Properties

Label 80.3.b.a.31.1
Level 8080
Weight 33
Character 80.31
Analytic conductor 2.1802.180
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,3,Mod(31,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.31");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 80=245 80 = 2^{4} \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 80.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.179842114882.17984211488
Analytic rank: 00
Dimension: 44
Coefficient field: Q(3,5)\Q(\sqrt{-3}, \sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+2x2+x+1 x^{4} - x^{3} + 2x^{2} + x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 26 2^{6}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 31.1
Root 0.8090171.40126i0.809017 - 1.40126i of defining polynomial
Character χ\chi == 80.31
Dual form 80.3.b.a.31.4

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q5.60503iq32.23607q5+1.32317iq722.4164q911.2101iq11+17.4164q13+12.5332iq15+18.0000q175.29268iq19+7.41641q2115.1796iq23+5.00000q25+75.1994iq27+8.83282q29+42.1939iq3162.8328q332.95870iq35+33.4164q3797.6196iq3928.2492q41+25.3788iq43+50.1246q4510.5116iq47+47.2492q49100.891iq5128.2492q53+25.0665iq5529.6656q5744.8403iq5977.4164q6129.6607iq6338.9443q65+36.5889iq6785.0820q69+97.6196iq71+15.6656q7328.0252iq75+14.8328q77+112.101iq79+219.748q8192.0145iq8340.2492q8549.5082iq8759.6656q89+23.0449iq91+236.498q93+11.8348iq95+108.164q97+251.289iq99+O(q100)q-5.60503i q^{3} -2.23607 q^{5} +1.32317i q^{7} -22.4164 q^{9} -11.2101i q^{11} +17.4164 q^{13} +12.5332i q^{15} +18.0000 q^{17} -5.29268i q^{19} +7.41641 q^{21} -15.1796i q^{23} +5.00000 q^{25} +75.1994i q^{27} +8.83282 q^{29} +42.1939i q^{31} -62.8328 q^{33} -2.95870i q^{35} +33.4164 q^{37} -97.6196i q^{39} -28.2492 q^{41} +25.3788i q^{43} +50.1246 q^{45} -10.5116i q^{47} +47.2492 q^{49} -100.891i q^{51} -28.2492 q^{53} +25.0665i q^{55} -29.6656 q^{57} -44.8403i q^{59} -77.4164 q^{61} -29.6607i q^{63} -38.9443 q^{65} +36.5889i q^{67} -85.0820 q^{69} +97.6196i q^{71} +15.6656 q^{73} -28.0252i q^{75} +14.8328 q^{77} +112.101i q^{79} +219.748 q^{81} -92.0145i q^{83} -40.2492 q^{85} -49.5082i q^{87} -59.6656 q^{89} +23.0449i q^{91} +236.498 q^{93} +11.8348i q^{95} +108.164 q^{97} +251.289i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q36q9+16q13+72q1724q21+20q2572q29144q33+80q37+48q41+120q45+28q49+48q53+96q57256q61120q6572q69152q73+104q97+O(q100) 4 q - 36 q^{9} + 16 q^{13} + 72 q^{17} - 24 q^{21} + 20 q^{25} - 72 q^{29} - 144 q^{33} + 80 q^{37} + 48 q^{41} + 120 q^{45} + 28 q^{49} + 48 q^{53} + 96 q^{57} - 256 q^{61} - 120 q^{65} - 72 q^{69} - 152 q^{73}+ \cdots - 104 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/80Z)×\left(\mathbb{Z}/80\mathbb{Z}\right)^\times.

nn 1717 2121 3131
χ(n)\chi(n) 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 5.60503i − 1.86834i −0.356822 0.934172i 0.616140π-0.616140\pi
0.356822 0.934172i 0.383860π-0.383860\pi
44 0 0
55 −2.23607 −0.447214
66 0 0
77 1.32317i 0.189024i 0.995524 + 0.0945121i 0.0301291π0.0301291\pi
−0.995524 + 0.0945121i 0.969871π0.969871\pi
88 0 0
99 −22.4164 −2.49071
1010 0 0
1111 − 11.2101i − 1.01910i −0.860442 0.509549i 0.829812π-0.829812\pi
0.860442 0.509549i 0.170188π-0.170188\pi
1212 0 0
1313 17.4164 1.33972 0.669862 0.742486i 0.266353π-0.266353\pi
0.669862 + 0.742486i 0.266353π0.266353\pi
1414 0 0
1515 12.5332i 0.835549i
1616 0 0
1717 18.0000 1.05882 0.529412 0.848365i 0.322413π-0.322413\pi
0.529412 + 0.848365i 0.322413π0.322413\pi
1818 0 0
1919 − 5.29268i − 0.278562i −0.990253 0.139281i 0.955521π-0.955521\pi
0.990253 0.139281i 0.0444791π-0.0444791\pi
2020 0 0
2121 7.41641 0.353162
2222 0 0
2323 − 15.1796i − 0.659982i −0.943984 0.329991i 0.892954π-0.892954\pi
0.943984 0.329991i 0.107046π-0.107046\pi
2424 0 0
2525 5.00000 0.200000
2626 0 0
2727 75.1994i 2.78516i
2828 0 0
2929 8.83282 0.304580 0.152290 0.988336i 0.451335π-0.451335\pi
0.152290 + 0.988336i 0.451335π0.451335\pi
3030 0 0
3131 42.1939i 1.36109i 0.732704 + 0.680547i 0.238258π0.238258\pi
−0.732704 + 0.680547i 0.761742π0.761742\pi
3232 0 0
3333 −62.8328 −1.90402
3434 0 0
3535 − 2.95870i − 0.0845342i
3636 0 0
3737 33.4164 0.903146 0.451573 0.892234i 0.350863π-0.350863\pi
0.451573 + 0.892234i 0.350863π0.350863\pi
3838 0 0
3939 − 97.6196i − 2.50307i
4040 0 0
4141 −28.2492 −0.689005 −0.344503 0.938785i 0.611952π-0.611952\pi
−0.344503 + 0.938785i 0.611952π0.611952\pi
4242 0 0
4343 25.3788i 0.590205i 0.955466 + 0.295103i 0.0953539π0.0953539\pi
−0.955466 + 0.295103i 0.904646π0.904646\pi
4444 0 0
4545 50.1246 1.11388
4646 0 0
4747 − 10.5116i − 0.223651i −0.993728 0.111826i 0.964330π-0.964330\pi
0.993728 0.111826i 0.0356698π-0.0356698\pi
4848 0 0
