Properties

Label 1323.2.f.e.883.2
Level $1323$
Weight $2$
Character 1323.883
Analytic conductor $10.564$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(442,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.442");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.991381711347.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 9x^{8} - 8x^{7} + 40x^{6} - 36x^{5} + 90x^{4} - 3x^{3} + 36x^{2} - 9x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 883.2
Root \(0.920620 - 1.59456i\) of defining polynomial
Character \(\chi\) \(=\) 1323.883
Dual form 1323.2.f.e.442.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.920620 + 1.59456i) q^{2} +(-0.695084 - 1.20392i) q^{4} +(0.667377 + 1.15593i) q^{5} -1.12285 q^{8} -2.45760 q^{10} +(0.756508 - 1.31031i) q^{11} +(-2.58800 - 4.48254i) q^{13} +(2.42388 - 4.19829i) q^{16} +1.54893 q^{17} +2.50422 q^{19} +(0.927765 - 1.60694i) q^{20} +(1.39291 + 2.41260i) q^{22} +(-3.68039 - 6.37463i) q^{23} +(1.60922 - 2.78725i) q^{25} +9.53025 q^{26} +(0.0309713 - 0.0536439i) q^{29} +(1.92388 + 3.33227i) q^{31} +(3.34011 + 5.78523i) q^{32} +(-1.42597 + 2.46986i) q^{34} +0.563216 q^{37} +(-2.30543 + 3.99313i) q^{38} +(-0.749363 - 1.29794i) q^{40} +(-4.51188 - 7.81481i) q^{41} +(5.09988 - 8.83325i) q^{43} -2.10335 q^{44} +13.5530 q^{46} +(-4.75925 + 8.24327i) q^{47} +(2.96296 + 5.13199i) q^{50} +(-3.59775 + 6.23148i) q^{52} +1.51075 q^{53} +2.01950 q^{55} +(0.0570257 + 0.0987714i) q^{58} +(-4.22166 - 7.31212i) q^{59} +(-1.61958 + 2.80520i) q^{61} -7.08467 q^{62} -2.60434 q^{64} +(3.45434 - 5.98309i) q^{65} +(-3.46670 - 6.00449i) q^{67} +(-1.07663 - 1.86478i) q^{68} +12.3304 q^{71} +2.75871 q^{73} +(-0.518508 + 0.898083i) q^{74} +(-1.74064 - 3.01488i) q^{76} +(2.95969 - 5.12633i) q^{79} +6.47058 q^{80} +16.6149 q^{82} +(-2.80111 + 4.85167i) q^{83} +(1.03372 + 1.79045i) q^{85} +(9.39010 + 16.2641i) q^{86} +(-0.849444 + 1.47128i) q^{88} +1.40657 q^{89} +(-5.11636 + 8.86180i) q^{92} +(-8.76293 - 15.1778i) q^{94} +(1.67126 + 2.89470i) q^{95} +(-6.09713 + 10.5605i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{2} - 4 q^{4} - 4 q^{5} + 6 q^{8} + 14 q^{10} - 4 q^{11} - 8 q^{13} + 2 q^{16} + 24 q^{17} - 2 q^{19} - 5 q^{20} - q^{22} - 3 q^{23} - q^{25} + 22 q^{26} - 7 q^{29} - 3 q^{31} + 2 q^{32} + 3 q^{34}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.920620 + 1.59456i −0.650977 + 1.12753i 0.331909 + 0.943311i \(0.392307\pi\)
−0.982886 + 0.184214i \(0.941026\pi\)
\(3\) 0 0
\(4\) −0.695084 1.20392i −0.347542 0.601960i
\(5\) 0.667377 + 1.15593i 0.298460 + 0.516948i 0.975784 0.218737i \(-0.0701937\pi\)
−0.677324 + 0.735685i \(0.736860\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.12285 −0.396987
\(9\) 0 0
\(10\) −2.45760 −0.777162
\(11\) 0.756508 1.31031i 0.228096 0.395073i −0.729148 0.684356i \(-0.760083\pi\)
0.957244 + 0.289283i \(0.0934167\pi\)
\(12\) 0 0
\(13\) −2.58800 4.48254i −0.717781 1.24323i −0.961877 0.273482i \(-0.911824\pi\)
