Properties

Label 1280.3.g.f.1151.2
Level 12801280
Weight 33
Character 1280.1151
Analytic conductor 34.87734.877
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,3,Mod(1151,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.1151");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 1280=285 1280 = 2^{8} \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 1280.g (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 34.877473838134.8774738381
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.12960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x83x6+8x43x2+1 x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 216 2^{16}
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1151.2
Root 1.40126+0.809017i1.40126 + 0.809017i of defining polynomial
Character χ\chi == 1280.1151
Dual form 1280.3.g.f.1151.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q5.60503q3+2.23607iq5+1.32317iq7+22.4164q9+11.2101q11+17.4164iq1312.5332iq15+18.0000q175.29268q197.41641iq2115.1796iq235.00000q2575.1994q27+8.83282iq2942.1939iq3162.8328q332.95870q3533.4164iq3797.6196iq39+28.2492q4125.3788q43+50.1246iq45+10.5116iq47+47.2492q49100.891q51+28.2492iq53+25.0665iq55+29.6656q57+44.8403q5977.4164iq61+29.6607iq6338.9443q65+36.5889q67+85.0820iq69+97.6196iq7115.6656q73+28.0252q75+14.8328iq77112.101iq79+219.748q8192.0145q83+40.2492iq8549.5082iq87+59.6656q8923.0449q91+236.498iq9311.8348iq95+108.164q97+251.289q99+O(q100)q-5.60503 q^{3} +2.23607i q^{5} +1.32317i q^{7} +22.4164 q^{9} +11.2101 q^{11} +17.4164i q^{13} -12.5332i q^{15} +18.0000 q^{17} -5.29268 q^{19} -7.41641i q^{21} -15.1796i q^{23} -5.00000 q^{25} -75.1994 q^{27} +8.83282i q^{29} -42.1939i q^{31} -62.8328 q^{33} -2.95870 q^{35} -33.4164i q^{37} -97.6196i q^{39} +28.2492 q^{41} -25.3788 q^{43} +50.1246i q^{45} +10.5116i q^{47} +47.2492 q^{49} -100.891 q^{51} +28.2492i q^{53} +25.0665i q^{55} +29.6656 q^{57} +44.8403 q^{59} -77.4164i q^{61} +29.6607i q^{63} -38.9443 q^{65} +36.5889 q^{67} +85.0820i q^{69} +97.6196i q^{71} -15.6656 q^{73} +28.0252 q^{75} +14.8328i q^{77} -112.101i q^{79} +219.748 q^{81} -92.0145 q^{83} +40.2492i q^{85} -49.5082i q^{87} +59.6656 q^{89} -23.0449 q^{91} +236.498i q^{93} -11.8348i q^{95} +108.164 q^{97} +251.289 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+72q9+144q1740q25288q3396q41+56q49192q57240q65+304q73+792q81+48q89208q97+O(q100) 8 q + 72 q^{9} + 144 q^{17} - 40 q^{25} - 288 q^{33} - 96 q^{41} + 56 q^{49} - 192 q^{57} - 240 q^{65} + 304 q^{73} + 792 q^{81} + 48 q^{89} - 208 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1280Z)×\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times.

nn 257257 261261 511511
χ(n)\chi(n) 11 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −5.60503 −1.86834 −0.934172 0.356822i 0.883860π-0.883860\pi
−0.934172 + 0.356822i 0.883860π0.883860\pi
44 0 0
55 2.23607i 0.447214i
66 0 0
77 1.32317i 0.189024i 0.995524 + 0.0945121i 0.0301291π0.0301291\pi
−0.995524 + 0.0945121i 0.969871π0.969871\pi
88 0 0
99 22.4164 2.49071
1010 0 0
1111 11.2101 1.01910 0.509549 0.860442i 0.329812π-0.329812\pi
0.509549 + 0.860442i 0.329812π0.329812\pi
1212 0 0
1313 17.4164i 1.33972i 0.742486 + 0.669862i 0.233647π0.233647\pi
−0.742486 + 0.669862i 0.766353π0.766353\pi
1414 0 0
1515 − 12.5332i − 0.835549i
1616 0 0
1717 18.0000 1.05882 0.529412 0.848365i 0.322413π-0.322413\pi
0.529412 + 0.848365i 0.322413π0.322413\pi
1818 0 0
1919 −5.29268 −0.278562 −0.139281 0.990253i 0.544479π-0.544479\pi
−0.139281 + 0.990253i 0.544479π0.544479\pi
2020 0 0
2121 − 7.41641i − 0.353162i
2222 0 0
2323 − 15.1796i − 0.659982i −0.943984 0.329991i 0.892954π-0.892954\pi
0.943984 0.329991i 0.107046π-0.107046\pi
2424 0 0
2525 −5.00000 −0.200000
2626 0 0
2727 −75.1994 −2.78516
2828 0 0
2929 8.83282i 0.304580i 0.988336 + 0.152290i 0.0486647π0.0486647\pi
−0.988336 + 0.152290i 0.951335π0.951335\pi
3030 0 0
3131 − 42.1939i − 1.36109i −0.732704 0.680547i 0.761742π-0.761742\pi
0.732704 0.680547i 0.238258π-0.238258\pi
3232 0 0
3333 −62.8328 −1.90402
3434 0 0
3535 −2.95870 −0.0845342
3636 0 0
3737 − 33.4164i − 0.903146i −0.892234 0.451573i 0.850863π-0.850863\pi
0.892234 0.451573i 0.149137π-0.149137\pi
3838 0 0
3939 − 97.6196i − 2.50307i
4040 0 0
4141 28.2492 0.689005 0.344503 0.938785i 0.388048π-0.388048\pi
0.344503 + 0.938785i 0.388048π0.388048\pi
4242 0 0
4343 −25.3788 −0.590205 −0.295103 0.955466i 0.595354π-0.595354\pi
−0.295103 + 0.955466i 0.595354π0.595354\pi
4444 0 0
4545 50.1246i 1.11388i
4646 0 0
4747 10.5116i 0.223651i 0.993728 + 0.111826i 0.0356698π0.0356698\pi
−0.993728 + 0.111826i 0.964330π0.964330\pi
4848 0 0
4949 47.2492 0.964270
5050 0 0
5151 −100.891 −1.97825
5252 0 0
