Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3600,3,Mod(3151,3600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3600, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3600.3151");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 3600.e (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(98.0928951697\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\sqrt{-3}, \sqrt{5})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{4} - x^{3} + 2x^{2} + x + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{43}]\) |
Coefficient ring index: | \( 2^{7}\cdot 3 \) |
Twist minimal: | no (minimal twist has level 80) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 3151.3 | ||
Root | \(-0.309017 - 0.535233i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 3600.3151 |
Dual form | 3600.3.e.bb.3151.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(2801\) | \(3151\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 1.32317i | 0.189024i | 0.995524 | + | 0.0945121i | \(0.0301291\pi\) | ||||
−0.995524 | + | 0.0945121i | \(0.969871\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | − 11.2101i | − 1.01910i | −0.860442 | − | 0.509549i | \(-0.829812\pi\) | ||||
0.860442 | − | 0.509549i | \(-0.170188\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −17.4164 | −1.33972 | −0.669862 | − | 0.742486i | \(-0.733647\pi\) | ||||
−0.669862 | + | 0.742486i | \(0.733647\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 18.0000 | 1.05882 | 0.529412 | − | 0.848365i | \(-0.322413\pi\) | ||||
0.529412 | + | 0.848365i | \(0.322413\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 5.29268i | 0.278562i | 0.990253 | + | 0.139281i | \(0.0444791\pi\) | ||||
−0.990253 | + | 0.139281i | \(0.955521\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 15.1796i | 0.659982i | 0.943984 | + | 0.329991i | \(0.107046\pi\) | ||||
−0.943984 | + | 0.329991i | \(0.892954\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −8.83282 | −0.304580 | −0.152290 | − | 0.988336i | \(-0.548665\pi\) | ||||
−0.152290 | + | 0.988336i | \(0.548665\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | − 42.1939i | − 1.36109i | −0.732704 | − | 0.680547i | \(-0.761742\pi\) | ||||
0.732704 | − | 0.680547i | \(-0.238258\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −33.4164 | −0.903146 | −0.451573 | − | 0.892234i | \(-0.649137\pi\) | ||||
−0.451573 | + | 0.892234i | \(0.649137\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 28.2492 | 0.689005 | 0.344503 | − | 0.938785i | \(-0.388048\pi\) | ||||
0.344503 | + | 0.938785i | \(0.388048\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 25.3788i | 0.590205i | 0.955466 | + | 0.295103i | \(0.0953539\pi\) | ||||
−0.955466 | + | 0.295103i | \(0.904646\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 10.5116i | 0.223651i | 0.993728 | + | 0.111826i | \(0.0356698\pi\) | ||||
−0.993728 | + | 0.111826i | \(0.964330\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 47.2492 | 0.964270 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −28.2492 | −0.533004 | −0.266502 | − | 0.963834i | \(-0.585868\pi\) | ||||
−0.266502 | + | 0.963834i | \(0.585868\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | − 44.8403i | − 0.760005i | −0.924986 | − | 0.380002i | \(-0.875923\pi\) | ||||
0.924986 | − | 0.380002i | \(-0.124077\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −77.4164 | −1.26912 | −0.634561 | − | 0.772873i | \(-0.718819\pi\) | ||||
−0.634561 | + | 0.772873i | \(0.718819\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 36.5889i | 0.546103i | 0.961999 | + | 0.273051i | \(0.0880329\pi\) | ||||
−0.961999 | + | 0.273051i | \(0.911967\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 97.6196i | 1.37492i | 0.726221 | + | 0.687462i | \(0.241275\pi\) | ||||
−0.726221 | + | 0.687462i | \(0.758725\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −15.6656 | −0.214598 | −0.107299 | − | 0.994227i | \(-0.534220\pi\) | ||||
−0.107299 | + | 0.994227i | \(0.534220\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 14.8328 | 0.192634 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | − 112.101i | − 1.41900i | −0.704707 | − | 0.709498i | \(-0.748922\pi\) | ||||
0.704707 | − | 0.709498i | \(-0.251078\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 92.0145i | 1.10861i | 0.832314 | + | 0.554304i | \(0.187016\pi\) | ||||
−0.832314 | + | 0.554304i | \(0.812984\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 59.6656 | 0.670400 | 0.335200 | − | 0.942147i | \(-0.391196\pi\) | ||||