0.244096 0.969751i \(-0.421509\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2.42388 4.19829i 0.605971 1.04957i
\(17\) 1.54893 0.375670 0.187835 0.982201i \(-0.439853\pi\)
0.187835 + 0.982201i \(0.439853\pi\)
\(18\) 0 0
\(19\) 2.50422 0.574507 0.287254 0.957855i \(-0.407258\pi\)
0.287254 + 0.957855i \(0.407258\pi\)
\(20\) 0.927765 1.60694i 0.207455 0.359322i
\(21\) 0 0
\(22\) 1.39291 + 2.41260i 0.296970 + 0.514367i
\(23\) −3.68039 6.37463i −0.767415 1.32920i −0.938960 0.344025i \(-0.888209\pi\)
0.171545 0.985176i \(-0.445124\pi\)
\(24\) 0 0
\(25\) 1.60922 2.78725i 0.321843 0.557449i
\(26\) 9.53025 1.86904
\(27\) 0 0
\(28\) 0 0
\(29\) 0.0309713 0.0536439i 0.00575123 0.00996143i −0.863135 0.504972i \(-0.831503\pi\)
0.868887 + 0.495011i \(0.164836\pi\)
\(30\) 0 0
\(31\) 1.92388 + 3.33227i 0.345540 + 0.598493i 0.985452 0.169956i \(-0.0543625\pi\)
−0.639912 + 0.768448i \(0.721029\pi\)
\(32\) 3.34011 + 5.78523i 0.590453 + 1.02269i
\(33\) 0 0
\(34\) −1.42597 + 2.46986i −0.244552 + 0.423577i
\(35\) 0 0
\(36\) 0 0
\(37\) 0.563216 0.0925922 0.0462961 0.998928i \(-0.485258\pi\)
0.0462961 + 0.998928i \(0.485258\pi\)
\(38\) −2.30543 + 3.99313i −0.373991 + 0.647771i
\(39\) 0 0
\(40\) −0.749363 1.29794i −0.118485 0.205222i
\(41\) −4.51188 7.81481i −0.704638 1.22047i −0.966822 0.255450i \(-0.917776\pi\)
0.262185 0.965018i \(-0.415557\pi\)
\(42\) 0 0
\(43\) 5.09988 8.83325i 0.777724 1.34706i −0.155526 0.987832i \(-0.549707\pi\)
0.933251 0.359226i \(-0.116959\pi\)
\(44\) −2.10335 −0.317091
\(45\) 0 0
\(46\) 13.5530 1.99828
\(47\) −4.75925 + 8.24327i −0.694209 + 1.20240i 0.276238 + 0.961089i \(0.410912\pi\)
−0.970447 + 0.241315i \(0.922421\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 2.96296 + 5.13199i 0.419025 + 0.725773i
\(51\) 0 0
\(52\) −3.59775 + 6.23148i −0.498918 + 0.864151i
\(53\) 1.51075 0.207517 0.103759 0.994603i \(-0.466913\pi\)
0.103759 + 0.994603i \(0.466913\pi\)
\(54\) 0 0
\(55\) 2.01950 0.272310
\(56\) 0 0
\(57\) 0 0
\(58\) 0.0570257 + 0.0987714i 0.00748784 + 0.0129693i
\(59\) −4.22166 7.31212i −0.549613 0.951957i −0.998301 0.0582689i \(-0.981442\pi\)
0.448688 0.893688i \(-0.351891\pi\)
\(60\) 0 0
\(61\) −1.61958 + 2.80520i −0.207367 + 0.359169i −0.950884 0.309547i \(-0.899823\pi\)
0.743518 + 0.668716i \(0.233156\pi\)
\(62\) −7.08467 −0.899754
\(63\) 0 0
\(64\) −2.60434 −0.325543
\(65\) 3.45434 5.98309i 0.428458 0.742111i
\(66\) 0 0
\(67\) −3.46670 6.00449i −0.423524 0.733566i 0.572757 0.819725i \(-0.305874\pi\)
−0.996281 + 0.0861595i \(0.972541\pi\)
\(68\) −1.07663 1.86478i −0.130561 0.226138i
\(69\) 0 0
\(70\) 0 0
\(71\) 12.3304 1.46335 0.731673 0.681656i \(-0.238740\pi\)
0.731673 + 0.681656i \(0.238740\pi\)
\(72\) 0 0
\(73\) 2.75871 0.322883 0.161442 0.986882i \(-0.448386\pi\)
0.161442 + 0.986882i \(0.448386\pi\)
\(74\) −0.518508 + 0.898083i −0.0602754 + 0.104400i
\(75\) 0 0
\(76\) −1.74064 3.01488i −0.199665 0.345830i
\(77\) 0 0
\(78\) 0 0
\(79\) 2.95969 5.12633i 0.332991 0.576758i −0.650106 0.759844i \(-0.725275\pi\)
0.983097 + 0.183086i \(0.0586087\pi\)
