Properties

Label 80.3.b.a.31.1
Level $80$
Weight $3$
Character 80.31
Analytic conductor $2.180$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,3,Mod(31,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.31");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 80.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17984211488\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 31.1
Root \(0.809017 - 1.40126i\) of defining polynomial
Character \(\chi\) \(=\) 80.31
Dual form 80.3.b.a.31.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.60503i q^{3} -2.23607 q^{5} +1.32317i q^{7} -22.4164 q^{9} -11.2101i q^{11} +17.4164 q^{13} +12.5332i q^{15} +18.0000 q^{17} -5.29268i q^{19} +7.41641 q^{21} -15.1796i q^{23} +5.00000 q^{25} +75.1994i q^{27} +8.83282 q^{29} +42.1939i q^{31} -62.8328 q^{33} -2.95870i q^{35} +33.4164 q^{37} -97.6196i q^{39} -28.2492 q^{41} +25.3788i q^{43} +50.1246 q^{45} -10.5116i q^{47} +47.2492 q^{49} -100.891i q^{51} -28.2492 q^{53} +25.0665i q^{55} -29.6656 q^{57} -44.8403i q^{59} -77.4164 q^{61} -29.6607i q^{63} -38.9443 q^{65} +36.5889i q^{67} -85.0820 q^{69} +97.6196i q^{71} +15.6656 q^{73} -28.0252i q^{75} +14.8328 q^{77} +112.101i q^{79} +219.748 q^{81} -92.0145i q^{83} -40.2492 q^{85} -49.5082i q^{87} -59.6656 q^{89} +23.0449i q^{91} +236.498 q^{93} +11.8348i q^{95} +108.164 q^{97} +251.289i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{9} + 16 q^{13} + 72 q^{17} - 24 q^{21} + 20 q^{25} - 72 q^{29} - 144 q^{33} + 80 q^{37} + 48 q^{41} + 120 q^{45} + 28 q^{49} + 48 q^{53} + 96 q^{57} - 256 q^{61} - 120 q^{65} - 72 q^{69} - 152 q^{73}+ \cdots - 104 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 5.60503i − 1.86834i −0.356822 0.934172i \(-0.616140\pi\)
0.356822 0.934172i \(-0.383860\pi\)
\(4\) 0 0
\(5\) −2.23607 −0.447214
\(6\) 0 0
\(7\) 1.32317i 0.189024i 0.995524 + 0.0945121i \(0.0301291\pi\)
−0.995524 + 0.0945121i \(0.969871\pi\)
\(8\) 0 0
\(9\) −22.4164 −2.49071
\(10\) 0 0
\(11\) − 11.2101i − 1.01910i −0.860442 0.509549i \(-0.829812\pi\)
0.860442 0.509549i \(-0.170188\pi\)
\(12\) 0 0
\(13\) 17.4164 1.33972 0.669862 0.742486i \(-0.266353\pi\)
0.669862 + 0.742486i \(0.266353\pi\)
\(14\) 0 0
\(15\) 12.5332i 0.835549i
\(16\) 0 0
\(17\) 18.0000 1.05882 0.529412 0.848365i \(-0.322413\pi\)
0.529412 + 0.848365i \(0.322413\pi\)
\(18\) 0 0
\(19\) − 5.29268i − 0.278562i −0.990253 0.139281i \(-0.955521\pi\)
0.990253 0.139281i \(-0.0444791\pi\)
\(20\) 0 0
\(21\) 7.41641 0.353162
\(22\) 0 0
\(23\) − 15.1796i − 0.659982i −0.943984 0.329991i \(-0.892954\pi\)
0.943984 0.329991i \(-0.107046\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) 75.1994i 2.78516i
\(28\) 0 0
\(29\) 8.83282 0.304580 0.152290 0.988336i \(-0.451335\pi\)
0.152290 + 0.988336i \(0.451335\pi\)
\(30\) 0 0
\(31\) 42.1939i 1.36109i 0.732704 + 0.680547i \(0.238258\pi\)
−0.732704 + 0.680547i \(0.761742\pi\)
\(32\) 0 0
\(33\) −62.8328 −1.90402
\(34\) 0 0
\(35\) − 2.95870i − 0.0845342i
\(36\) 0 0
\(37\) 33.4164 0.903146 0.451573 0.892234i \(-0.350863\pi\)
0.451573 + 0.892234i \(0.350863\pi\)
\(38\) 0 0
\(39\) − 97.6196i − 2.50307i
\(40\) 0 0
\(41\) −28.2492 −0.689005 −0.344503 0.938785i \(-0.611952\pi\)
−0.344503 + 0.938785i \(0.611952\pi\)
\(42\) 0 0
\(43\) 25.3788i 0.590205i 0.955466 + 0.295103i \(0.0953539\pi\)
−0.955466 + 0.295103i \(0.904646\pi\)
\(44\) 0 0
\(45\) 50.1246 1.11388
\(46\) 0 0
\(47\) − 10.5116i − 0.223651i −0.993728 0.111826i \(-0.964330\pi\)
0.993728 0.111826i \(-0.0356698\pi\)
\(48\) 0 0
\(49\) 47.2492 0.964270
\(50\) 0 0
\(51\) − 100.891i − 1.97825i
\(52\) 0 0
\(53\) −28.2492 −0.533004 −0.266502 0.963834i \(-0.585868\pi\)
−0.266502 + 0.963834i \(0.585868\pi\)
\(54\) 0 0
\(55\) 25.0665i 0.455754i
\(56\) 0 0
\(57\) −29.6656 −0.520450
\(58\) 0 0
\(59\) − 44.8403i − 0.760005i −0.924986 0.380002i \(-0.875923\pi\)
0.924986 0.380002i \(-0.124077\pi\)
\(60\) 0 0
\(61\) −77.4164 −1.26912 −0.634561 0.772873i \(-0.718819\pi\)
−0.634561 + 0.772873i \(0.718819\pi\)
\(62\) 0 0
\(63\) − 29.6607i − 0.470805i
\(64\) 0 0
\(65\) −38.9443 −0.599143
\(66\) 0 0
\(67\) 36.5889i 0.546103i 0.961999 + 0.273051i \(0.0880329\pi\)
−0.961999 + 0.273051i \(0.911967\pi\)
\(68\) 0 0
\(69\) −85.0820 −1.23307
\(70\) 0 0
\(71\) 97.6196i 1.37492i 0.726221 + 0.687462i \(0.241275\pi\)
−0.726221 + 0.687462i \(0.758725\pi\)
\(72\) 0 0
\(73\) 15.6656 0.214598 0.107299 0.994227i \(-0.465780\pi\)
0.107299 + 0.994227i \(0.465780\pi\)
\(74\) 0 0
\(75\) − 28.0252i − 0.373669i
