Properties

Label 3600.3.e.bb.3151.3
Level $3600$
Weight $3$
Character 3600.3151
Analytic conductor $98.093$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3600,3,Mod(3151,3600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3600.3151");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 3600.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(98.0928951697\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{43}]\)
Coefficient ring index: \( 2^{7}\cdot 3 \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3151.3
Root \(-0.309017 - 0.535233i\) of defining polynomial
Character \(\chi\) \(=\) 3600.3151
Dual form 3600.3.e.bb.3151.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.32317i q^{7} -11.2101i q^{11} -17.4164 q^{13} +18.0000 q^{17} +5.29268i q^{19} +15.1796i q^{23} -8.83282 q^{29} -42.1939i q^{31} -33.4164 q^{37} +28.2492 q^{41} +25.3788i q^{43} +10.5116i q^{47} +47.2492 q^{49} -28.2492 q^{53} -44.8403i q^{59} -77.4164 q^{61} +36.5889i q^{67} +97.6196i q^{71} -15.6656 q^{73} +14.8328 q^{77} -112.101i q^{79} +92.0145i q^{83} +59.6656 q^{89} -23.0449i q^{91} -108.164 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{13} + 72 q^{17} + 72 q^{29} - 80 q^{37} - 48 q^{41} + 28 q^{49} + 48 q^{53} - 256 q^{61} + 152 q^{73} - 48 q^{77} + 24 q^{89} + 104 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(2801\) \(3151\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.32317i 0.189024i 0.995524 + 0.0945121i \(0.0301291\pi\)
−0.995524 + 0.0945121i \(0.969871\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 11.2101i − 1.01910i −0.860442 0.509549i \(-0.829812\pi\)
0.860442 0.509549i \(-0.170188\pi\)
\(12\) 0 0
\(13\) −17.4164 −1.33972 −0.669862 0.742486i \(-0.733647\pi\)
−0.669862 + 0.742486i \(0.733647\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 18.0000 1.05882 0.529412 0.848365i \(-0.322413\pi\)
0.529412 + 0.848365i \(0.322413\pi\)
\(18\) 0 0
\(19\) 5.29268i 0.278562i 0.990253 + 0.139281i \(0.0444791\pi\)
−0.990253 + 0.139281i \(0.955521\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 15.1796i 0.659982i 0.943984 + 0.329991i \(0.107046\pi\)
−0.943984 + 0.329991i \(0.892954\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.83282 −0.304580 −0.152290 0.988336i \(-0.548665\pi\)
−0.152290 + 0.988336i \(0.548665\pi\)
\(30\) 0 0
\(31\) − 42.1939i − 1.36109i −0.732704 0.680547i \(-0.761742\pi\)
0.732704 0.680547i \(-0.238258\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −33.4164 −0.903146 −0.451573 0.892234i \(-0.649137\pi\)
−0.451573 + 0.892234i \(0.649137\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 28.2492 0.689005 0.344503 0.938785i \(-0.388048\pi\)
0.344503 + 0.938785i \(0.388048\pi\)
\(42\) 0 0
\(43\) 25.3788i 0.590205i 0.955466 + 0.295103i \(0.0953539\pi\)
−0.955466 + 0.295103i \(0.904646\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.5116i 0.223651i 0.993728 + 0.111826i \(0.0356698\pi\)
−0.993728 + 0.111826i \(0.964330\pi\)
\(48\) 0 0
\(49\) 47.2492 0.964270
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −28.2492 −0.533004 −0.266502 0.963834i \(-0.585868\pi\)
−0.266502 + 0.963834i \(0.585868\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 44.8403i − 0.760005i −0.924986 0.380002i \(-0.875923\pi\)
0.924986 0.380002i \(-0.124077\pi\)
\(60\) 0 0
\(61\) −77.4164 −1.26912 −0.634561 0.772873i \(-0.718819\pi\)
−0.634561 + 0.772873i \(0.718819\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 36.5889i 0.546103i 0.961999 + 0.273051i \(0.0880329\pi\)
−0.961999 + 0.273051i \(0.911967\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 97.6196i 1.37492i 0.726221 + 0.687462i \(0.241275\pi\)
−0.726221 + 0.687462i \(0.758725\pi\)
\(72\) 0 0
\(73\) −15.6656 −0.214598 −0.107299 0.994227i \(-0.534220\pi\)
−0.107299 + 0.994227i \(0.534220\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 14.8328 0.192634
\(78\) 0 0