0.335200 | + | 0.942147i | \(0.391196\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | − 23.0449i | − 0.253240i | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −108.164 | −1.11509 | −0.557547 | − | 0.830146i | \(-0.688257\pi\) | ||||
−0.557547 | + | 0.830146i | \(0.688257\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 83.6656 | 0.828373 | 0.414186 | − | 0.910192i | \(-0.364066\pi\) | ||||
0.414186 | + | 0.910192i | \(0.364066\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 135.219i | 1.31281i | 0.754409 | + | 0.656404i | \(0.227923\pi\) | ||||
−0.754409 | + | 0.656404i | \(0.772077\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 122.374i | 1.14368i | 0.820365 | + | 0.571840i | \(0.193770\pi\) | ||||
−0.820365 | + | 0.571840i | \(0.806230\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 2.58359 | 0.0237027 | 0.0118513 | − | 0.999930i | \(-0.496228\pi\) | ||||
0.0118513 | + | 0.999930i | \(0.496228\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −33.5016 | −0.296474 | −0.148237 | − | 0.988952i | \(-0.547360\pi\) | ||||
−0.148237 | + | 0.988952i | \(0.547360\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 23.8170i | 0.200143i | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −4.66563 | −0.0385589 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 128.677i | − 1.01321i | −0.862179 | − | 0.506603i | \(-0.830901\pi\) | ||||
0.862179 | − | 0.506603i | \(-0.169099\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 222.327i | 1.69715i | 0.529072 | + | 0.848577i | \(0.322540\pi\) | ||||
−0.529072 | + | 0.848577i | \(0.677460\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −7.00311 | −0.0526549 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 128.833 | 0.940386 | 0.470193 | − | 0.882564i | \(-0.344184\pi\) | ||||
0.470193 | + | 0.882564i | \(0.344184\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 230.743i | 1.66002i | 0.557745 | + | 0.830012i | \(0.311667\pi\) | ||||
−0.557745 | + | 0.830012i | \(0.688333\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 195.239i | 1.36531i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −285.915 | −1.91889 | −0.959446 | − | 0.281893i | \(-0.909038\pi\) | ||||
−0.959446 | + | 0.281893i | \(0.909038\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 64.6141i | 0.427908i | 0.976844 | + | 0.213954i | \(0.0686342\pi\) | ||||
−0.976844 | + | 0.213954i | \(0.931366\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 14.5836 | 0.0928891 | 0.0464446 | − | 0.998921i | \(-0.485211\pi\) | ||||
0.0464446 | + | 0.998921i | \(0.485211\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −20.0851 | −0.124752 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 20.8583i | 0.127965i | 0.997951 | + | 0.0639827i | \(0.0203802\pi\) | ||||
−0.997951 | + | 0.0639827i | \(0.979620\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 216.961i | − 1.29917i | −0.760290 | − | 0.649583i | \(-0.774943\pi\) | ||||
0.760290 | − | 0.649583i | \(-0.225057\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 134.331 | 0.794860 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −46.5836 | −0.269269 | −0.134635 | − | 0.990895i | \(-0.542986\pi\) | ||||
−0.134635 | + | 0.990895i | \(0.542986\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 6.54211i | 0.0365481i | 0.999833 | + | 0.0182740i | \(0.00581713\pi\) | ||||
−0.999833 | + | 0.0182740i | \(0.994183\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −241.331 | −1.33332 | −0.666661 | − | 0.745361i | \(-0.732277\pi\) | ||||
−0.666661 | + | 0.745361i | \(0.732277\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 201.781i | − 1.07904i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | − 59.3214i | − 0.310583i | −0.987869 | − | 0.155292i | \(-0.950368\pi\) | ||||
0.987869 | − | 0.155292i | \(-0.0496317\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −234.997 | −1.21760 | −0.608800 | − | 0.793324i | \(-0.708349\pi\) | ||||
−0.608800 | + | 0.793324i | \(0.708349\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 230.912 | 1.17214 | 0.586070 | − | 0.810260i | \(-0.300674\pi\) | ||||
0.586070 | + | 0.810260i | \(0.300674\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 27.7128i | 0.139260i | 0.997573 | + | 0.0696302i | \(0.0221819\pi\) | ||||
−0.997573 | + | 0.0696302i | \(0.977818\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 11.6873i | − 0.0575729i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 59.3313 | 0.283882 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 93.0991i | 0.441228i | 0.975361 | + | 0.220614i | \(0.0708061\pi\) | ||||