\(76\) 0 0
\(77\) 14.8328 0.192634
\(78\) 0 0
\(79\) 112.101i 1.41900i 0.704707 + 0.709498i \(0.251078\pi\)
−0.704707 + 0.709498i \(0.748922\pi\)
\(80\) 0 0
\(81\) 219.748 2.71293
\(82\) 0 0
\(83\) − 92.0145i − 1.10861i −0.832314 0.554304i \(-0.812984\pi\)
0.832314 0.554304i \(-0.187016\pi\)
\(84\) 0 0
\(85\) −40.2492 −0.473520
\(86\) 0 0
\(87\) − 49.5082i − 0.569060i
\(88\) 0 0
\(89\) −59.6656 −0.670400 −0.335200 0.942147i \(-0.608804\pi\)
−0.335200 + 0.942147i \(0.608804\pi\)
\(90\) 0 0
\(91\) 23.0449i 0.253240i
\(92\) 0 0
\(93\) 236.498 2.54299
\(94\) 0 0
\(95\) 11.8348i 0.124577i
\(96\) 0 0
\(97\) 108.164 1.11509 0.557547 0.830146i \(-0.311743\pi\)
0.557547 + 0.830146i \(0.311743\pi\)
\(98\) 0 0
\(99\) 251.289i 2.53828i
\(100\) 0 0
\(101\) −83.6656 −0.828373 −0.414186 0.910192i \(-0.635934\pi\)
−0.414186 + 0.910192i \(0.635934\pi\)
\(102\) 0 0
\(103\) 135.219i 1.31281i 0.754409 + 0.656404i \(0.227923\pi\)
−0.754409 + 0.656404i \(0.772077\pi\)
\(104\) 0 0
\(105\) −16.5836 −0.157939
\(106\) 0 0
\(107\) − 122.374i − 1.14368i −0.820365 0.571840i \(-0.806230\pi\)
0.820365 0.571840i \(-0.193770\pi\)
\(108\) 0 0
\(109\) 2.58359 0.0237027 0.0118513 0.999930i \(-0.496228\pi\)
0.0118513 + 0.999930i \(0.496228\pi\)
\(110\) 0 0
\(111\) − 187.300i − 1.68739i
\(112\) 0 0
\(113\) −33.5016 −0.296474 −0.148237 0.988952i \(-0.547360\pi\)
−0.148237 + 0.988952i \(0.547360\pi\)
\(114\) 0 0
\(115\) 33.9426i 0.295153i
\(116\) 0 0
\(117\) −390.413 −3.33687
\(118\) 0 0
\(119\) 23.8170i 0.200143i
\(120\) 0 0
\(121\) −4.66563 −0.0385589
\(122\) 0 0
\(123\) 158.338i 1.28730i
\(124\) 0 0
\(125\) −11.1803 −0.0894427
\(126\) 0 0
\(127\) − 128.677i − 1.01321i −0.862179 0.506603i \(-0.830901\pi\)
0.862179 0.506603i \(-0.169099\pi\)
\(128\) 0 0
\(129\) 142.249 1.10271
\(130\) 0 0
\(131\) 222.327i 1.69715i 0.529072 + 0.848577i \(0.322540\pi\)
−0.529072 + 0.848577i \(0.677460\pi\)
\(132\) 0 0
\(133\) 7.00311 0.0526549
\(134\) 0 0
\(135\) − 168.151i − 1.24556i
\(136\) 0 0
\(137\) 128.833 0.940386 0.470193 0.882564i \(-0.344184\pi\)
0.470193 + 0.882564i \(0.344184\pi\)
\(138\) 0 0
\(139\) − 230.743i − 1.66002i −0.557745 0.830012i \(-0.688333\pi\)
0.557745 0.830012i \(-0.311667\pi\)
\(140\) 0 0
\(141\) −58.9180 −0.417858
\(142\) 0 0
\(143\) − 195.239i − 1.36531i
\(144\) 0 0
\(145\) −19.7508 −0.136212
\(146\) 0 0
\(147\) − 264.834i − 1.80159i
\(148\) 0 0
\(149\) 285.915 1.91889 0.959446 0.281893i \(-0.0909623\pi\)
0.959446 + 0.281893i \(0.0909623\pi\)
\(150\) 0 0
\(151\) − 64.6141i − 0.427908i −0.976844 0.213954i \(-0.931366\pi\)
0.976844 0.213954i \(-0.0686342\pi\)
\(152\) 0 0
\(153\) −403.495 −2.63722
\(154\) 0 0
\(155\) − 94.3485i − 0.608700i
\(156\) 0 0
\(157\) −14.5836 −0.0928891 −0.0464446 0.998921i \(-0.514789\pi\)
−0.0464446 + 0.998921i \(0.514789\pi\)
\(158\) 0 0
\(159\) 158.338i 0.995836i
\(160\) 0 0
\(161\) 20.0851 0.124752
\(162\) 0 0
\(163\) 20.8583i 0.127965i 0.997951 + 0.0639827i \(0.0203802\pi\)
−0.997951 + 0.0639827i \(0.979620\pi\)
\(164\) 0 0
\(165\) 140.498 0.851506
\(166\) 0 0
\(167\) 216.961i 1.29917i 0.760290 + 0.649583i \(0.225057\pi\)
−0.760290 + 0.649583i \(0.774943\pi\)
\(168\) 0 0
\(169\) 134.331 0.794860
\(170\) 0 0
\(171\) 118.643i 0.693817i
\(172\) 0 0
\(173\) −46.5836 −0.269269 −0.134635 0.990895i \(-0.542986\pi\)
−0.134635 + 0.990895i \(0.542986\pi\)
\(174\) 0 0
\(175\) 6.61585i 0.0378048i
\(176\) 0 0
\(177\) −251.331 −1.41995
\(178\) 0 0
\(179\) 6.54211i 0.0365481i 0.999833 + 0.0182740i \(0.00581713\pi\)
−0.999833 + 0.0182740i \(0.994183\pi\)
\(180\) 0 0
\(181\) −241.331 −1.33332 −0.666661 0.745361i \(-0.732277\pi\)
−0.666661 + 0.745361i \(0.732277\pi\)
\(182\) 0 0
\(183\) 433.922i 2.37116i
\(184\) 0 0
\(185\) −74.7214 −0.403899
\(186\) 0 0
\(187\) − 201.781i − 1.07904i
\(188\) 0 0
\(189\) −99.5016 −0.526463
\(190\) 0 0
\(191\) − 59.3214i − 0.310583i −0.987869 0.155292i \(-0.950368\pi\)
0.987869 0.155292i \(-0.0496317\pi\)
\(192\) 0 0
\(193\) 234.997 1.21760 0.608800 0.793324i \(-0.291651\pi\)
0.608800 + 0.793324i \(0.291651\pi\)
\(194\) 0 0
\(195\) 218.284i 1.11940i
\(196\) 0 0
\(197\) 230.912 1.17214 0.586070 0.810260i \(-0.300674\pi\)
0.586070 + 0.810260i \(0.300674\pi\)
\(198\) 0 0
\(199\) − 27.7128i − 0.139260i −0.997573 0.0696302i \(-0.977818\pi\)
0.997573 0.0696302i \(-0.0221819\pi\)
\(200\) 0 0
\(201\) 205.082 1.02031
\(202\) 0 0
\(203\) 11.6873i 0.0575729i
\(204\) 0 0
\(205\) 63.1672 0.308133
\(206\) 0 0
\(207\) 340.272i 1.64382i
\(208\) 0 0