\(79\) − 112.101i − 1.41900i −0.704707 0.709498i \(-0.748922\pi\)
0.704707 0.709498i \(-0.251078\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 92.0145i 1.10861i 0.832314 + 0.554304i \(0.187016\pi\)
−0.832314 + 0.554304i \(0.812984\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 59.6656 0.670400 0.335200 0.942147i \(-0.391196\pi\)
0.335200 + 0.942147i \(0.391196\pi\)
\(90\) 0 0
\(91\) − 23.0449i − 0.253240i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −108.164 −1.11509 −0.557547 0.830146i \(-0.688257\pi\)
−0.557547 + 0.830146i \(0.688257\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 83.6656 0.828373 0.414186 0.910192i \(-0.364066\pi\)
0.414186 + 0.910192i \(0.364066\pi\)
\(102\) 0 0
\(103\) 135.219i 1.31281i 0.754409 + 0.656404i \(0.227923\pi\)
−0.754409 + 0.656404i \(0.772077\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 122.374i 1.14368i 0.820365 + 0.571840i \(0.193770\pi\)
−0.820365 + 0.571840i \(0.806230\pi\)
\(108\) 0 0
\(109\) 2.58359 0.0237027 0.0118513 0.999930i \(-0.496228\pi\)
0.0118513 + 0.999930i \(0.496228\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −33.5016 −0.296474 −0.148237 0.988952i \(-0.547360\pi\)
−0.148237 + 0.988952i \(0.547360\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 23.8170i 0.200143i
\(120\) 0 0
\(121\) −4.66563 −0.0385589
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 128.677i − 1.01321i −0.862179 0.506603i \(-0.830901\pi\)
0.862179 0.506603i \(-0.169099\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 222.327i 1.69715i 0.529072 + 0.848577i \(0.322540\pi\)
−0.529072 + 0.848577i \(0.677460\pi\)
\(132\) 0 0
\(133\) −7.00311 −0.0526549
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 128.833 0.940386 0.470193 0.882564i \(-0.344184\pi\)
0.470193 + 0.882564i \(0.344184\pi\)
\(138\) 0 0
\(139\) 230.743i 1.66002i 0.557745 + 0.830012i \(0.311667\pi\)
−0.557745 + 0.830012i \(0.688333\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 195.239i 1.36531i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −285.915 −1.91889 −0.959446 0.281893i \(-0.909038\pi\)
−0.959446 + 0.281893i \(0.909038\pi\)
\(150\) 0 0
\(151\) 64.6141i 0.427908i 0.976844 + 0.213954i \(0.0686342\pi\)
−0.976844 + 0.213954i \(0.931366\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 14.5836 0.0928891 0.0464446 0.998921i \(-0.485211\pi\)
0.0464446 + 0.998921i \(0.485211\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −20.0851 −0.124752
\(162\) 0 0
\(163\) 20.8583i 0.127965i 0.997951 + 0.0639827i \(0.0203802\pi\)
−0.997951 + 0.0639827i \(0.979620\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 216.961i − 1.29917i −0.760290 0.649583i \(-0.774943\pi\)
0.760290 0.649583i \(-0.225057\pi\)
\(168\) 0 0
\(169\) 134.331 0.794860
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −46.5836 −0.269269 −0.134635 0.990895i \(-0.542986\pi\)
−0.134635 + 0.990895i \(0.542986\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.54211i 0.0365481i 0.999833 + 0.0182740i \(0.00581713\pi\)
−0.999833 + 0.0182740i \(0.994183\pi\)
\(180\) 0 0
\(181\) −241.331 −1.33332 −0.666661 0.745361i \(-0.732277\pi\)
−0.666661 + 0.745361i \(0.732277\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 201.781i − 1.07904i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 59.3214i − 0.310583i −0.987869 0.155292i \(-0.950368\pi\)
0.987869 0.155292i \(-0.0496317\pi\)
\(192\) 0 0
\(193\) −234.997 −1.21760 −0.608800 0.793324i \(-0.708349\pi\)
−0.608800 + 0.793324i \(0.708349\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 230.912 1.17214 0.586070 0.810260i \(-0.300674\pi\)
0.586070 + 0.810260i \(0.300674\pi\)
\(198\) 0 0
\(199\) 27.7128i 0.139260i 0.997573 + 0.0696302i \(0.0221819\pi\)
−0.997573 + 0.0696302i \(0.977818\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 11.6873i − 0.0575729i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 59.3313 0.283882
\(210\) 0 0