−0.975361 | + | 0.220614i | \(0.929194\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 55.8297 | 0.257280 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −313.495 | −1.41853 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 307.891i | − 1.38068i | −0.723487 | − | 0.690338i | \(-0.757462\pi\) | ||||
0.723487 | − | 0.690338i | \(-0.242538\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 255.020i | − 1.12344i | −0.827328 | − | 0.561719i | \(-0.810140\pi\) | ||||
0.827328 | − | 0.561719i | \(-0.189860\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −411.495 | −1.79692 | −0.898461 | − | 0.439052i | \(-0.855314\pi\) | ||||
−0.898461 | + | 0.439052i | \(0.855314\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −332.833 | −1.42847 | −0.714234 | − | 0.699907i | \(-0.753225\pi\) | ||||
−0.714234 | + | 0.699907i | \(0.753225\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 266.248i | 1.11401i | 0.830510 | + | 0.557004i | \(0.188049\pi\) | ||||
−0.830510 | + | 0.557004i | \(0.811951\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −78.5836 | −0.326073 | −0.163036 | − | 0.986620i | \(-0.552129\pi\) | ||||
−0.163036 | + | 0.986620i | \(0.552129\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 92.1794i | − 0.373196i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 404.482i | 1.61148i | 0.592268 | + | 0.805741i | \(0.298233\pi\) | ||||
−0.592268 | + | 0.805741i | \(0.701767\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 170.164 | 0.672585 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −85.8297 | −0.333968 | −0.166984 | − | 0.985960i | \(-0.553403\pi\) | ||||
−0.166984 | + | 0.985960i | \(0.553403\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | − 44.2156i | − 0.170716i | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 440.685i | 1.67561i | 0.545971 | + | 0.837804i | \(0.316161\pi\) | ||||
−0.545971 | + | 0.837804i | \(0.683839\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 205.416 | 0.763630 | 0.381815 | − | 0.924239i | \(-0.375299\pi\) | ||||
0.381815 | + | 0.924239i | \(0.375299\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 418.044i | 1.54260i | 0.636474 | + | 0.771298i | \(0.280392\pi\) | ||||
−0.636474 | + | 0.771298i | \(0.719608\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 511.410 | 1.84625 | 0.923123 | − | 0.384505i | \(-0.125628\pi\) | ||||
0.923123 | + | 0.384505i | \(0.125628\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −115.751 | −0.411924 | −0.205962 | − | 0.978560i | \(-0.566032\pi\) | ||||
−0.205962 | + | 0.978560i | \(0.566032\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 402.001i | 1.42050i | 0.703951 | + | 0.710249i | \(0.251417\pi\) | ||||
−0.703951 | + | 0.710249i | \(0.748583\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 37.3785i | 0.130239i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 35.0000 | 0.121107 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 90.4133 | 0.308578 | 0.154289 | − | 0.988026i | \(-0.450691\pi\) | ||||
0.154289 | + | 0.988026i | \(0.450691\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | − 264.374i | − 0.884193i | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −33.5805 | −0.111563 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 275.419i | 0.897130i | 0.893750 | + | 0.448565i | \(0.148065\pi\) | ||||
−0.893750 | + | 0.448565i | \(0.851935\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 485.304i | 1.56046i | 0.625491 | + | 0.780231i | \(0.284899\pi\) | ||||
−0.625491 | + | 0.780231i | \(0.715101\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −2.00000 | −0.00638978 | −0.00319489 | − | 0.999995i | \(-0.501017\pi\) | ||||
−0.00319489 | + | 0.999995i | \(0.501017\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −394.741 | −1.24524 | −0.622621 | − | 0.782524i | \(-0.713932\pi\) | ||||
−0.622621 | + | 0.782524i | \(0.713932\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 99.0165i | 0.310396i | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 95.2682i | 0.294948i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −13.9086 | −0.0422755 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 296.130i | 0.894652i | 0.894371 | + | 0.447326i | \(0.147624\pi\) | ||||
−0.894371 | + | 0.447326i | \(0.852376\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −19.9938 | −0.0593288 | −0.0296644 | − | 0.999560i | \(-0.509444\pi\) | ||||
