Properties

Label 400.3.h.d.399.8
Level $400$
Weight $3$
Character 400.399
Analytic conductor $10.899$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,3,Mod(399,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.399");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 400.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8992105744\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{17}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 399.8
Root \(-1.40126 - 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 400.399
Dual form 400.3.h.d.399.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.60503 q^{3} +1.32317 q^{7} +22.4164 q^{9} +11.2101i q^{11} -17.4164i q^{13} +18.0000i q^{17} -5.29268i q^{19} +7.41641 q^{21} +15.1796 q^{23} +75.1994 q^{27} -8.83282 q^{29} -42.1939i q^{31} +62.8328i q^{33} +33.4164i q^{37} -97.6196i q^{39} -28.2492 q^{41} -25.3788 q^{43} -10.5116 q^{47} -47.2492 q^{49} +100.891i q^{51} +28.2492i q^{53} -29.6656i q^{57} -44.8403i q^{59} -77.4164 q^{61} +29.6607 q^{63} +36.5889 q^{67} +85.0820 q^{69} -97.6196i q^{71} -15.6656i q^{73} +14.8328i q^{77} +112.101i q^{79} +219.748 q^{81} +92.0145 q^{83} -49.5082 q^{87} +59.6656 q^{89} -23.0449i q^{91} -236.498i q^{93} +108.164i q^{97} +251.289i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 72 q^{9} - 48 q^{21} + 144 q^{29} + 96 q^{41} - 56 q^{49} - 512 q^{61} + 144 q^{69} + 792 q^{81} + 48 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.60503 1.86834 0.934172 0.356822i \(-0.116140\pi\)
0.934172 + 0.356822i \(0.116140\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.32317 0.189024 0.0945121 0.995524i \(-0.469871\pi\)
0.0945121 + 0.995524i \(0.469871\pi\)
\(8\) 0 0
\(9\) 22.4164 2.49071
\(10\) 0 0
\(11\) 11.2101i 1.01910i 0.860442 + 0.509549i \(0.170188\pi\)
−0.860442 + 0.509549i \(0.829812\pi\)
\(12\) 0 0
\(13\) − 17.4164i − 1.33972i −0.742486 0.669862i \(-0.766353\pi\)
0.742486 0.669862i \(-0.233647\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 18.0000i 1.05882i 0.848365 + 0.529412i \(0.177587\pi\)
−0.848365 + 0.529412i \(0.822413\pi\)
\(18\) 0 0
\(19\) − 5.29268i − 0.278562i −0.990253 0.139281i \(-0.955521\pi\)
0.990253 0.139281i \(-0.0444791\pi\)
\(20\) 0 0
\(21\) 7.41641 0.353162
\(22\) 0 0
\(23\) 15.1796 0.659982 0.329991 0.943984i \(-0.392954\pi\)
0.329991 + 0.943984i \(0.392954\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 75.1994 2.78516
\(28\) 0 0
\(29\) −8.83282 −0.304580 −0.152290 0.988336i \(-0.548665\pi\)
−0.152290 + 0.988336i \(0.548665\pi\)
\(30\) 0 0
\(31\) − 42.1939i − 1.36109i −0.732704 0.680547i \(-0.761742\pi\)
0.732704 0.680547i \(-0.238258\pi\)
\(32\) 0 0
\(33\) 62.8328i 1.90402i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 33.4164i 0.903146i 0.892234 + 0.451573i \(0.149137\pi\)
−0.892234 + 0.451573i \(0.850863\pi\)
\(38\) 0 0
\(39\) − 97.6196i − 2.50307i
\(40\) 0 0
\(41\) −28.2492 −0.689005 −0.344503 0.938785i \(-0.611952\pi\)
−0.344503 + 0.938785i \(0.611952\pi\)
\(42\) 0 0
\(43\) −25.3788 −0.590205 −0.295103 0.955466i \(-0.595354\pi\)
−0.295103 + 0.955466i \(0.595354\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.5116 −0.223651 −0.111826 0.993728i \(-0.535670\pi\)
−0.111826 + 0.993728i \(0.535670\pi\)
\(48\) 0 0
\(49\) −47.2492 −0.964270
\(50\) 0 0
\(51\) 100.891i 1.97825i
\(52\) 0 0
\(53\) 28.2492i 0.533004i 0.963834 + 0.266502i \(0.0858679\pi\)
−0.963834 + 0.266502i \(0.914132\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 29.6656i − 0.520450i
\(58\) 0 0
\(59\) − 44.8403i − 0.760005i −0.924986 0.380002i \(-0.875923\pi\)
0.924986 0.380002i \(-0.124077\pi\)
\(60\) 0 0
\(61\) −77.4164 −1.26912 −0.634561 0.772873i \(-0.718819\pi\)
−0.634561 + 0.772873i \(0.718819\pi\)
\(62\) 0 0
\(63\) 29.6607 0.470805
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 36.5889 0.546103 0.273051 0.961999i \(-0.411967\pi\)
0.273051 + 0.961999i \(0.411967\pi\)
\(68\) 0 0
\(69\) 85.0820 1.23307
\(70\) 0 0
\(71\) − 97.6196i − 1.37492i −0.726221 0.687462i \(-0.758725\pi\)
0.726221 0.687462i \(-0.241275\pi\)
\(72\) 0 0
\(73\) − 15.6656i − 0.214598i −0.994227 0.107299i \(-0.965780\pi\)
0.994227 0.107299i \(-0.0342202\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 14.8328i 0.192634i
\(78\) 0 0
\(79\) 112.101i 1.41900i 0.704707 + 0.709498i \(0.251078\pi\)
−0.704707 + 0.709498i \(0.748922\pi\)
