Properties

Label 1280.3.g.f.1151.2
Level $1280$
Weight $3$
Character 1280.1151
Analytic conductor $34.877$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,3,Mod(1151,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.1151");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1280.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.8774738381\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1151.2
Root \(1.40126 + 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 1280.1151
Dual form 1280.3.g.f.1151.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.60503 q^{3} +2.23607i q^{5} +1.32317i q^{7} +22.4164 q^{9} +11.2101 q^{11} +17.4164i q^{13} -12.5332i q^{15} +18.0000 q^{17} -5.29268 q^{19} -7.41641i q^{21} -15.1796i q^{23} -5.00000 q^{25} -75.1994 q^{27} +8.83282i q^{29} -42.1939i q^{31} -62.8328 q^{33} -2.95870 q^{35} -33.4164i q^{37} -97.6196i q^{39} +28.2492 q^{41} -25.3788 q^{43} +50.1246i q^{45} +10.5116i q^{47} +47.2492 q^{49} -100.891 q^{51} +28.2492i q^{53} +25.0665i q^{55} +29.6656 q^{57} +44.8403 q^{59} -77.4164i q^{61} +29.6607i q^{63} -38.9443 q^{65} +36.5889 q^{67} +85.0820i q^{69} +97.6196i q^{71} -15.6656 q^{73} +28.0252 q^{75} +14.8328i q^{77} -112.101i q^{79} +219.748 q^{81} -92.0145 q^{83} +40.2492i q^{85} -49.5082i q^{87} +59.6656 q^{89} -23.0449 q^{91} +236.498i q^{93} -11.8348i q^{95} +108.164 q^{97} +251.289 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 72 q^{9} + 144 q^{17} - 40 q^{25} - 288 q^{33} - 96 q^{41} + 56 q^{49} - 192 q^{57} - 240 q^{65} + 304 q^{73} + 792 q^{81} + 48 q^{89} - 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.60503 −1.86834 −0.934172 0.356822i \(-0.883860\pi\)
−0.934172 + 0.356822i \(0.883860\pi\)
\(4\) 0 0
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) 1.32317i 0.189024i 0.995524 + 0.0945121i \(0.0301291\pi\)
−0.995524 + 0.0945121i \(0.969871\pi\)
\(8\) 0 0
\(9\) 22.4164 2.49071
\(10\) 0 0
\(11\) 11.2101 1.01910 0.509549 0.860442i \(-0.329812\pi\)
0.509549 + 0.860442i \(0.329812\pi\)
\(12\) 0 0
\(13\) 17.4164i 1.33972i 0.742486 + 0.669862i \(0.233647\pi\)
−0.742486 + 0.669862i \(0.766353\pi\)
\(14\) 0 0
\(15\) − 12.5332i − 0.835549i
\(16\) 0 0
\(17\) 18.0000 1.05882 0.529412 0.848365i \(-0.322413\pi\)
0.529412 + 0.848365i \(0.322413\pi\)
\(18\) 0 0
\(19\) −5.29268 −0.278562 −0.139281 0.990253i \(-0.544479\pi\)
−0.139281 + 0.990253i \(0.544479\pi\)
\(20\) 0 0
\(21\) − 7.41641i − 0.353162i
\(22\) 0 0
\(23\) − 15.1796i − 0.659982i −0.943984 0.329991i \(-0.892954\pi\)
0.943984 0.329991i \(-0.107046\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) −75.1994 −2.78516
\(28\) 0 0
\(29\) 8.83282i 0.304580i 0.988336 + 0.152290i \(0.0486647\pi\)
−0.988336 + 0.152290i \(0.951335\pi\)
\(30\) 0 0
\(31\) − 42.1939i − 1.36109i −0.732704 0.680547i \(-0.761742\pi\)
0.732704 0.680547i \(-0.238258\pi\)
\(32\) 0 0
\(33\) −62.8328 −1.90402
\(34\) 0 0
\(35\) −2.95870 −0.0845342
\(36\) 0 0
\(37\) − 33.4164i − 0.903146i −0.892234 0.451573i \(-0.850863\pi\)
0.892234 0.451573i \(-0.149137\pi\)
\(38\) 0 0
\(39\) − 97.6196i − 2.50307i
\(40\) 0 0
\(41\) 28.2492 0.689005 0.344503 0.938785i \(-0.388048\pi\)
0.344503 + 0.938785i \(0.388048\pi\)
\(42\) 0 0
\(43\) −25.3788 −0.590205 −0.295103 0.955466i \(-0.595354\pi\)
−0.295103 + 0.955466i \(0.595354\pi\)
\(44\) 0 0
\(45\) 50.1246i 1.11388i
\(46\) 0 0
\(47\) 10.5116i 0.223651i 0.993728 + 0.111826i \(0.0356698\pi\)
−0.993728 + 0.111826i \(0.964330\pi\)
\(48\) 0 0
\(49\) 47.2492 0.964270
\(50\) 0 0
\(51\) −100.891 −1.97825
\(52\) 0 0
\(53\) 28.2492i 0.533004i 0.963834 + 0.266502i \(0.0858679\pi\)
−0.963834 + 0.266502i \(0.914132\pi\)
\(54\) 0 0
\(55\) 25.0665i 0.455754i
\(56\) 0 0
\(57\) 29.6656 0.520450
\(58\) 0 0
\(59\) 44.8403 0.760005 0.380002 0.924986i \(-0.375923\pi\)
0.380002 + 0.924986i \(0.375923\pi\)
\(60\) 0 0
\(61\) − 77.4164i − 1.26912i −0.772873 0.634561i \(-0.781181\pi\)
0.772873 0.634561i \(-0.218819\pi\)
\(62\) 0 0
\(63\) 29.6607i 0.470805i
\(64\) 0 0
\(65\) −38.9443 −0.599143
\(66\) 0 0
\(67\) 36.5889 0.546103 0.273051 0.961999i \(-0.411967\pi\)
0.273051 + 0.961999i \(0.411967\pi\)
\(68\) 0 0
\(69\) 85.0820i 1.23307i
\(70\) 0 0
\(71\) 97.6196i 1.37492i 0.726221 + 0.687462i \(0.241275\pi\)
−0.726221 + 0.687462i \(0.758725\pi\)
\(72\) 0 0
\(73\) −15.6656 −0.214598 −0.107299 0.994227i \(-0.534220\pi\)
−0.107299 + 0.994227i \(0.534220\pi\)
\(74\) 0 0
\(75\) 28.0252 0.373669
\(76\) 0 0
\(77\) 14.8328i 0.192634i
\(78\) 0 0