\(209\) −59.3313 −0.283882
\(210\) 0 0
\(211\) − 93.0991i − 0.441228i −0.975361 0.220614i \(-0.929194\pi\)
0.975361 0.220614i \(-0.0708061\pi\)
\(212\) 0 0
\(213\) 547.161 2.56883
\(214\) 0 0
\(215\) − 56.7488i − 0.263948i
\(216\) 0 0
\(217\) −55.8297 −0.257280
\(218\) 0 0
\(219\) − 87.8064i − 0.400942i
\(220\) 0 0
\(221\) 313.495 1.41853
\(222\) 0 0
\(223\) − 307.891i − 1.38068i −0.723487 0.690338i \(-0.757462\pi\)
0.723487 0.690338i \(-0.242538\pi\)
\(224\) 0 0
\(225\) −112.082 −0.498142
\(226\) 0 0
\(227\) 255.020i 1.12344i 0.827328 + 0.561719i \(0.189860\pi\)
−0.827328 + 0.561719i \(0.810140\pi\)
\(228\) 0 0
\(229\) −411.495 −1.79692 −0.898461 0.439052i \(-0.855314\pi\)
−0.898461 + 0.439052i \(0.855314\pi\)
\(230\) 0 0
\(231\) − 83.1384i − 0.359907i
\(232\) 0 0
\(233\) −332.833 −1.42847 −0.714234 0.699907i \(-0.753225\pi\)
−0.714234 + 0.699907i \(0.753225\pi\)
\(234\) 0 0
\(235\) 23.5047i 0.100020i
\(236\) 0 0
\(237\) 628.328 2.65117
\(238\) 0 0
\(239\) 266.248i 1.11401i 0.830510 + 0.557004i \(0.188049\pi\)
−0.830510 + 0.557004i \(0.811951\pi\)
\(240\) 0 0
\(241\) −78.5836 −0.326073 −0.163036 0.986620i \(-0.552129\pi\)
−0.163036 + 0.986620i \(0.552129\pi\)
\(242\) 0 0
\(243\) − 554.898i − 2.28353i
\(244\) 0 0
\(245\) −105.652 −0.431235
\(246\) 0 0
\(247\) − 92.1794i − 0.373196i
\(248\) 0 0
\(249\) −515.745 −2.07126
\(250\) 0 0
\(251\) 404.482i 1.61148i 0.592268 + 0.805741i \(0.298233\pi\)
−0.592268 + 0.805741i \(0.701767\pi\)
\(252\) 0 0
\(253\) −170.164 −0.672585
\(254\) 0 0
\(255\) 225.598i 0.884699i
\(256\) 0 0
\(257\) −85.8297 −0.333968 −0.166984 0.985960i \(-0.553403\pi\)
−0.166984 + 0.985960i \(0.553403\pi\)
\(258\) 0 0
\(259\) 44.2156i 0.170716i
\(260\) 0 0
\(261\) −198.000 −0.758621
\(262\) 0 0
\(263\) − 440.685i − 1.67561i −0.545971 0.837804i \(-0.683839\pi\)
0.545971 0.837804i \(-0.316161\pi\)
\(264\) 0 0
\(265\) 63.1672 0.238367
\(266\) 0 0
\(267\) 334.428i 1.25254i
\(268\) 0 0
\(269\) −205.416 −0.763630 −0.381815 0.924239i \(-0.624701\pi\)
−0.381815 + 0.924239i \(0.624701\pi\)
\(270\) 0 0
\(271\) − 418.044i − 1.54260i −0.636474 0.771298i \(-0.719608\pi\)
0.636474 0.771298i \(-0.280392\pi\)
\(272\) 0 0
\(273\) 129.167 0.473140
\(274\) 0 0
\(275\) − 56.0503i − 0.203819i
\(276\) 0 0
\(277\) −511.410 −1.84625 −0.923123 0.384505i \(-0.874372\pi\)
−0.923123 + 0.384505i \(0.874372\pi\)
\(278\) 0 0
\(279\) − 945.836i − 3.39009i
\(280\) 0 0
\(281\) 115.751 0.411924 0.205962 0.978560i \(-0.433968\pi\)
0.205962 + 0.978560i \(0.433968\pi\)
\(282\) 0 0
\(283\) 402.001i 1.42050i 0.703951 + 0.710249i \(0.251417\pi\)
−0.703951 + 0.710249i \(0.748583\pi\)
\(284\) 0 0
\(285\) 66.3344 0.232752
\(286\) 0 0
\(287\) − 37.3785i − 0.130239i
\(288\) 0 0
\(289\) 35.0000 0.121107
\(290\) 0 0
\(291\) − 606.263i − 2.08338i
\(292\) 0 0
\(293\) 90.4133 0.308578 0.154289 0.988026i \(-0.450691\pi\)
0.154289 + 0.988026i \(0.450691\pi\)
\(294\) 0 0
\(295\) 100.266i 0.339884i
\(296\) 0 0
\(297\) 842.991 2.83835
\(298\) 0 0
\(299\) − 264.374i − 0.884193i
\(300\) 0 0
\(301\) −33.5805 −0.111563
\(302\) 0 0
\(303\) 468.949i 1.54769i
\(304\) 0 0
\(305\) 173.108 0.567568
\(306\) 0 0
\(307\) 275.419i 0.897130i 0.893750 + 0.448565i \(0.148065\pi\)
−0.893750 + 0.448565i \(0.851935\pi\)
\(308\) 0 0
\(309\) 757.909 2.45278
\(310\) 0 0
\(311\) 485.304i 1.56046i 0.625491 + 0.780231i \(0.284899\pi\)
−0.625491 + 0.780231i \(0.715101\pi\)
\(312\) 0 0
\(313\) 2.00000 0.00638978 0.00319489 0.999995i \(-0.498983\pi\)
0.00319489 + 0.999995i \(0.498983\pi\)
\(314\) 0 0
\(315\) 66.3233i 0.210550i
\(316\) 0 0
\(317\) −394.741 −1.24524 −0.622621 0.782524i \(-0.713932\pi\)
−0.622621 + 0.782524i \(0.713932\pi\)
\(318\) 0 0
\(319\) − 99.0165i − 0.310396i
\(320\) 0 0
\(321\) −685.909 −2.13679
\(322\) 0 0
\(323\) − 95.2682i − 0.294948i
\(324\) 0 0
\(325\) 87.0820 0.267945
\(326\) 0 0
\(327\) − 14.4811i − 0.0442848i
\(328\) 0 0
\(329\) 13.9086 0.0422755
\(330\) 0 0
\(331\) − 296.130i − 0.894652i −0.894371 0.447326i \(-0.852376\pi\)
0.894371 0.447326i \(-0.147624\pi\)
\(332\) 0 0
\(333\) −749.076 −2.24948
\(334\) 0 0
\(335\) − 81.8153i − 0.244225i
\(336\) 0 0
\(337\) 19.9938 0.0593288 0.0296644 0.999560i \(-0.490556\pi\)
0.0296644 + 0.999560i \(0.490556\pi\)
\(338\) 0 0
\(339\) 187.777i 0.553915i
\(340\) 0 0
\(341\) 472.997 1.38709
\(342\) 0 0
\(343\) 127.354i 0.371294i
\(344\) 0 0
\(345\) 190.249 0.551447
\(346\) 0 0
\(347\) 546.959i 1.57625i 0.615514 + 0.788126i \(0.288948\pi\)
−0.615514 + 0.788126i \(0.711052\pi\)