\(80\) 0 0
\(81\) 219.748 2.71293
\(82\) 0 0
\(83\) 92.0145 1.10861 0.554304 0.832314i \(-0.312984\pi\)
0.554304 + 0.832314i \(0.312984\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −49.5082 −0.569060
\(88\) 0 0
\(89\) 59.6656 0.670400 0.335200 0.942147i \(-0.391196\pi\)
0.335200 + 0.942147i \(0.391196\pi\)
\(90\) 0 0
\(91\) − 23.0449i − 0.253240i
\(92\) 0 0
\(93\) − 236.498i − 2.54299i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 108.164i 1.11509i 0.830146 + 0.557547i \(0.188257\pi\)
−0.830146 + 0.557547i \(0.811743\pi\)
\(98\) 0 0
\(99\) 251.289i 2.53828i
\(100\) 0 0
\(101\) −83.6656 −0.828373 −0.414186 0.910192i \(-0.635934\pi\)
−0.414186 + 0.910192i \(0.635934\pi\)
\(102\) 0 0
\(103\) −135.219 −1.31281 −0.656404 0.754409i \(-0.727923\pi\)
−0.656404 + 0.754409i \(0.727923\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −122.374 −1.14368 −0.571840 0.820365i \(-0.693770\pi\)
−0.571840 + 0.820365i \(0.693770\pi\)
\(108\) 0 0
\(109\) −2.58359 −0.0237027 −0.0118513 0.999930i \(-0.503772\pi\)
−0.0118513 + 0.999930i \(0.503772\pi\)
\(110\) 0 0
\(111\) 187.300i 1.68739i
\(112\) 0 0
\(113\) 33.5016i 0.296474i 0.988952 + 0.148237i \(0.0473598\pi\)
−0.988952 + 0.148237i \(0.952640\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 390.413i − 3.33687i
\(118\) 0 0
\(119\) 23.8170i 0.200143i
\(120\) 0 0
\(121\) −4.66563 −0.0385589
\(122\) 0 0
\(123\) −158.338 −1.28730
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −128.677 −1.01321 −0.506603 0.862179i \(-0.669099\pi\)
−0.506603 + 0.862179i \(0.669099\pi\)
\(128\) 0 0
\(129\) −142.249 −1.10271
\(130\) 0 0
\(131\) − 222.327i − 1.69715i −0.529072 0.848577i \(-0.677460\pi\)
0.529072 0.848577i \(-0.322540\pi\)
\(132\) 0 0
\(133\) − 7.00311i − 0.0526549i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 128.833i 0.940386i 0.882564 + 0.470193i \(0.155816\pi\)
−0.882564 + 0.470193i \(0.844184\pi\)
\(138\) 0 0
\(139\) − 230.743i − 1.66002i −0.557745 0.830012i \(-0.688333\pi\)
0.557745 0.830012i \(-0.311667\pi\)
\(140\) 0 0
\(141\) −58.9180 −0.417858
\(142\) 0 0
\(143\) 195.239 1.36531
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −264.834 −1.80159
\(148\) 0 0
\(149\) −285.915 −1.91889 −0.959446 0.281893i \(-0.909038\pi\)
−0.959446 + 0.281893i \(0.909038\pi\)
\(150\) 0 0
\(151\) 64.6141i 0.427908i 0.976844 + 0.213954i \(0.0686342\pi\)
−0.976844 + 0.213954i \(0.931366\pi\)
\(152\) 0 0
\(153\) 403.495i 2.63722i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 14.5836i − 0.0928891i −0.998921 0.0464446i \(-0.985211\pi\)
0.998921 0.0464446i \(-0.0147891\pi\)
\(158\) 0 0
\(159\) 158.338i 0.995836i
\(160\) 0 0
\(161\) 20.0851 0.124752
\(162\) 0 0
\(163\) −20.8583 −0.127965 −0.0639827 0.997951i \(-0.520380\pi\)
−0.0639827 + 0.997951i \(0.520380\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 216.961 1.29917 0.649583 0.760290i \(-0.274943\pi\)
0.649583 + 0.760290i \(0.274943\pi\)
\(168\) 0 0
\(169\) −134.331 −0.794860
\(170\) 0 0
\(171\) − 118.643i − 0.693817i
\(172\) 0 0
\(173\) 46.5836i 0.269269i 0.990895 + 0.134635i \(0.0429861\pi\)
−0.990895 + 0.134635i \(0.957014\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 251.331i − 1.41995i
\(178\) 0 0
\(179\) 6.54211i 0.0365481i 0.999833 + 0.0182740i \(0.00581713\pi\)
−0.999833 + 0.0182740i \(0.994183\pi\)
\(180\) 0 0
\(181\) −241.331 −1.33332 −0.666661 0.745361i \(-0.732277\pi\)
−0.666661 + 0.745361i \(0.732277\pi\)
\(182\) 0 0
\(183\) −433.922 −2.37116
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −201.781 −1.07904
\(188\) 0 0
\(189\) 99.5016 0.526463
\(190\) 0 0
\(191\) 59.3214i 0.310583i 0.987869 + 0.155292i \(0.0496317\pi\)
−0.987869 + 0.155292i \(0.950368\pi\)
\(192\) 0 0
\(193\) − 234.997i − 1.21760i −0.793324 0.608800i \(-0.791651\pi\)
0.793324 0.608800i \(-0.208349\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 230.912i 1.17214i 0.810260 + 0.586070i \(0.199326\pi\)
−0.810260 + 0.586070i \(0.800674\pi\)
\(198\) 0 0
\(199\) − 27.7128i − 0.139260i −0.997573 0.0696302i \(-0.977818\pi\)
0.997573 0.0696302i \(-0.0221819\pi\)
\(200\) 0 0
\(201\) 205.082 1.02031
\(202\) 0 0
\(203\) −11.6873 −0.0575729
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 340.272 1.64382
\(208\) 0 0
\(209\) 59.3313 0.283882
\(210\) 0 0
\(211\) 93.0991i 0.441228i 0.975361 + 0.220614i \(0.0708061\pi\)