\(79\) − 112.101i − 1.41900i −0.704707 0.709498i \(-0.748922\pi\)
0.704707 0.709498i \(-0.251078\pi\)
\(80\) 0 0
\(81\) 219.748 2.71293
\(82\) 0 0
\(83\) −92.0145 −1.10861 −0.554304 0.832314i \(-0.687016\pi\)
−0.554304 + 0.832314i \(0.687016\pi\)
\(84\) 0 0
\(85\) 40.2492i 0.473520i
\(86\) 0 0
\(87\) − 49.5082i − 0.569060i
\(88\) 0 0
\(89\) 59.6656 0.670400 0.335200 0.942147i \(-0.391196\pi\)
0.335200 + 0.942147i \(0.391196\pi\)
\(90\) 0 0
\(91\) −23.0449 −0.253240
\(92\) 0 0
\(93\) 236.498i 2.54299i
\(94\) 0 0
\(95\) − 11.8348i − 0.124577i
\(96\) 0 0
\(97\) 108.164 1.11509 0.557547 0.830146i \(-0.311743\pi\)
0.557547 + 0.830146i \(0.311743\pi\)
\(98\) 0 0
\(99\) 251.289 2.53828
\(100\) 0 0
\(101\) 83.6656i 0.828373i 0.910192 + 0.414186i \(0.135934\pi\)
−0.910192 + 0.414186i \(0.864066\pi\)
\(102\) 0 0
\(103\) 135.219i 1.31281i 0.754409 + 0.656404i \(0.227923\pi\)
−0.754409 + 0.656404i \(0.772077\pi\)
\(104\) 0 0
\(105\) 16.5836 0.157939
\(106\) 0 0
\(107\) 122.374 1.14368 0.571840 0.820365i \(-0.306230\pi\)
0.571840 + 0.820365i \(0.306230\pi\)
\(108\) 0 0
\(109\) 2.58359i 0.0237027i 0.999930 + 0.0118513i \(0.00377249\pi\)
−0.999930 + 0.0118513i \(0.996228\pi\)
\(110\) 0 0
\(111\) 187.300i 1.68739i
\(112\) 0 0
\(113\) −33.5016 −0.296474 −0.148237 0.988952i \(-0.547360\pi\)
−0.148237 + 0.988952i \(0.547360\pi\)
\(114\) 0 0
\(115\) 33.9426 0.295153
\(116\) 0 0
\(117\) 390.413i 3.33687i
\(118\) 0 0
\(119\) 23.8170i 0.200143i
\(120\) 0 0
\(121\) 4.66563 0.0385589
\(122\) 0 0
\(123\) −158.338 −1.28730
\(124\) 0 0
\(125\) − 11.1803i − 0.0894427i
\(126\) 0 0
\(127\) 128.677i 1.01321i 0.862179 + 0.506603i \(0.169099\pi\)
−0.862179 + 0.506603i \(0.830901\pi\)
\(128\) 0 0
\(129\) 142.249 1.10271
\(130\) 0 0
\(131\) 222.327 1.69715 0.848577 0.529072i \(-0.177460\pi\)
0.848577 + 0.529072i \(0.177460\pi\)
\(132\) 0 0
\(133\) − 7.00311i − 0.0526549i
\(134\) 0 0
\(135\) − 168.151i − 1.24556i
\(136\) 0 0
\(137\) −128.833 −0.940386 −0.470193 0.882564i \(-0.655816\pi\)
−0.470193 + 0.882564i \(0.655816\pi\)
\(138\) 0 0
\(139\) 230.743 1.66002 0.830012 0.557745i \(-0.188333\pi\)
0.830012 + 0.557745i \(0.188333\pi\)
\(140\) 0 0
\(141\) − 58.9180i − 0.417858i
\(142\) 0 0
\(143\) 195.239i 1.36531i
\(144\) 0 0
\(145\) −19.7508 −0.136212
\(146\) 0 0
\(147\) −264.834 −1.80159
\(148\) 0 0
\(149\) − 285.915i − 1.91889i −0.281893 0.959446i \(-0.590962\pi\)
0.281893 0.959446i \(-0.409038\pi\)
\(150\) 0 0
\(151\) − 64.6141i − 0.427908i −0.976844 0.213954i \(-0.931366\pi\)
0.976844 0.213954i \(-0.0686342\pi\)
\(152\) 0 0
\(153\) 403.495 2.63722
\(154\) 0 0
\(155\) 94.3485 0.608700
\(156\) 0 0
\(157\) − 14.5836i − 0.0928891i −0.998921 0.0464446i \(-0.985211\pi\)
0.998921 0.0464446i \(-0.0147891\pi\)
\(158\) 0 0
\(159\) − 158.338i − 0.995836i
\(160\) 0 0
\(161\) 20.0851 0.124752
\(162\) 0 0
\(163\) 20.8583 0.127965 0.0639827 0.997951i \(-0.479620\pi\)
0.0639827 + 0.997951i \(0.479620\pi\)
\(164\) 0 0
\(165\) − 140.498i − 0.851506i
\(166\) 0 0
\(167\) 216.961i 1.29917i 0.760290 + 0.649583i \(0.225057\pi\)
−0.760290 + 0.649583i \(0.774943\pi\)
\(168\) 0 0
\(169\) −134.331 −0.794860
\(170\) 0 0
\(171\) −118.643 −0.693817
\(172\) 0 0
\(173\) − 46.5836i − 0.269269i −0.990895 0.134635i \(-0.957014\pi\)
0.990895 0.134635i \(-0.0429861\pi\)
\(174\) 0 0
\(175\) − 6.61585i − 0.0378048i
\(176\) 0 0
\(177\) −251.331 −1.41995
\(178\) 0 0
\(179\) 6.54211 0.0365481 0.0182740 0.999833i \(-0.494183\pi\)
0.0182740 + 0.999833i \(0.494183\pi\)
\(180\) 0 0
\(181\) 241.331i 1.33332i 0.745361 + 0.666661i \(0.232277\pi\)
−0.745361 + 0.666661i \(0.767723\pi\)
\(182\) 0 0
\(183\) 433.922i 2.37116i
\(184\) 0 0
\(185\) 74.7214 0.403899
\(186\) 0 0
\(187\) 201.781 1.07904
\(188\) 0 0
\(189\) − 99.5016i − 0.526463i
\(190\) 0 0
\(191\) 59.3214i 0.310583i 0.987869 + 0.155292i \(0.0496317\pi\)
−0.987869 + 0.155292i \(0.950368\pi\)
\(192\) 0 0
\(193\) 234.997 1.21760 0.608800 0.793324i \(-0.291651\pi\)
0.608800 + 0.793324i \(0.291651\pi\)
\(194\) 0 0
\(195\) 218.284 1.11940
\(196\) 0 0
\(197\) − 230.912i − 1.17214i −0.810260 0.586070i \(-0.800674\pi\)
0.810260 0.586070i \(-0.199326\pi\)
\(198\) 0 0
\(199\) − 27.7128i − 0.139260i −0.997573 0.0696302i \(-0.977818\pi\)
0.997573 0.0696302i \(-0.0221819\pi\)
\(200\) 0 0
\(201\) −205.082 −1.02031
\(202\) 0 0
\(203\) −11.6873 −0.0575729
\(204\) 0 0
\(205\) 63.1672i 0.308133i
\(206\) 0 0
\(207\) − 340.272i − 1.64382i
\(208\) 0 0
\(209\) −59.3313 −0.283882
\(210\) 0 0