5353 28.2492i 0.533004i 0.963834 + 0.266502i 0.0858679π0.0858679\pi
−0.963834 + 0.266502i 0.914132π0.914132\pi
5454 0 0
5555 25.0665i 0.455754i
5656 0 0
5757 29.6656 0.520450
5858 0 0
5959 44.8403 0.760005 0.380002 0.924986i 0.375923π-0.375923\pi
0.380002 + 0.924986i 0.375923π0.375923\pi
6060 0 0
6161 − 77.4164i − 1.26912i −0.772873 0.634561i 0.781181π-0.781181\pi
0.772873 0.634561i 0.218819π-0.218819\pi
6262 0 0
6363 29.6607i 0.470805i
6464 0 0
6565 −38.9443 −0.599143
6666 0 0
6767 36.5889 0.546103 0.273051 0.961999i 0.411967π-0.411967\pi
0.273051 + 0.961999i 0.411967π0.411967\pi
6868 0 0
6969 85.0820i 1.23307i
7070 0 0
7171 97.6196i 1.37492i 0.726221 + 0.687462i 0.241275π0.241275\pi
−0.726221 + 0.687462i 0.758725π0.758725\pi
7272 0 0
7373 −15.6656 −0.214598 −0.107299 0.994227i 0.534220π-0.534220\pi
−0.107299 + 0.994227i 0.534220π0.534220\pi
7474 0 0
7575 28.0252 0.373669
7676 0 0
7777 14.8328i 0.192634i
7878 0 0
7979 − 112.101i − 1.41900i −0.704707 0.709498i 0.748922π-0.748922\pi
0.704707 0.709498i 0.251078π-0.251078\pi
8080 0 0
8181 219.748 2.71293
8282 0 0
8383 −92.0145 −1.10861 −0.554304 0.832314i 0.687016π-0.687016\pi
−0.554304 + 0.832314i 0.687016π0.687016\pi
8484 0 0
8585 40.2492i 0.473520i
8686 0 0
8787 − 49.5082i − 0.569060i
8888 0 0
8989 59.6656 0.670400 0.335200 0.942147i 0.391196π-0.391196\pi
0.335200 + 0.942147i 0.391196π0.391196\pi
9090 0 0
9191 −23.0449 −0.253240
9292 0 0
9393 236.498i 2.54299i
9494 0 0
9595 − 11.8348i − 0.124577i
9696 0 0
9797 108.164 1.11509 0.557547 0.830146i 0.311743π-0.311743\pi
0.557547 + 0.830146i 0.311743π0.311743\pi
9898 0 0
9999 251.289 2.53828
100100 0 0
101101 83.6656i 0.828373i 0.910192 + 0.414186i 0.135934π0.135934\pi
−0.910192 + 0.414186i 0.864066π0.864066\pi
102102 0 0
103103 135.219i 1.31281i 0.754409 + 0.656404i 0.227923π0.227923\pi
−0.754409 + 0.656404i 0.772077π0.772077\pi
104104 0 0
105105 16.5836 0.157939
106106 0 0
107107 122.374 1.14368 0.571840 0.820365i 0.306230π-0.306230\pi
0.571840 + 0.820365i 0.306230π0.306230\pi
108108 0 0
109109 2.58359i 0.0237027i 0.999930 + 0.0118513i 0.00377249π0.00377249\pi
−0.999930 + 0.0118513i 0.996228π0.996228\pi
110110 0 0
111111 187.300i 1.68739i
112112 0 0
113113 −33.5016 −0.296474 −0.148237 0.988952i 0.547360π-0.547360\pi
−0.148237 + 0.988952i 0.547360π0.547360\pi
114114 0 0
115115 33.9426 0.295153
116116 0 0
117117 390.413i 3.33687i
118118 0 0
119119 23.8170i 0.200143i
120120 0 0
121121 4.66563 0.0385589
122122 0 0
123123 −158.338 −1.28730
124124 0 0
125125 − 11.1803i − 0.0894427i
126126 0 0
127127 128.677i 1.01321i 0.862179 + 0.506603i 0.169099π0.169099\pi
−0.862179 + 0.506603i 0.830901π0.830901\pi
128128 0 0
129129 142.249 1.10271
130130 0 0
131131 222.327 1.69715 0.848577 0.529072i 0.177460π-0.177460\pi
0.848577 + 0.529072i 0.177460π0.177460\pi
132132 0 0
133133 − 7.00311i − 0.0526549i
134134 0 0
135135 − 168.151i − 1.24556i
136136 0 0
137137 −128.833 −0.940386 −0.470193 0.882564i 0.655816π-0.655816\pi
−0.470193 + 0.882564i 0.655816π0.655816\pi
138138 0 0
139139 230.743 1.66002 0.830012 0.557745i 0.188333π-0.188333\pi
0.830012 + 0.557745i 0.188333π0.188333\pi
140140 0 0
141141 − 58.9180i − 0.417858i
142142 0 0
143143 195.239i 1.36531i
144144 0 0
145145 −19.7508 −0.136212
146146 0 0
147147 −264.834 −1.80159
148148 0 0
149149 − 285.915i − 1.91889i −0.281893 0.959446i 0.590962π-0.590962\pi
0.281893 0.959446i 0.409038π-0.409038\pi
150150 0 0
151151 − 64.6141i − 0.427908i −0.976844 0.213954i 0.931366π-0.931366\pi
0.976844 0.213954i 0.0686342π-0.0686342\pi
152152 0 0
153153 403.495 2.63722
154154 0 0
155155 94.3485 0.608700
156156 0 0
157157 − 14.5836i − 0.0928891i −0.998921 0.0464446i 0.985211π-0.985211\pi
0.998921 0.0464446i 0.0147891π-0.0147891\pi
158158 0 0
159159 − 158.338i − 0.995836i
160160 0 0
161161 20.0851 0.124752
162162 0 0
163163 20.8583 0.127965 0.0639827 0.997951i 0.479620π-0.479620\pi
0.0639827 + 0.997951i 0.479620π0.479620\pi
164164 0 0
165165 − 140.498i − 0.851506i
166166 0 0
167167 216.961i 1.29917i 0.760290 + 0.649583i 0.225057π0.225057\pi
−0.760290 + 0.649583i 0.774943π0.774943\pi
168168 0 0
169169 −134.331 −0.794860
170170 0 0
171171 −118.643 −0.693817
172172 0 0
173173 − 46.5836i − 0.269269i −0.990895 0.134635i 0.957014π-0.957014\pi
0.990895 0.134635i 0.0429861π-0.0429861\pi
174174 0 0
175175 − 6.61585i − 0.0378048i
176176 0 0
177177 −251.331 −1.41995
178178 0 0
179179 6.54211 0.0365481 0.0182740 0.999833i 0.494183π-0.494183\pi
0.0182740 + 0.999833i 0.494183π0.494183\pi
180180 0 0
181181 241.331i 1.33332i 0.745361 + 0.666661i 0.232277π0.232277\pi
−0.745361 + 0.666661i 0.767723π0.767723\pi
182182 0 0
183183 433.922i 2.37116i
184184 0 0