−0.975361 + 0.220614i \(0.929194\pi\)
\(212\) 0 0
\(213\) − 547.161i − 2.56883i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 55.8297i − 0.257280i
\(218\) 0 0
\(219\) − 87.8064i − 0.400942i
\(220\) 0 0
\(221\) 313.495 1.41853
\(222\) 0 0
\(223\) 307.891 1.38068 0.690338 0.723487i \(-0.257462\pi\)
0.690338 + 0.723487i \(0.257462\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 255.020 1.12344 0.561719 0.827328i \(-0.310140\pi\)
0.561719 + 0.827328i \(0.310140\pi\)
\(228\) 0 0
\(229\) 411.495 1.79692 0.898461 0.439052i \(-0.144686\pi\)
0.898461 + 0.439052i \(0.144686\pi\)
\(230\) 0 0
\(231\) 83.1384i 0.359907i
\(232\) 0 0
\(233\) 332.833i 1.42847i 0.699907 + 0.714234i \(0.253225\pi\)
−0.699907 + 0.714234i \(0.746775\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 628.328i 2.65117i
\(238\) 0 0
\(239\) 266.248i 1.11401i 0.830510 + 0.557004i \(0.188049\pi\)
−0.830510 + 0.557004i \(0.811951\pi\)
\(240\) 0 0
\(241\) −78.5836 −0.326073 −0.163036 0.986620i \(-0.552129\pi\)
−0.163036 + 0.986620i \(0.552129\pi\)
\(242\) 0 0
\(243\) 554.898 2.28353
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −92.1794 −0.373196
\(248\) 0 0
\(249\) 515.745 2.07126
\(250\) 0 0
\(251\) − 404.482i − 1.61148i −0.592268 0.805741i \(-0.701767\pi\)
0.592268 0.805741i \(-0.298233\pi\)
\(252\) 0 0
\(253\) 170.164i 0.672585i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 85.8297i − 0.333968i −0.985960 0.166984i \(-0.946597\pi\)
0.985960 0.166984i \(-0.0534028\pi\)
\(258\) 0 0
\(259\) 44.2156i 0.170716i
\(260\) 0 0
\(261\) −198.000 −0.758621
\(262\) 0 0
\(263\) 440.685 1.67561 0.837804 0.545971i \(-0.183839\pi\)
0.837804 + 0.545971i \(0.183839\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 334.428 1.25254
\(268\) 0 0
\(269\) 205.416 0.763630 0.381815 0.924239i \(-0.375299\pi\)
0.381815 + 0.924239i \(0.375299\pi\)
\(270\) 0 0
\(271\) 418.044i 1.54260i 0.636474 + 0.771298i \(0.280392\pi\)
−0.636474 + 0.771298i \(0.719608\pi\)
\(272\) 0 0
\(273\) − 129.167i − 0.473140i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 511.410i − 1.84625i −0.384505 0.923123i \(-0.625628\pi\)
0.384505 0.923123i \(-0.374372\pi\)
\(278\) 0 0
\(279\) − 945.836i − 3.39009i
\(280\) 0 0
\(281\) 115.751 0.411924 0.205962 0.978560i \(-0.433968\pi\)
0.205962 + 0.978560i \(0.433968\pi\)
\(282\) 0 0
\(283\) −402.001 −1.42050 −0.710249 0.703951i \(-0.751417\pi\)
−0.710249 + 0.703951i \(0.751417\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −37.3785 −0.130239
\(288\) 0 0
\(289\) −35.0000 −0.121107
\(290\) 0 0
\(291\) 606.263i 2.08338i
\(292\) 0 0
\(293\) − 90.4133i − 0.308578i −0.988026 0.154289i \(-0.950691\pi\)
0.988026 0.154289i \(-0.0493087\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 842.991i 2.83835i
\(298\) 0 0
\(299\) − 264.374i − 0.884193i
\(300\) 0 0
\(301\) −33.5805 −0.111563
\(302\) 0 0
\(303\) −468.949 −1.54769
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 275.419 0.897130 0.448565 0.893750i \(-0.351935\pi\)
0.448565 + 0.893750i \(0.351935\pi\)
\(308\) 0 0
\(309\) −757.909 −2.45278
\(310\) 0 0
\(311\) − 485.304i − 1.56046i −0.625491 0.780231i \(-0.715101\pi\)
0.625491 0.780231i \(-0.284899\pi\)
\(312\) 0 0
\(313\) − 2.00000i − 0.00638978i −0.999995 0.00319489i \(-0.998983\pi\)
0.999995 0.00319489i \(-0.00101697\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 394.741i − 1.24524i −0.782524 0.622621i \(-0.786068\pi\)
0.782524 0.622621i \(-0.213932\pi\)
\(318\) 0 0
\(319\) − 99.0165i − 0.310396i
\(320\) 0 0
\(321\) −685.909 −2.13679
\(322\) 0 0
\(323\) 95.2682 0.294948
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −14.4811 −0.0442848
\(328\) 0 0
\(329\) −13.9086 −0.0422755
\(330\) 0 0
\(331\) 296.130i 0.894652i 0.894371 + 0.447326i \(0.147624\pi\)
−0.894371 + 0.447326i \(0.852376\pi\)
\(332\) 0 0
\(333\) 749.076i 2.24948i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 19.9938i 0.0593288i 0.999560 + 0.0296644i \(0.00944385\pi\)
−0.999560 + 0.0296644i \(0.990556\pi\)
\(338\) 0 0
\(339\) 187.777i 0.553915i
\(340\) 0 0
\(341\) 472.997 1.38709
\(342\) 0 0
\(343\) −127.354 −0.371294
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 546.959 1.57625 0.788126 0.615514i \(-0.211052\pi\)
0.788126 + 0.615514i \(0.211052\pi\)
\(348\) 0 0
\(349\) −40.8328 −0.116999 −0.0584997 0.998287i \(-0.518632\pi\)