4949 47.2492 0.964270
5050 0 0
5151 − 100.891i − 1.97825i
5252 0 0
5353 −28.2492 −0.533004 −0.266502 0.963834i 0.585868π-0.585868\pi
−0.266502 + 0.963834i 0.585868π0.585868\pi
5454 0 0
5555 25.0665i 0.455754i
5656 0 0
5757 −29.6656 −0.520450
5858 0 0
5959 − 44.8403i − 0.760005i −0.924986 0.380002i 0.875923π-0.875923\pi
0.924986 0.380002i 0.124077π-0.124077\pi
6060 0 0
6161 −77.4164 −1.26912 −0.634561 0.772873i 0.718819π-0.718819\pi
−0.634561 + 0.772873i 0.718819π0.718819\pi
6262 0 0
6363 − 29.6607i − 0.470805i
6464 0 0
6565 −38.9443 −0.599143
6666 0 0
6767 36.5889i 0.546103i 0.961999 + 0.273051i 0.0880329π0.0880329\pi
−0.961999 + 0.273051i 0.911967π0.911967\pi
6868 0 0
6969 −85.0820 −1.23307
7070 0 0
7171 97.6196i 1.37492i 0.726221 + 0.687462i 0.241275π0.241275\pi
−0.726221 + 0.687462i 0.758725π0.758725\pi
7272 0 0
7373 15.6656 0.214598 0.107299 0.994227i 0.465780π-0.465780\pi
0.107299 + 0.994227i 0.465780π0.465780\pi
7474 0 0
7575 − 28.0252i − 0.373669i
7676 0 0
7777 14.8328 0.192634
7878 0 0
7979 112.101i 1.41900i 0.704707 + 0.709498i 0.251078π0.251078\pi
−0.704707 + 0.709498i 0.748922π0.748922\pi
8080 0 0
8181 219.748 2.71293
8282 0 0
8383 − 92.0145i − 1.10861i −0.832314 0.554304i 0.812984π-0.812984\pi
0.832314 0.554304i 0.187016π-0.187016\pi
8484 0 0
8585 −40.2492 −0.473520
8686 0 0
8787 − 49.5082i − 0.569060i
8888 0 0
8989 −59.6656 −0.670400 −0.335200 0.942147i 0.608804π-0.608804\pi
−0.335200 + 0.942147i 0.608804π0.608804\pi
9090 0 0
9191 23.0449i 0.253240i
9292 0 0
9393 236.498 2.54299
9494 0 0
9595 11.8348i 0.124577i
9696 0 0
9797 108.164 1.11509 0.557547 0.830146i 0.311743π-0.311743\pi
0.557547 + 0.830146i 0.311743π0.311743\pi
9898 0 0
9999 251.289i 2.53828i
100100 0 0
101101 −83.6656 −0.828373 −0.414186 0.910192i 0.635934π-0.635934\pi
−0.414186 + 0.910192i 0.635934π0.635934\pi
102102 0 0
103103 135.219i 1.31281i 0.754409 + 0.656404i 0.227923π0.227923\pi
−0.754409 + 0.656404i 0.772077π0.772077\pi
104104 0 0
105105 −16.5836 −0.157939
106106 0 0
107107 − 122.374i − 1.14368i −0.820365 0.571840i 0.806230π-0.806230\pi
0.820365 0.571840i 0.193770π-0.193770\pi
108108 0 0
109109 2.58359 0.0237027 0.0118513 0.999930i 0.496228π-0.496228\pi
0.0118513 + 0.999930i 0.496228π0.496228\pi
110110 0 0
111111 − 187.300i − 1.68739i
112112 0 0
113113 −33.5016 −0.296474 −0.148237 0.988952i 0.547360π-0.547360\pi
−0.148237 + 0.988952i 0.547360π0.547360\pi
114114 0 0
115115 33.9426i 0.295153i
116116 0 0
117117 −390.413 −3.33687
118118 0 0
119119 23.8170i 0.200143i
120120 0 0
121121 −4.66563 −0.0385589
122122 0 0
123123 158.338i 1.28730i
124124 0 0
125125 −11.1803 −0.0894427
126126 0 0
127127 − 128.677i − 1.01321i −0.862179 0.506603i 0.830901π-0.830901\pi
0.862179 0.506603i 0.169099π-0.169099\pi
128128 0 0
129129 142.249 1.10271
130130 0 0
131131 222.327i 1.69715i 0.529072 + 0.848577i 0.322540π0.322540\pi
−0.529072 + 0.848577i 0.677460π0.677460\pi
132132 0 0
133133 7.00311 0.0526549
134134 0 0
135135 − 168.151i − 1.24556i
136136 0 0
137137 128.833 0.940386 0.470193 0.882564i 0.344184π-0.344184\pi
0.470193 + 0.882564i 0.344184π0.344184\pi
138138 0 0
139139 − 230.743i − 1.66002i −0.557745 0.830012i 0.688333π-0.688333\pi
0.557745 0.830012i 0.311667π-0.311667\pi
140140 0 0
141141 −58.9180 −0.417858
142142 0 0
143143 − 195.239i − 1.36531i
144144 0 0
145145 −19.7508 −0.136212
146146 0 0
147147 − 264.834i − 1.80159i
148148 0 0
149149 285.915 1.91889 0.959446 0.281893i 0.0909623π-0.0909623\pi
0.959446 + 0.281893i 0.0909623π0.0909623\pi
150150 0 0
151151 − 64.6141i − 0.427908i −0.976844 0.213954i 0.931366π-0.931366\pi
0.976844 0.213954i 0.0686342π-0.0686342\pi
152152 0 0
153153 −403.495 −2.63722
154154 0 0
155155 − 94.3485i − 0.608700i
156156 0 0
157157 −14.5836 −0.0928891 −0.0464446 0.998921i 0.514789π-0.514789\pi
−0.0464446 + 0.998921i 0.514789π0.514789\pi
158158 0 0
159159 158.338i 0.995836i
160160 0 0
161161 20.0851 0.124752
162162 0 0
163163 20.8583i 0.127965i 0.997951 + 0.0639827i 0.0203802π0.0203802\pi
−0.997951 + 0.0639827i 0.979620π0.979620\pi
164164 0 0
165165 140.498 0.851506
166166 0 0
167167 216.961i 1.29917i 0.760290 + 0.649583i 0.225057π0.225057\pi
−0.760290 + 0.649583i 0.774943π0.774943\pi
168168 0 0
169169 134.331 0.794860
170170 0 0
171171 118.643i 0.693817i
172172 0 0
173173 −46.5836 −0.269269 −0.134635 0.990895i 0.542986π-0.542986\pi
−0.134635 + 0.990895i 0.542986π0.542986\pi
174174 0 0
175175 6.61585i 0.0378048i
176176 0 0
177177 −251.331 −1.41995
178178 0 0
179179 6.54211i 0.0365481i 0.999833 + 0.0182740i 0.00581713π0.00581713\pi
−0.999833 + 0.0182740i 0.994183π0.994183\pi
180180 0 0
181181 −241.331 −1.33332 −0.666661 0.745361i 0.732277π-0.732277\pi
−0.666661 + 0.745361i 0.732277π0.732277\pi