\(211\) −93.0991 −0.441228 −0.220614 0.975361i \(-0.570806\pi\)
−0.220614 + 0.975361i \(0.570806\pi\)
\(212\) 0 0
\(213\) − 547.161i − 2.56883i
\(214\) 0 0
\(215\) − 56.7488i − 0.263948i
\(216\) 0 0
\(217\) 55.8297 0.257280
\(218\) 0 0
\(219\) 87.8064 0.400942
\(220\) 0 0
\(221\) 313.495i 1.41853i
\(222\) 0 0
\(223\) 307.891i 1.38068i 0.723487 + 0.690338i \(0.242538\pi\)
−0.723487 + 0.690338i \(0.757462\pi\)
\(224\) 0 0
\(225\) −112.082 −0.498142
\(226\) 0 0
\(227\) 255.020 1.12344 0.561719 0.827328i \(-0.310140\pi\)
0.561719 + 0.827328i \(0.310140\pi\)
\(228\) 0 0
\(229\) 411.495i 1.79692i 0.439052 + 0.898461i \(0.355314\pi\)
−0.439052 + 0.898461i \(0.644686\pi\)
\(230\) 0 0
\(231\) − 83.1384i − 0.359907i
\(232\) 0 0
\(233\) 332.833 1.42847 0.714234 0.699907i \(-0.246775\pi\)
0.714234 + 0.699907i \(0.246775\pi\)
\(234\) 0 0
\(235\) −23.5047 −0.100020
\(236\) 0 0
\(237\) 628.328i 2.65117i
\(238\) 0 0
\(239\) − 266.248i − 1.11401i −0.830510 0.557004i \(-0.811951\pi\)
0.830510 0.557004i \(-0.188049\pi\)
\(240\) 0 0
\(241\) −78.5836 −0.326073 −0.163036 0.986620i \(-0.552129\pi\)
−0.163036 + 0.986620i \(0.552129\pi\)
\(242\) 0 0
\(243\) −554.898 −2.28353
\(244\) 0 0
\(245\) 105.652i 0.431235i
\(246\) 0 0
\(247\) − 92.1794i − 0.373196i
\(248\) 0 0
\(249\) 515.745 2.07126
\(250\) 0 0
\(251\) −404.482 −1.61148 −0.805741 0.592268i \(-0.798233\pi\)
−0.805741 + 0.592268i \(0.798233\pi\)
\(252\) 0 0
\(253\) − 170.164i − 0.672585i
\(254\) 0 0
\(255\) − 225.598i − 0.884699i
\(256\) 0 0
\(257\) −85.8297 −0.333968 −0.166984 0.985960i \(-0.553403\pi\)
−0.166984 + 0.985960i \(0.553403\pi\)
\(258\) 0 0
\(259\) 44.2156 0.170716
\(260\) 0 0
\(261\) 198.000i 0.758621i
\(262\) 0 0
\(263\) − 440.685i − 1.67561i −0.545971 0.837804i \(-0.683839\pi\)
0.545971 0.837804i \(-0.316161\pi\)
\(264\) 0 0
\(265\) −63.1672 −0.238367
\(266\) 0 0
\(267\) −334.428 −1.25254
\(268\) 0 0
\(269\) − 205.416i − 0.763630i −0.924239 0.381815i \(-0.875299\pi\)
0.924239 0.381815i \(-0.124701\pi\)
\(270\) 0 0
\(271\) 418.044i 1.54260i 0.636474 + 0.771298i \(0.280392\pi\)
−0.636474 + 0.771298i \(0.719608\pi\)
\(272\) 0 0
\(273\) 129.167 0.473140
\(274\) 0 0
\(275\) −56.0503 −0.203819
\(276\) 0 0
\(277\) 511.410i 1.84625i 0.384505 + 0.923123i \(0.374372\pi\)
−0.384505 + 0.923123i \(0.625628\pi\)
\(278\) 0 0
\(279\) − 945.836i − 3.39009i
\(280\) 0 0
\(281\) −115.751 −0.411924 −0.205962 0.978560i \(-0.566032\pi\)
−0.205962 + 0.978560i \(0.566032\pi\)
\(282\) 0 0
\(283\) −402.001 −1.42050 −0.710249 0.703951i \(-0.751417\pi\)
−0.710249 + 0.703951i \(0.751417\pi\)
\(284\) 0 0
\(285\) 66.3344i 0.232752i
\(286\) 0 0
\(287\) 37.3785i 0.130239i
\(288\) 0 0
\(289\) 35.0000 0.121107
\(290\) 0 0
\(291\) −606.263 −2.08338
\(292\) 0 0
\(293\) − 90.4133i − 0.308578i −0.988026 0.154289i \(-0.950691\pi\)
0.988026 0.154289i \(-0.0493087\pi\)
\(294\) 0 0
\(295\) 100.266i 0.339884i
\(296\) 0 0
\(297\) −842.991 −2.83835
\(298\) 0 0
\(299\) 264.374 0.884193
\(300\) 0 0
\(301\) − 33.5805i − 0.111563i
\(302\) 0 0
\(303\) − 468.949i − 1.54769i
\(304\) 0 0
\(305\) 173.108 0.567568
\(306\) 0 0
\(307\) 275.419 0.897130 0.448565 0.893750i \(-0.351935\pi\)
0.448565 + 0.893750i \(0.351935\pi\)
\(308\) 0 0
\(309\) − 757.909i − 2.45278i
\(310\) 0 0
\(311\) 485.304i 1.56046i 0.625491 + 0.780231i \(0.284899\pi\)
−0.625491 + 0.780231i \(0.715101\pi\)
\(312\) 0 0
\(313\) −2.00000 −0.00638978 −0.00319489 0.999995i \(-0.501017\pi\)
−0.00319489 + 0.999995i \(0.501017\pi\)
\(314\) 0 0
\(315\) −66.3233 −0.210550
\(316\) 0 0
\(317\) − 394.741i − 1.24524i −0.782524 0.622621i \(-0.786068\pi\)
0.782524 0.622621i \(-0.213932\pi\)
\(318\) 0 0
\(319\) 99.0165i 0.310396i
\(320\) 0 0
\(321\) −685.909 −2.13679
\(322\) 0 0
\(323\) −95.2682 −0.294948
\(324\) 0 0
\(325\) − 87.0820i − 0.267945i
\(326\) 0 0
\(327\) − 14.4811i − 0.0442848i
\(328\) 0 0
\(329\) −13.9086 −0.0422755
\(330\) 0 0
\(331\) 296.130 0.894652 0.447326 0.894371i \(-0.352376\pi\)
0.447326 + 0.894371i \(0.352376\pi\)
\(332\) 0 0
\(333\) − 749.076i − 2.24948i
\(334\) 0 0
\(335\) 81.8153i 0.244225i
\(336\) 0 0
\(337\) 19.9938 0.0593288 0.0296644 0.999560i \(-0.490556\pi\)
0.0296644 + 0.999560i \(0.490556\pi\)
\(338\) 0 0
\(339\) 187.777 0.553915
\(340\) 0 0
\(341\) − 472.997i − 1.38709i
\(342\) 0 0
\(343\) 127.354i 0.371294i
\(344\) 0 0
\(345\) −190.249 −0.551447
\(346\) 0 0
\(347\) −546.959 −1.57625 −0.788126 0.615514i \(-0.788948\pi\)
−0.788126 + 0.615514i \(0.788948\pi\)
\(348\) 0 0