\(348\) 0 0
\(349\) 40.8328 0.116999 0.0584997 0.998287i \(-0.481368\pi\)
0.0584997 + 0.998287i \(0.481368\pi\)
\(350\) 0 0
\(351\) 1309.70i 3.73135i
\(352\) 0 0
\(353\) −555.325 −1.57316 −0.786579 0.617489i \(-0.788150\pi\)
−0.786579 + 0.617489i \(0.788150\pi\)
\(354\) 0 0
\(355\) − 218.284i − 0.614884i
\(356\) 0 0
\(357\) 133.495 0.373937
\(358\) 0 0
\(359\) 326.012i 0.908110i 0.890974 + 0.454055i \(0.150023\pi\)
−0.890974 + 0.454055i \(0.849977\pi\)
\(360\) 0 0
\(361\) 332.988 0.922403
\(362\) 0 0
\(363\) 26.1510i 0.0720414i
\(364\) 0 0
\(365\) −35.0294 −0.0959710
\(366\) 0 0
\(367\) 13.6352i 0.0371531i 0.999827 + 0.0185766i \(0.00591344\pi\)
−0.999827 + 0.0185766i \(0.994087\pi\)
\(368\) 0 0
\(369\) 633.246 1.71611
\(370\) 0 0
\(371\) − 37.3785i − 0.100751i
\(372\) 0 0
\(373\) −136.748 −0.366616 −0.183308 0.983056i \(-0.558681\pi\)
−0.183308 + 0.983056i \(0.558681\pi\)
\(374\) 0 0
\(375\) 62.6662i 0.167110i
\(376\) 0 0
\(377\) 153.836 0.408053
\(378\) 0 0
\(379\) − 186.198i − 0.491288i −0.969360 0.245644i \(-0.921001\pi\)
0.969360 0.245644i \(-0.0789994\pi\)
\(380\) 0 0
\(381\) −721.240 −1.89302
\(382\) 0 0
\(383\) − 475.712i − 1.24207i −0.783784 0.621034i \(-0.786713\pi\)
0.783784 0.621034i \(-0.213287\pi\)
\(384\) 0 0
\(385\) −33.1672 −0.0861485
\(386\) 0 0
\(387\) − 568.902i − 1.47003i
\(388\) 0 0
\(389\) 11.9211 0.0306454 0.0153227 0.999883i \(-0.495122\pi\)
0.0153227 + 0.999883i \(0.495122\pi\)
\(390\) 0 0
\(391\) − 273.232i − 0.698804i
\(392\) 0 0
\(393\) 1246.15 3.17087
\(394\) 0 0
\(395\) − 250.665i − 0.634594i
\(396\) 0 0
\(397\) 250.754 0.631622 0.315811 0.948822i \(-0.397723\pi\)
0.315811 + 0.948822i \(0.397723\pi\)
\(398\) 0 0
\(399\) − 39.2526i − 0.0983776i
\(400\) 0 0
\(401\) 550.328 1.37239 0.686195 0.727418i \(-0.259280\pi\)
0.686195 + 0.727418i \(0.259280\pi\)
\(402\) 0 0
\(403\) 734.867i 1.82349i
\(404\) 0 0
\(405\) −491.371 −1.21326
\(406\) 0 0
\(407\) − 374.600i − 0.920394i
\(408\) 0 0
\(409\) −27.0820 −0.0662153 −0.0331076 0.999452i \(-0.510540\pi\)
−0.0331076 + 0.999452i \(0.510540\pi\)
\(410\) 0 0
\(411\) − 722.112i − 1.75696i
\(412\) 0 0
\(413\) 59.3313 0.143659
\(414\) 0 0
\(415\) 205.751i 0.495785i
\(416\) 0 0
\(417\) −1293.33 −3.10150
\(418\) 0 0
\(419\) 198.033i 0.472632i 0.971676 + 0.236316i \(0.0759401\pi\)
−0.971676 + 0.236316i \(0.924060\pi\)
\(420\) 0 0
\(421\) 475.580 1.12964 0.564822 0.825212i \(-0.308945\pi\)
0.564822 + 0.825212i \(0.308945\pi\)
\(422\) 0 0
\(423\) 235.633i 0.557051i
\(424\) 0 0
\(425\) 90.0000 0.211765
\(426\) 0 0
\(427\) − 102.435i − 0.239895i
\(428\) 0 0
\(429\) −1094.32 −2.55087
\(430\) 0 0
\(431\) − 489.052i − 1.13469i −0.823479 0.567346i \(-0.807970\pi\)
0.823479 0.567346i \(-0.192030\pi\)
\(432\) 0 0
\(433\) 622.498 1.43764 0.718820 0.695196i \(-0.244682\pi\)
0.718820 + 0.695196i \(0.244682\pi\)
\(434\) 0 0
\(435\) 110.704i 0.254491i
\(436\) 0 0
\(437\) −80.3406 −0.183846
\(438\) 0 0
\(439\) 552.712i 1.25902i 0.776990 + 0.629512i \(0.216745\pi\)
−0.776990 + 0.629512i \(0.783255\pi\)
\(440\) 0 0
\(441\) −1059.16 −2.40172
\(442\) 0 0
\(443\) − 668.873i − 1.50987i −0.655799 0.754936i \(-0.727668\pi\)
0.655799 0.754936i \(-0.272332\pi\)
\(444\) 0 0
\(445\) 133.416 0.299812
\(446\) 0 0
\(447\) − 1602.56i − 3.58515i
\(448\) 0 0
\(449\) −280.407 −0.624515 −0.312257 0.949998i \(-0.601085\pi\)
−0.312257 + 0.949998i \(0.601085\pi\)
\(450\) 0 0
\(451\) 316.676i 0.702163i
\(452\) 0 0
\(453\) −362.164 −0.799479
\(454\) 0 0
\(455\) − 51.5299i − 0.113252i
\(456\) 0 0
\(457\) −320.334 −0.700950 −0.350475 0.936572i \(-0.613980\pi\)
−0.350475 + 0.936572i \(0.613980\pi\)
\(458\) 0 0
\(459\) 1353.59i 2.94900i
\(460\) 0 0
\(461\) 163.337 0.354311 0.177156 0.984183i \(-0.443310\pi\)
0.177156 + 0.984183i \(0.443310\pi\)
\(462\) 0 0
\(463\) − 108.131i − 0.233545i −0.993159 0.116772i \(-0.962745\pi\)
0.993159 0.116772i \(-0.0372548\pi\)
\(464\) 0 0
\(465\) −528.827 −1.13726
\(466\) 0 0
\(467\) 207.386i 0.444082i 0.975037 + 0.222041i \(0.0712719\pi\)
−0.975037 + 0.222041i \(0.928728\pi\)
\(468\) 0 0
\(469\) −48.4133 −0.103227
\(470\) 0 0
\(471\) 81.7415i 0.173549i
\(472\) 0 0
\(473\) 284.498 0.601477
\(474\) 0 0
\(475\) − 26.4634i − 0.0557124i
\(476\) 0 0
\(477\) 633.246 1.32756
\(478\) 0 0
\(479\) − 233.537i − 0.487552i −0.969832 0.243776i \(-0.921614\pi\)
0.969832 0.243776i \(-0.0783861\pi\)
\(480\) 0 0
\(481\) 581.994 1.20997
\(482\) 0 0
\(483\) − 112.578i − 0.233081i
\(484\) 0 0
\(485\) −241.862 −0.498685