−0.0584997 + 0.998287i \(0.518632\pi\)
\(350\) 0 0
\(351\) − 1309.70i − 3.73135i
\(352\) 0 0
\(353\) 555.325i 1.57316i 0.617489 + 0.786579i \(0.288150\pi\)
−0.617489 + 0.786579i \(0.711850\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 133.495i 0.373937i
\(358\) 0 0
\(359\) 326.012i 0.908110i 0.890974 + 0.454055i \(0.150023\pi\)
−0.890974 + 0.454055i \(0.849977\pi\)
\(360\) 0 0
\(361\) 332.988 0.922403
\(362\) 0 0
\(363\) −26.1510 −0.0720414
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 13.6352 0.0371531 0.0185766 0.999827i \(-0.494087\pi\)
0.0185766 + 0.999827i \(0.494087\pi\)
\(368\) 0 0
\(369\) −633.246 −1.71611
\(370\) 0 0
\(371\) 37.3785i 0.100751i
\(372\) 0 0
\(373\) 136.748i 0.366616i 0.983056 + 0.183308i \(0.0586805\pi\)
−0.983056 + 0.183308i \(0.941319\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 153.836i 0.408053i
\(378\) 0 0
\(379\) − 186.198i − 0.491288i −0.969360 0.245644i \(-0.921001\pi\)
0.969360 0.245644i \(-0.0789994\pi\)
\(380\) 0 0
\(381\) −721.240 −1.89302
\(382\) 0 0
\(383\) 475.712 1.24207 0.621034 0.783784i \(-0.286713\pi\)
0.621034 + 0.783784i \(0.286713\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −568.902 −1.47003
\(388\) 0 0
\(389\) −11.9211 −0.0306454 −0.0153227 0.999883i \(-0.504878\pi\)
−0.0153227 + 0.999883i \(0.504878\pi\)
\(390\) 0 0
\(391\) 273.232i 0.698804i
\(392\) 0 0
\(393\) − 1246.15i − 3.17087i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 250.754i 0.631622i 0.948822 + 0.315811i \(0.102277\pi\)
−0.948822 + 0.315811i \(0.897723\pi\)
\(398\) 0 0
\(399\) − 39.2526i − 0.0983776i
\(400\) 0 0
\(401\) 550.328 1.37239 0.686195 0.727418i \(-0.259280\pi\)
0.686195 + 0.727418i \(0.259280\pi\)
\(402\) 0 0
\(403\) −734.867 −1.82349
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −374.600 −0.920394
\(408\) 0 0
\(409\) 27.0820 0.0662153 0.0331076 0.999452i \(-0.489460\pi\)
0.0331076 + 0.999452i \(0.489460\pi\)
\(410\) 0 0
\(411\) 722.112i 1.75696i
\(412\) 0 0
\(413\) − 59.3313i − 0.143659i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 1293.33i − 3.10150i
\(418\) 0 0
\(419\) 198.033i 0.472632i 0.971676 + 0.236316i \(0.0759401\pi\)
−0.971676 + 0.236316i \(0.924060\pi\)
\(420\) 0 0
\(421\) 475.580 1.12964 0.564822 0.825212i \(-0.308945\pi\)
0.564822 + 0.825212i \(0.308945\pi\)
\(422\) 0 0
\(423\) −235.633 −0.557051
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −102.435 −0.239895
\(428\) 0 0
\(429\) 1094.32 2.55087
\(430\) 0 0
\(431\) 489.052i 1.13469i 0.823479 + 0.567346i \(0.192030\pi\)
−0.823479 + 0.567346i \(0.807970\pi\)
\(432\) 0 0
\(433\) − 622.498i − 1.43764i −0.695196 0.718820i \(-0.744682\pi\)
0.695196 0.718820i \(-0.255318\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 80.3406i − 0.183846i
\(438\) 0 0
\(439\) 552.712i 1.25902i 0.776990 + 0.629512i \(0.216745\pi\)
−0.776990 + 0.629512i \(0.783255\pi\)
\(440\) 0 0
\(441\) −1059.16 −2.40172
\(442\) 0 0
\(443\) 668.873 1.50987 0.754936 0.655799i \(-0.227668\pi\)
0.754936 + 0.655799i \(0.227668\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −1602.56 −3.58515
\(448\) 0 0
\(449\) 280.407 0.624515 0.312257 0.949998i \(-0.398915\pi\)
0.312257 + 0.949998i \(0.398915\pi\)
\(450\) 0 0
\(451\) − 316.676i − 0.702163i
\(452\) 0 0
\(453\) 362.164i 0.799479i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 320.334i − 0.700950i −0.936572 0.350475i \(-0.886020\pi\)
0.936572 0.350475i \(-0.113980\pi\)
\(458\) 0 0
\(459\) 1353.59i 2.94900i
\(460\) 0 0
\(461\) 163.337 0.354311 0.177156 0.984183i \(-0.443310\pi\)
0.177156 + 0.984183i \(0.443310\pi\)
\(462\) 0 0
\(463\) 108.131 0.233545 0.116772 0.993159i \(-0.462745\pi\)
0.116772 + 0.993159i \(0.462745\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 207.386 0.444082 0.222041 0.975037i \(-0.428728\pi\)
0.222041 + 0.975037i \(0.428728\pi\)
\(468\) 0 0
\(469\) 48.4133 0.103227
\(470\) 0 0
\(471\) − 81.7415i − 0.173549i
\(472\) 0 0
\(473\) − 284.498i − 0.601477i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 633.246i 1.32756i
\(478\) 0 0
\(479\) − 233.537i − 0.487552i −0.969832 0.243776i \(-0.921614\pi\)
0.969832 0.243776i \(-0.0783861\pi\)
\(480\) 0 0
\(481\) 581.994 1.20997
\(482\) 0 0
\(483\) 112.578 0.233081
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 308.368 0.633199 0.316600 0.948559i \(-0.397459\pi\)
0.316600 + 0.948559i \(0.397459\pi\)