\(211\) 93.0991i 0.441228i 0.975361 + 0.220614i \(0.0708061\pi\)
−0.975361 + 0.220614i \(0.929194\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 55.8297 0.257280
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −313.495 −1.41853
\(222\) 0 0
\(223\) − 307.891i − 1.38068i −0.723487 0.690338i \(-0.757462\pi\)
0.723487 0.690338i \(-0.242538\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 255.020i − 1.12344i −0.827328 0.561719i \(-0.810140\pi\)
0.827328 0.561719i \(-0.189860\pi\)
\(228\) 0 0
\(229\) −411.495 −1.79692 −0.898461 0.439052i \(-0.855314\pi\)
−0.898461 + 0.439052i \(0.855314\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −332.833 −1.42847 −0.714234 0.699907i \(-0.753225\pi\)
−0.714234 + 0.699907i \(0.753225\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 266.248i 1.11401i 0.830510 + 0.557004i \(0.188049\pi\)
−0.830510 + 0.557004i \(0.811951\pi\)
\(240\) 0 0
\(241\) −78.5836 −0.326073 −0.163036 0.986620i \(-0.552129\pi\)
−0.163036 + 0.986620i \(0.552129\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 92.1794i − 0.373196i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 404.482i 1.61148i 0.592268 + 0.805741i \(0.298233\pi\)
−0.592268 + 0.805741i \(0.701767\pi\)
\(252\) 0 0
\(253\) 170.164 0.672585
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −85.8297 −0.333968 −0.166984 0.985960i \(-0.553403\pi\)
−0.166984 + 0.985960i \(0.553403\pi\)
\(258\) 0 0
\(259\) − 44.2156i − 0.170716i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 440.685i 1.67561i 0.545971 + 0.837804i \(0.316161\pi\)
−0.545971 + 0.837804i \(0.683839\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 205.416 0.763630 0.381815 0.924239i \(-0.375299\pi\)
0.381815 + 0.924239i \(0.375299\pi\)
\(270\) 0 0
\(271\) 418.044i 1.54260i 0.636474 + 0.771298i \(0.280392\pi\)
−0.636474 + 0.771298i \(0.719608\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 511.410 1.84625 0.923123 0.384505i \(-0.125628\pi\)
0.923123 + 0.384505i \(0.125628\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −115.751 −0.411924 −0.205962 0.978560i \(-0.566032\pi\)
−0.205962 + 0.978560i \(0.566032\pi\)
\(282\) 0 0
\(283\) 402.001i 1.42050i 0.703951 + 0.710249i \(0.251417\pi\)
−0.703951 + 0.710249i \(0.748583\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 37.3785i 0.130239i
\(288\) 0 0
\(289\) 35.0000 0.121107
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 90.4133 0.308578 0.154289 0.988026i \(-0.450691\pi\)
0.154289 + 0.988026i \(0.450691\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 264.374i − 0.884193i
\(300\) 0 0
\(301\) −33.5805 −0.111563
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 275.419i 0.897130i 0.893750 + 0.448565i \(0.148065\pi\)
−0.893750 + 0.448565i \(0.851935\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 485.304i 1.56046i 0.625491 + 0.780231i \(0.284899\pi\)
−0.625491 + 0.780231i \(0.715101\pi\)
\(312\) 0 0
\(313\) −2.00000 −0.00638978 −0.00319489 0.999995i \(-0.501017\pi\)
−0.00319489 + 0.999995i \(0.501017\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −394.741 −1.24524 −0.622621 0.782524i \(-0.713932\pi\)
−0.622621 + 0.782524i \(0.713932\pi\)
\(318\) 0 0
\(319\) 99.0165i 0.310396i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 95.2682i 0.294948i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −13.9086 −0.0422755
\(330\) 0 0
\(331\) 296.130i 0.894652i 0.894371 + 0.447326i \(0.147624\pi\)
−0.894371 + 0.447326i \(0.852376\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −19.9938 −0.0593288 −0.0296644 0.999560i \(-0.509444\pi\)
−0.0296644 + 0.999560i \(0.509444\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −472.997 −1.38709
\(342\) 0 0
\(343\) 127.354i 0.371294i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 546.959i − 1.57625i −0.615514 0.788126i \(-0.711052\pi\)
0.615514 0.788126i \(-0.288948\pi\)
\(348\) 0 0
\(349\) 40.8328 0.116999 0.0584997 0.998287i \(-0.481368\pi\)