185185 74.7214 0.403899
186186 0 0
187187 201.781 1.07904
188188 0 0
189189 − 99.5016i − 0.526463i
190190 0 0
191191 59.3214i 0.310583i 0.987869 + 0.155292i 0.0496317π0.0496317\pi
−0.987869 + 0.155292i 0.950368π0.950368\pi
192192 0 0
193193 234.997 1.21760 0.608800 0.793324i 0.291651π-0.291651\pi
0.608800 + 0.793324i 0.291651π0.291651\pi
194194 0 0
195195 218.284 1.11940
196196 0 0
197197 − 230.912i − 1.17214i −0.810260 0.586070i 0.800674π-0.800674\pi
0.810260 0.586070i 0.199326π-0.199326\pi
198198 0 0
199199 − 27.7128i − 0.139260i −0.997573 0.0696302i 0.977818π-0.977818\pi
0.997573 0.0696302i 0.0221819π-0.0221819\pi
200200 0 0
201201 −205.082 −1.02031
202202 0 0
203203 −11.6873 −0.0575729
204204 0 0
205205 63.1672i 0.308133i
206206 0 0
207207 − 340.272i − 1.64382i
208208 0 0
209209 −59.3313 −0.283882
210210 0 0
211211 −93.0991 −0.441228 −0.220614 0.975361i 0.570806π-0.570806\pi
−0.220614 + 0.975361i 0.570806π0.570806\pi
212212 0 0
213213 − 547.161i − 2.56883i
214214 0 0
215215 − 56.7488i − 0.263948i
216216 0 0
217217 55.8297 0.257280
218218 0 0
219219 87.8064 0.400942
220220 0 0
221221 313.495i 1.41853i
222222 0 0
223223 307.891i 1.38068i 0.723487 + 0.690338i 0.242538π0.242538\pi
−0.723487 + 0.690338i 0.757462π0.757462\pi
224224 0 0
225225 −112.082 −0.498142
226226 0 0
227227 255.020 1.12344 0.561719 0.827328i 0.310140π-0.310140\pi
0.561719 + 0.827328i 0.310140π0.310140\pi
228228 0 0
229229 411.495i 1.79692i 0.439052 + 0.898461i 0.355314π0.355314\pi
−0.439052 + 0.898461i 0.644686π0.644686\pi
230230 0 0
231231 − 83.1384i − 0.359907i
232232 0 0
233233 332.833 1.42847 0.714234 0.699907i 0.246775π-0.246775\pi
0.714234 + 0.699907i 0.246775π0.246775\pi
234234 0 0
235235 −23.5047 −0.100020
236236 0 0
237237 628.328i 2.65117i
238238 0 0
239239 − 266.248i − 1.11401i −0.830510 0.557004i 0.811951π-0.811951\pi
0.830510 0.557004i 0.188049π-0.188049\pi
240240 0 0
241241 −78.5836 −0.326073 −0.163036 0.986620i 0.552129π-0.552129\pi
−0.163036 + 0.986620i 0.552129π0.552129\pi
242242 0 0
243243 −554.898 −2.28353
244244 0 0
245245 105.652i 0.431235i
246246 0 0
247247 − 92.1794i − 0.373196i
248248 0 0
249249 515.745 2.07126
250250 0 0
251251 −404.482 −1.61148 −0.805741 0.592268i 0.798233π-0.798233\pi
−0.805741 + 0.592268i 0.798233π0.798233\pi
252252 0 0
253253 − 170.164i − 0.672585i
254254 0 0
255255 − 225.598i − 0.884699i
256256 0 0
257257 −85.8297 −0.333968 −0.166984 0.985960i 0.553403π-0.553403\pi
−0.166984 + 0.985960i 0.553403π0.553403\pi
258258 0 0
259259 44.2156 0.170716
260260 0 0
261261 198.000i 0.758621i
262262 0 0
263263 − 440.685i − 1.67561i −0.545971 0.837804i 0.683839π-0.683839\pi
0.545971 0.837804i 0.316161π-0.316161\pi
264264 0 0
265265 −63.1672 −0.238367
266266 0 0
267267 −334.428 −1.25254
268268 0 0
269269 − 205.416i − 0.763630i −0.924239 0.381815i 0.875299π-0.875299\pi
0.924239 0.381815i 0.124701π-0.124701\pi
270270 0 0
271271 418.044i 1.54260i 0.636474 + 0.771298i 0.280392π0.280392\pi
−0.636474 + 0.771298i 0.719608π0.719608\pi
272272 0 0
273273 129.167 0.473140
274274 0 0
275275 −56.0503 −0.203819
276276 0 0
277277 511.410i 1.84625i 0.384505 + 0.923123i 0.374372π0.374372\pi
−0.384505 + 0.923123i 0.625628π0.625628\pi
278278 0 0
279279 − 945.836i − 3.39009i
280280 0 0
281281 −115.751 −0.411924 −0.205962 0.978560i 0.566032π-0.566032\pi
−0.205962 + 0.978560i 0.566032π0.566032\pi
282282 0 0
283283 −402.001 −1.42050 −0.710249 0.703951i 0.751417π-0.751417\pi
−0.710249 + 0.703951i 0.751417π0.751417\pi
284284 0 0
285285 66.3344i 0.232752i
286286 0 0
287287 37.3785i 0.130239i
288288 0 0
289289 35.0000 0.121107
290290 0 0
291291 −606.263 −2.08338
292292 0 0
293293 − 90.4133i − 0.308578i −0.988026 0.154289i 0.950691π-0.950691\pi
0.988026 0.154289i 0.0493087π-0.0493087\pi
294294 0 0
295295 100.266i 0.339884i
296296 0 0
297297 −842.991 −2.83835
298298 0 0
299299 264.374 0.884193
300300 0 0
301301 − 33.5805i − 0.111563i
302302 0 0
303303 − 468.949i − 1.54769i
304304 0 0
305305 173.108 0.567568
306306 0 0
307307 275.419 0.897130 0.448565 0.893750i 0.351935π-0.351935\pi
0.448565 + 0.893750i 0.351935π0.351935\pi
308308 0 0
309309 − 757.909i − 2.45278i
310310 0 0
311311 485.304i 1.56046i 0.625491 + 0.780231i 0.284899π0.284899\pi
−0.625491 + 0.780231i 0.715101π0.715101\pi
312312 0 0
313313 −2.00000 −0.00638978 −0.00319489 0.999995i 0.501017π-0.501017\pi
−0.00319489 + 0.999995i 0.501017π0.501017\pi
314314 0 0
315315 −66.3233 −0.210550
316316 0 0
317317 − 394.741i − 1.24524i −0.782524 0.622621i 0.786068π-0.786068\pi
0.782524 0.622621i 0.213932π-0.213932\pi
318318 0 0
319319 99.0165i 0.310396i
320320 0 0
321321 −685.909 −2.13679
322322 0 0
323323 −95.2682 −0.294948
324324 0 0