\(488\) 0 0
\(489\) −116.912 −0.239083
\(490\) 0 0
\(491\) − 187.777i − 0.382439i −0.981547 0.191219i \(-0.938756\pi\)
0.981547 0.191219i \(-0.0612442\pi\)
\(492\) 0 0
\(493\) − 158.991i − 0.322496i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 129.167i − 0.259894i
\(498\) 0 0
\(499\) 231.038i 0.463003i 0.972835 + 0.231501i \(0.0743638\pi\)
−0.972835 + 0.231501i \(0.925636\pi\)
\(500\) 0 0
\(501\) 1216.07 2.42729
\(502\) 0 0
\(503\) 389.780 0.774910 0.387455 0.921889i \(-0.373354\pi\)
0.387455 + 0.921889i \(0.373354\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −752.931 −1.48507
\(508\) 0 0
\(509\) −363.167 −0.713492 −0.356746 0.934202i \(-0.616114\pi\)
−0.356746 + 0.934202i \(0.616114\pi\)
\(510\) 0 0
\(511\) − 20.7283i − 0.0405641i
\(512\) 0 0
\(513\) − 398.006i − 0.775841i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 117.836i − 0.227922i
\(518\) 0 0
\(519\) 261.103i 0.503088i
\(520\) 0 0
\(521\) −491.666 −0.943696 −0.471848 0.881680i \(-0.656413\pi\)
−0.471848 + 0.881680i \(0.656413\pi\)
\(522\) 0 0
\(523\) −133.914 −0.256049 −0.128024 0.991771i \(-0.540864\pi\)
−0.128024 + 0.991771i \(0.540864\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 759.491 1.44116
\(528\) 0 0
\(529\) −298.580 −0.564424
\(530\) 0 0
\(531\) − 1005.16i − 1.89295i
\(532\) 0 0
\(533\) 492.000i 0.923077i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 36.6687i 0.0682844i
\(538\) 0 0
\(539\) − 529.667i − 0.982685i
\(540\) 0 0
\(541\) −303.337 −0.560698 −0.280349 0.959898i \(-0.590450\pi\)
−0.280349 + 0.959898i \(0.590450\pi\)
\(542\) 0 0
\(543\) −1352.67 −2.49110
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −89.6631 −0.163918 −0.0819590 0.996636i \(-0.526118\pi\)
−0.0819590 + 0.996636i \(0.526118\pi\)
\(548\) 0 0
\(549\) −1735.40 −3.16102
\(550\) 0 0
\(551\) 46.7492i 0.0848443i
\(552\) 0 0
\(553\) 148.328i 0.268225i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 490.741i − 0.881044i −0.897742 0.440522i \(-0.854793\pi\)
0.897742 0.440522i \(-0.145207\pi\)
\(558\) 0 0
\(559\) 442.008i 0.790712i
\(560\) 0 0
\(561\) −1130.99 −2.01603
\(562\) 0 0
\(563\) −987.423 −1.75386 −0.876930 0.480618i \(-0.840412\pi\)
−0.876930 + 0.480618i \(0.840412\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 290.763 0.512810
\(568\) 0 0
\(569\) 475.082 0.834942 0.417471 0.908690i \(-0.362917\pi\)
0.417471 + 0.908690i \(0.362917\pi\)
\(570\) 0 0
\(571\) − 182.485i − 0.319588i −0.987150 0.159794i \(-0.948917\pi\)
0.987150 0.159794i \(-0.0510830\pi\)
\(572\) 0 0
\(573\) 332.498i 0.580277i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 319.167i − 0.553149i −0.960992 0.276575i \(-0.910801\pi\)
0.960992 0.276575i \(-0.0891993\pi\)
\(578\) 0 0
\(579\) − 1317.17i − 2.27490i
\(580\) 0 0
\(581\) 121.751 0.209554
\(582\) 0 0
\(583\) −316.676 −0.543183
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −904.762 −1.54133 −0.770666 0.637239i \(-0.780076\pi\)
−0.770666 + 0.637239i \(0.780076\pi\)
\(588\) 0 0
\(589\) −223.319 −0.379149
\(590\) 0 0
\(591\) 1294.27i 2.18996i
\(592\) 0 0
\(593\) 747.325i 1.26024i 0.776496 + 0.630122i \(0.216995\pi\)
−0.776496 + 0.630122i \(0.783005\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 155.331i − 0.260186i
\(598\) 0 0
\(599\) 874.385i 1.45974i 0.683585 + 0.729871i \(0.260420\pi\)
−0.683585 + 0.729871i \(0.739580\pi\)
\(600\) 0 0
\(601\) −777.234 −1.29323 −0.646617 0.762815i \(-0.723817\pi\)
−0.646617 + 0.762815i \(0.723817\pi\)
\(602\) 0 0
\(603\) 820.192 1.36019
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 699.436 1.15228 0.576142 0.817350i \(-0.304558\pi\)
0.576142 + 0.817350i \(0.304558\pi\)
\(608\) 0 0
\(609\) −65.5078 −0.107566
\(610\) 0 0
\(611\) 183.075i 0.299631i
\(612\) 0 0
\(613\) 11.0820i 0.0180784i 0.999959 + 0.00903918i \(0.00287730\pi\)
−0.999959 + 0.00903918i \(0.997123\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1189.16i 1.92733i 0.267119 + 0.963664i \(0.413928\pi\)
−0.267119 + 0.963664i \(0.586072\pi\)
\(618\) 0 0
\(619\) − 325.717i − 0.526198i −0.964769 0.263099i \(-0.915255\pi\)
0.964769 0.263099i \(-0.0847446\pi\)
\(620\) 0 0
\(621\) 1141.50 1.83816
\(622\) 0 0
\(623\) 78.9477 0.126722
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 332.554 0.530389
\(628\) 0 0
\(629\) −601.495 −0.956272
\(630\) 0 0
\(631\) − 316.823i − 0.502097i −0.967975 0.251048i \(-0.919225\pi\)