182182 0 0
183183 433.922i 2.37116i
184184 0 0
185185 −74.7214 −0.403899
186186 0 0
187187 − 201.781i − 1.07904i
188188 0 0
189189 −99.5016 −0.526463
190190 0 0
191191 − 59.3214i − 0.310583i −0.987869 0.155292i 0.950368π-0.950368\pi
0.987869 0.155292i 0.0496317π-0.0496317\pi
192192 0 0
193193 234.997 1.21760 0.608800 0.793324i 0.291651π-0.291651\pi
0.608800 + 0.793324i 0.291651π0.291651\pi
194194 0 0
195195 218.284i 1.11940i
196196 0 0
197197 230.912 1.17214 0.586070 0.810260i 0.300674π-0.300674\pi
0.586070 + 0.810260i 0.300674π0.300674\pi
198198 0 0
199199 − 27.7128i − 0.139260i −0.997573 0.0696302i 0.977818π-0.977818\pi
0.997573 0.0696302i 0.0221819π-0.0221819\pi
200200 0 0
201201 205.082 1.02031
202202 0 0
203203 11.6873i 0.0575729i
204204 0 0
205205 63.1672 0.308133
206206 0 0
207207 340.272i 1.64382i
208208 0 0
209209 −59.3313 −0.283882
210210 0 0
211211 − 93.0991i − 0.441228i −0.975361 0.220614i 0.929194π-0.929194\pi
0.975361 0.220614i 0.0708061π-0.0708061\pi
212212 0 0
213213 547.161 2.56883
214214 0 0
215215 − 56.7488i − 0.263948i
216216 0 0
217217 −55.8297 −0.257280
218218 0 0
219219 − 87.8064i − 0.400942i
220220 0 0
221221 313.495 1.41853
222222 0 0
223223 − 307.891i − 1.38068i −0.723487 0.690338i 0.757462π-0.757462\pi
0.723487 0.690338i 0.242538π-0.242538\pi
224224 0 0
225225 −112.082 −0.498142
226226 0 0
227227 255.020i 1.12344i 0.827328 + 0.561719i 0.189860π0.189860\pi
−0.827328 + 0.561719i 0.810140π0.810140\pi
228228 0 0
229229 −411.495 −1.79692 −0.898461 0.439052i 0.855314π-0.855314\pi
−0.898461 + 0.439052i 0.855314π0.855314\pi
230230 0 0
231231 − 83.1384i − 0.359907i
232232 0 0
233233 −332.833 −1.42847 −0.714234 0.699907i 0.753225π-0.753225\pi
−0.714234 + 0.699907i 0.753225π0.753225\pi
234234 0 0
235235 23.5047i 0.100020i
236236 0 0
237237 628.328 2.65117
238238 0 0
239239 266.248i 1.11401i 0.830510 + 0.557004i 0.188049π0.188049\pi
−0.830510 + 0.557004i 0.811951π0.811951\pi
240240 0 0
241241 −78.5836 −0.326073 −0.163036 0.986620i 0.552129π-0.552129\pi
−0.163036 + 0.986620i 0.552129π0.552129\pi
242242 0 0
243243 − 554.898i − 2.28353i
244244 0 0
245245 −105.652 −0.431235
246246 0 0
247247 − 92.1794i − 0.373196i
248248 0 0
249249 −515.745 −2.07126
250250 0 0
251251 404.482i 1.61148i 0.592268 + 0.805741i 0.298233π0.298233\pi
−0.592268 + 0.805741i 0.701767π0.701767\pi
252252 0 0
253253 −170.164 −0.672585
254254 0 0
255255 225.598i 0.884699i
256256 0 0
257257 −85.8297 −0.333968 −0.166984 0.985960i 0.553403π-0.553403\pi
−0.166984 + 0.985960i 0.553403π0.553403\pi
258258 0 0
259259 44.2156i 0.170716i
260260 0 0
261261 −198.000 −0.758621
262262 0 0
263263 − 440.685i − 1.67561i −0.545971 0.837804i 0.683839π-0.683839\pi
0.545971 0.837804i 0.316161π-0.316161\pi
264264 0 0
265265 63.1672 0.238367
266266 0 0
267267 334.428i 1.25254i
268268 0 0
269269 −205.416 −0.763630 −0.381815 0.924239i 0.624701π-0.624701\pi
−0.381815 + 0.924239i 0.624701π0.624701\pi
270270 0 0
271271 − 418.044i − 1.54260i −0.636474 0.771298i 0.719608π-0.719608\pi
0.636474 0.771298i 0.280392π-0.280392\pi
272272 0 0
273273 129.167 0.473140
274274 0 0
275275 − 56.0503i − 0.203819i
276276 0 0
277277 −511.410 −1.84625 −0.923123 0.384505i 0.874372π-0.874372\pi
−0.923123 + 0.384505i 0.874372π0.874372\pi
278278 0 0
279279 − 945.836i − 3.39009i
280280 0 0
281281 115.751 0.411924 0.205962 0.978560i 0.433968π-0.433968\pi
0.205962 + 0.978560i 0.433968π0.433968\pi
282282 0 0
283283 402.001i 1.42050i 0.703951 + 0.710249i 0.251417π0.251417\pi
−0.703951 + 0.710249i 0.748583π0.748583\pi
284284 0 0
285285 66.3344 0.232752
286286 0 0
287287 − 37.3785i − 0.130239i
288288 0 0
289289 35.0000 0.121107
290290 0 0
291291 − 606.263i − 2.08338i
292292 0 0
293293 90.4133 0.308578 0.154289 0.988026i 0.450691π-0.450691\pi
0.154289 + 0.988026i 0.450691π0.450691\pi
294294 0 0
295295 100.266i 0.339884i
296296 0 0
297297 842.991 2.83835
298298 0 0
299299 − 264.374i − 0.884193i
300300 0 0
301301 −33.5805 −0.111563
302302 0 0
303303 468.949i 1.54769i
304304 0 0
305305 173.108 0.567568
306306 0 0
307307 275.419i 0.897130i 0.893750 + 0.448565i 0.148065π0.148065\pi
−0.893750 + 0.448565i 0.851935π0.851935\pi
308308 0 0
309309 757.909 2.45278
310310 0 0
311311 485.304i 1.56046i 0.625491 + 0.780231i 0.284899π0.284899\pi
−0.625491 + 0.780231i 0.715101π0.715101\pi
312312 0 0
313313 2.00000 0.00638978 0.00319489 0.999995i 0.498983π-0.498983\pi
0.00319489 + 0.999995i 0.498983π0.498983\pi
314314 0 0
315315 66.3233i 0.210550i
316316 0 0
317317 −394.741 −1.24524 −0.622621 0.782524i 0.713932π-0.713932\pi
−0.622621 + 0.782524i 0.713932π0.713932\pi
318318 0 0
319319 − 99.0165i − 0.310396i
320320 0 0
321321 −685.909 −2.13679
322322 0 0