\(486\) 0 0
\(487\) 308.368i 0.633199i 0.948559 + 0.316600i \(0.102541\pi\)
−0.948559 + 0.316600i \(0.897459\pi\)
\(488\) 0 0
\(489\) 116.912 0.239083
\(490\) 0 0
\(491\) 187.777i 0.382439i 0.981547 + 0.191219i \(0.0612442\pi\)
−0.981547 + 0.191219i \(0.938756\pi\)
\(492\) 0 0
\(493\) 158.991 0.322496
\(494\) 0 0
\(495\) − 561.900i − 1.13515i
\(496\) 0 0
\(497\) −129.167 −0.259894
\(498\) 0 0
\(499\) 231.038i 0.463003i 0.972835 + 0.231501i \(0.0743638\pi\)
−0.972835 + 0.231501i \(0.925636\pi\)
\(500\) 0 0
\(501\) 1216.07 2.42729
\(502\) 0 0
\(503\) − 389.780i − 0.774910i −0.921889 0.387455i \(-0.873354\pi\)
0.921889 0.387455i \(-0.126646\pi\)
\(504\) 0 0
\(505\) 187.082 0.370459
\(506\) 0 0
\(507\) − 752.931i − 1.48507i
\(508\) 0 0
\(509\) 363.167 0.713492 0.356746 0.934202i \(-0.383886\pi\)
0.356746 + 0.934202i \(0.383886\pi\)
\(510\) 0 0
\(511\) 20.7283i 0.0405641i
\(512\) 0 0
\(513\) 398.006 0.775841
\(514\) 0 0
\(515\) − 302.359i − 0.587106i
\(516\) 0 0
\(517\) −117.836 −0.227922
\(518\) 0 0
\(519\) 261.103i 0.503088i
\(520\) 0 0
\(521\) −491.666 −0.943696 −0.471848 0.881680i \(-0.656413\pi\)
−0.471848 + 0.881680i \(0.656413\pi\)
\(522\) 0 0
\(523\) 133.914i 0.256049i 0.991771 + 0.128024i \(0.0408636\pi\)
−0.991771 + 0.128024i \(0.959136\pi\)
\(524\) 0 0
\(525\) 37.0820 0.0706325
\(526\) 0 0
\(527\) 759.491i 1.44116i
\(528\) 0 0
\(529\) 298.580 0.564424
\(530\) 0 0
\(531\) 1005.16i 1.89295i
\(532\) 0 0
\(533\) −492.000 −0.923077
\(534\) 0 0
\(535\) 273.636i 0.511469i
\(536\) 0 0
\(537\) 36.6687 0.0682844
\(538\) 0 0
\(539\) − 529.667i − 0.982685i
\(540\) 0 0
\(541\) −303.337 −0.560698 −0.280349 0.959898i \(-0.590450\pi\)
−0.280349 + 0.959898i \(0.590450\pi\)
\(542\) 0 0
\(543\) 1352.67i 2.49110i
\(544\) 0 0
\(545\) −5.77709 −0.0106002
\(546\) 0 0
\(547\) − 89.6631i − 0.163918i −0.996636 0.0819590i \(-0.973882\pi\)
0.996636 0.0819590i \(-0.0261177\pi\)
\(548\) 0 0
\(549\) 1735.40 3.16102
\(550\) 0 0
\(551\) − 46.7492i − 0.0848443i
\(552\) 0 0
\(553\) −148.328 −0.268225
\(554\) 0 0
\(555\) 418.816i 0.754623i
\(556\) 0 0
\(557\) −490.741 −0.881044 −0.440522 0.897742i \(-0.645207\pi\)
−0.440522 + 0.897742i \(0.645207\pi\)
\(558\) 0 0
\(559\) 442.008i 0.790712i
\(560\) 0 0
\(561\) −1130.99 −2.01603
\(562\) 0 0
\(563\) 987.423i 1.75386i 0.480618 + 0.876930i \(0.340412\pi\)
−0.480618 + 0.876930i \(0.659588\pi\)
\(564\) 0 0
\(565\) 74.9117 0.132587
\(566\) 0 0
\(567\) 290.763i 0.512810i
\(568\) 0 0
\(569\) −475.082 −0.834942 −0.417471 0.908690i \(-0.637083\pi\)
−0.417471 + 0.908690i \(0.637083\pi\)
\(570\) 0 0
\(571\) 182.485i 0.319588i 0.987150 + 0.159794i \(0.0510830\pi\)
−0.987150 + 0.159794i \(0.948917\pi\)
\(572\) 0 0
\(573\) −332.498 −0.580277
\(574\) 0 0
\(575\) − 75.8979i − 0.131996i
\(576\) 0 0
\(577\) −319.167 −0.553149 −0.276575 0.960992i \(-0.589199\pi\)
−0.276575 + 0.960992i \(0.589199\pi\)
\(578\) 0 0
\(579\) − 1317.17i − 2.27490i
\(580\) 0 0
\(581\) 121.751 0.209554
\(582\) 0 0
\(583\) 316.676i 0.543183i
\(584\) 0 0
\(585\) 872.991 1.49229
\(586\) 0 0
\(587\) − 904.762i − 1.54133i −0.637239 0.770666i \(-0.719924\pi\)
0.637239 0.770666i \(-0.280076\pi\)
\(588\) 0 0
\(589\) 223.319 0.379149
\(590\) 0 0
\(591\) − 1294.27i − 2.18996i
\(592\) 0 0
\(593\) −747.325 −1.26024 −0.630122 0.776496i \(-0.716995\pi\)
−0.630122 + 0.776496i \(0.716995\pi\)
\(594\) 0 0
\(595\) − 53.2565i − 0.0895068i
\(596\) 0 0
\(597\) −155.331 −0.260186
\(598\) 0 0
\(599\) 874.385i 1.45974i 0.683585 + 0.729871i \(0.260420\pi\)
−0.683585 + 0.729871i \(0.739580\pi\)
\(600\) 0 0
\(601\) −777.234 −1.29323 −0.646617 0.762815i \(-0.723817\pi\)
−0.646617 + 0.762815i \(0.723817\pi\)
\(602\) 0 0
\(603\) − 820.192i − 1.36019i
\(604\) 0 0
\(605\) 10.4327 0.0172441
\(606\) 0 0
\(607\) 699.436i 1.15228i 0.817350 + 0.576142i \(0.195442\pi\)
−0.817350 + 0.576142i \(0.804558\pi\)
\(608\) 0 0
\(609\) 65.5078 0.107566
\(610\) 0 0
\(611\) − 183.075i − 0.299631i
\(612\) 0 0
\(613\) −11.0820 −0.0180784 −0.00903918 0.999959i \(-0.502877\pi\)
−0.00903918 + 0.999959i \(0.502877\pi\)
\(614\) 0 0
\(615\) − 354.054i − 0.575698i
\(616\) 0 0
\(617\) 1189.16 1.92733 0.963664 0.267119i \(-0.0860715\pi\)
0.963664 + 0.267119i \(0.0860715\pi\)
\(618\) 0 0
\(619\) − 325.717i − 0.526198i −0.964769 0.263099i \(-0.915255\pi\)
0.964769 0.263099i \(-0.0847446\pi\)
\(620\) 0 0
\(621\) 1141.50 1.83816
\(622\) 0 0
\(623\) − 78.9477i − 0.126722i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 332.554i 0.530389i