325325 − 87.0820i − 0.267945i
326326 0 0
327327 − 14.4811i − 0.0442848i
328328 0 0
329329 −13.9086 −0.0422755
330330 0 0
331331 296.130 0.894652 0.447326 0.894371i 0.352376π-0.352376\pi
0.447326 + 0.894371i 0.352376π0.352376\pi
332332 0 0
333333 − 749.076i − 2.24948i
334334 0 0
335335 81.8153i 0.244225i
336336 0 0
337337 19.9938 0.0593288 0.0296644 0.999560i 0.490556π-0.490556\pi
0.0296644 + 0.999560i 0.490556π0.490556\pi
338338 0 0
339339 187.777 0.553915
340340 0 0
341341 − 472.997i − 1.38709i
342342 0 0
343343 127.354i 0.371294i
344344 0 0
345345 −190.249 −0.551447
346346 0 0
347347 −546.959 −1.57625 −0.788126 0.615514i 0.788948π-0.788948\pi
−0.788126 + 0.615514i 0.788948π0.788948\pi
348348 0 0
349349 40.8328i 0.116999i 0.998287 + 0.0584997i 0.0186317π0.0186317\pi
−0.998287 + 0.0584997i 0.981368π0.981368\pi
350350 0 0
351351 − 1309.70i − 3.73135i
352352 0 0
353353 −555.325 −1.57316 −0.786579 0.617489i 0.788150π-0.788150\pi
−0.786579 + 0.617489i 0.788150π0.788150\pi
354354 0 0
355355 −218.284 −0.614884
356356 0 0
357357 − 133.495i − 0.373937i
358358 0 0
359359 326.012i 0.908110i 0.890974 + 0.454055i 0.150023π0.150023\pi
−0.890974 + 0.454055i 0.849977π0.849977\pi
360360 0 0
361361 −332.988 −0.922403
362362 0 0
363363 −26.1510 −0.0720414
364364 0 0
365365 − 35.0294i − 0.0959710i
366366 0 0
367367 − 13.6352i − 0.0371531i −0.999827 0.0185766i 0.994087π-0.994087\pi
0.999827 0.0185766i 0.00591344π-0.00591344\pi
368368 0 0
369369 633.246 1.71611
370370 0 0
371371 −37.3785 −0.100751
372372 0 0
373373 136.748i 0.366616i 0.983056 + 0.183308i 0.0586805π0.0586805\pi
−0.983056 + 0.183308i 0.941319π0.941319\pi
374374 0 0
375375 62.6662i 0.167110i
376376 0 0
377377 −153.836 −0.408053
378378 0 0
379379 186.198 0.491288 0.245644 0.969360i 0.421001π-0.421001\pi
0.245644 + 0.969360i 0.421001π0.421001\pi
380380 0 0
381381 − 721.240i − 1.89302i
382382 0 0
383383 475.712i 1.24207i 0.783784 + 0.621034i 0.213287π0.213287\pi
−0.783784 + 0.621034i 0.786713π0.786713\pi
384384 0 0
385385 −33.1672 −0.0861485
386386 0 0
387387 −568.902 −1.47003
388388 0 0
389389 − 11.9211i − 0.0306454i −0.999883 0.0153227i 0.995122π-0.995122\pi
0.999883 0.0153227i 0.00487756π-0.00487756\pi
390390 0 0
391391 − 273.232i − 0.698804i
392392 0 0
393393 −1246.15 −3.17087
394394 0 0
395395 250.665 0.634594
396396 0 0
397397 250.754i 0.631622i 0.948822 + 0.315811i 0.102277π0.102277\pi
−0.948822 + 0.315811i 0.897723π0.897723\pi
398398 0 0
399399 39.2526i 0.0983776i
400400 0 0
401401 550.328 1.37239 0.686195 0.727418i 0.259280π-0.259280\pi
0.686195 + 0.727418i 0.259280π0.259280\pi
402402 0 0
403403 734.867 1.82349
404404 0 0
405405 491.371i 1.21326i
406406 0 0
407407 − 374.600i − 0.920394i
408408 0 0
409409 27.0820 0.0662153 0.0331076 0.999452i 0.489460π-0.489460\pi
0.0331076 + 0.999452i 0.489460π0.489460\pi
410410 0 0
411411 722.112 1.75696
412412 0 0
413413 59.3313i 0.143659i
414414 0 0
415415 − 205.751i − 0.495785i
416416 0 0
417417 −1293.33 −3.10150
418418 0 0
419419 198.033 0.472632 0.236316 0.971676i 0.424060π-0.424060\pi
0.236316 + 0.971676i 0.424060π0.424060\pi
420420 0 0
421421 − 475.580i − 1.12964i −0.825212 0.564822i 0.808945π-0.808945\pi
0.825212 0.564822i 0.191055π-0.191055\pi
422422 0 0
423423 235.633i 0.557051i
424424 0 0
425425 −90.0000 −0.211765
426426 0 0
427427 102.435 0.239895
428428 0 0
429429 − 1094.32i − 2.55087i
430430 0 0
431431 489.052i 1.13469i 0.823479 + 0.567346i 0.192030π0.192030\pi
−0.823479 + 0.567346i 0.807970π0.807970\pi
432432 0 0
433433 622.498 1.43764 0.718820 0.695196i 0.244682π-0.244682\pi
0.718820 + 0.695196i 0.244682π0.244682\pi
434434 0 0
435435 110.704 0.254491
436436 0 0
437437 80.3406i 0.183846i
438438 0 0
439439 552.712i 1.25902i 0.776990 + 0.629512i 0.216745π0.216745\pi
−0.776990 + 0.629512i 0.783255π0.783255\pi
440440 0 0
441441 1059.16 2.40172
442442 0 0
443443 668.873 1.50987 0.754936 0.655799i 0.227668π-0.227668\pi
0.754936 + 0.655799i 0.227668π0.227668\pi
444444 0 0
445445 133.416i 0.299812i
446446 0 0
447447 1602.56i 3.58515i
448448 0 0
449449 −280.407 −0.624515 −0.312257 0.949998i 0.601085π-0.601085\pi
−0.312257 + 0.949998i 0.601085π0.601085\pi
450450 0 0
451451 316.676 0.702163
452452 0 0
453453 362.164i 0.799479i
454454 0 0
455455 − 51.5299i − 0.113252i
456456 0 0
457457 320.334 0.700950 0.350475 0.936572i 0.386020π-0.386020\pi
0.350475 + 0.936572i 0.386020π0.386020\pi
458458 0 0
459459 −1353.59 −2.94900
460460 0 0
461461 163.337i 0.354311i 0.984183 + 0.177156i 0.0566896π0.0566896\pi
−0.984183 + 0.177156i 0.943310π0.943310\pi
462462 0 0
463463 108.131i 0.233545i 0.993159 + 0.116772i 0.0372548π0.0372548\pi
−0.993159 + 0.116772i 0.962745π0.962745\pi
464464 0 0