323323 − 95.2682i − 0.294948i
324324 0 0
325325 87.0820 0.267945
326326 0 0
327327 − 14.4811i − 0.0442848i
328328 0 0
329329 13.9086 0.0422755
330330 0 0
331331 − 296.130i − 0.894652i −0.894371 0.447326i 0.852376π-0.852376\pi
0.894371 0.447326i 0.147624π-0.147624\pi
332332 0 0
333333 −749.076 −2.24948
334334 0 0
335335 − 81.8153i − 0.244225i
336336 0 0
337337 19.9938 0.0593288 0.0296644 0.999560i 0.490556π-0.490556\pi
0.0296644 + 0.999560i 0.490556π0.490556\pi
338338 0 0
339339 187.777i 0.553915i
340340 0 0
341341 472.997 1.38709
342342 0 0
343343 127.354i 0.371294i
344344 0 0
345345 190.249 0.551447
346346 0 0
347347 546.959i 1.57625i 0.615514 + 0.788126i 0.288948π0.288948\pi
−0.615514 + 0.788126i 0.711052π0.711052\pi
348348 0 0
349349 40.8328 0.116999 0.0584997 0.998287i 0.481368π-0.481368\pi
0.0584997 + 0.998287i 0.481368π0.481368\pi
350350 0 0
351351 1309.70i 3.73135i
352352 0 0
353353 −555.325 −1.57316 −0.786579 0.617489i 0.788150π-0.788150\pi
−0.786579 + 0.617489i 0.788150π0.788150\pi
354354 0 0
355355 − 218.284i − 0.614884i
356356 0 0
357357 133.495 0.373937
358358 0 0
359359 326.012i 0.908110i 0.890974 + 0.454055i 0.150023π0.150023\pi
−0.890974 + 0.454055i 0.849977π0.849977\pi
360360 0 0
361361 332.988 0.922403
362362 0 0
363363 26.1510i 0.0720414i
364364 0 0
365365 −35.0294 −0.0959710
366366 0 0
367367 13.6352i 0.0371531i 0.999827 + 0.0185766i 0.00591344π0.00591344\pi
−0.999827 + 0.0185766i 0.994087π0.994087\pi
368368 0 0
369369 633.246 1.71611
370370 0 0
371371 − 37.3785i − 0.100751i
372372 0 0
373373 −136.748 −0.366616 −0.183308 0.983056i 0.558681π-0.558681\pi
−0.183308 + 0.983056i 0.558681π0.558681\pi
374374 0 0
375375 62.6662i 0.167110i
376376 0 0
377377 153.836 0.408053
378378 0 0
379379 − 186.198i − 0.491288i −0.969360 0.245644i 0.921001π-0.921001\pi
0.969360 0.245644i 0.0789994π-0.0789994\pi
380380 0 0
381381 −721.240 −1.89302
382382 0 0
383383 − 475.712i − 1.24207i −0.783784 0.621034i 0.786713π-0.786713\pi
0.783784 0.621034i 0.213287π-0.213287\pi
384384 0 0
385385 −33.1672 −0.0861485
386386 0 0
387387 − 568.902i − 1.47003i
388388 0 0
389389 11.9211 0.0306454 0.0153227 0.999883i 0.495122π-0.495122\pi
0.0153227 + 0.999883i 0.495122π0.495122\pi
390390 0 0
391391 − 273.232i − 0.698804i
392392 0 0
393393 1246.15 3.17087
394394 0 0
395395 − 250.665i − 0.634594i
396396 0 0
397397 250.754 0.631622 0.315811 0.948822i 0.397723π-0.397723\pi
0.315811 + 0.948822i 0.397723π0.397723\pi
398398 0 0
399399 − 39.2526i − 0.0983776i
400400 0 0
401401 550.328 1.37239 0.686195 0.727418i 0.259280π-0.259280\pi
0.686195 + 0.727418i 0.259280π0.259280\pi
402402 0 0
403403 734.867i 1.82349i
404404 0 0
405405 −491.371 −1.21326
406406 0 0
407407 − 374.600i − 0.920394i
408408 0 0
409409 −27.0820 −0.0662153 −0.0331076 0.999452i 0.510540π-0.510540\pi
−0.0331076 + 0.999452i 0.510540π0.510540\pi
410410 0 0
411411 − 722.112i − 1.75696i
412412 0 0
413413 59.3313 0.143659
414414 0 0
415415 205.751i 0.495785i
416416 0 0
417417 −1293.33 −3.10150
418418 0 0
419419 198.033i 0.472632i 0.971676 + 0.236316i 0.0759401π0.0759401\pi
−0.971676 + 0.236316i 0.924060π0.924060\pi
420420 0 0
421421 475.580 1.12964 0.564822 0.825212i 0.308945π-0.308945\pi
0.564822 + 0.825212i 0.308945π0.308945\pi
422422 0 0
423423 235.633i 0.557051i
424424 0 0
425425 90.0000 0.211765
426426 0 0
427427 − 102.435i − 0.239895i
428428 0 0
429429 −1094.32 −2.55087
430430 0 0
431431 − 489.052i − 1.13469i −0.823479 0.567346i 0.807970π-0.807970\pi
0.823479 0.567346i 0.192030π-0.192030\pi
432432 0 0
433433 622.498 1.43764 0.718820 0.695196i 0.244682π-0.244682\pi
0.718820 + 0.695196i 0.244682π0.244682\pi
434434 0 0
435435 110.704i 0.254491i
436436 0 0
437437 −80.3406 −0.183846
438438 0 0
439439 552.712i 1.25902i 0.776990 + 0.629512i 0.216745π0.216745\pi
−0.776990 + 0.629512i 0.783255π0.783255\pi
440440 0 0
441441 −1059.16 −2.40172
442442 0 0
443443 − 668.873i − 1.50987i −0.655799 0.754936i 0.727668π-0.727668\pi
0.655799 0.754936i 0.272332π-0.272332\pi
444444 0 0
445445 133.416 0.299812
446446 0 0
447447 − 1602.56i − 3.58515i
448448 0 0
449449 −280.407 −0.624515 −0.312257 0.949998i 0.601085π-0.601085\pi
−0.312257 + 0.949998i 0.601085π0.601085\pi
450450 0 0
451451 316.676i 0.702163i
452452 0 0
453453 −362.164 −0.799479
454454 0 0
455455 − 51.5299i − 0.113252i
456456 0 0
457457 −320.334 −0.700950 −0.350475 0.936572i 0.613980π-0.613980\pi
−0.350475 + 0.936572i 0.613980π0.613980\pi
458458 0 0
459459 1353.59i 2.94900i
460460 0 0
461461 163.337 0.354311 0.177156 0.984183i 0.443310π-0.443310\pi
0.177156 + 0.984183i 0.443310π0.443310\pi
462462 0 0
463463 − 108.131i − 0.233545i −0.993159 0.116772i 0.962745π-0.962745\pi
0.993159 0.116772i 0.0372548π-0.0372548\pi