\(80\) 6.47058 0.723432
\(81\) 0 0
\(82\) 16.6149 1.83481
\(83\) −2.80111 + 4.85167i −0.307462 + 0.532540i −0.977806 0.209510i \(-0.932813\pi\)
0.670344 + 0.742050i \(0.266146\pi\)
\(84\) 0 0
\(85\) 1.03372 + 1.79045i 0.112122 + 0.194202i
\(86\) 9.39010 + 16.2641i 1.01256 + 1.75381i
\(87\) 0 0
\(88\) −0.849444 + 1.47128i −0.0905511 + 0.156839i
\(89\) 1.40657 0.149097 0.0745483 0.997217i \(-0.476249\pi\)
0.0745483 + 0.997217i \(0.476249\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −5.11636 + 8.86180i −0.533418 + 0.923906i
\(93\) 0 0
\(94\) −8.76293 15.1778i −0.903827 1.56548i
\(95\) 1.67126 + 2.89470i 0.171467 + 0.296990i
\(96\) 0 0
\(97\) −6.09713 + 10.5605i −0.619070 + 1.07226i 0.370586 + 0.928798i \(0.379157\pi\)
−0.989656 + 0.143462i \(0.954176\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −4.47416 −0.447416
\(101\) 0.559336 0.968798i 0.0556560 0.0963990i −0.836855 0.547425i \(-0.815608\pi\)
0.892511 + 0.451025i \(0.148942\pi\)
\(102\) 0 0
\(103\) −0.965224 1.67182i −0.0951063 0.164729i 0.814547 0.580098i \(-0.196986\pi\)
−0.909653 + 0.415369i \(0.863652\pi\)
\(104\) 2.90593 + 5.03322i 0.284950 + 0.493548i
\(105\) 0 0
\(106\) −1.39082 + 2.40898i −0.135089 + 0.233981i
\(107\) 5.77938 0.558714 0.279357 0.960187i \(-0.409879\pi\)
0.279357 + 0.960187i \(0.409879\pi\)
\(108\) 0 0
\(109\) 8.24211 0.789451 0.394726 0.918799i \(-0.370840\pi\)
0.394726 + 0.918799i \(0.370840\pi\)
\(110\) −1.85920 + 3.22022i −0.177267 + 0.307036i
\(111\) 0 0
\(112\) 0 0
\(113\) −7.25105 12.5592i −0.682121 1.18147i −0.974332 0.225115i \(-0.927724\pi\)
0.292211 0.956354i \(-0.405609\pi\)
\(114\) 0 0
\(115\) 4.91242 8.50856i 0.458085 0.793427i
\(116\) −0.0861107 −0.00799518
\(117\) 0 0
\(118\) 15.5462 1.43114
\(119\) 0 0
\(120\) 0 0
\(121\) 4.35539 + 7.54376i 0.395945 + 0.685796i
\(122\) −2.98204 5.16505i −0.269982 0.467622i
\(123\) 0 0
\(124\) 2.67452 4.63241i 0.240179 0.416002i
\(125\) 10.9696 0.981149
\(126\) 0 0
\(127\) 8.50004 0.754257 0.377128 0.926161i \(-0.376912\pi\)
0.377128 + 0.926161i \(0.376912\pi\)
\(128\) −4.28260 + 7.41769i −0.378532 + 0.655637i
\(129\) 0 0
\(130\) 6.36027 + 11.0163i 0.557832 + 0.966194i
\(131\) −1.00673 1.74371i −0.0879585 0.152349i 0.818690 0.574236i \(-0.194701\pi\)
−0.906648 + 0.421888i \(0.861368\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.7660 1.10282
\(135\) 0 0
\(136\) −1.73921 −0.149136
\(137\) 1.10870 1.92032i 0.0947225 0.164064i −0.814770 0.579784i \(-0.803137\pi\)
0.909493 + 0.415720i \(0.136470\pi\)
\(138\) 0 0
\(139\) 0.377669 + 0.654143i 0.0320335 + 0.0554836i 0.881598 0.472002i \(-0.156468\pi\)
−0.849564 + 0.527485i \(0.823135\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −11.3516 + 19.6615i −0.952604 + 1.64996i
\(143\) −7.83136 −0.654891
\(144\) 0 0
\(145\) 0.0826782 0.00686605
\(146\) −2.53973 + 4.39894i −0.210189 + 0.364059i
\(147\) 0 0
\(148\) −0.391482 0.678068i −0.0321797 0.0557368i
\(149\) 3.29249 + 5.70277i 0.269732 + 0.467189i 0.968792 0.247873i \(-0.0797317\pi\)
−0.699061 + 0.715062i \(0.746398\pi\)