465465 −528.827 −1.13726
466466 0 0
467467 207.386 0.444082 0.222041 0.975037i 0.428728π-0.428728\pi
0.222041 + 0.975037i 0.428728π0.428728\pi
468468 0 0
469469 48.4133i 0.103227i
470470 0 0
471471 81.7415i 0.173549i
472472 0 0
473473 −284.498 −0.601477
474474 0 0
475475 26.4634 0.0557124
476476 0 0
477477 633.246i 1.32756i
478478 0 0
479479 233.537i 0.487552i 0.969832 + 0.243776i 0.0783861π0.0783861\pi
−0.969832 + 0.243776i 0.921614π0.921614\pi
480480 0 0
481481 581.994 1.20997
482482 0 0
483483 −112.578 −0.233081
484484 0 0
485485 241.862i 0.498685i
486486 0 0
487487 308.368i 0.633199i 0.948559 + 0.316600i 0.102541π0.102541\pi
−0.948559 + 0.316600i 0.897459π0.897459\pi
488488 0 0
489489 −116.912 −0.239083
490490 0 0
491491 −187.777 −0.382439 −0.191219 0.981547i 0.561244π-0.561244\pi
−0.191219 + 0.981547i 0.561244π0.561244\pi
492492 0 0
493493 158.991i 0.322496i
494494 0 0
495495 561.900i 1.13515i
496496 0 0
497497 −129.167 −0.259894
498498 0 0
499499 231.038 0.463003 0.231501 0.972835i 0.425636π-0.425636\pi
0.231501 + 0.972835i 0.425636π0.425636\pi
500500 0 0
501501 − 1216.07i − 2.42729i
502502 0 0
503503 − 389.780i − 0.774910i −0.921889 0.387455i 0.873354π-0.873354\pi
0.921889 0.387455i 0.126646π-0.126646\pi
504504 0 0
505505 −187.082 −0.370459
506506 0 0
507507 752.931 1.48507
508508 0 0
509509 363.167i 0.713492i 0.934202 + 0.356746i 0.116114π0.116114\pi
−0.934202 + 0.356746i 0.883886π0.883886\pi
510510 0 0
511511 − 20.7283i − 0.0405641i
512512 0 0
513513 398.006 0.775841
514514 0 0
515515 −302.359 −0.587106
516516 0 0
517517 117.836i 0.227922i
518518 0 0
519519 261.103i 0.503088i
520520 0 0
521521 491.666 0.943696 0.471848 0.881680i 0.343587π-0.343587\pi
0.471848 + 0.881680i 0.343587π0.343587\pi
522522 0 0
523523 −133.914 −0.256049 −0.128024 0.991771i 0.540864π-0.540864\pi
−0.128024 + 0.991771i 0.540864π0.540864\pi
524524 0 0
525525 37.0820i 0.0706325i
526526 0 0
527527 − 759.491i − 1.44116i
528528 0 0
529529 298.580 0.564424
530530 0 0
531531 1005.16 1.89295
532532 0 0
533533 492.000i 0.923077i
534534 0 0
535535 273.636i 0.511469i
536536 0 0
537537 −36.6687 −0.0682844
538538 0 0
539539 529.667 0.982685
540540 0 0
541541 − 303.337i − 0.560698i −0.959898 0.280349i 0.909550π-0.909550\pi
0.959898 0.280349i 0.0904502π-0.0904502\pi
542542 0 0
543543 − 1352.67i − 2.49110i
544544 0 0
545545 −5.77709 −0.0106002
546546 0 0
547547 −89.6631 −0.163918 −0.0819590 0.996636i 0.526118π-0.526118\pi
−0.0819590 + 0.996636i 0.526118π0.526118\pi
548548 0 0
549549 − 1735.40i − 3.16102i
550550 0 0
551551 − 46.7492i − 0.0848443i
552552 0 0
553553 148.328 0.268225
554554 0 0
555555 −418.816 −0.754623
556556 0 0
557557 − 490.741i − 0.881044i −0.897742 0.440522i 0.854793π-0.854793\pi
0.897742 0.440522i 0.145207π-0.145207\pi
558558 0 0
559559 − 442.008i − 0.790712i
560560 0 0
561561 −1130.99 −2.01603
562562 0 0
563563 987.423 1.75386 0.876930 0.480618i 0.159588π-0.159588\pi
0.876930 + 0.480618i 0.159588π0.159588\pi
564564 0 0
565565 − 74.9117i − 0.132587i
566566 0 0
567567 290.763i 0.512810i
568568 0 0
569569 475.082 0.834942 0.417471 0.908690i 0.362917π-0.362917\pi
0.417471 + 0.908690i 0.362917π0.362917\pi
570570 0 0
571571 −182.485 −0.319588 −0.159794 0.987150i 0.551083π-0.551083\pi
−0.159794 + 0.987150i 0.551083π0.551083\pi
572572 0 0
573573 − 332.498i − 0.580277i
574574 0 0
575575 75.8979i 0.131996i
576576 0 0
577577 −319.167 −0.553149 −0.276575 0.960992i 0.589199π-0.589199\pi
−0.276575 + 0.960992i 0.589199π0.589199\pi
578578 0 0
579579 −1317.17 −2.27490
580580 0 0
581581 − 121.751i − 0.209554i
582582 0 0
583583 316.676i 0.543183i
584584 0 0
585585 −872.991 −1.49229
586586 0 0
587587 904.762 1.54133 0.770666 0.637239i 0.219924π-0.219924\pi
0.770666 + 0.637239i 0.219924π0.219924\pi
588588 0 0
589589 223.319i 0.379149i
590590 0 0
591591 1294.27i 2.18996i
592592 0 0
593593 −747.325 −1.26024 −0.630122 0.776496i 0.716995π-0.716995\pi
−0.630122 + 0.776496i 0.716995π0.716995\pi
594594 0 0
595595 −53.2565 −0.0895068
596596 0 0
597597 155.331i 0.260186i
598598 0 0
599599 874.385i 1.45974i 0.683585 + 0.729871i 0.260420π0.260420\pi
−0.683585 + 0.729871i 0.739580π0.739580\pi
600600 0 0
601601 777.234 1.29323 0.646617 0.762815i 0.276183π-0.276183\pi
0.646617 + 0.762815i 0.276183π0.276183\pi
602602 0 0
603603 820.192 1.36019
604604 0 0
605605 10.4327i 0.0172441i
606606 0 0
607607 − 699.436i − 1.15228i −0.817350 0.576142i 0.804558π-0.804558\pi
0.817350 0.576142i 0.195442π-0.195442\pi
608608 0 0
609609 65.5078 0.107566
610610 0 0
611611 −183.075 −0.299631
612612 0 0
613613 11.0820i 0.0180784i 0.999959 + 0.00903918i 0.00287730π0.00287730\pi
−0.999959 + 0.00903918i 0.997123π0.997123\pi
614614 0 0