\(349\) 40.8328i 0.116999i 0.998287 + 0.0584997i \(0.0186317\pi\)
−0.998287 + 0.0584997i \(0.981368\pi\)
\(350\) 0 0
\(351\) − 1309.70i − 3.73135i
\(352\) 0 0
\(353\) −555.325 −1.57316 −0.786579 0.617489i \(-0.788150\pi\)
−0.786579 + 0.617489i \(0.788150\pi\)
\(354\) 0 0
\(355\) −218.284 −0.614884
\(356\) 0 0
\(357\) − 133.495i − 0.373937i
\(358\) 0 0
\(359\) 326.012i 0.908110i 0.890974 + 0.454055i \(0.150023\pi\)
−0.890974 + 0.454055i \(0.849977\pi\)
\(360\) 0 0
\(361\) −332.988 −0.922403
\(362\) 0 0
\(363\) −26.1510 −0.0720414
\(364\) 0 0
\(365\) − 35.0294i − 0.0959710i
\(366\) 0 0
\(367\) − 13.6352i − 0.0371531i −0.999827 0.0185766i \(-0.994087\pi\)
0.999827 0.0185766i \(-0.00591344\pi\)
\(368\) 0 0
\(369\) 633.246 1.71611
\(370\) 0 0
\(371\) −37.3785 −0.100751
\(372\) 0 0
\(373\) 136.748i 0.366616i 0.983056 + 0.183308i \(0.0586805\pi\)
−0.983056 + 0.183308i \(0.941319\pi\)
\(374\) 0 0
\(375\) 62.6662i 0.167110i
\(376\) 0 0
\(377\) −153.836 −0.408053
\(378\) 0 0
\(379\) 186.198 0.491288 0.245644 0.969360i \(-0.421001\pi\)
0.245644 + 0.969360i \(0.421001\pi\)
\(380\) 0 0
\(381\) − 721.240i − 1.89302i
\(382\) 0 0
\(383\) 475.712i 1.24207i 0.783784 + 0.621034i \(0.213287\pi\)
−0.783784 + 0.621034i \(0.786713\pi\)
\(384\) 0 0
\(385\) −33.1672 −0.0861485
\(386\) 0 0
\(387\) −568.902 −1.47003
\(388\) 0 0
\(389\) − 11.9211i − 0.0306454i −0.999883 0.0153227i \(-0.995122\pi\)
0.999883 0.0153227i \(-0.00487756\pi\)
\(390\) 0 0
\(391\) − 273.232i − 0.698804i
\(392\) 0 0
\(393\) −1246.15 −3.17087
\(394\) 0 0
\(395\) 250.665 0.634594
\(396\) 0 0
\(397\) 250.754i 0.631622i 0.948822 + 0.315811i \(0.102277\pi\)
−0.948822 + 0.315811i \(0.897723\pi\)
\(398\) 0 0
\(399\) 39.2526i 0.0983776i
\(400\) 0 0
\(401\) 550.328 1.37239 0.686195 0.727418i \(-0.259280\pi\)
0.686195 + 0.727418i \(0.259280\pi\)
\(402\) 0 0
\(403\) 734.867 1.82349
\(404\) 0 0
\(405\) 491.371i 1.21326i
\(406\) 0 0
\(407\) − 374.600i − 0.920394i
\(408\) 0 0
\(409\) 27.0820 0.0662153 0.0331076 0.999452i \(-0.489460\pi\)
0.0331076 + 0.999452i \(0.489460\pi\)
\(410\) 0 0
\(411\) 722.112 1.75696
\(412\) 0 0
\(413\) 59.3313i 0.143659i
\(414\) 0 0
\(415\) − 205.751i − 0.495785i
\(416\) 0 0
\(417\) −1293.33 −3.10150
\(418\) 0 0
\(419\) 198.033 0.472632 0.236316 0.971676i \(-0.424060\pi\)
0.236316 + 0.971676i \(0.424060\pi\)
\(420\) 0 0
\(421\) − 475.580i − 1.12964i −0.825212 0.564822i \(-0.808945\pi\)
0.825212 0.564822i \(-0.191055\pi\)
\(422\) 0 0
\(423\) 235.633i 0.557051i
\(424\) 0 0
\(425\) −90.0000 −0.211765
\(426\) 0 0
\(427\) 102.435 0.239895
\(428\) 0 0
\(429\) − 1094.32i − 2.55087i
\(430\) 0 0
\(431\) 489.052i 1.13469i 0.823479 + 0.567346i \(0.192030\pi\)
−0.823479 + 0.567346i \(0.807970\pi\)
\(432\) 0 0
\(433\) 622.498 1.43764 0.718820 0.695196i \(-0.244682\pi\)
0.718820 + 0.695196i \(0.244682\pi\)
\(434\) 0 0
\(435\) 110.704 0.254491
\(436\) 0 0
\(437\) 80.3406i 0.183846i
\(438\) 0 0
\(439\) 552.712i 1.25902i 0.776990 + 0.629512i \(0.216745\pi\)
−0.776990 + 0.629512i \(0.783255\pi\)
\(440\) 0 0
\(441\) 1059.16 2.40172
\(442\) 0 0
\(443\) 668.873 1.50987 0.754936 0.655799i \(-0.227668\pi\)
0.754936 + 0.655799i \(0.227668\pi\)
\(444\) 0 0
\(445\) 133.416i 0.299812i
\(446\) 0 0
\(447\) 1602.56i 3.58515i
\(448\) 0 0
\(449\) −280.407 −0.624515 −0.312257 0.949998i \(-0.601085\pi\)
−0.312257 + 0.949998i \(0.601085\pi\)
\(450\) 0 0
\(451\) 316.676 0.702163
\(452\) 0 0
\(453\) 362.164i 0.799479i
\(454\) 0 0
\(455\) − 51.5299i − 0.113252i
\(456\) 0 0
\(457\) 320.334 0.700950 0.350475 0.936572i \(-0.386020\pi\)
0.350475 + 0.936572i \(0.386020\pi\)
\(458\) 0 0
\(459\) −1353.59 −2.94900
\(460\) 0 0
\(461\) 163.337i 0.354311i 0.984183 + 0.177156i \(0.0566896\pi\)
−0.984183 + 0.177156i \(0.943310\pi\)
\(462\) 0 0
\(463\) 108.131i 0.233545i 0.993159 + 0.116772i \(0.0372548\pi\)
−0.993159 + 0.116772i \(0.962745\pi\)
\(464\) 0 0
\(465\) −528.827 −1.13726
\(466\) 0 0
\(467\) 207.386 0.444082 0.222041 0.975037i \(-0.428728\pi\)
0.222041 + 0.975037i \(0.428728\pi\)
\(468\) 0 0
\(469\) 48.4133i 0.103227i
\(470\) 0 0
\(471\) 81.7415i 0.173549i
\(472\) 0 0
\(473\) −284.498 −0.601477
\(474\) 0 0
\(475\) 26.4634 0.0557124
\(476\) 0 0
\(477\) 633.246i 1.32756i
\(478\) 0 0
\(479\) 233.537i 0.487552i 0.969832 + 0.243776i \(0.0783861\pi\)
−0.969832 + 0.243776i \(0.921614\pi\)
\(480\) 0 0
\(481\) 581.994 1.20997
\(482\) 0 0
\(483\) −112.578 −0.233081
\(484\) 0 0
\(485\) 241.862i 0.498685i
\(486\) 0 0