−0.0296644 | + | 0.999560i | \(0.509444\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −472.997 | −1.38709 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 127.354i | 0.371294i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 546.959i | − 1.57625i | −0.615514 | − | 0.788126i | \(-0.711052\pi\) | ||||
0.615514 | − | 0.788126i | \(-0.288948\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 40.8328 | 0.116999 | 0.0584997 | − | 0.998287i | \(-0.481368\pi\) | ||||
0.0584997 | + | 0.998287i | \(0.481368\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −555.325 | −1.57316 | −0.786579 | − | 0.617489i | \(-0.788150\pi\) | ||||
−0.786579 | + | 0.617489i | \(0.788150\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 326.012i | 0.908110i | 0.890974 | + | 0.454055i | \(0.150023\pi\) | ||||
−0.890974 | + | 0.454055i | \(0.849977\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 332.988 | 0.922403 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 13.6352i | 0.0371531i | 0.999827 | + | 0.0185766i | \(0.00591344\pi\) | ||||
−0.999827 | + | 0.0185766i | \(0.994087\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | − 37.3785i | − 0.100751i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 136.748 | 0.366616 | 0.183308 | − | 0.983056i | \(-0.441319\pi\) | ||||
0.183308 | + | 0.983056i | \(0.441319\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 153.836 | 0.408053 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 186.198i | 0.491288i | 0.969360 | + | 0.245644i | \(0.0789994\pi\) | ||||
−0.969360 | + | 0.245644i | \(0.921001\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 475.712i | 1.24207i | 0.783784 | + | 0.621034i | \(0.213287\pi\) | ||||
−0.783784 | + | 0.621034i | \(0.786713\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −11.9211 | −0.0306454 | −0.0153227 | − | 0.999883i | \(-0.504878\pi\) | ||||
−0.0153227 | + | 0.999883i | \(0.504878\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 273.232i | 0.698804i | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −250.754 | −0.631622 | −0.315811 | − | 0.948822i | \(-0.602277\pi\) | ||||
−0.315811 | + | 0.948822i | \(0.602277\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −550.328 | −1.37239 | −0.686195 | − | 0.727418i | \(-0.740720\pi\) | ||||
−0.686195 | + | 0.727418i | \(0.740720\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 734.867i | 1.82349i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 374.600i | 0.920394i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −27.0820 | −0.0662153 | −0.0331076 | − | 0.999452i | \(-0.510540\pi\) | ||||
−0.0331076 | + | 0.999452i | \(0.510540\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 59.3313 | 0.143659 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 198.033i | 0.472632i | 0.971676 | + | 0.236316i | \(0.0759401\pi\) | ||||
−0.971676 | + | 0.236316i | \(0.924060\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 475.580 | 1.12964 | 0.564822 | − | 0.825212i | \(-0.308945\pi\) | ||||
0.564822 | + | 0.825212i | \(0.308945\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 102.435i | − 0.239895i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | − 489.052i | − 1.13469i | −0.823479 | − | 0.567346i | \(-0.807970\pi\) | ||||
0.823479 | − | 0.567346i | \(-0.192030\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −622.498 | −1.43764 | −0.718820 | − | 0.695196i | \(-0.755318\pi\) | ||||
−0.718820 | + | 0.695196i | \(0.755318\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −80.3406 | −0.183846 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | − 552.712i | − 1.25902i | −0.776990 | − | 0.629512i | \(-0.783255\pi\) | ||||
0.776990 | − | 0.629512i | \(-0.216745\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 668.873i | 1.50987i | 0.655799 | + | 0.754936i | \(0.272332\pi\) | ||||
−0.655799 | + | 0.754936i | \(0.727668\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 280.407 | 0.624515 | 0.312257 | − | 0.949998i | \(-0.398915\pi\) | ||||
0.312257 | + | 0.949998i | \(0.398915\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | − 316.676i | − 0.702163i | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 320.334 | 0.700950 | 0.350475 | − | 0.936572i | \(-0.386020\pi\) | ||||
0.350475 | + | 0.936572i | \(0.386020\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −163.337 | −0.354311 | −0.177156 | − | 0.984183i | \(-0.556690\pi\) | ||||
−0.177156 | + | 0.984183i | \(0.556690\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 108.131i | − 0.233545i | −0.993159 | − | 0.116772i | \(-0.962745\pi\) | ||||