464464 0 0
465465 −528.827 −1.13726
466466 0 0
467467 207.386i 0.444082i 0.975037 + 0.222041i 0.0712719π0.0712719\pi
−0.975037 + 0.222041i 0.928728π0.928728\pi
468468 0 0
469469 −48.4133 −0.103227
470470 0 0
471471 81.7415i 0.173549i
472472 0 0
473473 284.498 0.601477
474474 0 0
475475 − 26.4634i − 0.0557124i
476476 0 0
477477 633.246 1.32756
478478 0 0
479479 − 233.537i − 0.487552i −0.969832 0.243776i 0.921614π-0.921614\pi
0.969832 0.243776i 0.0783861π-0.0783861\pi
480480 0 0
481481 581.994 1.20997
482482 0 0
483483 − 112.578i − 0.233081i
484484 0 0
485485 −241.862 −0.498685
486486 0 0
487487 308.368i 0.633199i 0.948559 + 0.316600i 0.102541π0.102541\pi
−0.948559 + 0.316600i 0.897459π0.897459\pi
488488 0 0
489489 116.912 0.239083
490490 0 0
491491 187.777i 0.382439i 0.981547 + 0.191219i 0.0612442π0.0612442\pi
−0.981547 + 0.191219i 0.938756π0.938756\pi
492492 0 0
493493 158.991 0.322496
494494 0 0
495495 − 561.900i − 1.13515i
496496 0 0
497497 −129.167 −0.259894
498498 0 0
499499 231.038i 0.463003i 0.972835 + 0.231501i 0.0743638π0.0743638\pi
−0.972835 + 0.231501i 0.925636π0.925636\pi
500500 0 0
501501 1216.07 2.42729
502502 0 0
503503 − 389.780i − 0.774910i −0.921889 0.387455i 0.873354π-0.873354\pi
0.921889 0.387455i 0.126646π-0.126646\pi
504504 0 0
505505 187.082 0.370459
506506 0 0
507507 − 752.931i − 1.48507i
508508 0 0
509509 363.167 0.713492 0.356746 0.934202i 0.383886π-0.383886\pi
0.356746 + 0.934202i 0.383886π0.383886\pi
510510 0 0
511511 20.7283i 0.0405641i
512512 0 0
513513 398.006 0.775841
514514 0 0
515515 − 302.359i − 0.587106i
516516 0 0
517517 −117.836 −0.227922
518518 0 0
519519 261.103i 0.503088i
520520 0 0
521521 −491.666 −0.943696 −0.471848 0.881680i 0.656413π-0.656413\pi
−0.471848 + 0.881680i 0.656413π0.656413\pi
522522 0 0
523523 133.914i 0.256049i 0.991771 + 0.128024i 0.0408636π0.0408636\pi
−0.991771 + 0.128024i 0.959136π0.959136\pi
524524 0 0
525525 37.0820 0.0706325
526526 0 0
527527 759.491i 1.44116i
528528 0 0
529529 298.580 0.564424
530530 0 0
531531 1005.16i 1.89295i
532532 0 0
533533 −492.000 −0.923077
534534 0 0
535535 273.636i 0.511469i
536536 0 0
537537 36.6687 0.0682844
538538 0 0
539539 − 529.667i − 0.982685i
540540 0 0
541541 −303.337 −0.560698 −0.280349 0.959898i 0.590450π-0.590450\pi
−0.280349 + 0.959898i 0.590450π0.590450\pi
542542 0 0
543543 1352.67i 2.49110i
544544 0 0
545545 −5.77709 −0.0106002
546546 0 0
547547 − 89.6631i − 0.163918i −0.996636 0.0819590i 0.973882π-0.973882\pi
0.996636 0.0819590i 0.0261177π-0.0261177\pi
548548 0 0
549549 1735.40 3.16102
550550 0 0
551551 − 46.7492i − 0.0848443i
552552 0 0
553553 −148.328 −0.268225
554554 0 0
555555 418.816i 0.754623i
556556 0 0
557557 −490.741 −0.881044 −0.440522 0.897742i 0.645207π-0.645207\pi
−0.440522 + 0.897742i 0.645207π0.645207\pi
558558 0 0
559559 442.008i 0.790712i
560560 0 0
561561 −1130.99 −2.01603
562562 0 0
563563 987.423i 1.75386i 0.480618 + 0.876930i 0.340412π0.340412\pi
−0.480618 + 0.876930i 0.659588π0.659588\pi
564564 0 0
565565 74.9117 0.132587
566566 0 0
567567 290.763i 0.512810i
568568 0 0
569569 −475.082 −0.834942 −0.417471 0.908690i 0.637083π-0.637083\pi
−0.417471 + 0.908690i 0.637083π0.637083\pi
570570 0 0
571571 182.485i 0.319588i 0.987150 + 0.159794i 0.0510830π0.0510830\pi
−0.987150 + 0.159794i 0.948917π0.948917\pi
572572 0 0
573573 −332.498 −0.580277
574574 0 0
575575 − 75.8979i − 0.131996i
576576 0 0
577577 −319.167 −0.553149 −0.276575 0.960992i 0.589199π-0.589199\pi
−0.276575 + 0.960992i 0.589199π0.589199\pi
578578 0 0
579579 − 1317.17i − 2.27490i
580580 0 0
581581 121.751 0.209554
582582 0 0
583583 316.676i 0.543183i
584584 0 0
585585 872.991 1.49229
586586 0 0
587587 − 904.762i − 1.54133i −0.637239 0.770666i 0.719924π-0.719924\pi
0.637239 0.770666i 0.280076π-0.280076\pi
588588 0 0
589589 223.319 0.379149
590590 0 0
591591 − 1294.27i − 2.18996i
592592 0 0
593593 −747.325 −1.26024 −0.630122 0.776496i 0.716995π-0.716995\pi
−0.630122 + 0.776496i 0.716995π0.716995\pi
594594 0 0
595595 − 53.2565i − 0.0895068i
596596 0 0
597597 −155.331 −0.260186
598598 0 0
599599 874.385i 1.45974i 0.683585 + 0.729871i 0.260420π0.260420\pi
−0.683585 + 0.729871i 0.739580π0.739580\pi
600600 0 0
601601 −777.234 −1.29323 −0.646617 0.762815i 0.723817π-0.723817\pi
−0.646617 + 0.762815i 0.723817π0.723817\pi
602602 0 0
603603 − 820.192i − 1.36019i
604604 0 0
605605 10.4327 0.0172441
606606 0 0
607607 699.436i 1.15228i 0.817350 + 0.576142i 0.195442π0.195442\pi
−0.817350 + 0.576142i 0.804558π0.804558\pi
608608 0 0
609609 65.5078 0.107566
610610 0 0
611611 − 183.075i − 0.299631i
612612 0 0
613613 −11.0820 −0.0180784 −0.00903918 0.999959i 0.502877π-0.502877\pi