615615 − 354.054i − 0.575698i
616616 0 0
617617 −1189.16 −1.92733 −0.963664 0.267119i 0.913928π-0.913928\pi
−0.963664 + 0.267119i 0.913928π0.913928\pi
618618 0 0
619619 325.717 0.526198 0.263099 0.964769i 0.415255π-0.415255\pi
0.263099 + 0.964769i 0.415255π0.415255\pi
620620 0 0
621621 1141.50i 1.83816i
622622 0 0
623623 78.9477i 0.126722i
624624 0 0
625625 25.0000 0.0400000
626626 0 0
627627 332.554 0.530389
628628 0 0
629629 − 601.495i − 0.956272i
630630 0 0
631631 316.823i 0.502097i 0.967975 + 0.251048i 0.0807754π0.0807754\pi
−0.967975 + 0.251048i 0.919225π0.919225\pi
632632 0 0
633633 521.823 0.824366
634634 0 0
635635 −287.731 −0.453120
636636 0 0
637637 822.912i 1.29186i
638638 0 0
639639 2188.28i 3.42454i
640640 0 0
641641 −149.587 −0.233365 −0.116682 0.993169i 0.537226π-0.537226\pi
−0.116682 + 0.993169i 0.537226π0.537226\pi
642642 0 0
643643 −408.690 −0.635599 −0.317800 0.948158i 0.602944π-0.602944\pi
−0.317800 + 0.948158i 0.602944π0.602944\pi
644644 0 0
645645 318.079i 0.493146i
646646 0 0
647647 104.383i 0.161334i 0.996741 + 0.0806668i 0.0257050π0.0257050\pi
−0.996741 + 0.0806668i 0.974295π0.974295\pi
648648 0 0
649649 502.663 0.774519
650650 0 0
651651 −312.927 −0.480687
652652 0 0
653653 − 164.420i − 0.251791i −0.992044 0.125895i 0.959820π-0.959820\pi
0.992044 0.125895i 0.0401804π-0.0401804\pi
654654 0 0
655655 497.139i 0.758990i
656656 0 0
657657 −351.167 −0.534501
658658 0 0
659659 −743.613 −1.12840 −0.564198 0.825640i 0.690814π-0.690814\pi
−0.564198 + 0.825640i 0.690814π0.690814\pi
660660 0 0
661661 758.073i 1.14686i 0.819255 + 0.573429i 0.194387π0.194387\pi
−0.819255 + 0.573429i 0.805613π0.805613\pi
662662 0 0
663663 − 1757.15i − 2.65030i
664664 0 0
665665 15.6594 0.0235480
666666 0 0
667667 134.078 0.201017
668668 0 0
669669 − 1725.74i − 2.57958i
670670 0 0
671671 − 867.843i − 1.29336i
672672 0 0
673673 364.164 0.541106 0.270553 0.962705i 0.412794π-0.412794\pi
0.270553 + 0.962705i 0.412794π0.412794\pi
674674 0 0
675675 375.997 0.557033
676676 0 0
677677 708.079i 1.04591i 0.852361 + 0.522953i 0.175170π0.175170\pi
−0.852361 + 0.522953i 0.824830π0.824830\pi
678678 0 0
679679 143.119i 0.210780i
680680 0 0
681681 −1429.40 −2.09897
682682 0 0
683683 355.469 0.520452 0.260226 0.965548i 0.416203π-0.416203\pi
0.260226 + 0.965548i 0.416203π0.416203\pi
684684 0 0
685685 − 288.079i − 0.420553i
686686 0 0
687687 − 2306.45i − 3.35727i
688688 0 0
689689 −492.000 −0.714078
690690 0 0
691691 116.769 0.168985 0.0844925 0.996424i 0.473073π-0.473073\pi
0.0844925 + 0.996424i 0.473073π0.473073\pi
692692 0 0
693693 332.498i 0.479796i
694694 0 0
695695 515.958i 0.742386i
696696 0 0
697697 508.486 0.729535
698698 0 0
699699 −1865.54 −2.66887
700700 0 0
701701 − 246.413i − 0.351517i −0.984433 0.175758i 0.943762π-0.943762\pi
0.984433 0.175758i 0.0562378π-0.0562378\pi
702702 0 0
703703 176.862i 0.251582i
704704 0 0
705705 131.745 0.186872
706706 0 0
707707 −110.704 −0.156582
708708 0 0
709709 552.820i 0.779718i 0.920874 + 0.389859i 0.127476π0.127476\pi
−0.920874 + 0.389859i 0.872524π0.872524\pi
710710 0 0
711711 − 2512.89i − 3.53431i
712712 0 0
713713 −640.486 −0.898297
714714 0 0
715715 −436.568 −0.610585
716716 0 0
717717 1492.33i 2.08135i
718718 0 0
719719 − 99.9709i − 0.139042i −0.997581 0.0695208i 0.977853π-0.977853\pi
0.997581 0.0695208i 0.0221470π-0.0221470\pi
720720 0 0
721721 −178.918 −0.248153
722722 0 0
723723 440.464 0.609217
724724 0 0
725725 − 44.1641i − 0.0609160i
726726 0 0
727727 − 1081.39i − 1.48746i −0.668479 0.743731i 0.733054π-0.733054\pi
0.668479 0.743731i 0.266946π-0.266946\pi
728728 0 0
729729 1132.50 1.55349
730730 0 0
731731 −456.819 −0.624923
732732 0 0
733733 380.407i 0.518973i 0.965747 + 0.259486i 0.0835533π0.0835533\pi
−0.965747 + 0.259486i 0.916447π0.916447\pi
734734 0 0
735735 − 592.186i − 0.805695i
736736 0 0
737737 410.164 0.556532
738738 0 0
739739 −1381.60 −1.86955 −0.934775 0.355240i 0.884399π-0.884399\pi
−0.934775 + 0.355240i 0.884399π0.884399\pi
740740 0 0
741741 516.669i 0.697259i
742742 0 0
743743 267.424i 0.359924i 0.983674 + 0.179962i 0.0575975π0.0575975\pi
−0.983674 + 0.179962i 0.942403π0.942403\pi
744744 0 0
745745 639.325 0.858154
746746 0 0
747747 −2062.64 −2.76123
748748 0 0
749749 161.921i 0.216183i
750750 0 0
751751 338.653i 0.450937i 0.974250 + 0.225468i 0.0723912π0.0723912\pi
−0.974250 + 0.225468i 0.927609π0.927609\pi
752752 0 0
753753 2267.14 3.01080
754754 0 0
755755 144.481 0.191366
756756 0 0
757757 − 1247.91i − 1.64849i −0.566232 0.824246i 0.691599π-0.691599\pi
0.566232 0.824246i 0.308401π-0.308401\pi
758758 0 0
759759 953.775i 1.25662i
760760 0 0
761761 14.3406 0.0188444 0.00942219 0.999956i 0.497001π-0.497001\pi