\(628\) 0 0
\(629\) 601.495 0.956272
\(630\) 0 0
\(631\) 316.823i 0.502097i 0.967975 + 0.251048i \(0.0807754\pi\)
−0.967975 + 0.251048i \(0.919225\pi\)
\(632\) 0 0
\(633\) −521.823 −0.824366
\(634\) 0 0
\(635\) 287.731i 0.453120i
\(636\) 0 0
\(637\) 822.912 1.29186
\(638\) 0 0
\(639\) − 2188.28i − 3.42454i
\(640\) 0 0
\(641\) −149.587 −0.233365 −0.116682 0.993169i \(-0.537226\pi\)
−0.116682 + 0.993169i \(0.537226\pi\)
\(642\) 0 0
\(643\) − 408.690i − 0.635599i −0.948158 0.317800i \(-0.897056\pi\)
0.948158 0.317800i \(-0.102944\pi\)
\(644\) 0 0
\(645\) −318.079 −0.493146
\(646\) 0 0
\(647\) 104.383i 0.161334i 0.996741 + 0.0806668i \(0.0257050\pi\)
−0.996741 + 0.0806668i \(0.974295\pi\)
\(648\) 0 0
\(649\) −502.663 −0.774519
\(650\) 0 0
\(651\) 312.927i 0.480687i
\(652\) 0 0
\(653\) −164.420 −0.251791 −0.125895 0.992044i \(-0.540180\pi\)
−0.125895 + 0.992044i \(0.540180\pi\)
\(654\) 0 0
\(655\) − 497.139i − 0.758990i
\(656\) 0 0
\(657\) −351.167 −0.534501
\(658\) 0 0
\(659\) − 743.613i − 1.12840i −0.825640 0.564198i \(-0.809186\pi\)
0.825640 0.564198i \(-0.190814\pi\)
\(660\) 0 0
\(661\) −758.073 −1.14686 −0.573429 0.819255i \(-0.694387\pi\)
−0.573429 + 0.819255i \(0.694387\pi\)
\(662\) 0 0
\(663\) − 1757.15i − 2.65030i
\(664\) 0 0
\(665\) −15.6594 −0.0235480
\(666\) 0 0
\(667\) − 134.078i − 0.201017i
\(668\) 0 0
\(669\) −1725.74 −2.57958
\(670\) 0 0
\(671\) 867.843i 1.29336i
\(672\) 0 0
\(673\) 364.164 0.541106 0.270553 0.962705i \(-0.412794\pi\)
0.270553 + 0.962705i \(0.412794\pi\)
\(674\) 0 0
\(675\) 375.997i 0.557033i
\(676\) 0 0
\(677\) −708.079 −1.04591 −0.522953 0.852361i \(-0.675170\pi\)
−0.522953 + 0.852361i \(0.675170\pi\)
\(678\) 0 0
\(679\) 143.119i 0.210780i
\(680\) 0 0
\(681\) 1429.40 2.09897
\(682\) 0 0
\(683\) − 355.469i − 0.520452i −0.965548 0.260226i \(-0.916203\pi\)
0.965548 0.260226i \(-0.0837970\pi\)
\(684\) 0 0
\(685\) −288.079 −0.420553
\(686\) 0 0
\(687\) 2306.45i 3.35727i
\(688\) 0 0
\(689\) −492.000 −0.714078
\(690\) 0 0
\(691\) 116.769i 0.168985i 0.996424 + 0.0844925i \(0.0269269\pi\)
−0.996424 + 0.0844925i \(0.973073\pi\)
\(692\) 0 0
\(693\) −332.498 −0.479796
\(694\) 0 0
\(695\) 515.958i 0.742386i
\(696\) 0 0
\(697\) −508.486 −0.729535
\(698\) 0 0
\(699\) 1865.54i 2.66887i
\(700\) 0 0
\(701\) −246.413 −0.351517 −0.175758 0.984433i \(-0.556238\pi\)
−0.175758 + 0.984433i \(0.556238\pi\)
\(702\) 0 0
\(703\) − 176.862i − 0.251582i
\(704\) 0 0
\(705\) 131.745 0.186872
\(706\) 0 0
\(707\) − 110.704i − 0.156582i
\(708\) 0 0
\(709\) −552.820 −0.779718 −0.389859 0.920874i \(-0.627476\pi\)
−0.389859 + 0.920874i \(0.627476\pi\)
\(710\) 0 0
\(711\) − 2512.89i − 3.53431i
\(712\) 0 0
\(713\) 640.486 0.898297
\(714\) 0 0
\(715\) 436.568i 0.610585i
\(716\) 0 0
\(717\) 1492.33 2.08135
\(718\) 0 0
\(719\) 99.9709i 0.139042i 0.997581 + 0.0695208i \(0.0221470\pi\)
−0.997581 + 0.0695208i \(0.977853\pi\)
\(720\) 0 0
\(721\) −178.918 −0.248153
\(722\) 0 0
\(723\) 440.464i 0.609217i
\(724\) 0 0
\(725\) 44.1641 0.0609160
\(726\) 0 0
\(727\) − 1081.39i − 1.48746i −0.668479 0.743731i \(-0.733054\pi\)
0.668479 0.743731i \(-0.266946\pi\)
\(728\) 0 0
\(729\) −1132.50 −1.55349
\(730\) 0 0
\(731\) 456.819i 0.624923i
\(732\) 0 0
\(733\) 380.407 0.518973 0.259486 0.965747i \(-0.416447\pi\)
0.259486 + 0.965747i \(0.416447\pi\)
\(734\) 0 0
\(735\) 592.186i 0.805695i
\(736\) 0 0
\(737\) 410.164 0.556532
\(738\) 0 0
\(739\) − 1381.60i − 1.86955i −0.355240 0.934775i \(-0.615601\pi\)
0.355240 0.934775i \(-0.384399\pi\)
\(740\) 0 0
\(741\) −516.669 −0.697259
\(742\) 0 0
\(743\) 267.424i 0.359924i 0.983674 + 0.179962i \(0.0575975\pi\)
−0.983674 + 0.179962i \(0.942403\pi\)
\(744\) 0 0
\(745\) −639.325 −0.858154
\(746\) 0 0
\(747\) 2062.64i 2.76123i
\(748\) 0 0
\(749\) 161.921 0.216183
\(750\) 0 0
\(751\) − 338.653i − 0.450937i −0.974250 0.225468i \(-0.927609\pi\)
0.974250 0.225468i \(-0.0723912\pi\)
\(752\) 0 0
\(753\) 2267.14 3.01080
\(754\) 0 0
\(755\) 144.481i 0.191366i
\(756\) 0 0
\(757\) 1247.91 1.64849 0.824246 0.566232i \(-0.191599\pi\)
0.824246 + 0.566232i \(0.191599\pi\)
\(758\) 0 0
\(759\) 953.775i 1.25662i
\(760\) 0 0
\(761\) −14.3406 −0.0188444 −0.00942219 0.999956i \(-0.502999\pi\)
−0.00942219 + 0.999956i \(0.502999\pi\)
\(762\) 0 0
\(763\) 3.41853i 0.00448038i
\(764\) 0 0
\(765\) 902.243 1.17940
\(766\) 0 0
\(767\) − 780.956i − 1.01820i
\(768\) 0 0
\(769\) 1036.99 1.34849 0.674246 0.738507i \(-0.264469\pi\)
0.674246 + 0.738507i \(0.264469\pi\)
\(770\) 0 0