0.993159 | − | 0.116772i | \(-0.0372548\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 207.386i | − 0.444082i | −0.975037 | − | 0.222041i | \(-0.928728\pi\) | ||||
0.975037 | − | 0.222041i | \(-0.0712719\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −48.4133 | −0.103227 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 284.498 | 0.601477 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | − 233.537i | − 0.487552i | −0.969832 | − | 0.243776i | \(-0.921614\pi\) | ||||
0.969832 | − | 0.243776i | \(-0.0783861\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 581.994 | 1.20997 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 308.368i | 0.633199i | 0.948559 | + | 0.316600i | \(0.102541\pi\) | ||||
−0.948559 | + | 0.316600i | \(0.897459\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 187.777i | 0.382439i | 0.981547 | + | 0.191219i | \(0.0612442\pi\) | ||||
−0.981547 | + | 0.191219i | \(0.938756\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −158.991 | −0.322496 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −129.167 | −0.259894 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − 231.038i | − 0.463003i | −0.972835 | − | 0.231501i | \(-0.925636\pi\) | ||||
0.972835 | − | 0.231501i | \(-0.0743638\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 389.780i | 0.774910i | 0.921889 | + | 0.387455i | \(0.126646\pi\) | ||||
−0.921889 | + | 0.387455i | \(0.873354\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −363.167 | −0.713492 | −0.356746 | − | 0.934202i | \(-0.616114\pi\) | ||||
−0.356746 | + | 0.934202i | \(0.616114\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | − 20.7283i | − 0.0405641i | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 117.836 | 0.227922 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 491.666 | 0.943696 | 0.471848 | − | 0.881680i | \(-0.343587\pi\) | ||||
0.471848 | + | 0.881680i | \(0.343587\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 133.914i | 0.256049i | 0.991771 | + | 0.128024i | \(0.0408636\pi\) | ||||
−0.991771 | + | 0.128024i | \(0.959136\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 759.491i | − 1.44116i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 298.580 | 0.564424 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −492.000 | −0.923077 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | − 529.667i | − 0.982685i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −303.337 | −0.560698 | −0.280349 | − | 0.959898i | \(-0.590450\pi\) | ||||
−0.280349 | + | 0.959898i | \(0.590450\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 89.6631i | − 0.163918i | −0.996636 | − | 0.0819590i | \(-0.973882\pi\) | ||||
0.996636 | − | 0.0819590i | \(-0.0261177\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | − 46.7492i | − 0.0848443i | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 148.328 | 0.268225 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −490.741 | −0.881044 | −0.440522 | − | 0.897742i | \(-0.645207\pi\) | ||||
−0.440522 | + | 0.897742i | \(0.645207\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | − 442.008i | − 0.790712i | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 987.423i | − 1.75386i | −0.480618 | − | 0.876930i | \(-0.659588\pi\) | ||||
0.480618 | − | 0.876930i | \(-0.340412\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 475.082 | 0.834942 | 0.417471 | − | 0.908690i | \(-0.362917\pi\) | ||||
0.417471 | + | 0.908690i | \(0.362917\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | − 182.485i | − 0.319588i | −0.987150 | − | 0.159794i | \(-0.948917\pi\) | ||||
0.987150 | − | 0.159794i | \(-0.0510830\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 319.167 | 0.553149 | 0.276575 | − | 0.960992i | \(-0.410801\pi\) | ||||
0.276575 | + | 0.960992i | \(0.410801\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −121.751 | −0.209554 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 316.676i | 0.543183i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 904.762i | 1.54133i | 0.637239 | + | 0.770666i | \(0.280076\pi\) | ||||
−0.637239 | + | 0.770666i | \(0.719924\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 223.319 | 0.379149 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −747.325 | −1.26024 | −0.630122 | − | 0.776496i | \(-0.716995\pi\) | ||||
−0.630122 | + | 0.776496i | \(0.716995\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 874.385i | 1.45974i | 0.683585 | + | 0.729871i | \(0.260420\pi\) | ||||