0.967975 0.251048i \(-0.0807754\pi\)
\(632\) 0 0
\(633\) 521.823i 0.824366i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 822.912i 1.29186i
\(638\) 0 0
\(639\) − 2188.28i − 3.42454i
\(640\) 0 0
\(641\) −149.587 −0.233365 −0.116682 0.993169i \(-0.537226\pi\)
−0.116682 + 0.993169i \(0.537226\pi\)
\(642\) 0 0
\(643\) 408.690 0.635599 0.317800 0.948158i \(-0.397056\pi\)
0.317800 + 0.948158i \(0.397056\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 104.383 0.161334 0.0806668 0.996741i \(-0.474295\pi\)
0.0806668 + 0.996741i \(0.474295\pi\)
\(648\) 0 0
\(649\) 502.663 0.774519
\(650\) 0 0
\(651\) − 312.927i − 0.480687i
\(652\) 0 0
\(653\) 164.420i 0.251791i 0.992044 + 0.125895i \(0.0401804\pi\)
−0.992044 + 0.125895i \(0.959820\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 351.167i − 0.534501i
\(658\) 0 0
\(659\) − 743.613i − 1.12840i −0.825640 0.564198i \(-0.809186\pi\)
0.825640 0.564198i \(-0.190814\pi\)
\(660\) 0 0
\(661\) −758.073 −1.14686 −0.573429 0.819255i \(-0.694387\pi\)
−0.573429 + 0.819255i \(0.694387\pi\)
\(662\) 0 0
\(663\) 1757.15 2.65030
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −134.078 −0.201017
\(668\) 0 0
\(669\) 1725.74 2.57958
\(670\) 0 0
\(671\) − 867.843i − 1.29336i
\(672\) 0 0
\(673\) − 364.164i − 0.541106i −0.962705 0.270553i \(-0.912794\pi\)
0.962705 0.270553i \(-0.0872065\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 708.079i − 1.04591i −0.852361 0.522953i \(-0.824830\pi\)
0.852361 0.522953i \(-0.175170\pi\)
\(678\) 0 0
\(679\) 143.119i 0.210780i
\(680\) 0 0
\(681\) 1429.40 2.09897
\(682\) 0 0
\(683\) 355.469 0.520452 0.260226 0.965548i \(-0.416203\pi\)
0.260226 + 0.965548i \(0.416203\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 2306.45 3.35727
\(688\) 0 0
\(689\) 492.000 0.714078
\(690\) 0 0
\(691\) − 116.769i − 0.168985i −0.996424 0.0844925i \(-0.973073\pi\)
0.996424 0.0844925i \(-0.0269269\pi\)
\(692\) 0 0
\(693\) 332.498i 0.479796i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 508.486i − 0.729535i
\(698\) 0 0
\(699\) 1865.54i 2.66887i
\(700\) 0 0
\(701\) −246.413 −0.351517 −0.175758 0.984433i \(-0.556238\pi\)
−0.175758 + 0.984433i \(0.556238\pi\)
\(702\) 0 0
\(703\) 176.862 0.251582
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −110.704 −0.156582
\(708\) 0 0
\(709\) 552.820 0.779718 0.389859 0.920874i \(-0.372524\pi\)
0.389859 + 0.920874i \(0.372524\pi\)
\(710\) 0 0
\(711\) 2512.89i 3.53431i
\(712\) 0 0
\(713\) − 640.486i − 0.898297i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1492.33i 2.08135i
\(718\) 0 0
\(719\) 99.9709i 0.139042i 0.997581 + 0.0695208i \(0.0221470\pi\)
−0.997581 + 0.0695208i \(0.977853\pi\)
\(720\) 0 0
\(721\) −178.918 −0.248153
\(722\) 0 0
\(723\) −440.464 −0.609217
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −1081.39 −1.48746 −0.743731 0.668479i \(-0.766946\pi\)
−0.743731 + 0.668479i \(0.766946\pi\)
\(728\) 0 0
\(729\) 1132.50 1.55349
\(730\) 0 0
\(731\) − 456.819i − 0.624923i
\(732\) 0 0
\(733\) − 380.407i − 0.518973i −0.965747 0.259486i \(-0.916447\pi\)
0.965747 0.259486i \(-0.0835533\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 410.164i 0.556532i
\(738\) 0 0
\(739\) − 1381.60i − 1.86955i −0.355240 0.934775i \(-0.615601\pi\)
0.355240 0.934775i \(-0.384399\pi\)
\(740\) 0 0
\(741\) −516.669 −0.697259
\(742\) 0 0
\(743\) −267.424 −0.359924 −0.179962 0.983674i \(-0.557597\pi\)
−0.179962 + 0.983674i \(0.557597\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2062.64 2.76123
\(748\) 0 0
\(749\) −161.921 −0.216183
\(750\) 0 0
\(751\) 338.653i 0.450937i 0.974250 + 0.225468i \(0.0723912\pi\)
−0.974250 + 0.225468i \(0.927609\pi\)
\(752\) 0 0
\(753\) − 2267.14i − 3.01080i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1247.91i 1.64849i 0.566232 + 0.824246i \(0.308401\pi\)
−0.566232 + 0.824246i \(0.691599\pi\)
\(758\) 0 0
\(759\) 953.775i 1.25662i
\(760\) 0 0
\(761\) −14.3406 −0.0188444 −0.00942219 0.999956i \(-0.502999\pi\)
−0.00942219 + 0.999956i \(0.502999\pi\)
\(762\) 0 0
\(763\) −3.41853 −0.00448038
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −780.956 −1.01820
\(768\) 0 0
\(769\) −1036.99 −1.34849 −0.674246 0.738507i \(-0.735531\pi\)
−0.674246 + 0.738507i \(0.735531\pi\)
\(770\) 0 0
\(771\) − 481.078i − 0.623967i
\(772\) 0 0
\(773\) − 1197.91i − 1.54970i −0.632148 0.774848i \(-0.717826\pi\)