0.0584997 + 0.998287i \(0.481368\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −555.325 −1.57316 −0.786579 0.617489i \(-0.788150\pi\)
−0.786579 + 0.617489i \(0.788150\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 326.012i 0.908110i 0.890974 + 0.454055i \(0.150023\pi\)
−0.890974 + 0.454055i \(0.849977\pi\)
\(360\) 0 0
\(361\) 332.988 0.922403
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 13.6352i 0.0371531i 0.999827 + 0.0185766i \(0.00591344\pi\)
−0.999827 + 0.0185766i \(0.994087\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 37.3785i − 0.100751i
\(372\) 0 0
\(373\) 136.748 0.366616 0.183308 0.983056i \(-0.441319\pi\)
0.183308 + 0.983056i \(0.441319\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 153.836 0.408053
\(378\) 0 0
\(379\) 186.198i 0.491288i 0.969360 + 0.245644i \(0.0789994\pi\)
−0.969360 + 0.245644i \(0.921001\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 475.712i 1.24207i 0.783784 + 0.621034i \(0.213287\pi\)
−0.783784 + 0.621034i \(0.786713\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −11.9211 −0.0306454 −0.0153227 0.999883i \(-0.504878\pi\)
−0.0153227 + 0.999883i \(0.504878\pi\)
\(390\) 0 0
\(391\) 273.232i 0.698804i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −250.754 −0.631622 −0.315811 0.948822i \(-0.602277\pi\)
−0.315811 + 0.948822i \(0.602277\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −550.328 −1.37239 −0.686195 0.727418i \(-0.740720\pi\)
−0.686195 + 0.727418i \(0.740720\pi\)
\(402\) 0 0
\(403\) 734.867i 1.82349i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 374.600i 0.920394i
\(408\) 0 0
\(409\) −27.0820 −0.0662153 −0.0331076 0.999452i \(-0.510540\pi\)
−0.0331076 + 0.999452i \(0.510540\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 59.3313 0.143659
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 198.033i 0.472632i 0.971676 + 0.236316i \(0.0759401\pi\)
−0.971676 + 0.236316i \(0.924060\pi\)
\(420\) 0 0
\(421\) 475.580 1.12964 0.564822 0.825212i \(-0.308945\pi\)
0.564822 + 0.825212i \(0.308945\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 102.435i − 0.239895i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 489.052i − 1.13469i −0.823479 0.567346i \(-0.807970\pi\)
0.823479 0.567346i \(-0.192030\pi\)
\(432\) 0 0
\(433\) −622.498 −1.43764 −0.718820 0.695196i \(-0.755318\pi\)
−0.718820 + 0.695196i \(0.755318\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −80.3406 −0.183846
\(438\) 0 0
\(439\) − 552.712i − 1.25902i −0.776990 0.629512i \(-0.783255\pi\)
0.776990 0.629512i \(-0.216745\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 668.873i 1.50987i 0.655799 + 0.754936i \(0.272332\pi\)
−0.655799 + 0.754936i \(0.727668\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 280.407 0.624515 0.312257 0.949998i \(-0.398915\pi\)
0.312257 + 0.949998i \(0.398915\pi\)
\(450\) 0 0
\(451\) − 316.676i − 0.702163i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 320.334 0.700950 0.350475 0.936572i \(-0.386020\pi\)
0.350475 + 0.936572i \(0.386020\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −163.337 −0.354311 −0.177156 0.984183i \(-0.556690\pi\)
−0.177156 + 0.984183i \(0.556690\pi\)
\(462\) 0 0
\(463\) − 108.131i − 0.233545i −0.993159 0.116772i \(-0.962745\pi\)
0.993159 0.116772i \(-0.0372548\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 207.386i − 0.444082i −0.975037 0.222041i \(-0.928728\pi\)
0.975037 0.222041i \(-0.0712719\pi\)
\(468\) 0 0
\(469\) −48.4133 −0.103227
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 284.498 0.601477
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 233.537i − 0.487552i −0.969832 0.243776i \(-0.921614\pi\)
0.969832 0.243776i \(-0.0783861\pi\)
\(480\) 0 0
\(481\) 581.994 1.20997
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 308.368i 0.633199i 0.948559 + 0.316600i \(0.102541\pi\)