\(771\) 481.078i 0.623967i
\(772\) 0 0
\(773\) 1197.91 1.54970 0.774848 0.632148i \(-0.217826\pi\)
0.774848 + 0.632148i \(0.217826\pi\)
\(774\) 0 0
\(775\) 210.970i 0.272219i
\(776\) 0 0
\(777\) 247.830 0.318957
\(778\) 0 0
\(779\) 149.514i 0.191931i
\(780\) 0 0
\(781\) 1094.32 1.40118
\(782\) 0 0
\(783\) 664.223i 0.848305i
\(784\) 0 0
\(785\) 32.6099 0.0415413
\(786\) 0 0
\(787\) − 99.1814i − 0.126025i −0.998013 0.0630123i \(-0.979929\pi\)
0.998013 0.0630123i \(-0.0200707\pi\)
\(788\) 0 0
\(789\) −2470.05 −3.13061
\(790\) 0 0
\(791\) − 44.3282i − 0.0560407i
\(792\) 0 0
\(793\) −1348.32 −1.70027
\(794\) 0 0
\(795\) − 354.054i − 0.445351i
\(796\) 0 0
\(797\) 139.240 0.174705 0.0873525 0.996177i \(-0.472159\pi\)
0.0873525 + 0.996177i \(0.472159\pi\)
\(798\) 0 0
\(799\) − 189.209i − 0.236807i
\(800\) 0 0
\(801\) 1337.49 1.66977
\(802\) 0 0
\(803\) − 175.613i − 0.218696i
\(804\) 0 0
\(805\) −44.9117 −0.0557910
\(806\) 0 0
\(807\) 1151.37i 1.42672i
\(808\) 0 0
\(809\) 403.653 0.498953 0.249477 0.968381i \(-0.419741\pi\)
0.249477 + 0.968381i \(0.419741\pi\)
\(810\) 0 0
\(811\) − 384.561i − 0.474181i −0.971488 0.237091i \(-0.923806\pi\)
0.971488 0.237091i \(-0.0761938\pi\)
\(812\) 0 0
\(813\) −2343.15 −2.88210
\(814\) 0 0
\(815\) − 46.6407i − 0.0572278i
\(816\) 0 0
\(817\) 134.322 0.164409
\(818\) 0 0
\(819\) − 516.583i − 0.630748i
\(820\) 0 0
\(821\) −997.732 −1.21526 −0.607632 0.794219i \(-0.707881\pi\)
−0.607632 + 0.794219i \(0.707881\pi\)
\(822\) 0 0
\(823\) − 955.281i − 1.16073i −0.814356 0.580365i \(-0.802910\pi\)
0.814356 0.580365i \(-0.197090\pi\)
\(824\) 0 0
\(825\) −314.164 −0.380805
\(826\) 0 0
\(827\) 213.451i 0.258103i 0.991638 + 0.129051i \(0.0411932\pi\)
−0.991638 + 0.129051i \(0.958807\pi\)
\(828\) 0 0
\(829\) −73.4288 −0.0885752 −0.0442876 0.999019i \(-0.514102\pi\)
−0.0442876 + 0.999019i \(0.514102\pi\)
\(830\) 0 0
\(831\) 2866.47i 3.44942i
\(832\) 0 0
\(833\) 850.486 1.02099
\(834\) 0 0
\(835\) − 485.139i − 0.581005i
\(836\) 0 0
\(837\) −3172.96 −3.79087
\(838\) 0 0
\(839\) − 643.642i − 0.767154i −0.923509 0.383577i \(-0.874692\pi\)
0.923509 0.383577i \(-0.125308\pi\)
\(840\) 0 0
\(841\) −762.981 −0.907231
\(842\) 0 0
\(843\) − 648.787i − 0.769617i
\(844\) 0 0
\(845\) −300.374 −0.355472
\(846\) 0 0
\(847\) − 6.17342i − 0.00728857i
\(848\) 0 0
\(849\) 2253.23 2.65398
\(850\) 0 0
\(851\) − 507.247i − 0.596060i
\(852\) 0 0
\(853\) −351.410 −0.411970 −0.205985 0.978555i \(-0.566040\pi\)
−0.205985 + 0.978555i \(0.566040\pi\)
\(854\) 0 0
\(855\) − 265.293i − 0.310285i
\(856\) 0 0
\(857\) 1326.16 1.54744 0.773721 0.633526i \(-0.218393\pi\)
0.773721 + 0.633526i \(0.218393\pi\)
\(858\) 0 0
\(859\) 343.729i 0.400150i 0.979781 + 0.200075i \(0.0641186\pi\)
−0.979781 + 0.200075i \(0.935881\pi\)
\(860\) 0 0
\(861\) −209.508 −0.243331
\(862\) 0 0
\(863\) 1136.15i 1.31651i 0.752793 + 0.658257i \(0.228706\pi\)
−0.752793 + 0.658257i \(0.771294\pi\)
\(864\) 0 0
\(865\) 104.164 0.120421
\(866\) 0 0
\(867\) − 196.176i − 0.226270i
\(868\) 0 0
\(869\) 1256.66 1.44609
\(870\) 0 0
\(871\) 637.247i 0.731627i
\(872\) 0 0
\(873\) −2424.65 −2.77738
\(874\) 0 0
\(875\) − 14.7935i − 0.0169068i
\(876\) 0 0
\(877\) 769.076 0.876939 0.438470 0.898746i \(-0.355521\pi\)
0.438470 + 0.898746i \(0.355521\pi\)
\(878\) 0 0
\(879\) − 506.770i − 0.576530i
\(880\) 0 0
\(881\) −731.568 −0.830384 −0.415192 0.909734i \(-0.636286\pi\)
−0.415192 + 0.909734i \(0.636286\pi\)
\(882\) 0 0
\(883\) − 1066.19i − 1.20746i −0.797188 0.603731i \(-0.793680\pi\)
0.797188 0.603731i \(-0.206320\pi\)
\(884\) 0 0
\(885\) 561.994 0.635021
\(886\) 0 0
\(887\) − 397.242i − 0.447848i −0.974607 0.223924i \(-0.928113\pi\)
0.974607 0.223924i \(-0.0718868\pi\)
\(888\) 0 0
\(889\) 170.262 0.191520
\(890\) 0 0
\(891\) − 2463.39i − 2.76474i
\(892\) 0 0
\(893\) −55.6346 −0.0623008
\(894\) 0 0
\(895\) − 14.6286i − 0.0163448i
\(896\) 0 0
\(897\) −1481.82 −1.65198
\(898\) 0 0
\(899\) 372.691i 0.414562i
\(900\) 0 0
\(901\) −508.486 −0.564357
\(902\) 0 0
\(903\) 188.220i 0.208438i
\(904\) 0 0
\(905\) 539.633 0.596280
\(906\) 0 0
\(907\) − 1021.02i − 1.12571i −0.826556 0.562855i \(-0.809703\pi\)
0.826556 0.562855i \(-0.190297\pi\)
\(908\) 0 0
\(909\) 1875.48 2.06324
\(910\) 0 0
\(911\) − 1118.66i − 1.22794i −0.789328 0.613971i \(-0.789571\pi\)
0.789328 0.613971i \(-0.210429\pi\)
\(912\) 0 0
\(913\) −1031.49 −1.12978
\(914\) 0 0
\(915\) − 970.278i − 1.06041i
\(916\) 0 0
\(917\) −294.177 −0.320803
\(918\) 0 0