\(487\) 308.368i 0.633199i 0.948559 + 0.316600i \(0.102541\pi\)
−0.948559 + 0.316600i \(0.897459\pi\)
\(488\) 0 0
\(489\) −116.912 −0.239083
\(490\) 0 0
\(491\) −187.777 −0.382439 −0.191219 0.981547i \(-0.561244\pi\)
−0.191219 + 0.981547i \(0.561244\pi\)
\(492\) 0 0
\(493\) 158.991i 0.322496i
\(494\) 0 0
\(495\) 561.900i 1.13515i
\(496\) 0 0
\(497\) −129.167 −0.259894
\(498\) 0 0
\(499\) 231.038 0.463003 0.231501 0.972835i \(-0.425636\pi\)
0.231501 + 0.972835i \(0.425636\pi\)
\(500\) 0 0
\(501\) − 1216.07i − 2.42729i
\(502\) 0 0
\(503\) − 389.780i − 0.774910i −0.921889 0.387455i \(-0.873354\pi\)
0.921889 0.387455i \(-0.126646\pi\)
\(504\) 0 0
\(505\) −187.082 −0.370459
\(506\) 0 0
\(507\) 752.931 1.48507
\(508\) 0 0
\(509\) 363.167i 0.713492i 0.934202 + 0.356746i \(0.116114\pi\)
−0.934202 + 0.356746i \(0.883886\pi\)
\(510\) 0 0
\(511\) − 20.7283i − 0.0405641i
\(512\) 0 0
\(513\) 398.006 0.775841
\(514\) 0 0
\(515\) −302.359 −0.587106
\(516\) 0 0
\(517\) 117.836i 0.227922i
\(518\) 0 0
\(519\) 261.103i 0.503088i
\(520\) 0 0
\(521\) 491.666 0.943696 0.471848 0.881680i \(-0.343587\pi\)
0.471848 + 0.881680i \(0.343587\pi\)
\(522\) 0 0
\(523\) −133.914 −0.256049 −0.128024 0.991771i \(-0.540864\pi\)
−0.128024 + 0.991771i \(0.540864\pi\)
\(524\) 0 0
\(525\) 37.0820i 0.0706325i
\(526\) 0 0
\(527\) − 759.491i − 1.44116i
\(528\) 0 0
\(529\) 298.580 0.564424
\(530\) 0 0
\(531\) 1005.16 1.89295
\(532\) 0 0
\(533\) 492.000i 0.923077i
\(534\) 0 0
\(535\) 273.636i 0.511469i
\(536\) 0 0
\(537\) −36.6687 −0.0682844
\(538\) 0 0
\(539\) 529.667 0.982685
\(540\) 0 0
\(541\) − 303.337i − 0.560698i −0.959898 0.280349i \(-0.909550\pi\)
0.959898 0.280349i \(-0.0904502\pi\)
\(542\) 0 0
\(543\) − 1352.67i − 2.49110i
\(544\) 0 0
\(545\) −5.77709 −0.0106002
\(546\) 0 0
\(547\) −89.6631 −0.163918 −0.0819590 0.996636i \(-0.526118\pi\)
−0.0819590 + 0.996636i \(0.526118\pi\)
\(548\) 0 0
\(549\) − 1735.40i − 3.16102i
\(550\) 0 0
\(551\) − 46.7492i − 0.0848443i
\(552\) 0 0
\(553\) 148.328 0.268225
\(554\) 0 0
\(555\) −418.816 −0.754623
\(556\) 0 0
\(557\) − 490.741i − 0.881044i −0.897742 0.440522i \(-0.854793\pi\)
0.897742 0.440522i \(-0.145207\pi\)
\(558\) 0 0
\(559\) − 442.008i − 0.790712i
\(560\) 0 0
\(561\) −1130.99 −2.01603
\(562\) 0 0
\(563\) 987.423 1.75386 0.876930 0.480618i \(-0.159588\pi\)
0.876930 + 0.480618i \(0.159588\pi\)
\(564\) 0 0
\(565\) − 74.9117i − 0.132587i
\(566\) 0 0
\(567\) 290.763i 0.512810i
\(568\) 0 0
\(569\) 475.082 0.834942 0.417471 0.908690i \(-0.362917\pi\)
0.417471 + 0.908690i \(0.362917\pi\)
\(570\) 0 0
\(571\) −182.485 −0.319588 −0.159794 0.987150i \(-0.551083\pi\)
−0.159794 + 0.987150i \(0.551083\pi\)
\(572\) 0 0
\(573\) − 332.498i − 0.580277i
\(574\) 0 0
\(575\) 75.8979i 0.131996i
\(576\) 0 0
\(577\) −319.167 −0.553149 −0.276575 0.960992i \(-0.589199\pi\)
−0.276575 + 0.960992i \(0.589199\pi\)
\(578\) 0 0
\(579\) −1317.17 −2.27490
\(580\) 0 0
\(581\) − 121.751i − 0.209554i
\(582\) 0 0
\(583\) 316.676i 0.543183i
\(584\) 0 0
\(585\) −872.991 −1.49229
\(586\) 0 0
\(587\) 904.762 1.54133 0.770666 0.637239i \(-0.219924\pi\)
0.770666 + 0.637239i \(0.219924\pi\)
\(588\) 0 0
\(589\) 223.319i 0.379149i
\(590\) 0 0
\(591\) 1294.27i 2.18996i
\(592\) 0 0
\(593\) −747.325 −1.26024 −0.630122 0.776496i \(-0.716995\pi\)
−0.630122 + 0.776496i \(0.716995\pi\)
\(594\) 0 0
\(595\) −53.2565 −0.0895068
\(596\) 0 0
\(597\) 155.331i 0.260186i
\(598\) 0 0
\(599\) 874.385i 1.45974i 0.683585 + 0.729871i \(0.260420\pi\)
−0.683585 + 0.729871i \(0.739580\pi\)
\(600\) 0 0
\(601\) 777.234 1.29323 0.646617 0.762815i \(-0.276183\pi\)
0.646617 + 0.762815i \(0.276183\pi\)
\(602\) 0 0
\(603\) 820.192 1.36019
\(604\) 0 0
\(605\) 10.4327i 0.0172441i
\(606\) 0 0
\(607\) − 699.436i − 1.15228i −0.817350 0.576142i \(-0.804558\pi\)
0.817350 0.576142i \(-0.195442\pi\)
\(608\) 0 0
\(609\) 65.5078 0.107566
\(610\) 0 0
\(611\) −183.075 −0.299631
\(612\) 0 0
\(613\) 11.0820i 0.0180784i 0.999959 + 0.00903918i \(0.00287730\pi\)
−0.999959 + 0.00903918i \(0.997123\pi\)
\(614\) 0 0
\(615\) − 354.054i − 0.575698i
\(616\) 0 0
\(617\) −1189.16 −1.92733 −0.963664 0.267119i \(-0.913928\pi\)
−0.963664 + 0.267119i \(0.913928\pi\)
\(618\) 0 0
\(619\) 325.717 0.526198 0.263099 0.964769i \(-0.415255\pi\)
0.263099 + 0.964769i \(0.415255\pi\)
\(620\) 0 0
\(621\) 1141.50i 1.83816i
\(622\) 0 0
\(623\) 78.9477i 0.126722i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 332.554 0.530389
\(628\) 0 0
\(629\) − 601.495i − 0.956272i