−0.948559 + 0.316600i \(0.897459\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 187.777i 0.382439i 0.981547 + 0.191219i \(0.0612442\pi\)
−0.981547 + 0.191219i \(0.938756\pi\)
\(492\) 0 0
\(493\) −158.991 −0.322496
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −129.167 −0.259894
\(498\) 0 0
\(499\) − 231.038i − 0.463003i −0.972835 0.231501i \(-0.925636\pi\)
0.972835 0.231501i \(-0.0743638\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 389.780i 0.774910i 0.921889 + 0.387455i \(0.126646\pi\)
−0.921889 + 0.387455i \(0.873354\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −363.167 −0.713492 −0.356746 0.934202i \(-0.616114\pi\)
−0.356746 + 0.934202i \(0.616114\pi\)
\(510\) 0 0
\(511\) − 20.7283i − 0.0405641i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 117.836 0.227922
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 491.666 0.943696 0.471848 0.881680i \(-0.343587\pi\)
0.471848 + 0.881680i \(0.343587\pi\)
\(522\) 0 0
\(523\) 133.914i 0.256049i 0.991771 + 0.128024i \(0.0408636\pi\)
−0.991771 + 0.128024i \(0.959136\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 759.491i − 1.44116i
\(528\) 0 0
\(529\) 298.580 0.564424
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −492.000 −0.923077
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 529.667i − 0.982685i
\(540\) 0 0
\(541\) −303.337 −0.560698 −0.280349 0.959898i \(-0.590450\pi\)
−0.280349 + 0.959898i \(0.590450\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 89.6631i − 0.163918i −0.996636 0.0819590i \(-0.973882\pi\)
0.996636 0.0819590i \(-0.0261177\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 46.7492i − 0.0848443i
\(552\) 0 0
\(553\) 148.328 0.268225
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −490.741 −0.881044 −0.440522 0.897742i \(-0.645207\pi\)
−0.440522 + 0.897742i \(0.645207\pi\)
\(558\) 0 0
\(559\) − 442.008i − 0.790712i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 987.423i − 1.75386i −0.480618 0.876930i \(-0.659588\pi\)
0.480618 0.876930i \(-0.340412\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 475.082 0.834942 0.417471 0.908690i \(-0.362917\pi\)
0.417471 + 0.908690i \(0.362917\pi\)
\(570\) 0 0
\(571\) − 182.485i − 0.319588i −0.987150 0.159794i \(-0.948917\pi\)
0.987150 0.159794i \(-0.0510830\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 319.167 0.553149 0.276575 0.960992i \(-0.410801\pi\)
0.276575 + 0.960992i \(0.410801\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −121.751 −0.209554
\(582\) 0 0
\(583\) 316.676i 0.543183i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 904.762i 1.54133i 0.637239 + 0.770666i \(0.280076\pi\)
−0.637239 + 0.770666i \(0.719924\pi\)
\(588\) 0 0
\(589\) 223.319 0.379149
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −747.325 −1.26024 −0.630122 0.776496i \(-0.716995\pi\)
−0.630122 + 0.776496i \(0.716995\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 874.385i 1.45974i 0.683585 + 0.729871i \(0.260420\pi\)
−0.683585 + 0.729871i \(0.739580\pi\)
\(600\) 0 0
\(601\) −777.234 −1.29323 −0.646617 0.762815i \(-0.723817\pi\)
−0.646617 + 0.762815i \(0.723817\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 699.436i 1.15228i 0.817350 + 0.576142i \(0.195442\pi\)
−0.817350 + 0.576142i \(0.804558\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 183.075i − 0.299631i
\(612\) 0 0
\(613\) 11.0820 0.0180784 0.00903918 0.999959i \(-0.497123\pi\)
0.00903918 + 0.999959i \(0.497123\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1189.16 1.92733 0.963664 0.267119i \(-0.0860715\pi\)
0.963664 + 0.267119i \(0.0860715\pi\)
\(618\) 0 0
\(619\) 325.717i 0.526198i 0.964769 + 0.263099i \(0.0847446\pi\)
−0.964769 + 0.263099i \(0.915255\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 78.9477i 0.126722i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −601.495 −0.956272
\(630\) 0 0
\(631\) − 316.823i − 0.502097i −0.967975 0.251048i \(-0.919225\pi\)