−0.00903918 + 0.999959i 0.502877π0.502877\pi
614614 0 0
615615 − 354.054i − 0.575698i
616616 0 0
617617 1189.16 1.92733 0.963664 0.267119i 0.0860715π-0.0860715\pi
0.963664 + 0.267119i 0.0860715π0.0860715\pi
618618 0 0
619619 − 325.717i − 0.526198i −0.964769 0.263099i 0.915255π-0.915255\pi
0.964769 0.263099i 0.0847446π-0.0847446\pi
620620 0 0
621621 1141.50 1.83816
622622 0 0
623623 − 78.9477i − 0.126722i
624624 0 0
625625 25.0000 0.0400000
626626 0 0
627627 332.554i 0.530389i
628628 0 0
629629 601.495 0.956272
630630 0 0
631631 316.823i 0.502097i 0.967975 + 0.251048i 0.0807754π0.0807754\pi
−0.967975 + 0.251048i 0.919225π0.919225\pi
632632 0 0
633633 −521.823 −0.824366
634634 0 0
635635 287.731i 0.453120i
636636 0 0
637637 822.912 1.29186
638638 0 0
639639 − 2188.28i − 3.42454i
640640 0 0
641641 −149.587 −0.233365 −0.116682 0.993169i 0.537226π-0.537226\pi
−0.116682 + 0.993169i 0.537226π0.537226\pi
642642 0 0
643643 − 408.690i − 0.635599i −0.948158 0.317800i 0.897056π-0.897056\pi
0.948158 0.317800i 0.102944π-0.102944\pi
644644 0 0
645645 −318.079 −0.493146
646646 0 0
647647 104.383i 0.161334i 0.996741 + 0.0806668i 0.0257050π0.0257050\pi
−0.996741 + 0.0806668i 0.974295π0.974295\pi
648648 0 0
649649 −502.663 −0.774519
650650 0 0
651651 312.927i 0.480687i
652652 0 0
653653 −164.420 −0.251791 −0.125895 0.992044i 0.540180π-0.540180\pi
−0.125895 + 0.992044i 0.540180π0.540180\pi
654654 0 0
655655 − 497.139i − 0.758990i
656656 0 0
657657 −351.167 −0.534501
658658 0 0
659659 − 743.613i − 1.12840i −0.825640 0.564198i 0.809186π-0.809186\pi
0.825640 0.564198i 0.190814π-0.190814\pi
660660 0 0
661661 −758.073 −1.14686 −0.573429 0.819255i 0.694387π-0.694387\pi
−0.573429 + 0.819255i 0.694387π0.694387\pi
662662 0 0
663663 − 1757.15i − 2.65030i
664664 0 0
665665 −15.6594 −0.0235480
666666 0 0
667667 − 134.078i − 0.201017i
668668 0 0
669669 −1725.74 −2.57958
670670 0 0
671671 867.843i 1.29336i
672672 0 0
673673 364.164 0.541106 0.270553 0.962705i 0.412794π-0.412794\pi
0.270553 + 0.962705i 0.412794π0.412794\pi
674674 0 0
675675 375.997i 0.557033i
676676 0 0
677677 −708.079 −1.04591 −0.522953 0.852361i 0.675170π-0.675170\pi
−0.522953 + 0.852361i 0.675170π0.675170\pi
678678 0 0
679679 143.119i 0.210780i
680680 0 0
681681 1429.40 2.09897
682682 0 0
683683 − 355.469i − 0.520452i −0.965548 0.260226i 0.916203π-0.916203\pi
0.965548 0.260226i 0.0837970π-0.0837970\pi
684684 0 0
685685 −288.079 −0.420553
686686 0 0
687687 2306.45i 3.35727i
688688 0 0
689689 −492.000 −0.714078
690690 0 0
691691 116.769i 0.168985i 0.996424 + 0.0844925i 0.0269269π0.0269269\pi
−0.996424 + 0.0844925i 0.973073π0.973073\pi
692692 0 0
693693 −332.498 −0.479796
694694 0 0
695695 515.958i 0.742386i
696696 0 0
697697 −508.486 −0.729535
698698 0 0
699699 1865.54i 2.66887i
700700 0 0
701701 −246.413 −0.351517 −0.175758 0.984433i 0.556238π-0.556238\pi
−0.175758 + 0.984433i 0.556238π0.556238\pi
702702 0 0
703703 − 176.862i − 0.251582i
704704 0 0
705705 131.745 0.186872
706706 0 0
707707 − 110.704i − 0.156582i
708708 0 0
709709 −552.820 −0.779718 −0.389859 0.920874i 0.627476π-0.627476\pi
−0.389859 + 0.920874i 0.627476π0.627476\pi
710710 0 0
711711 − 2512.89i − 3.53431i
712712 0 0
713713 640.486 0.898297
714714 0 0
715715 436.568i 0.610585i
716716 0 0
717717 1492.33 2.08135
718718 0 0
719719 99.9709i 0.139042i 0.997581 + 0.0695208i 0.0221470π0.0221470\pi
−0.997581 + 0.0695208i 0.977853π0.977853\pi
720720 0 0
721721 −178.918 −0.248153
722722 0 0
723723 440.464i 0.609217i
724724 0 0
725725 44.1641 0.0609160
726726 0 0
727727 − 1081.39i − 1.48746i −0.668479 0.743731i 0.733054π-0.733054\pi
0.668479 0.743731i 0.266946π-0.266946\pi
728728 0 0
729729 −1132.50 −1.55349
730730 0 0
731731 456.819i 0.624923i
732732 0 0
733733 380.407 0.518973 0.259486 0.965747i 0.416447π-0.416447\pi
0.259486 + 0.965747i 0.416447π0.416447\pi
734734 0 0
735735 592.186i 0.805695i
736736 0 0
737737 410.164 0.556532
738738 0 0
739739 − 1381.60i − 1.86955i −0.355240 0.934775i 0.615601π-0.615601\pi
0.355240 0.934775i 0.384399π-0.384399\pi
740740 0 0
741741 −516.669 −0.697259
742742 0 0
743743 267.424i 0.359924i 0.983674 + 0.179962i 0.0575975π0.0575975\pi
−0.983674 + 0.179962i 0.942403π0.942403\pi
744744 0 0
745745 −639.325 −0.858154
746746 0 0
747747 2062.64i 2.76123i
748748 0 0
749749 161.921 0.216183
750750 0 0
751751 − 338.653i − 0.450937i −0.974250 0.225468i 0.927609π-0.927609\pi
0.974250 0.225468i 0.0723912π-0.0723912\pi
752752 0 0
753753 2267.14 3.01080
754754 0 0
755755 144.481i 0.191366i
756756 0 0
757757 1247.91 1.64849 0.824246 0.566232i 0.191599π-0.191599\pi
0.824246 + 0.566232i 0.191599π0.191599\pi
758758 0 0
759759 953.775i 1.25662i
760760 0 0