0.00942219 + 0.999956i 0.497001π0.497001\pi
762762 0 0
763763 −3.41853 −0.00448038
764764 0 0
765765 902.243i 1.17940i
766766 0 0
767767 780.956i 1.01820i
768768 0 0
769769 1036.99 1.34849 0.674246 0.738507i 0.264469π-0.264469\pi
0.674246 + 0.738507i 0.264469π0.264469\pi
770770 0 0
771771 481.078 0.623967
772772 0 0
773773 − 1197.91i − 1.54970i −0.632148 0.774848i 0.717826π-0.717826\pi
0.632148 0.774848i 0.282174π-0.282174\pi
774774 0 0
775775 210.970i 0.272219i
776776 0 0
777777 −247.830 −0.318957
778778 0 0
779779 −149.514 −0.191931
780780 0 0
781781 1094.32i 1.40118i
782782 0 0
783783 − 664.223i − 0.848305i
784784 0 0
785785 32.6099 0.0415413
786786 0 0
787787 −99.1814 −0.126025 −0.0630123 0.998013i 0.520071π-0.520071\pi
−0.0630123 + 0.998013i 0.520071π0.520071\pi
788788 0 0
789789 2470.05i 3.13061i
790790 0 0
791791 − 44.3282i − 0.0560407i
792792 0 0
793793 1348.32 1.70027
794794 0 0
795795 354.054 0.445351
796796 0 0
797797 139.240i 0.174705i 0.996177 + 0.0873525i 0.0278407π0.0278407\pi
−0.996177 + 0.0873525i 0.972159π0.972159\pi
798798 0 0
799799 189.209i 0.236807i
800800 0 0
801801 1337.49 1.66977
802802 0 0
803803 −175.613 −0.218696
804804 0 0
805805 44.9117i 0.0557910i
806806 0 0
807807 1151.37i 1.42672i
808808 0 0
809809 −403.653 −0.498953 −0.249477 0.968381i 0.580259π-0.580259\pi
−0.249477 + 0.968381i 0.580259π0.580259\pi
810810 0 0
811811 384.561 0.474181 0.237091 0.971488i 0.423806π-0.423806\pi
0.237091 + 0.971488i 0.423806π0.423806\pi
812812 0 0
813813 − 2343.15i − 2.88210i
814814 0 0
815815 46.6407i 0.0572278i
816816 0 0
817817 134.322 0.164409
818818 0 0
819819 −516.583 −0.630748
820820 0 0
821821 997.732i 1.21526i 0.794219 + 0.607632i 0.207881π0.207881\pi
−0.794219 + 0.607632i 0.792119π0.792119\pi
822822 0 0
823823 − 955.281i − 1.16073i −0.814356 0.580365i 0.802910π-0.802910\pi
0.814356 0.580365i 0.197090π-0.197090\pi
824824 0 0
825825 314.164 0.380805
826826 0 0
827827 −213.451 −0.258103 −0.129051 0.991638i 0.541193π-0.541193\pi
−0.129051 + 0.991638i 0.541193π0.541193\pi
828828 0 0
829829 − 73.4288i − 0.0885752i −0.999019 0.0442876i 0.985898π-0.985898\pi
0.999019 0.0442876i 0.0141018π-0.0141018\pi
830830 0 0
831831 − 2866.47i − 3.44942i
832832 0 0
833833 850.486 1.02099
834834 0 0
835835 −485.139 −0.581005
836836 0 0
837837 3172.96i 3.79087i
838838 0 0
839839 − 643.642i − 0.767154i −0.923509 0.383577i 0.874692π-0.874692\pi
0.923509 0.383577i 0.125308π-0.125308\pi
840840 0 0
841841 762.981 0.907231
842842 0 0
843843 648.787 0.769617
844844 0 0
845845 − 300.374i − 0.355472i
846846 0 0
847847 6.17342i 0.00728857i
848848 0 0
849849 2253.23 2.65398
850850 0 0
851851 −507.247 −0.596060
852852 0 0
853853 351.410i 0.411970i 0.978555 + 0.205985i 0.0660398π0.0660398\pi
−0.978555 + 0.205985i 0.933960π0.933960\pi
854854 0 0
855855 − 265.293i − 0.310285i
856856 0 0
857857 −1326.16 −1.54744 −0.773721 0.633526i 0.781607π-0.781607\pi
−0.773721 + 0.633526i 0.781607π0.781607\pi
858858 0 0
859859 −343.729 −0.400150 −0.200075 0.979781i 0.564119π-0.564119\pi
−0.200075 + 0.979781i 0.564119π0.564119\pi
860860 0 0
861861 − 209.508i − 0.243331i
862862 0 0
863863 − 1136.15i − 1.31651i −0.752793 0.658257i 0.771294π-0.771294\pi
0.752793 0.658257i 0.228706π-0.228706\pi
864864 0 0
865865 104.164 0.120421
866866 0 0
867867 −196.176 −0.226270
868868 0 0
869869 − 1256.66i − 1.44609i
870870 0 0
871871 637.247i 0.731627i
872872 0 0
873873 2424.65 2.77738
874874 0 0
875875 14.7935 0.0169068
876876 0 0
877877 769.076i 0.876939i 0.898746 + 0.438470i 0.144479π0.144479\pi
−0.898746 + 0.438470i 0.855521π0.855521\pi
878878 0 0
879879 506.770i 0.576530i
880880 0 0
881881 −731.568 −0.830384 −0.415192 0.909734i 0.636286π-0.636286\pi
−0.415192 + 0.909734i 0.636286π0.636286\pi
882882 0 0
883883 −1066.19 −1.20746 −0.603731 0.797188i 0.706320π-0.706320\pi
−0.603731 + 0.797188i 0.706320π0.706320\pi
884884 0 0
885885 − 561.994i − 0.635021i
886886 0 0
887887 − 397.242i − 0.447848i −0.974607 0.223924i 0.928113π-0.928113\pi
0.974607 0.223924i 0.0718868π-0.0718868\pi
888888 0 0
889889 −170.262 −0.191520
890890 0 0
891891 2463.39 2.76474
892892 0 0
893893 − 55.6346i − 0.0623008i
894894 0 0
895895 14.6286i 0.0163448i
896896 0 0
897897 −1481.82 −1.65198
898898 0 0
899899 372.691 0.414562
900900 0 0
901901 508.486i 0.564357i
902902 0 0
903903 188.220i 0.208438i
904904 0 0
905905 −539.633 −0.596280
906906 0 0
907907 1021.02 1.12571 0.562855 0.826556i 0.309703π-0.309703\pi
0.562855 + 0.826556i 0.309703π0.309703\pi
908908 0 0
909909 1875.48i 2.06324i
910910 0 0
911911 1118.66i 1.22794i 0.789328 + 0.613971i 0.210429π0.210429\pi
−0.789328 + 0.613971i 0.789571π0.789571\pi
912912 0 0
913913 −1031.49 −1.12978