0.967975 0.251048i \(-0.0807754\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −822.912 −1.29186
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 149.587 0.233365 0.116682 0.993169i \(-0.462774\pi\)
0.116682 + 0.993169i \(0.462774\pi\)
\(642\) 0 0
\(643\) − 408.690i − 0.635599i −0.948158 0.317800i \(-0.897056\pi\)
0.948158 0.317800i \(-0.102944\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 104.383i − 0.161334i −0.996741 0.0806668i \(-0.974295\pi\)
0.996741 0.0806668i \(-0.0257050\pi\)
\(648\) 0 0
\(649\) −502.663 −0.774519
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −164.420 −0.251791 −0.125895 0.992044i \(-0.540180\pi\)
−0.125895 + 0.992044i \(0.540180\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 743.613i − 1.12840i −0.825640 0.564198i \(-0.809186\pi\)
0.825640 0.564198i \(-0.190814\pi\)
\(660\) 0 0
\(661\) −758.073 −1.14686 −0.573429 0.819255i \(-0.694387\pi\)
−0.573429 + 0.819255i \(0.694387\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 134.078i − 0.201017i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 867.843i 1.29336i
\(672\) 0 0
\(673\) −364.164 −0.541106 −0.270553 0.962705i \(-0.587206\pi\)
−0.270553 + 0.962705i \(0.587206\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −708.079 −1.04591 −0.522953 0.852361i \(-0.675170\pi\)
−0.522953 + 0.852361i \(0.675170\pi\)
\(678\) 0 0
\(679\) − 143.119i − 0.210780i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 355.469i 0.520452i 0.965548 + 0.260226i \(0.0837970\pi\)
−0.965548 + 0.260226i \(0.916203\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 492.000 0.714078
\(690\) 0 0
\(691\) − 116.769i − 0.168985i −0.996424 0.0844925i \(-0.973073\pi\)
0.996424 0.0844925i \(-0.0269269\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 508.486 0.729535
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 246.413 0.351517 0.175758 0.984433i \(-0.443762\pi\)
0.175758 + 0.984433i \(0.443762\pi\)
\(702\) 0 0
\(703\) − 176.862i − 0.251582i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 110.704i 0.156582i
\(708\) 0 0
\(709\) −552.820 −0.779718 −0.389859 0.920874i \(-0.627476\pi\)
−0.389859 + 0.920874i \(0.627476\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 640.486 0.898297
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 99.9709i 0.139042i 0.997581 + 0.0695208i \(0.0221470\pi\)
−0.997581 + 0.0695208i \(0.977853\pi\)
\(720\) 0 0
\(721\) −178.918 −0.248153
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 1081.39i − 1.48746i −0.668479 0.743731i \(-0.733054\pi\)
0.668479 0.743731i \(-0.266946\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 456.819i 0.624923i
\(732\) 0 0
\(733\) −380.407 −0.518973 −0.259486 0.965747i \(-0.583553\pi\)
−0.259486 + 0.965747i \(0.583553\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 410.164 0.556532
\(738\) 0 0
\(739\) 1381.60i 1.86955i 0.355240 + 0.934775i \(0.384399\pi\)
−0.355240 + 0.934775i \(0.615601\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 267.424i − 0.359924i −0.983674 0.179962i \(-0.942403\pi\)
0.983674 0.179962i \(-0.0575975\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −161.921 −0.216183
\(750\) 0 0
\(751\) 338.653i 0.450937i 0.974250 + 0.225468i \(0.0723912\pi\)
−0.974250 + 0.225468i \(0.927609\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1247.91 −1.64849 −0.824246 0.566232i \(-0.808401\pi\)
−0.824246 + 0.566232i \(0.808401\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.3406 0.0188444 0.00942219 0.999956i \(-0.497001\pi\)
0.00942219 + 0.999956i \(0.497001\pi\)
\(762\) 0 0
\(763\) 3.41853i 0.00448038i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 780.956i 1.01820i
\(768\) 0 0
\(769\) 1036.99 1.34849 0.674246 0.738507i \(-0.264469\pi\)
0.674246 + 0.738507i \(0.264469\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1197.91 1.54970 0.774848 0.632148i \(-0.217826\pi\)