\(919\) − 1177.68i − 1.28148i −0.767757 0.640741i \(-0.778627\pi\)
0.767757 0.640741i \(-0.221373\pi\)
\(920\) 0 0
\(921\) 1543.73 1.67615
\(922\) 0 0
\(923\) 1700.18i 1.84202i
\(924\) 0 0
\(925\) 167.082 0.180629
\(926\) 0 0
\(927\) − 3031.13i − 3.26983i
\(928\) 0 0
\(929\) −699.423 −0.752877 −0.376438 0.926442i \(-0.622851\pi\)
−0.376438 + 0.926442i \(0.622851\pi\)
\(930\) 0 0
\(931\) − 250.075i − 0.268609i
\(932\) 0 0
\(933\) 2720.15 2.91548
\(934\) 0 0
\(935\) 451.197i 0.482563i
\(936\) 0 0
\(937\) −332.152 −0.354484 −0.177242 0.984167i \(-0.556718\pi\)
−0.177242 + 0.984167i \(0.556718\pi\)
\(938\) 0 0
\(939\) − 11.2101i − 0.0119383i
\(940\) 0 0
\(941\) −1468.66 −1.56075 −0.780373 0.625314i \(-0.784971\pi\)
−0.780373 + 0.625314i \(0.784971\pi\)
\(942\) 0 0
\(943\) 428.811i 0.454731i
\(944\) 0 0
\(945\) 222.492 0.235442
\(946\) 0 0
\(947\) 574.082i 0.606211i 0.952957 + 0.303106i \(0.0980235\pi\)
−0.952957 + 0.303106i \(0.901976\pi\)
\(948\) 0 0
\(949\) 272.839 0.287502
\(950\) 0 0
\(951\) 2212.54i 2.32654i
\(952\) 0 0
\(953\) 280.663 0.294504 0.147252 0.989099i \(-0.452957\pi\)
0.147252 + 0.989099i \(0.452957\pi\)
\(954\) 0 0
\(955\) 132.647i 0.138897i
\(956\) 0 0
\(957\) −554.991 −0.579928
\(958\) 0 0
\(959\) 170.468i 0.177756i
\(960\) 0 0
\(961\) −819.328 −0.852579
\(962\) 0 0
\(963\) 2743.18i 2.84858i
\(964\) 0 0
\(965\) −525.469 −0.544527
\(966\) 0 0
\(967\) − 1278.65i − 1.32228i −0.750262 0.661141i \(-0.770073\pi\)
0.750262 0.661141i \(-0.229927\pi\)
\(968\) 0 0
\(969\) −533.981 −0.551064
\(970\) 0 0
\(971\) − 117.723i − 0.121239i −0.998161 0.0606195i \(-0.980692\pi\)
0.998161 0.0606195i \(-0.0193076\pi\)
\(972\) 0 0
\(973\) 305.313 0.313785
\(974\) 0 0
\(975\) − 488.098i − 0.500613i
\(976\) 0 0
\(977\) 983.155 1.00630 0.503150 0.864199i \(-0.332174\pi\)
0.503150 + 0.864199i \(0.332174\pi\)
\(978\) 0 0
\(979\) 668.856i 0.683203i
\(980\) 0 0
\(981\) −57.9149 −0.0590365
\(982\) 0 0
\(983\) 607.404i 0.617909i 0.951077 + 0.308954i \(0.0999790\pi\)
−0.951077 + 0.308954i \(0.900021\pi\)
\(984\) 0 0
\(985\) −516.334 −0.524197
\(986\) 0 0
\(987\) − 77.9584i − 0.0789852i
\(988\) 0 0
\(989\) 385.240 0.389525
\(990\) 0 0
\(991\) 408.413i 0.412122i 0.978539 + 0.206061i \(0.0660645\pi\)
−0.978539 + 0.206061i \(0.933935\pi\)
\(992\) 0 0
\(993\) −1659.82 −1.67152
\(994\) 0 0
\(995\) 61.9677i 0.0622791i
\(996\) 0 0
\(997\) −1554.91 −1.55959 −0.779795 0.626035i \(-0.784677\pi\)
−0.779795 + 0.626035i \(0.784677\pi\)
\(998\) 0 0
\(999\) 2512.89i 2.51541i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.3.b.a.31.1 4
3.2 odd 2 720.3.e.c.271.4 4
4.3 odd 2 inner 80.3.b.a.31.4 yes 4
5.2 odd 4 400.3.h.d.399.1 8
5.3 odd 4 400.3.h.d.399.7 8
5.4 even 2 400.3.b.g.351.4 4
8.3 odd 2 320.3.b.a.191.1 4
8.5 even 2 320.3.b.a.191.4 4
12.11 even 2 720.3.e.c.271.3 4
15.2 even 4 3600.3.j.k.1999.4 8
15.8 even 4 3600.3.j.k.1999.6 8
15.14 odd 2 3600.3.e.bb.3151.2 4
16.3 odd 4 1280.3.g.f.1151.2 8
16.5 even 4 1280.3.g.f.1151.1 8
16.11 odd 4 1280.3.g.f.1151.7 8
16.13 even 4 1280.3.g.f.1151.8 8
20.3 even 4 400.3.h.d.399.2 8
20.7 even 4 400.3.h.d.399.8 8
20.19 odd 2 400.3.b.g.351.1 4
24.5 odd 2 2880.3.e.b.2431.2 4
24.11 even 2 2880.3.e.b.2431.1 4
40.3 even 4 1600.3.h.p.1599.7 8
40.13 odd 4 1600.3.h.p.1599.2 8
40.19 odd 2 1600.3.b.k.1151.4 4
40.27 even 4 1600.3.h.p.1599.1 8
40.29 even 2 1600.3.b.k.1151.1 4
40.37 odd 4 1600.3.h.p.1599.8 8
60.23 odd 4 3600.3.j.k.1999.3 8
60.47 odd 4 3600.3.j.k.1999.5 8
60.59 even 2 3600.3.e.bb.3151.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.3.b.a.31.1 4 1.1 even 1 trivial
80.3.b.a.31.4 yes 4 4.3 odd 2 inner
320.3.b.a.191.1 4 8.3 odd 2
320.3.b.a.191.4 4 8.5 even 2
400.3.b.g.351.1 4 20.19 odd 2
400.3.b.g.351.4 4 5.4 even 2
400.3.h.d.399.1 8 5.2 odd 4
400.3.h.d.399.2 8 20.3 even 4
400.3.h.d.399.7 8 5.3 odd 4
400.3.h.d.399.8 8 20.7 even 4
720.3.e.c.271.3 4 12.11 even 2
720.3.e.c.271.4 4 3.2 odd 2
1280.3.g.f.1151.1 8 16.5 even 4
1280.3.g.f.1151.2 8 16.3 odd 4
1280.3.g.f.1151.7 8 16.11 odd 4
1280.3.g.f.1151.8 8 16.13 even 4
1600.3.b.k.1151.1 4 40.29 even 2
1600.3.b.k.1151.4 4 40.19 odd 2
1600.3.h.p.1599.1 8 40.27 even 4
1600.3.h.p.1599.2 8 40.13 odd 4
1600.3.h.p.1599.7 8 40.3 even 4
1600.3.h.p.1599.8 8 40.37 odd 4
2880.3.e.b.2431.1 4 24.11 even 2
2880.3.e.b.2431.2 4 24.5 odd 2
3600.3.e.bb.3151.2 4 15.14 odd 2
3600.3.e.bb.3151.3 4 60.59 even 2
3600.3.j.k.1999.3 8 60.23 odd 4
3600.3.j.k.1999.4 8 15.2 even 4
3600.3.j.k.1999.5 8 60.47 odd 4
3600.3.j.k.1999.6 8 15.8 even 4