\(630\) 0 0
\(631\) 316.823i 0.502097i 0.967975 + 0.251048i \(0.0807754\pi\)
−0.967975 + 0.251048i \(0.919225\pi\)
\(632\) 0 0
\(633\) 521.823 0.824366
\(634\) 0 0
\(635\) −287.731 −0.453120
\(636\) 0 0
\(637\) 822.912i 1.29186i
\(638\) 0 0
\(639\) 2188.28i 3.42454i
\(640\) 0 0
\(641\) −149.587 −0.233365 −0.116682 0.993169i \(-0.537226\pi\)
−0.116682 + 0.993169i \(0.537226\pi\)
\(642\) 0 0
\(643\) −408.690 −0.635599 −0.317800 0.948158i \(-0.602944\pi\)
−0.317800 + 0.948158i \(0.602944\pi\)
\(644\) 0 0
\(645\) 318.079i 0.493146i
\(646\) 0 0
\(647\) 104.383i 0.161334i 0.996741 + 0.0806668i \(0.0257050\pi\)
−0.996741 + 0.0806668i \(0.974295\pi\)
\(648\) 0 0
\(649\) 502.663 0.774519
\(650\) 0 0
\(651\) −312.927 −0.480687
\(652\) 0 0
\(653\) − 164.420i − 0.251791i −0.992044 0.125895i \(-0.959820\pi\)
0.992044 0.125895i \(-0.0401804\pi\)
\(654\) 0 0
\(655\) 497.139i 0.758990i
\(656\) 0 0
\(657\) −351.167 −0.534501
\(658\) 0 0
\(659\) −743.613 −1.12840 −0.564198 0.825640i \(-0.690814\pi\)
−0.564198 + 0.825640i \(0.690814\pi\)
\(660\) 0 0
\(661\) 758.073i 1.14686i 0.819255 + 0.573429i \(0.194387\pi\)
−0.819255 + 0.573429i \(0.805613\pi\)
\(662\) 0 0
\(663\) − 1757.15i − 2.65030i
\(664\) 0 0
\(665\) 15.6594 0.0235480
\(666\) 0 0
\(667\) 134.078 0.201017
\(668\) 0 0
\(669\) − 1725.74i − 2.57958i
\(670\) 0 0
\(671\) − 867.843i − 1.29336i
\(672\) 0 0
\(673\) 364.164 0.541106 0.270553 0.962705i \(-0.412794\pi\)
0.270553 + 0.962705i \(0.412794\pi\)
\(674\) 0 0
\(675\) 375.997 0.557033
\(676\) 0 0
\(677\) 708.079i 1.04591i 0.852361 + 0.522953i \(0.175170\pi\)
−0.852361 + 0.522953i \(0.824830\pi\)
\(678\) 0 0
\(679\) 143.119i 0.210780i
\(680\) 0 0
\(681\) −1429.40 −2.09897
\(682\) 0 0
\(683\) 355.469 0.520452 0.260226 0.965548i \(-0.416203\pi\)
0.260226 + 0.965548i \(0.416203\pi\)
\(684\) 0 0
\(685\) − 288.079i − 0.420553i
\(686\) 0 0
\(687\) − 2306.45i − 3.35727i
\(688\) 0 0
\(689\) −492.000 −0.714078
\(690\) 0 0
\(691\) 116.769 0.168985 0.0844925 0.996424i \(-0.473073\pi\)
0.0844925 + 0.996424i \(0.473073\pi\)
\(692\) 0 0
\(693\) 332.498i 0.479796i
\(694\) 0 0
\(695\) 515.958i 0.742386i
\(696\) 0 0
\(697\) 508.486 0.729535
\(698\) 0 0
\(699\) −1865.54 −2.66887
\(700\) 0 0
\(701\) − 246.413i − 0.351517i −0.984433 0.175758i \(-0.943762\pi\)
0.984433 0.175758i \(-0.0562378\pi\)
\(702\) 0 0
\(703\) 176.862i 0.251582i
\(704\) 0 0
\(705\) 131.745 0.186872
\(706\) 0 0
\(707\) −110.704 −0.156582
\(708\) 0 0
\(709\) 552.820i 0.779718i 0.920874 + 0.389859i \(0.127476\pi\)
−0.920874 + 0.389859i \(0.872524\pi\)
\(710\) 0 0
\(711\) − 2512.89i − 3.53431i
\(712\) 0 0
\(713\) −640.486 −0.898297
\(714\) 0 0
\(715\) −436.568 −0.610585
\(716\) 0 0
\(717\) 1492.33i 2.08135i
\(718\) 0 0
\(719\) − 99.9709i − 0.139042i −0.997581 0.0695208i \(-0.977853\pi\)
0.997581 0.0695208i \(-0.0221470\pi\)
\(720\) 0 0
\(721\) −178.918 −0.248153
\(722\) 0 0
\(723\) 440.464 0.609217
\(724\) 0 0
\(725\) − 44.1641i − 0.0609160i
\(726\) 0 0
\(727\) − 1081.39i − 1.48746i −0.668479 0.743731i \(-0.733054\pi\)
0.668479 0.743731i \(-0.266946\pi\)
\(728\) 0 0
\(729\) 1132.50 1.55349
\(730\) 0 0
\(731\) −456.819 −0.624923
\(732\) 0 0
\(733\) 380.407i 0.518973i 0.965747 + 0.259486i \(0.0835533\pi\)
−0.965747 + 0.259486i \(0.916447\pi\)
\(734\) 0 0
\(735\) − 592.186i − 0.805695i
\(736\) 0 0
\(737\) 410.164 0.556532
\(738\) 0 0
\(739\) −1381.60 −1.86955 −0.934775 0.355240i \(-0.884399\pi\)
−0.934775 + 0.355240i \(0.884399\pi\)
\(740\) 0 0
\(741\) 516.669i 0.697259i
\(742\) 0 0
\(743\) 267.424i 0.359924i 0.983674 + 0.179962i \(0.0575975\pi\)
−0.983674 + 0.179962i \(0.942403\pi\)
\(744\) 0 0
\(745\) 639.325 0.858154
\(746\) 0 0
\(747\) −2062.64 −2.76123
\(748\) 0 0
\(749\) 161.921i 0.216183i
\(750\) 0 0
\(751\) 338.653i 0.450937i 0.974250 + 0.225468i \(0.0723912\pi\)
−0.974250 + 0.225468i \(0.927609\pi\)
\(752\) 0 0
\(753\) 2267.14 3.01080
\(754\) 0 0
\(755\) 144.481 0.191366
\(756\) 0 0
\(757\) − 1247.91i − 1.64849i −0.566232 0.824246i \(-0.691599\pi\)
0.566232 0.824246i \(-0.308401\pi\)
\(758\) 0 0
\(759\) 953.775i 1.25662i
\(760\) 0 0
\(761\) 14.3406 0.0188444 0.00942219 0.999956i \(-0.497001\pi\)
0.00942219 + 0.999956i \(0.497001\pi\)
\(762\) 0 0
\(763\) −3.41853 −0.00448038
\(764\) 0 0
\(765\) 902.243i 1.17940i
\(766\) 0 0
\(767\) 780.956i 1.01820i
\(768\) 0 0
\(769\) 1036.99 1.34849 0.674246 0.738507i \(-0.264469\pi\)
0.674246 + 0.738507i \(0.264469\pi\)
\(770\) 0 0
\(771\) 481.078 0.623967
\(772\) 0 0