0.774848 + 0.632148i \(0.217826\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 149.514i 0.191931i
\(780\) 0 0
\(781\) 1094.32 1.40118
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 99.1814i − 0.126025i −0.998013 0.0630123i \(-0.979929\pi\)
0.998013 0.0630123i \(-0.0200707\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 44.3282i − 0.0560407i
\(792\) 0 0
\(793\) 1348.32 1.70027
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 139.240 0.174705 0.0873525 0.996177i \(-0.472159\pi\)
0.0873525 + 0.996177i \(0.472159\pi\)
\(798\) 0 0
\(799\) 189.209i 0.236807i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 175.613i 0.218696i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −403.653 −0.498953 −0.249477 0.968381i \(-0.580259\pi\)
−0.249477 + 0.968381i \(0.580259\pi\)
\(810\) 0 0
\(811\) 384.561i 0.474181i 0.971488 + 0.237091i \(0.0761938\pi\)
−0.971488 + 0.237091i \(0.923806\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −134.322 −0.164409
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 997.732 1.21526 0.607632 0.794219i \(-0.292119\pi\)
0.607632 + 0.794219i \(0.292119\pi\)
\(822\) 0 0
\(823\) − 955.281i − 1.16073i −0.814356 0.580365i \(-0.802910\pi\)
0.814356 0.580365i \(-0.197090\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 213.451i − 0.258103i −0.991638 0.129051i \(-0.958807\pi\)
0.991638 0.129051i \(-0.0411932\pi\)
\(828\) 0 0
\(829\) −73.4288 −0.0885752 −0.0442876 0.999019i \(-0.514102\pi\)
−0.0442876 + 0.999019i \(0.514102\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 850.486 1.02099
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 643.642i − 0.767154i −0.923509 0.383577i \(-0.874692\pi\)
0.923509 0.383577i \(-0.125308\pi\)
\(840\) 0 0
\(841\) −762.981 −0.907231
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 6.17342i − 0.00728857i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 507.247i − 0.596060i
\(852\) 0 0
\(853\) 351.410 0.411970 0.205985 0.978555i \(-0.433960\pi\)
0.205985 + 0.978555i \(0.433960\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1326.16 1.54744 0.773721 0.633526i \(-0.218393\pi\)
0.773721 + 0.633526i \(0.218393\pi\)
\(858\) 0 0
\(859\) − 343.729i − 0.400150i −0.979781 0.200075i \(-0.935881\pi\)
0.979781 0.200075i \(-0.0641186\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 1136.15i − 1.31651i −0.752793 0.658257i \(-0.771294\pi\)
0.752793 0.658257i \(-0.228706\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1256.66 −1.44609
\(870\) 0 0
\(871\) − 637.247i − 0.731627i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −769.076 −0.876939 −0.438470 0.898746i \(-0.644479\pi\)
−0.438470 + 0.898746i \(0.644479\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 731.568 0.830384 0.415192 0.909734i \(-0.363714\pi\)
0.415192 + 0.909734i \(0.363714\pi\)
\(882\) 0 0
\(883\) − 1066.19i − 1.20746i −0.797188 0.603731i \(-0.793680\pi\)
0.797188 0.603731i \(-0.206320\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 397.242i 0.447848i 0.974607 + 0.223924i \(0.0718868\pi\)
−0.974607 + 0.223924i \(0.928113\pi\)
\(888\) 0 0
\(889\) 170.262 0.191520
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −55.6346 −0.0623008
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 372.691i 0.414562i
\(900\) 0 0
\(901\) −508.486 −0.564357
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 1021.02i − 1.12571i −0.826556 0.562855i \(-0.809703\pi\)
0.826556 0.562855i \(-0.190297\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 1118.66i − 1.22794i −0.789328 0.613971i \(-0.789571\pi\)
0.789328 0.613971i \(-0.210429\pi\)
\(912\) 0 0
\(913\) 1031.49 1.12978
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −294.177 −0.320803
\(918\) 0 0
\(919\) 1177.68i 1.28148i 0.767757 + 0.640741i \(0.221373\pi\)
−0.767757 + 0.640741i \(0.778627\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 1700.18i − 1.84202i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 699.423 0.752877 0.376438 0.926442i \(-0.377149\pi\)