761761 −14.3406 −0.0188444 −0.00942219 0.999956i 0.502999π-0.502999\pi
−0.00942219 + 0.999956i 0.502999π0.502999\pi
762762 0 0
763763 3.41853i 0.00448038i
764764 0 0
765765 902.243 1.17940
766766 0 0
767767 − 780.956i − 1.01820i
768768 0 0
769769 1036.99 1.34849 0.674246 0.738507i 0.264469π-0.264469\pi
0.674246 + 0.738507i 0.264469π0.264469\pi
770770 0 0
771771 481.078i 0.623967i
772772 0 0
773773 1197.91 1.54970 0.774848 0.632148i 0.217826π-0.217826\pi
0.774848 + 0.632148i 0.217826π0.217826\pi
774774 0 0
775775 210.970i 0.272219i
776776 0 0
777777 247.830 0.318957
778778 0 0
779779 149.514i 0.191931i
780780 0 0
781781 1094.32 1.40118
782782 0 0
783783 664.223i 0.848305i
784784 0 0
785785 32.6099 0.0415413
786786 0 0
787787 − 99.1814i − 0.126025i −0.998013 0.0630123i 0.979929π-0.979929\pi
0.998013 0.0630123i 0.0200707π-0.0200707\pi
788788 0 0
789789 −2470.05 −3.13061
790790 0 0
791791 − 44.3282i − 0.0560407i
792792 0 0
793793 −1348.32 −1.70027
794794 0 0
795795 − 354.054i − 0.445351i
796796 0 0
797797 139.240 0.174705 0.0873525 0.996177i 0.472159π-0.472159\pi
0.0873525 + 0.996177i 0.472159π0.472159\pi
798798 0 0
799799 − 189.209i − 0.236807i
800800 0 0
801801 1337.49 1.66977
802802 0 0
803803 − 175.613i − 0.218696i
804804 0 0
805805 −44.9117 −0.0557910
806806 0 0
807807 1151.37i 1.42672i
808808 0 0
809809 403.653 0.498953 0.249477 0.968381i 0.419741π-0.419741\pi
0.249477 + 0.968381i 0.419741π0.419741\pi
810810 0 0
811811 − 384.561i − 0.474181i −0.971488 0.237091i 0.923806π-0.923806\pi
0.971488 0.237091i 0.0761938π-0.0761938\pi
812812 0 0
813813 −2343.15 −2.88210
814814 0 0
815815 − 46.6407i − 0.0572278i
816816 0 0
817817 134.322 0.164409
818818 0 0
819819 − 516.583i − 0.630748i
820820 0 0
821821 −997.732 −1.21526 −0.607632 0.794219i 0.707881π-0.707881\pi
−0.607632 + 0.794219i 0.707881π0.707881\pi
822822 0 0
823823 − 955.281i − 1.16073i −0.814356 0.580365i 0.802910π-0.802910\pi
0.814356 0.580365i 0.197090π-0.197090\pi
824824 0 0
825825 −314.164 −0.380805
826826 0 0
827827 213.451i 0.258103i 0.991638 + 0.129051i 0.0411932π0.0411932\pi
−0.991638 + 0.129051i 0.958807π0.958807\pi
828828 0 0
829829 −73.4288 −0.0885752 −0.0442876 0.999019i 0.514102π-0.514102\pi
−0.0442876 + 0.999019i 0.514102π0.514102\pi
830830 0 0
831831 2866.47i 3.44942i
832832 0 0
833833 850.486 1.02099
834834 0 0
835835 − 485.139i − 0.581005i
836836 0 0
837837 −3172.96 −3.79087
838838 0 0
839839 − 643.642i − 0.767154i −0.923509 0.383577i 0.874692π-0.874692\pi
0.923509 0.383577i 0.125308π-0.125308\pi
840840 0 0
841841 −762.981 −0.907231
842842 0 0
843843 − 648.787i − 0.769617i
844844 0 0
845845 −300.374 −0.355472
846846 0 0
847847 − 6.17342i − 0.00728857i
848848 0 0
849849 2253.23 2.65398
850850 0 0
851851 − 507.247i − 0.596060i
852852 0 0
853853 −351.410 −0.411970 −0.205985 0.978555i 0.566040π-0.566040\pi
−0.205985 + 0.978555i 0.566040π0.566040\pi
854854 0 0
855855 − 265.293i − 0.310285i
856856 0 0
857857 1326.16 1.54744 0.773721 0.633526i 0.218393π-0.218393\pi
0.773721 + 0.633526i 0.218393π0.218393\pi
858858 0 0
859859 343.729i 0.400150i 0.979781 + 0.200075i 0.0641186π0.0641186\pi
−0.979781 + 0.200075i 0.935881π0.935881\pi
860860 0 0
861861 −209.508 −0.243331
862862 0 0
863863 1136.15i 1.31651i 0.752793 + 0.658257i 0.228706π0.228706\pi
−0.752793 + 0.658257i 0.771294π0.771294\pi
864864 0 0
865865 104.164 0.120421
866866 0 0
867867 − 196.176i − 0.226270i
868868 0 0
869869 1256.66 1.44609
870870 0 0
871871 637.247i 0.731627i
872872 0 0
873873 −2424.65 −2.77738
874874 0 0
875875 − 14.7935i − 0.0169068i
876876 0 0
877877 769.076 0.876939 0.438470 0.898746i 0.355521π-0.355521\pi
0.438470 + 0.898746i 0.355521π0.355521\pi
878878 0 0
879879 − 506.770i − 0.576530i
880880 0 0
881881 −731.568 −0.830384 −0.415192 0.909734i 0.636286π-0.636286\pi
−0.415192 + 0.909734i 0.636286π0.636286\pi
882882 0 0
883883 − 1066.19i − 1.20746i −0.797188 0.603731i 0.793680π-0.793680\pi
0.797188 0.603731i 0.206320π-0.206320\pi
884884 0 0
885885 561.994 0.635021
886886 0 0
887887 − 397.242i − 0.447848i −0.974607 0.223924i 0.928113π-0.928113\pi
0.974607 0.223924i 0.0718868π-0.0718868\pi
888888 0 0
889889 170.262 0.191520
890890 0 0
891891 − 2463.39i − 2.76474i
892892 0 0
893893 −55.6346 −0.0623008
894894 0 0
895895 − 14.6286i − 0.0163448i
896896 0 0
897897 −1481.82 −1.65198
898898 0 0
899899 372.691i 0.414562i
900900 0 0
901901 −508.486 −0.564357
902902 0 0
903903 188.220i 0.208438i
904904 0 0
905905 539.633 0.596280
906906 0 0
907907 − 1021.02i − 1.12571i −0.826556 0.562855i 0.809703π-0.809703\pi
0.826556 0.562855i 0.190297π-0.190297\pi
908908 0 0
909909 1875.48 2.06324
910910 0 0
911911 − 1118.66i − 1.22794i −0.789328 0.613971i 0.789571π-0.789571\pi