914914 0 0
915915 −970.278 −1.06041
916916 0 0
917917 294.177i 0.320803i
918918 0 0
919919 − 1177.68i − 1.28148i −0.767757 0.640741i 0.778627π-0.778627\pi
0.767757 0.640741i 0.221373π-0.221373\pi
920920 0 0
921921 −1543.73 −1.67615
922922 0 0
923923 −1700.18 −1.84202
924924 0 0
925925 167.082i 0.180629i
926926 0 0
927927 3031.13i 3.26983i
928928 0 0
929929 −699.423 −0.752877 −0.376438 0.926442i 0.622851π-0.622851\pi
−0.376438 + 0.926442i 0.622851π0.622851\pi
930930 0 0
931931 −250.075 −0.268609
932932 0 0
933933 − 2720.15i − 2.91548i
934934 0 0
935935 451.197i 0.482563i
936936 0 0
937937 332.152 0.354484 0.177242 0.984167i 0.443282π-0.443282\pi
0.177242 + 0.984167i 0.443282π0.443282\pi
938938 0 0
939939 11.2101 0.0119383
940940 0 0
941941 − 1468.66i − 1.56075i −0.625314 0.780373i 0.715029π-0.715029\pi
0.625314 0.780373i 0.284971π-0.284971\pi
942942 0 0
943943 − 428.811i − 0.454731i
944944 0 0
945945 222.492 0.235442
946946 0 0
947947 574.082 0.606211 0.303106 0.952957i 0.401976π-0.401976\pi
0.303106 + 0.952957i 0.401976π0.401976\pi
948948 0 0
949949 − 272.839i − 0.287502i
950950 0 0
951951 2212.54i 2.32654i
952952 0 0
953953 −280.663 −0.294504 −0.147252 0.989099i 0.547043π-0.547043\pi
−0.147252 + 0.989099i 0.547043π0.547043\pi
954954 0 0
955955 −132.647 −0.138897
956956 0 0
957957 − 554.991i − 0.579928i
958958 0 0
959959 − 170.468i − 0.177756i
960960 0 0
961961 −819.328 −0.852579
962962 0 0
963963 2743.18 2.84858
964964 0 0
965965 525.469i 0.544527i
966966 0 0
967967 − 1278.65i − 1.32228i −0.750262 0.661141i 0.770073π-0.770073\pi
0.750262 0.661141i 0.229927π-0.229927\pi
968968 0 0
969969 533.981 0.551064
970970 0 0
971971 117.723 0.121239 0.0606195 0.998161i 0.480692π-0.480692\pi
0.0606195 + 0.998161i 0.480692π0.480692\pi
972972 0 0
973973 305.313i 0.313785i
974974 0 0
975975 488.098i 0.500613i
976976 0 0
977977 983.155 1.00630 0.503150 0.864199i 0.332174π-0.332174\pi
0.503150 + 0.864199i 0.332174π0.332174\pi
978978 0 0
979979 668.856 0.683203
980980 0 0
981981 57.9149i 0.0590365i
982982 0 0
983983 607.404i 0.617909i 0.951077 + 0.308954i 0.0999790π0.0999790\pi
−0.951077 + 0.308954i 0.900021π0.900021\pi
984984 0 0
985985 516.334 0.524197
986986 0 0
987987 77.9584 0.0789852
988988 0 0
989989 385.240i 0.389525i
990990 0 0
991991 − 408.413i − 0.412122i −0.978539 0.206061i 0.933935π-0.933935\pi
0.978539 0.206061i 0.0660645π-0.0660645\pi
992992 0 0
993993 −1659.82 −1.67152
994994 0 0
995995 61.9677 0.0622791
996996 0 0
997997 1554.91i 1.55959i 0.626035 + 0.779795i 0.284677π0.284677\pi
−0.626035 + 0.779795i 0.715323π0.715323\pi
998998 0 0
999999 2512.89i 2.51541i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.3.g.f.1151.2 8
4.3 odd 2 inner 1280.3.g.f.1151.8 8
8.3 odd 2 inner 1280.3.g.f.1151.1 8
8.5 even 2 inner 1280.3.g.f.1151.7 8
16.3 odd 4 320.3.b.a.191.4 4
16.5 even 4 80.3.b.a.31.4 yes 4
16.11 odd 4 80.3.b.a.31.1 4
16.13 even 4 320.3.b.a.191.1 4
48.5 odd 4 720.3.e.c.271.3 4
48.11 even 4 720.3.e.c.271.4 4
48.29 odd 4 2880.3.e.b.2431.1 4
48.35 even 4 2880.3.e.b.2431.2 4
80.3 even 4 1600.3.h.p.1599.2 8
80.13 odd 4 1600.3.h.p.1599.7 8
80.19 odd 4 1600.3.b.k.1151.1 4
80.27 even 4 400.3.h.d.399.1 8
80.29 even 4 1600.3.b.k.1151.4 4
80.37 odd 4 400.3.h.d.399.8 8
80.43 even 4 400.3.h.d.399.7 8
80.53 odd 4 400.3.h.d.399.2 8
80.59 odd 4 400.3.b.g.351.4 4
80.67 even 4 1600.3.h.p.1599.8 8
80.69 even 4 400.3.b.g.351.1 4
80.77 odd 4 1600.3.h.p.1599.1 8
240.53 even 4 3600.3.j.k.1999.3 8
240.59 even 4 3600.3.e.bb.3151.2 4
240.107 odd 4 3600.3.j.k.1999.4 8
240.149 odd 4 3600.3.e.bb.3151.3 4
240.197 even 4 3600.3.j.k.1999.5 8
240.203 odd 4 3600.3.j.k.1999.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.3.b.a.31.1 4 16.11 odd 4
80.3.b.a.31.4 yes 4 16.5 even 4
320.3.b.a.191.1 4 16.13 even 4
320.3.b.a.191.4 4 16.3 odd 4
400.3.b.g.351.1 4 80.69 even 4
400.3.b.g.351.4 4 80.59 odd 4
400.3.h.d.399.1 8 80.27 even 4
400.3.h.d.399.2 8 80.53 odd 4
400.3.h.d.399.7 8 80.43 even 4
400.3.h.d.399.8 8 80.37 odd 4
720.3.e.c.271.3 4 48.5 odd 4
720.3.e.c.271.4 4 48.11 even 4
1280.3.g.f.1151.1 8 8.3 odd 2 inner
1280.3.g.f.1151.2 8 1.1 even 1 trivial
1280.3.g.f.1151.7 8 8.5 even 2 inner
1280.3.g.f.1151.8 8 4.3 odd 2 inner
1600.3.b.k.1151.1 4 80.19 odd 4
1600.3.b.k.1151.4 4 80.29 even 4
1600.3.h.p.1599.1 8 80.77 odd 4
1600.3.h.p.1599.2 8 80.3 even 4
1600.3.h.p.1599.7 8 80.13 odd 4
1600.3.h.p.1599.8 8 80.67 even 4
2880.3.e.b.2431.1 4 48.29 odd 4
2880.3.e.b.2431.2 4 48.35 even 4
3600.3.e.bb.3151.2 4 240.59 even 4
3600.3.e.bb.3151.3 4 240.149 odd 4
3600.3.j.k.1999.3 8 240.53 even 4
3600.3.j.k.1999.4 8 240.107 odd 4
3600.3.j.k.1999.5 8 240.197 even 4
3600.3.j.k.1999.6 8 240.203 odd 4