0.376438 + 0.926442i \(0.377149\pi\)
\(930\) 0 0
\(931\) 250.075i 0.268609i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 332.152 0.354484 0.177242 0.984167i \(-0.443282\pi\)
0.177242 + 0.984167i \(0.443282\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1468.66 1.56075 0.780373 0.625314i \(-0.215029\pi\)
0.780373 + 0.625314i \(0.215029\pi\)
\(942\) 0 0
\(943\) 428.811i 0.454731i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 574.082i − 0.606211i −0.952957 0.303106i \(-0.901976\pi\)
0.952957 0.303106i \(-0.0980235\pi\)
\(948\) 0 0
\(949\) 272.839 0.287502
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 280.663 0.294504 0.147252 0.989099i \(-0.452957\pi\)
0.147252 + 0.989099i \(0.452957\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 170.468i 0.177756i
\(960\) 0 0
\(961\) −819.328 −0.852579
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1278.65i − 1.32228i −0.750262 0.661141i \(-0.770073\pi\)
0.750262 0.661141i \(-0.229927\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 117.723i − 0.121239i −0.998161 0.0606195i \(-0.980692\pi\)
0.998161 0.0606195i \(-0.0193076\pi\)
\(972\) 0 0
\(973\) −305.313 −0.313785
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 983.155 1.00630 0.503150 0.864199i \(-0.332174\pi\)
0.503150 + 0.864199i \(0.332174\pi\)
\(978\) 0 0
\(979\) − 668.856i − 0.683203i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 607.404i − 0.617909i −0.951077 0.308954i \(-0.900021\pi\)
0.951077 0.308954i \(-0.0999790\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −385.240 −0.389525
\(990\) 0 0
\(991\) − 408.413i − 0.412122i −0.978539 0.206061i \(-0.933935\pi\)
0.978539 0.206061i \(-0.0660645\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1554.91 1.55959 0.779795 0.626035i \(-0.215323\pi\)
0.779795 + 0.626035i \(0.215323\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3600.3.e.bb.3151.3 4
3.2 odd 2 400.3.b.g.351.1 4
4.3 odd 2 inner 3600.3.e.bb.3151.2 4
5.2 odd 4 3600.3.j.k.1999.3 8
5.3 odd 4 3600.3.j.k.1999.5 8
5.4 even 2 720.3.e.c.271.3 4
12.11 even 2 400.3.b.g.351.4 4
15.2 even 4 400.3.h.d.399.2 8
15.8 even 4 400.3.h.d.399.8 8
15.14 odd 2 80.3.b.a.31.4 yes 4
20.3 even 4 3600.3.j.k.1999.4 8
20.7 even 4 3600.3.j.k.1999.6 8
20.19 odd 2 720.3.e.c.271.4 4
24.5 odd 2 1600.3.b.k.1151.4 4
24.11 even 2 1600.3.b.k.1151.1 4
40.19 odd 2 2880.3.e.b.2431.2 4
40.29 even 2 2880.3.e.b.2431.1 4
60.23 odd 4 400.3.h.d.399.1 8
60.47 odd 4 400.3.h.d.399.7 8
60.59 even 2 80.3.b.a.31.1 4
120.29 odd 2 320.3.b.a.191.1 4
120.53 even 4 1600.3.h.p.1599.1 8
120.59 even 2 320.3.b.a.191.4 4
120.77 even 4 1600.3.h.p.1599.7 8
120.83 odd 4 1600.3.h.p.1599.8 8
120.107 odd 4 1600.3.h.p.1599.2 8
240.29 odd 4 1280.3.g.f.1151.2 8
240.59 even 4 1280.3.g.f.1151.1 8
240.149 odd 4 1280.3.g.f.1151.7 8
240.179 even 4 1280.3.g.f.1151.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.3.b.a.31.1 4 60.59 even 2
80.3.b.a.31.4 yes 4 15.14 odd 2
320.3.b.a.191.1 4 120.29 odd 2
320.3.b.a.191.4 4 120.59 even 2
400.3.b.g.351.1 4 3.2 odd 2
400.3.b.g.351.4 4 12.11 even 2
400.3.h.d.399.1 8 60.23 odd 4
400.3.h.d.399.2 8 15.2 even 4
400.3.h.d.399.7 8 60.47 odd 4
400.3.h.d.399.8 8 15.8 even 4
720.3.e.c.271.3 4 5.4 even 2
720.3.e.c.271.4 4 20.19 odd 2
1280.3.g.f.1151.1 8 240.59 even 4
1280.3.g.f.1151.2 8 240.29 odd 4
1280.3.g.f.1151.7 8 240.149 odd 4
1280.3.g.f.1151.8 8 240.179 even 4
1600.3.b.k.1151.1 4 24.11 even 2
1600.3.b.k.1151.4 4 24.5 odd 2
1600.3.h.p.1599.1 8 120.53 even 4
1600.3.h.p.1599.2 8 120.107 odd 4
1600.3.h.p.1599.7 8 120.77 even 4
1600.3.h.p.1599.8 8 120.83 odd 4
2880.3.e.b.2431.1 4 40.29 even 2
2880.3.e.b.2431.2 4 40.19 odd 2
3600.3.e.bb.3151.2 4 4.3 odd 2 inner
3600.3.e.bb.3151.3 4 1.1 even 1 trivial
3600.3.j.k.1999.3 8 5.2 odd 4
3600.3.j.k.1999.4 8 20.3 even 4
3600.3.j.k.1999.5 8 5.3 odd 4
3600.3.j.k.1999.6 8 20.7 even 4