\(773\) − 1197.91i − 1.54970i −0.632148 0.774848i \(-0.717826\pi\)
0.632148 0.774848i \(-0.282174\pi\)
\(774\) 0 0
\(775\) 210.970i 0.272219i
\(776\) 0 0
\(777\) −247.830 −0.318957
\(778\) 0 0
\(779\) −149.514 −0.191931
\(780\) 0 0
\(781\) 1094.32i 1.40118i
\(782\) 0 0
\(783\) − 664.223i − 0.848305i
\(784\) 0 0
\(785\) 32.6099 0.0415413
\(786\) 0 0
\(787\) −99.1814 −0.126025 −0.0630123 0.998013i \(-0.520071\pi\)
−0.0630123 + 0.998013i \(0.520071\pi\)
\(788\) 0 0
\(789\) 2470.05i 3.13061i
\(790\) 0 0
\(791\) − 44.3282i − 0.0560407i
\(792\) 0 0
\(793\) 1348.32 1.70027
\(794\) 0 0
\(795\) 354.054 0.445351
\(796\) 0 0
\(797\) 139.240i 0.174705i 0.996177 + 0.0873525i \(0.0278407\pi\)
−0.996177 + 0.0873525i \(0.972159\pi\)
\(798\) 0 0
\(799\) 189.209i 0.236807i
\(800\) 0 0
\(801\) 1337.49 1.66977
\(802\) 0 0
\(803\) −175.613 −0.218696
\(804\) 0 0
\(805\) 44.9117i 0.0557910i
\(806\) 0 0
\(807\) 1151.37i 1.42672i
\(808\) 0 0
\(809\) −403.653 −0.498953 −0.249477 0.968381i \(-0.580259\pi\)
−0.249477 + 0.968381i \(0.580259\pi\)
\(810\) 0 0
\(811\) 384.561 0.474181 0.237091 0.971488i \(-0.423806\pi\)
0.237091 + 0.971488i \(0.423806\pi\)
\(812\) 0 0
\(813\) − 2343.15i − 2.88210i
\(814\) 0 0
\(815\) 46.6407i 0.0572278i
\(816\) 0 0
\(817\) 134.322 0.164409
\(818\) 0 0
\(819\) −516.583 −0.630748
\(820\) 0 0
\(821\) 997.732i 1.21526i 0.794219 + 0.607632i \(0.207881\pi\)
−0.794219 + 0.607632i \(0.792119\pi\)
\(822\) 0 0
\(823\) − 955.281i − 1.16073i −0.814356 0.580365i \(-0.802910\pi\)
0.814356 0.580365i \(-0.197090\pi\)
\(824\) 0 0
\(825\) 314.164 0.380805
\(826\) 0 0
\(827\) −213.451 −0.258103 −0.129051 0.991638i \(-0.541193\pi\)
−0.129051 + 0.991638i \(0.541193\pi\)
\(828\) 0 0
\(829\) − 73.4288i − 0.0885752i −0.999019 0.0442876i \(-0.985898\pi\)
0.999019 0.0442876i \(-0.0141018\pi\)
\(830\) 0 0
\(831\) − 2866.47i − 3.44942i
\(832\) 0 0
\(833\) 850.486 1.02099
\(834\) 0 0
\(835\) −485.139 −0.581005
\(836\) 0 0
\(837\) 3172.96i 3.79087i
\(838\) 0 0
\(839\) − 643.642i − 0.767154i −0.923509 0.383577i \(-0.874692\pi\)
0.923509 0.383577i \(-0.125308\pi\)
\(840\) 0 0
\(841\) 762.981 0.907231
\(842\) 0 0
\(843\) 648.787 0.769617
\(844\) 0 0
\(845\) − 300.374i − 0.355472i
\(846\) 0 0
\(847\) 6.17342i 0.00728857i
\(848\) 0 0
\(849\) 2253.23 2.65398
\(850\) 0 0
\(851\) −507.247 −0.596060
\(852\) 0 0
\(853\) 351.410i 0.411970i 0.978555 + 0.205985i \(0.0660398\pi\)
−0.978555 + 0.205985i \(0.933960\pi\)
\(854\) 0 0
\(855\) − 265.293i − 0.310285i
\(856\) 0 0
\(857\) −1326.16 −1.54744 −0.773721 0.633526i \(-0.781607\pi\)
−0.773721 + 0.633526i \(0.781607\pi\)
\(858\) 0 0
\(859\) −343.729 −0.400150 −0.200075 0.979781i \(-0.564119\pi\)
−0.200075 + 0.979781i \(0.564119\pi\)
\(860\) 0 0
\(861\) − 209.508i − 0.243331i
\(862\) 0 0
\(863\) − 1136.15i − 1.31651i −0.752793 0.658257i \(-0.771294\pi\)
0.752793 0.658257i \(-0.228706\pi\)
\(864\) 0 0
\(865\) 104.164 0.120421
\(866\) 0 0
\(867\) −196.176 −0.226270
\(868\) 0 0
\(869\) − 1256.66i − 1.44609i
\(870\) 0 0
\(871\) 637.247i 0.731627i
\(872\) 0 0
\(873\) 2424.65 2.77738
\(874\) 0 0
\(875\) 14.7935 0.0169068
\(876\) 0 0
\(877\) 769.076i 0.876939i 0.898746 + 0.438470i \(0.144479\pi\)
−0.898746 + 0.438470i \(0.855521\pi\)
\(878\) 0 0
\(879\) 506.770i 0.576530i
\(880\) 0 0
\(881\) −731.568 −0.830384 −0.415192 0.909734i \(-0.636286\pi\)
−0.415192 + 0.909734i \(0.636286\pi\)
\(882\) 0 0
\(883\) −1066.19 −1.20746 −0.603731 0.797188i \(-0.706320\pi\)
−0.603731 + 0.797188i \(0.706320\pi\)
\(884\) 0 0
\(885\) − 561.994i − 0.635021i
\(886\) 0 0
\(887\) − 397.242i − 0.447848i −0.974607 0.223924i \(-0.928113\pi\)
0.974607 0.223924i \(-0.0718868\pi\)
\(888\) 0 0
\(889\) −170.262 −0.191520
\(890\) 0 0
\(891\) 2463.39 2.76474
\(892\) 0 0
\(893\) − 55.6346i − 0.0623008i
\(894\) 0 0
\(895\) 14.6286i 0.0163448i
\(896\) 0 0
\(897\) −1481.82 −1.65198
\(898\) 0 0
\(899\) 372.691 0.414562
\(900\) 0 0
\(901\) 508.486i 0.564357i
\(902\) 0 0
\(903\) 188.220i 0.208438i
\(904\) 0 0
\(905\) −539.633 −0.596280
\(906\) 0 0
\(907\) 1021.02 1.12571 0.562855 0.826556i \(-0.309703\pi\)
0.562855 + 0.826556i \(0.309703\pi\)
\(908\) 0 0
\(909\) 1875.48i 2.06324i
\(910\) 0 0
\(911\) 1118.66i 1.22794i 0.789328 + 0.613971i \(0.210429\pi\)
−0.789328 + 0.613971i \(0.789571\pi\)
\(912\) 0 0
\(913\) −1031.49 −1.12978
\(914\) 0 0
\(915\) −970.278 −1.06041
\(916\) 0 0
\(917\) 294.177i 0.320803i
\(918\) 0 0
\(919\) − 1177.68i − 1.28148i −0.767757 0.640741i \(-0.778627\pi\)