0.632148 0.774848i \(-0.282174\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 247.830i 0.318957i
\(778\) 0 0
\(779\) 149.514i 0.191931i
\(780\) 0 0
\(781\) 1094.32 1.40118
\(782\) 0 0
\(783\) −664.223 −0.848305
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −99.1814 −0.126025 −0.0630123 0.998013i \(-0.520071\pi\)
−0.0630123 + 0.998013i \(0.520071\pi\)
\(788\) 0 0
\(789\) 2470.05 3.13061
\(790\) 0 0
\(791\) 44.3282i 0.0560407i
\(792\) 0 0
\(793\) 1348.32i 1.70027i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 139.240i 0.174705i 0.996177 + 0.0873525i \(0.0278407\pi\)
−0.996177 + 0.0873525i \(0.972159\pi\)
\(798\) 0 0
\(799\) − 189.209i − 0.236807i
\(800\) 0 0
\(801\) 1337.49 1.66977
\(802\) 0 0
\(803\) 175.613 0.218696
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1151.37 1.42672
\(808\) 0 0
\(809\) −403.653 −0.498953 −0.249477 0.968381i \(-0.580259\pi\)
−0.249477 + 0.968381i \(0.580259\pi\)
\(810\) 0 0
\(811\) 384.561i 0.474181i 0.971488 + 0.237091i \(0.0761938\pi\)
−0.971488 + 0.237091i \(0.923806\pi\)
\(812\) 0 0
\(813\) 2343.15i 2.88210i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 134.322i 0.164409i
\(818\) 0 0
\(819\) − 516.583i − 0.630748i
\(820\) 0 0
\(821\) −997.732 −1.21526 −0.607632 0.794219i \(-0.707881\pi\)
−0.607632 + 0.794219i \(0.707881\pi\)
\(822\) 0 0
\(823\) 955.281 1.16073 0.580365 0.814356i \(-0.302910\pi\)
0.580365 + 0.814356i \(0.302910\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 213.451 0.258103 0.129051 0.991638i \(-0.458807\pi\)
0.129051 + 0.991638i \(0.458807\pi\)
\(828\) 0 0
\(829\) 73.4288 0.0885752 0.0442876 0.999019i \(-0.485898\pi\)
0.0442876 + 0.999019i \(0.485898\pi\)
\(830\) 0 0
\(831\) − 2866.47i − 3.44942i
\(832\) 0 0
\(833\) − 850.486i − 1.02099i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 3172.96i − 3.79087i
\(838\) 0 0
\(839\) − 643.642i − 0.767154i −0.923509 0.383577i \(-0.874692\pi\)
0.923509 0.383577i \(-0.125308\pi\)
\(840\) 0 0
\(841\) −762.981 −0.907231
\(842\) 0 0
\(843\) 648.787 0.769617
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −6.17342 −0.00728857
\(848\) 0 0
\(849\) −2253.23 −2.65398
\(850\) 0 0
\(851\) 507.247i 0.596060i
\(852\) 0 0
\(853\) 351.410i 0.411970i 0.978555 + 0.205985i \(0.0660398\pi\)
−0.978555 + 0.205985i \(0.933960\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1326.16i 1.54744i 0.633526 + 0.773721i \(0.281607\pi\)
−0.633526 + 0.773721i \(0.718393\pi\)
\(858\) 0 0
\(859\) 343.729i 0.400150i 0.979781 + 0.200075i \(0.0641186\pi\)
−0.979781 + 0.200075i \(0.935881\pi\)
\(860\) 0 0
\(861\) −209.508 −0.243331
\(862\) 0 0
\(863\) −1136.15 −1.31651 −0.658257 0.752793i \(-0.728706\pi\)
−0.658257 + 0.752793i \(0.728706\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −196.176 −0.226270
\(868\) 0 0
\(869\) −1256.66 −1.44609
\(870\) 0 0
\(871\) − 637.247i − 0.731627i
\(872\) 0 0
\(873\) 2424.65i 2.77738i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 769.076i 0.876939i 0.898746 + 0.438470i \(0.144479\pi\)
−0.898746 + 0.438470i \(0.855521\pi\)
\(878\) 0 0
\(879\) − 506.770i − 0.576530i
\(880\) 0 0
\(881\) −731.568 −0.830384 −0.415192 0.909734i \(-0.636286\pi\)
−0.415192 + 0.909734i \(0.636286\pi\)
\(882\) 0 0
\(883\) 1066.19 1.20746 0.603731 0.797188i \(-0.293680\pi\)
0.603731 + 0.797188i \(0.293680\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −397.242 −0.447848 −0.223924 0.974607i \(-0.571887\pi\)
−0.223924 + 0.974607i \(0.571887\pi\)
\(888\) 0 0
\(889\) −170.262 −0.191520
\(890\) 0 0
\(891\) 2463.39i 2.76474i
\(892\) 0 0
\(893\) 55.6346i 0.0623008i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 1481.82i − 1.65198i
\(898\) 0 0
\(899\) 372.691i 0.414562i
\(900\) 0 0
\(901\) −508.486 −0.564357
\(902\) 0 0
\(903\) −188.220 −0.208438
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1021.02 −1.12571 −0.562855 0.826556i \(-0.690297\pi\)
−0.562855 + 0.826556i \(0.690297\pi\)
\(908\) 0 0
\(909\) −1875.48 −2.06324
\(910\) 0 0
\(911\) 1118.66i 1.22794i 0.789328 + 0.613971i \(0.210429\pi\)
−0.789328 + 0.613971i \(0.789571\pi\)
\(912\) 0 0
\(913\) 1031.49i 1.12978i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 294.177i − 0.320803i
\(918\) 0 0
\(919\) − 1177.68i − 1.28148i −0.767757 0.640741i \(-0.778627\pi\)
0.767757 0.640741i \(-0.221373\pi\)
\(920\) 0 0