−0.683585 | + | 0.729871i | \(0.739580\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −777.234 | −1.29323 | −0.646617 | − | 0.762815i | \(-0.723817\pi\) | ||||
−0.646617 | + | 0.762815i | \(0.723817\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 699.436i | 1.15228i | 0.817350 | + | 0.576142i | \(0.195442\pi\) | ||||
−0.817350 | + | 0.576142i | \(0.804558\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | − 183.075i | − 0.299631i | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 11.0820 | 0.0180784 | 0.00903918 | − | 0.999959i | \(-0.497123\pi\) | ||||
0.00903918 | + | 0.999959i | \(0.497123\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 1189.16 | 1.92733 | 0.963664 | − | 0.267119i | \(-0.0860715\pi\) | ||||
0.963664 | + | 0.267119i | \(0.0860715\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 325.717i | 0.526198i | 0.964769 | + | 0.263099i | \(0.0847446\pi\) | ||||
−0.964769 | + | 0.263099i | \(0.915255\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 78.9477i | 0.126722i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −601.495 | −0.956272 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | − 316.823i | − 0.502097i | −0.967975 | − | 0.251048i | \(-0.919225\pi\) | ||||
0.967975 | − | 0.251048i | \(-0.0807754\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −822.912 | −1.29186 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 149.587 | 0.233365 | 0.116682 | − | 0.993169i | \(-0.462774\pi\) | ||||
0.116682 | + | 0.993169i | \(0.462774\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 408.690i | − 0.635599i | −0.948158 | − | 0.317800i | \(-0.897056\pi\) | ||||
0.948158 | − | 0.317800i | \(-0.102944\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 104.383i | − 0.161334i | −0.996741 | − | 0.0806668i | \(-0.974295\pi\) | ||||
0.996741 | − | 0.0806668i | \(-0.0257050\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −502.663 | −0.774519 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −164.420 | −0.251791 | −0.125895 | − | 0.992044i | \(-0.540180\pi\) | ||||
−0.125895 | + | 0.992044i | \(0.540180\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | − 743.613i | − 1.12840i | −0.825640 | − | 0.564198i | \(-0.809186\pi\) | ||||
0.825640 | − | 0.564198i | \(-0.190814\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −758.073 | −1.14686 | −0.573429 | − | 0.819255i | \(-0.694387\pi\) | ||||
−0.573429 | + | 0.819255i | \(0.694387\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 134.078i | − 0.201017i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 867.843i | 1.29336i | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −364.164 | −0.541106 | −0.270553 | − | 0.962705i | \(-0.587206\pi\) | ||||
−0.270553 | + | 0.962705i | \(0.587206\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −708.079 | −1.04591 | −0.522953 | − | 0.852361i | \(-0.675170\pi\) | ||||
−0.522953 | + | 0.852361i | \(0.675170\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | − 143.119i | − 0.210780i | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 355.469i | 0.520452i | 0.965548 | + | 0.260226i | \(0.0837970\pi\) | ||||
−0.965548 | + | 0.260226i | \(0.916203\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 492.000 | 0.714078 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | − 116.769i | − 0.168985i | −0.996424 | − | 0.0844925i | \(-0.973073\pi\) | ||||
0.996424 | − | 0.0844925i | \(-0.0269269\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 508.486 | 0.729535 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 246.413 | 0.351517 | 0.175758 | − | 0.984433i | \(-0.443762\pi\) | ||||
0.175758 | + | 0.984433i | \(0.443762\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 176.862i | − 0.251582i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 110.704i | 0.156582i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −552.820 | −0.779718 | −0.389859 | − | 0.920874i | \(-0.627476\pi\) | ||||
−0.389859 | + | 0.920874i | \(0.627476\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 640.486 | 0.898297 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 99.9709i | 0.139042i | 0.997581 | + | 0.0695208i | \(0.0221470\pi\) | ||||
−0.997581 | + | 0.0695208i | \(0.977853\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −178.918 | −0.248153 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 1081.39i | − 1.48746i | −0.668479 | − | 0.743731i | \(-0.733054\pi\) | ||||