0.767757 0.640741i \(-0.221373\pi\)
\(920\) 0 0
\(921\) −1543.73 −1.67615
\(922\) 0 0
\(923\) −1700.18 −1.84202
\(924\) 0 0
\(925\) 167.082i 0.180629i
\(926\) 0 0
\(927\) 3031.13i 3.26983i
\(928\) 0 0
\(929\) −699.423 −0.752877 −0.376438 0.926442i \(-0.622851\pi\)
−0.376438 + 0.926442i \(0.622851\pi\)
\(930\) 0 0
\(931\) −250.075 −0.268609
\(932\) 0 0
\(933\) − 2720.15i − 2.91548i
\(934\) 0 0
\(935\) 451.197i 0.482563i
\(936\) 0 0
\(937\) 332.152 0.354484 0.177242 0.984167i \(-0.443282\pi\)
0.177242 + 0.984167i \(0.443282\pi\)
\(938\) 0 0
\(939\) 11.2101 0.0119383
\(940\) 0 0
\(941\) − 1468.66i − 1.56075i −0.625314 0.780373i \(-0.715029\pi\)
0.625314 0.780373i \(-0.284971\pi\)
\(942\) 0 0
\(943\) − 428.811i − 0.454731i
\(944\) 0 0
\(945\) 222.492 0.235442
\(946\) 0 0
\(947\) 574.082 0.606211 0.303106 0.952957i \(-0.401976\pi\)
0.303106 + 0.952957i \(0.401976\pi\)
\(948\) 0 0
\(949\) − 272.839i − 0.287502i
\(950\) 0 0
\(951\) 2212.54i 2.32654i
\(952\) 0 0
\(953\) −280.663 −0.294504 −0.147252 0.989099i \(-0.547043\pi\)
−0.147252 + 0.989099i \(0.547043\pi\)
\(954\) 0 0
\(955\) −132.647 −0.138897
\(956\) 0 0
\(957\) − 554.991i − 0.579928i
\(958\) 0 0
\(959\) − 170.468i − 0.177756i
\(960\) 0 0
\(961\) −819.328 −0.852579
\(962\) 0 0
\(963\) 2743.18 2.84858
\(964\) 0 0
\(965\) 525.469i 0.544527i
\(966\) 0 0
\(967\) − 1278.65i − 1.32228i −0.750262 0.661141i \(-0.770073\pi\)
0.750262 0.661141i \(-0.229927\pi\)
\(968\) 0 0
\(969\) 533.981 0.551064
\(970\) 0 0
\(971\) 117.723 0.121239 0.0606195 0.998161i \(-0.480692\pi\)
0.0606195 + 0.998161i \(0.480692\pi\)
\(972\) 0 0
\(973\) 305.313i 0.313785i
\(974\) 0 0
\(975\) 488.098i 0.500613i
\(976\) 0 0
\(977\) 983.155 1.00630 0.503150 0.864199i \(-0.332174\pi\)
0.503150 + 0.864199i \(0.332174\pi\)
\(978\) 0 0
\(979\) 668.856 0.683203
\(980\) 0 0
\(981\) 57.9149i 0.0590365i
\(982\) 0 0
\(983\) 607.404i 0.617909i 0.951077 + 0.308954i \(0.0999790\pi\)
−0.951077 + 0.308954i \(0.900021\pi\)
\(984\) 0 0
\(985\) 516.334 0.524197
\(986\) 0 0
\(987\) 77.9584 0.0789852
\(988\) 0 0
\(989\) 385.240i 0.389525i
\(990\) 0 0
\(991\) − 408.413i − 0.412122i −0.978539 0.206061i \(-0.933935\pi\)
0.978539 0.206061i \(-0.0660645\pi\)
\(992\) 0 0
\(993\) −1659.82 −1.67152
\(994\) 0 0
\(995\) 61.9677 0.0622791
\(996\) 0 0
\(997\) 1554.91i 1.55959i 0.626035 + 0.779795i \(0.284677\pi\)
−0.626035 + 0.779795i \(0.715323\pi\)
\(998\) 0 0
\(999\) 2512.89i 2.51541i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.3.g.f.1151.2 8
4.3 odd 2 inner 1280.3.g.f.1151.8 8
8.3 odd 2 inner 1280.3.g.f.1151.1 8
8.5 even 2 inner 1280.3.g.f.1151.7 8
16.3 odd 4 320.3.b.a.191.4 4
16.5 even 4 80.3.b.a.31.4 yes 4
16.11 odd 4 80.3.b.a.31.1 4
16.13 even 4 320.3.b.a.191.1 4
48.5 odd 4 720.3.e.c.271.3 4
48.11 even 4 720.3.e.c.271.4 4
48.29 odd 4 2880.3.e.b.2431.1 4
48.35 even 4 2880.3.e.b.2431.2 4
80.3 even 4 1600.3.h.p.1599.2 8
80.13 odd 4 1600.3.h.p.1599.7 8
80.19 odd 4 1600.3.b.k.1151.1 4
80.27 even 4 400.3.h.d.399.1 8
80.29 even 4 1600.3.b.k.1151.4 4
80.37 odd 4 400.3.h.d.399.8 8
80.43 even 4 400.3.h.d.399.7 8
80.53 odd 4 400.3.h.d.399.2 8
80.59 odd 4 400.3.b.g.351.4 4
80.67 even 4 1600.3.h.p.1599.8 8
80.69 even 4 400.3.b.g.351.1 4
80.77 odd 4 1600.3.h.p.1599.1 8
240.53 even 4 3600.3.j.k.1999.3 8
240.59 even 4 3600.3.e.bb.3151.2 4
240.107 odd 4 3600.3.j.k.1999.4 8
240.149 odd 4 3600.3.e.bb.3151.3 4
240.197 even 4 3600.3.j.k.1999.5 8
240.203 odd 4 3600.3.j.k.1999.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.3.b.a.31.1 4 16.11 odd 4
80.3.b.a.31.4 yes 4 16.5 even 4
320.3.b.a.191.1 4 16.13 even 4
320.3.b.a.191.4 4 16.3 odd 4
400.3.b.g.351.1 4 80.69 even 4
400.3.b.g.351.4 4 80.59 odd 4
400.3.h.d.399.1 8 80.27 even 4
400.3.h.d.399.2 8 80.53 odd 4
400.3.h.d.399.7 8 80.43 even 4
400.3.h.d.399.8 8 80.37 odd 4
720.3.e.c.271.3 4 48.5 odd 4
720.3.e.c.271.4 4 48.11 even 4
1280.3.g.f.1151.1 8 8.3 odd 2 inner
1280.3.g.f.1151.2 8 1.1 even 1 trivial
1280.3.g.f.1151.7 8 8.5 even 2 inner
1280.3.g.f.1151.8 8 4.3 odd 2 inner
1600.3.b.k.1151.1 4 80.19 odd 4
1600.3.b.k.1151.4 4 80.29 even 4
1600.3.h.p.1599.1 8 80.77 odd 4
1600.3.h.p.1599.2 8 80.3 even 4
1600.3.h.p.1599.7 8 80.13 odd 4
1600.3.h.p.1599.8 8 80.67 even 4
2880.3.e.b.2431.1 4 48.29 odd 4
2880.3.e.b.2431.2 4 48.35 even 4
3600.3.e.bb.3151.2 4 240.59 even 4
3600.3.e.bb.3151.3 4 240.149 odd 4
3600.3.j.k.1999.3 8 240.53 even 4
3600.3.j.k.1999.4 8 240.107 odd 4
3600.3.j.k.1999.5 8 240.197 even 4
3600.3.j.k.1999.6 8 240.203 odd 4