0.789328 0.613971i 0.210429π-0.210429\pi
912912 0 0
913913 −1031.49 −1.12978
914914 0 0
915915 − 970.278i − 1.06041i
916916 0 0
917917 −294.177 −0.320803
918918 0 0
919919 − 1177.68i − 1.28148i −0.767757 0.640741i 0.778627π-0.778627\pi
0.767757 0.640741i 0.221373π-0.221373\pi
920920 0 0
921921 1543.73 1.67615
922922 0 0
923923 1700.18i 1.84202i
924924 0 0
925925 167.082 0.180629
926926 0 0
927927 − 3031.13i − 3.26983i
928928 0 0
929929 −699.423 −0.752877 −0.376438 0.926442i 0.622851π-0.622851\pi
−0.376438 + 0.926442i 0.622851π0.622851\pi
930930 0 0
931931 − 250.075i − 0.268609i
932932 0 0
933933 2720.15 2.91548
934934 0 0
935935 451.197i 0.482563i
936936 0 0
937937 −332.152 −0.354484 −0.177242 0.984167i 0.556718π-0.556718\pi
−0.177242 + 0.984167i 0.556718π0.556718\pi
938938 0 0
939939 − 11.2101i − 0.0119383i
940940 0 0
941941 −1468.66 −1.56075 −0.780373 0.625314i 0.784971π-0.784971\pi
−0.780373 + 0.625314i 0.784971π0.784971\pi
942942 0 0
943943 428.811i 0.454731i
944944 0 0
945945 222.492 0.235442
946946 0 0
947947 574.082i 0.606211i 0.952957 + 0.303106i 0.0980235π0.0980235\pi
−0.952957 + 0.303106i 0.901976π0.901976\pi
948948 0 0
949949 272.839 0.287502
950950 0 0
951951 2212.54i 2.32654i
952952 0 0
953953 280.663 0.294504 0.147252 0.989099i 0.452957π-0.452957\pi
0.147252 + 0.989099i 0.452957π0.452957\pi
954954 0 0
955955 132.647i 0.138897i
956956 0 0
957957 −554.991 −0.579928
958958 0 0
959959 170.468i 0.177756i
960960 0 0
961961 −819.328 −0.852579
962962 0 0
963963 2743.18i 2.84858i
964964 0 0
965965 −525.469 −0.544527
966966 0 0
967967 − 1278.65i − 1.32228i −0.750262 0.661141i 0.770073π-0.770073\pi
0.750262 0.661141i 0.229927π-0.229927\pi
968968 0 0
969969 −533.981 −0.551064
970970 0 0
971971 − 117.723i − 0.121239i −0.998161 0.0606195i 0.980692π-0.980692\pi
0.998161 0.0606195i 0.0193076π-0.0193076\pi
972972 0 0
973973 305.313 0.313785
974974 0 0
975975 − 488.098i − 0.500613i
976976 0 0
977977 983.155 1.00630 0.503150 0.864199i 0.332174π-0.332174\pi
0.503150 + 0.864199i 0.332174π0.332174\pi
978978 0 0
979979 668.856i 0.683203i
980980 0 0
981981 −57.9149 −0.0590365
982982 0 0
983983 607.404i 0.617909i 0.951077 + 0.308954i 0.0999790π0.0999790\pi
−0.951077 + 0.308954i 0.900021π0.900021\pi
984984 0 0
985985 −516.334 −0.524197
986986 0 0
987987 − 77.9584i − 0.0789852i
988988 0 0
989989 385.240 0.389525
990990 0 0
991991 408.413i 0.412122i 0.978539 + 0.206061i 0.0660645π0.0660645\pi
−0.978539 + 0.206061i 0.933935π0.933935\pi
992992 0 0
993993 −1659.82 −1.67152
994994 0 0
995995 61.9677i 0.0622791i
996996 0 0
997997 −1554.91 −1.55959 −0.779795 0.626035i 0.784677π-0.784677\pi
−0.779795 + 0.626035i 0.784677π0.784677\pi
998998 0 0
999999 2512.89i 2.51541i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.3.b.a.31.1 4
3.2 odd 2 720.3.e.c.271.4 4
4.3 odd 2 inner 80.3.b.a.31.4 yes 4
5.2 odd 4 400.3.h.d.399.1 8
5.3 odd 4 400.3.h.d.399.7 8
5.4 even 2 400.3.b.g.351.4 4
8.3 odd 2 320.3.b.a.191.1 4
8.5 even 2 320.3.b.a.191.4 4
12.11 even 2 720.3.e.c.271.3 4
15.2 even 4 3600.3.j.k.1999.4 8
15.8 even 4 3600.3.j.k.1999.6 8
15.14 odd 2 3600.3.e.bb.3151.2 4
16.3 odd 4 1280.3.g.f.1151.2 8
16.5 even 4 1280.3.g.f.1151.1 8
16.11 odd 4 1280.3.g.f.1151.7 8
16.13 even 4 1280.3.g.f.1151.8 8
20.3 even 4 400.3.h.d.399.2 8
20.7 even 4 400.3.h.d.399.8 8
20.19 odd 2 400.3.b.g.351.1 4
24.5 odd 2 2880.3.e.b.2431.2 4
24.11 even 2 2880.3.e.b.2431.1 4
40.3 even 4 1600.3.h.p.1599.7 8
40.13 odd 4 1600.3.h.p.1599.2 8
40.19 odd 2 1600.3.b.k.1151.4 4
40.27 even 4 1600.3.h.p.1599.1 8
40.29 even 2 1600.3.b.k.1151.1 4
40.37 odd 4 1600.3.h.p.1599.8 8
60.23 odd 4 3600.3.j.k.1999.3 8
60.47 odd 4 3600.3.j.k.1999.5 8
60.59 even 2 3600.3.e.bb.3151.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.3.b.a.31.1 4 1.1 even 1 trivial
80.3.b.a.31.4 yes 4 4.3 odd 2 inner
320.3.b.a.191.1 4 8.3 odd 2
320.3.b.a.191.4 4 8.5 even 2
400.3.b.g.351.1 4 20.19 odd 2
400.3.b.g.351.4 4 5.4 even 2
400.3.h.d.399.1 8 5.2 odd 4
400.3.h.d.399.2 8 20.3 even 4
400.3.h.d.399.7 8 5.3 odd 4
400.3.h.d.399.8 8 20.7 even 4
720.3.e.c.271.3 4 12.11 even 2
720.3.e.c.271.4 4 3.2 odd 2
1280.3.g.f.1151.1 8 16.5 even 4
1280.3.g.f.1151.2 8 16.3 odd 4
1280.3.g.f.1151.7 8 16.11 odd 4
1280.3.g.f.1151.8 8 16.13 even 4
1600.3.b.k.1151.1 4 40.29 even 2
1600.3.b.k.1151.4 4 40.19 odd 2
1600.3.h.p.1599.1 8 40.27 even 4
1600.3.h.p.1599.2 8 40.13 odd 4
1600.3.h.p.1599.7 8 40.3 even 4
1600.3.h.p.1599.8 8 40.37 odd 4
2880.3.e.b.2431.1 4 24.11 even 2
2880.3.e.b.2431.2 4 24.5 odd 2
3600.3.e.bb.3151.2 4 15.14 odd 2
3600.3.e.bb.3151.3 4 60.59 even 2
3600.3.j.k.1999.3 8 60.23 odd 4
3600.3.j.k.1999.4 8 15.2 even 4
3600.3.j.k.1999.5 8 60.47 odd 4
3600.3.j.k.1999.6 8 15.8 even 4