0.668479 | − | 0.743731i | \(-0.266946\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 456.819i | 0.624923i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −380.407 | −0.518973 | −0.259486 | − | 0.965747i | \(-0.583553\pi\) | ||||
−0.259486 | + | 0.965747i | \(0.583553\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 410.164 | 0.556532 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 1381.60i | 1.86955i | 0.355240 | + | 0.934775i | \(0.384399\pi\) | ||||
−0.355240 | + | 0.934775i | \(0.615601\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 267.424i | − 0.359924i | −0.983674 | − | 0.179962i | \(-0.942403\pi\) | ||||
0.983674 | − | 0.179962i | \(-0.0575975\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −161.921 | −0.216183 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 338.653i | 0.450937i | 0.974250 | + | 0.225468i | \(0.0723912\pi\) | ||||
−0.974250 | + | 0.225468i | \(0.927609\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −1247.91 | −1.64849 | −0.824246 | − | 0.566232i | \(-0.808401\pi\) | ||||
−0.824246 | + | 0.566232i | \(0.808401\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 14.3406 | 0.0188444 | 0.00942219 | − | 0.999956i | \(-0.497001\pi\) | ||||
0.00942219 | + | 0.999956i | \(0.497001\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 3.41853i | 0.00448038i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 780.956i | 1.01820i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 1036.99 | 1.34849 | 0.674246 | − | 0.738507i | \(-0.264469\pi\) | ||||
0.674246 | + | 0.738507i | \(0.264469\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 1197.91 | 1.54970 | 0.774848 | − | 0.632148i | \(-0.217826\pi\) | ||||
0.774848 | + | 0.632148i | \(0.217826\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 149.514i | 0.191931i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 1094.32 | 1.40118 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 99.1814i | − 0.126025i | −0.998013 | − | 0.0630123i | \(-0.979929\pi\) | ||||
0.998013 | − | 0.0630123i | \(-0.0200707\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | − 44.3282i | − 0.0560407i | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 1348.32 | 1.70027 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 139.240 | 0.174705 | 0.0873525 | − | 0.996177i | \(-0.472159\pi\) | ||||
0.0873525 | + | 0.996177i | \(0.472159\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 189.209i | 0.236807i | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 175.613i | 0.218696i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −403.653 | −0.498953 | −0.249477 | − | 0.968381i | \(-0.580259\pi\) | ||||
−0.249477 | + | 0.968381i | \(0.580259\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 384.561i | 0.474181i | 0.971488 | + | 0.237091i | \(0.0761938\pi\) | ||||
−0.971488 | + | 0.237091i | \(0.923806\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −134.322 | −0.164409 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 997.732 | 1.21526 | 0.607632 | − | 0.794219i | \(-0.292119\pi\) | ||||
0.607632 | + | 0.794219i | \(0.292119\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 955.281i | − 1.16073i | −0.814356 | − | 0.580365i | \(-0.802910\pi\) | ||||
0.814356 | − | 0.580365i | \(-0.197090\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 213.451i | − 0.258103i | −0.991638 | − | 0.129051i | \(-0.958807\pi\) | ||||
0.991638 | − | 0.129051i | \(-0.0411932\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −73.4288 | −0.0885752 | −0.0442876 | − | 0.999019i | \(-0.514102\pi\) | ||||
−0.0442876 | + | 0.999019i | \(0.514102\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 850.486 | 1.02099 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | − 643.642i | − 0.767154i | −0.923509 | − | 0.383577i | \(-0.874692\pi\) | ||||
0.923509 | − | 0.383577i | \(-0.125308\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −762.981 | −0.907231 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 6.17342i | − 0.00728857i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | − 507.247i | − 0.596060i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 351.410 | 0.411970 | 0.205985 | − | 0.978555i | \(-0.433960\pi\) | ||||
0.205985 | + | 0.978555i | \(0.433960\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 1326.16 | 1.54744 | 0.773721 | − | 0.633526i | \(-0.218393\pi\) | ||||
0.773721 | + | 0.633526i | \(0.218393\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | − 343.729i | − 0.400150i | −0.979781 | − | 0.200075i | \(-0.935881\pi\) | ||||
