649227 0.112449i
\(950\) 3.41421 5.91359i 0.110772 0.191862i
\(951\) 0 0
\(952\) −34.5563 44.5621i −1.11998 1.44426i
\(953\) 13.6569 0.442389 0.221194 0.975230i \(-0.429004\pi\)
0.221194 + 0.975230i \(0.429004\pi\)
\(954\) 0 0
\(955\) 6.41421 + 11.1097i 0.207559 + 0.359503i
\(956\) −40.7990 70.6659i −1.31953 2.28550i
\(957\) 0 0
\(958\) −86.0833 −2.78122
\(959\) −15.6569 20.1903i −0.505586 0.651978i
\(960\) 0 0
\(961\) −2.50000 + 4.33013i −0.0806452 + 0.139682i
\(962\) 0 0
\(963\) 0 0
\(964\) −52.9411 + 91.6967i −1.70512 + 2.95335i
\(965\) 2.00000 0.0643823
\(966\) 0 0
\(967\) 37.5269 1.20678 0.603392 0.797445i \(-0.293815\pi\)
0.603392 + 0.797445i \(0.293815\pi\)
\(968\) −22.7635 + 39.4275i −0.731645 + 1.26725i
\(969\) 0 0
\(970\) −14.0711 24.3718i −0.451795 0.782531i
\(971\) −12.0000 + 20.7846i −0.385098 + 0.667010i −0.991783 0.127933i \(-0.959166\pi\)
0.606685 + 0.794943i \(0.292499\pi\)
\(972\) 0 0
\(973\) −42.3137 + 5.79050i −1.35652 + 0.185635i
\(974\) −10.4853 −0.335970
\(975\) 0 0
\(976\) −8.22792 14.2512i −0.263369 0.456169i
\(977\) −0.656854 1.13770i −0.0210146 0.0363984i 0.855327 0.518089i \(-0.173356\pi\)
−0.876341 + 0.481690i \(0.840023\pi\)
\(978\) 0 0
\(979\) 7.17157 0.229204
\(980\) −25.8137 + 7.19988i −0.824589 + 0.229992i
\(981\) 0 0
\(982\) −11.2426 + 19.4728i −0.358767 + 0.621403i
\(983\) 14.1066 + 24.4334i 0.449931 + 0.779303i 0.998381 0.0568803i \(-0.0181153\pi\)
−0.548450 + 0.836183i \(0.684782\pi\)
\(984\) 0 0
\(985\) 6.17157 10.6895i 0.196643 0.340595i
\(986\) 11.6569 0.371230
\(987\) 0 0
\(988\) −52.2843 −1.66338
\(989\) 0.742641 1.28629i 0.0236146 0.0409017i
\(990\) 0 0
\(991\) 2.17157 + 3.76127i 0.0689823 + 0.119481i 0.898454 0.439069i \(-0.144691\pi\)
−0.829471 + 0.558549i \(0.811358\pi\)
\(992\) 4.75736 8.23999i 0.151046 0.261620i
\(993\) 0 0
\(994\) −10.8284 + 26.5241i −0.343457 + 0.841294i
\(995\) 9.65685 0.306143
\(996\) 0 0
\(997\) −16.7279 28.9736i −0.529779 0.917603i −0.999397 0.0347337i \(-0.988942\pi\)
0.469618 0.882870i \(-0.344392\pi\)
\(998\) −1.00000 1.73205i −0.0316544 0.0548271i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.j.e.226.2 4
3.2 odd 2 35.2.e.a.16.1 yes 4
7.2 even 3 2205.2.a.n.1.1 2
7.4 even 3 inner 315.2.j.e.46.2 4
7.5 odd 6 2205.2.a.q.1.1 2
12.11 even 2 560.2.q.k.401.1 4
15.2 even 4 175.2.k.a.149.1 8
15.8 even 4 175.2.k.a.149.4 8
15.14 odd 2 175.2.e.c.51.2 4
21.2 odd 6 245.2.a.h.1.2 2
21.5 even 6 245.2.a.g.1.2 2
21.11 odd 6 35.2.e.a.11.1 4
21.17 even 6 245.2.e.e.116.1 4
21.20 even 2 245.2.e.e.226.1 4
84.11 even 6 560.2.q.k.81.1 4
84.23 even 6 3920.2.a.bq.1.2 2
84.47 odd 6 3920.2.a.bv.1.1 2
105.2 even 12 1225.2.b.g.99.4 4
105.23 even 12 1225.2.b.g.99.1 4
105.32 even 12 175.2.k.a.74.4 8
105.44 odd 6 1225.2.a.k.1.1 2
105.47 odd 12 1225.2.b.h.99.4 4
105.53 even 12 175.2.k.a.74.1 8
105.68 odd 12 1225.2.b.h.99.1 4
105.74 odd 6 175.2.e.c.151.2 4
105.89 even 6 1225.2.a.m.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.e.a.11.1 4 21.11 odd 6
35.2.e.a.16.1 yes 4 3.2 odd 2
175.2.e.c.51.2 4 15.14 odd 2
175.2.e.c.151.2 4 105.74 odd 6
175.2.k.a.74.1 8 105.53 even 12
175.2.k.a.74.4 8 105.32 even 12
175.2.k.a.149.1 8 15.2 even 4
175.2.k.a.149.4 8 15.8 even 4
245.2.a.g.1.2 2 21.5 even 6
245.2.a.h.1.2 2 21.2 odd 6
245.2.e.e.116.1 4 21.17 even 6
245.2.e.e.226.1 4 21.20 even 2
315.2.j.e.46.2 4 7.4 even 3 inner
315.2.j.e.226.2 4 1.1 even 1 trivial
560.2.q.k.81.1 4 84.11 even 6
560.2.q.k.401.1 4 12.11 even 2
1225.2.a.k.1.1 2 105.44 odd 6
1225.2.a.m.1.1 2 105.89 even 6
1225.2.b.g.99.1 4 105.23 even 12
1225.2.b.g.99.4 4 105.2 even 12
1225.2.b.h.99.1 4 105.68 odd 12
1225.2.b.h.99.4 4 105.47 odd 12
2205.2.a.n.1.1 2 7.2 even 3
2205.2.a.q.1.1 2 7.5 odd 6
3920.2.a.bq.1.2 2 84.23 even 6
3920.2.a.bv.1.1 2 84.47 odd 6