\(921\) 1543.73 1.67615
\(922\) 0 0
\(923\) −1700.18 −1.84202
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −3031.13 −3.26983
\(928\) 0 0
\(929\) 699.423 0.752877 0.376438 0.926442i \(-0.377149\pi\)
0.376438 + 0.926442i \(0.377149\pi\)
\(930\) 0 0
\(931\) 250.075i 0.268609i
\(932\) 0 0
\(933\) − 2720.15i − 2.91548i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 332.152i − 0.354484i −0.984167 0.177242i \(-0.943282\pi\)
0.984167 0.177242i \(-0.0567176\pi\)
\(938\) 0 0
\(939\) − 11.2101i − 0.0119383i
\(940\) 0 0
\(941\) −1468.66 −1.56075 −0.780373 0.625314i \(-0.784971\pi\)
−0.780373 + 0.625314i \(0.784971\pi\)
\(942\) 0 0
\(943\) −428.811 −0.454731
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 574.082 0.606211 0.303106 0.952957i \(-0.401976\pi\)
0.303106 + 0.952957i \(0.401976\pi\)
\(948\) 0 0
\(949\) −272.839 −0.287502
\(950\) 0 0
\(951\) − 2212.54i − 2.32654i
\(952\) 0 0
\(953\) − 280.663i − 0.294504i −0.989099 0.147252i \(-0.952957\pi\)
0.989099 0.147252i \(-0.0470429\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 554.991i − 0.579928i
\(958\) 0 0
\(959\) 170.468i 0.177756i
\(960\) 0 0
\(961\) −819.328 −0.852579
\(962\) 0 0
\(963\) −2743.18 −2.84858
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1278.65 −1.32228 −0.661141 0.750262i \(-0.729927\pi\)
−0.661141 + 0.750262i \(0.729927\pi\)
\(968\) 0 0
\(969\) 533.981 0.551064
\(970\) 0 0
\(971\) 117.723i 0.121239i 0.998161 + 0.0606195i \(0.0193076\pi\)
−0.998161 + 0.0606195i \(0.980692\pi\)
\(972\) 0 0
\(973\) − 305.313i − 0.313785i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 983.155i 1.00630i 0.864199 + 0.503150i \(0.167826\pi\)
−0.864199 + 0.503150i \(0.832174\pi\)
\(978\) 0 0
\(979\) 668.856i 0.683203i
\(980\) 0 0
\(981\) −57.9149 −0.0590365
\(982\) 0 0
\(983\) −607.404 −0.617909 −0.308954 0.951077i \(-0.599979\pi\)
−0.308954 + 0.951077i \(0.599979\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −77.9584 −0.0789852
\(988\) 0 0
\(989\) −385.240 −0.389525
\(990\) 0 0
\(991\) − 408.413i − 0.412122i −0.978539 0.206061i \(-0.933935\pi\)
0.978539 0.206061i \(-0.0660645\pi\)
\(992\) 0 0
\(993\) 1659.82i 1.67152i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 1554.91i − 1.55959i −0.626035 0.779795i \(-0.715323\pi\)
0.626035 0.779795i \(-0.284677\pi\)
\(998\) 0 0
\(999\) 2512.89i 2.51541i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.3.h.d.399.8 8
3.2 odd 2 3600.3.j.k.1999.5 8
4.3 odd 2 inner 400.3.h.d.399.1 8
5.2 odd 4 400.3.b.g.351.1 4
5.3 odd 4 80.3.b.a.31.4 yes 4
5.4 even 2 inner 400.3.h.d.399.2 8
8.3 odd 2 1600.3.h.p.1599.8 8
8.5 even 2 1600.3.h.p.1599.1 8
12.11 even 2 3600.3.j.k.1999.4 8
15.2 even 4 3600.3.e.bb.3151.3 4
15.8 even 4 720.3.e.c.271.3 4
15.14 odd 2 3600.3.j.k.1999.3 8
20.3 even 4 80.3.b.a.31.1 4
20.7 even 4 400.3.b.g.351.4 4
20.19 odd 2 inner 400.3.h.d.399.7 8
40.3 even 4 320.3.b.a.191.4 4
40.13 odd 4 320.3.b.a.191.1 4
40.19 odd 2 1600.3.h.p.1599.2 8
40.27 even 4 1600.3.b.k.1151.1 4
40.29 even 2 1600.3.h.p.1599.7 8
40.37 odd 4 1600.3.b.k.1151.4 4
60.23 odd 4 720.3.e.c.271.4 4
60.47 odd 4 3600.3.e.bb.3151.2 4
60.59 even 2 3600.3.j.k.1999.6 8
80.3 even 4 1280.3.g.f.1151.8 8
80.13 odd 4 1280.3.g.f.1151.2 8
80.43 even 4 1280.3.g.f.1151.1 8
80.53 odd 4 1280.3.g.f.1151.7 8
120.53 even 4 2880.3.e.b.2431.1 4
120.83 odd 4 2880.3.e.b.2431.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.3.b.a.31.1 4 20.3 even 4
80.3.b.a.31.4 yes 4 5.3 odd 4
320.3.b.a.191.1 4 40.13 odd 4
320.3.b.a.191.4 4 40.3 even 4
400.3.b.g.351.1 4 5.2 odd 4
400.3.b.g.351.4 4 20.7 even 4
400.3.h.d.399.1 8 4.3 odd 2 inner
400.3.h.d.399.2 8 5.4 even 2 inner
400.3.h.d.399.7 8 20.19 odd 2 inner
400.3.h.d.399.8 8 1.1 even 1 trivial
720.3.e.c.271.3 4 15.8 even 4
720.3.e.c.271.4 4 60.23 odd 4
1280.3.g.f.1151.1 8 80.43 even 4
1280.3.g.f.1151.2 8 80.13 odd 4
1280.3.g.f.1151.7 8 80.53 odd 4
1280.3.g.f.1151.8 8 80.3 even 4
1600.3.b.k.1151.1 4 40.27 even 4
1600.3.b.k.1151.4 4 40.37 odd 4
1600.3.h.p.1599.1 8 8.5 even 2
1600.3.h.p.1599.2 8 40.19 odd 2
1600.3.h.p.1599.7 8 40.29 even 2
1600.3.h.p.1599.8 8 8.3 odd 2
2880.3.e.b.2431.1 4 120.53 even 4
2880.3.e.b.2431.2 4 120.83 odd 4
3600.3.e.bb.3151.2 4 60.47 odd 4
3600.3.e.bb.3151.3 4 15.2 even 4
3600.3.j.k.1999.3 8 15.14 odd 2
3600.3.j.k.1999.4 8 12.11 even 2
3600.3.j.k.1999.5 8 3.2 odd 2
3600.3.j.k.1999.6 8 60.59 even 2