0.979781 | − | 0.200075i | \(-0.0641186\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 1136.15i | − 1.31651i | −0.752793 | − | 0.658257i | \(-0.771294\pi\) | ||||
0.752793 | − | 0.658257i | \(-0.228706\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −1256.66 | −1.44609 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | − 637.247i | − 0.731627i | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −769.076 | −0.876939 | −0.438470 | − | 0.898746i | \(-0.644479\pi\) | ||||
−0.438470 | + | 0.898746i | \(0.644479\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 731.568 | 0.830384 | 0.415192 | − | 0.909734i | \(-0.363714\pi\) | ||||
0.415192 | + | 0.909734i | \(0.363714\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 1066.19i | − 1.20746i | −0.797188 | − | 0.603731i | \(-0.793680\pi\) | ||||
0.797188 | − | 0.603731i | \(-0.206320\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 397.242i | 0.447848i | 0.974607 | + | 0.223924i | \(0.0718868\pi\) | ||||
−0.974607 | + | 0.223924i | \(0.928113\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 170.262 | 0.191520 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −55.6346 | −0.0623008 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 372.691i | 0.414562i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −508.486 | −0.564357 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 1021.02i | − 1.12571i | −0.826556 | − | 0.562855i | \(-0.809703\pi\) | ||||
0.826556 | − | 0.562855i | \(-0.190297\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | − 1118.66i | − 1.22794i | −0.789328 | − | 0.613971i | \(-0.789571\pi\) | ||||
0.789328 | − | 0.613971i | \(-0.210429\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 1031.49 | 1.12978 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −294.177 | −0.320803 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 1177.68i | 1.28148i | 0.767757 | + | 0.640741i | \(0.221373\pi\) | ||||
−0.767757 | + | 0.640741i | \(0.778627\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 1700.18i | − 1.84202i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 699.423 | 0.752877 | 0.376438 | − | 0.926442i | \(-0.377149\pi\) | ||||
0.376438 | + | 0.926442i | \(0.377149\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 250.075i | 0.268609i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 332.152 | 0.354484 | 0.177242 | − | 0.984167i | \(-0.443282\pi\) | ||||
0.177242 | + | 0.984167i | \(0.443282\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 1468.66 | 1.56075 | 0.780373 | − | 0.625314i | \(-0.215029\pi\) | ||||
0.780373 | + | 0.625314i | \(0.215029\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 428.811i | 0.454731i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 574.082i | − 0.606211i | −0.952957 | − | 0.303106i | \(-0.901976\pi\) | ||||
0.952957 | − | 0.303106i | \(-0.0980235\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 272.839 | 0.287502 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 280.663 | 0.294504 | 0.147252 | − | 0.989099i | \(-0.452957\pi\) | ||||
0.147252 | + | 0.989099i | \(0.452957\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 170.468i | 0.177756i | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −819.328 | −0.852579 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 1278.65i | − 1.32228i | −0.750262 | − | 0.661141i | \(-0.770073\pi\) | ||||
0.750262 | − | 0.661141i | \(-0.229927\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | − 117.723i | − 0.121239i | −0.998161 | − | 0.0606195i | \(-0.980692\pi\) | ||||
0.998161 | − | 0.0606195i | \(-0.0193076\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −305.313 | −0.313785 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 983.155 | 1.00630 | 0.503150 | − | 0.864199i | \(-0.332174\pi\) | ||||
0.503150 | + | 0.864199i | \(0.332174\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | − 668.856i | − 0.683203i | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 607.404i | − 0.617909i | −0.951077 | − | 0.308954i | \(-0.900021\pi\) | ||||
0.951077 | − | 0.308954i | \(-0.0999790\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −385.240 | −0.389525 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | − 408.413i | − 0.412122i | −0.978539 | − | 0.206061i | \(-0.933935\pi\) | ||||
0.978539 | − | 0.206061i | \(-0.0660645\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 1554.91 | 1.55959 | 0.779795 | − | 0.626035i | \(-0.215323\pi\) | ||||
0.779795 | + | 0.626035i | \(0.215323\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))