\(150\) 0 0
\(151\) −6.33356 + 10.9700i −0.515417 + 0.892729i 0.484422 + 0.874834i \(0.339030\pi\)
−0.999840 + 0.0178950i \(0.994304\pi\)
\(152\) −2.81186 −0.228072
\(153\) 0 0
\(154\) 0 0
\(155\) −2.56791 + 4.44775i −0.206260 + 0.357252i
\(156\) 0 0
\(157\) 8.65372 + 14.9887i 0.690642 + 1.19623i 0.971628 + 0.236515i \(0.0760052\pi\)
−0.280986 + 0.959712i \(0.590662\pi\)
\(158\) 5.44950 + 9.43882i 0.433539 + 0.750912i
\(159\) 0 0
\(160\) −4.45822 + 7.72186i −0.352453 + 0.610467i
\(161\) 0 0
\(162\) 0 0
\(163\) −12.2193 −0.957086 −0.478543 0.878064i \(-0.658835\pi\)
−0.478543 + 0.878064i \(0.658835\pi\)
\(164\) −6.27227 + 10.8639i −0.489782 + 0.848327i
\(165\) 0 0
\(166\) −5.15752 8.93309i −0.400301 0.693342i
\(167\) −1.76248 3.05270i −0.136385 0.236225i 0.789741 0.613440i \(-0.210215\pi\)
−0.926126 + 0.377215i \(0.876882\pi\)
\(168\) 0 0
\(169\) −6.89546 + 11.9433i −0.530420 + 0.918714i
\(170\) −3.80665 −0.291956
\(171\) 0 0
\(172\) −14.1794 −1.08117
\(173\) 5.07046 8.78229i 0.385500 0.667705i −0.606339 0.795206i \(-0.707362\pi\)
0.991838 + 0.127502i \(0.0406958\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3.66738 6.35208i −0.276439 0.478806i
\(177\) 0 0
\(178\) −1.29492 + 2.24287i −0.0970584 + 0.168110i
\(179\) 1.70116 0.127150 0.0635752 0.997977i \(-0.479750\pi\)
0.0635752 + 0.997977i \(0.479750\pi\)
\(180\) 0 0
\(181\) −16.9941 −1.26316 −0.631581 0.775310i \(-0.717594\pi\)
−0.631581 + 0.775310i \(0.717594\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.13252 + 7.15774i 0.304654 + 0.527676i
\(185\) 0.375877 + 0.651039i 0.0276351 + 0.0478653i
\(186\) 0 0
\(187\) 1.17178 2.02957i 0.0856887 0.148417i
\(188\) 13.2323 0.965066
\(189\) 0 0
\(190\) −6.15437 −0.446485
\(191\) 11.3470 19.6535i 0.821038 1.42208i −0.0838717 0.996477i \(-0.526729\pi\)
0.904910 0.425603i \(-0.139938\pi\)
\(192\) 0 0
\(193\) −3.09349 5.35808i −0.222674 0.385683i 0.732945 0.680288i \(-0.238145\pi\)
−0.955619 + 0.294605i \(0.904812\pi\)
\(194\) −11.2263 19.4445i −0.806001 1.39603i
\(195\) 0 0
\(196\) 0 0
\(197\) −9.77010 −0.696091 −0.348045 0.937478i \(-0.613154\pi\)
−0.348045 + 0.937478i \(0.613154\pi\)
\(198\) 0 0
\(199\) 8.67947 0.615271 0.307636 0.951504i \(-0.400462\pi\)
0.307636 + 0.951504i \(0.400462\pi\)
\(200\) −1.80691 + 3.12965i −0.127768 + 0.221300i
\(201\) 0 0
\(202\) 1.02987 + 1.78379i 0.0724615 + 0.125507i
\(203\) 0 0
\(204\) 0 0
\(205\) 6.02225 10.4308i 0.420612 0.728522i
\(206\) 3.55442 0.247648
\(207\) 0 0
\(208\) −25.0920 −1.73982
\(209\) 1.89446 3.28130i 0.131043 0.226973i
\(210\) 0 0
\(211\) −2.84219 4.92283i −0.195665 0.338901i 0.751453 0.659786i \(-0.229353\pi\)
−0.947118 + 0.320885i \(0.896020\pi\)
\(212\) −1.05010 1.81882i −0.0721209 0.124917i
\(213\) 0 0
\(214\) −5.32062 + 9.21558i −0.363710 + 0.629964i
\(215\) 13.6142 0.928478
\(216\) 0 0
\(217\) 0 0
\(218\) −7.58786 + 13.1426i −0.513915 + 0.890126i
\(219\) 0 0
\(220\) −1.40372 2.43132i −0.0946390 0.163920i
\(221\) −4.00862 6.94313i −0.269649 0.467045i
\(222\) 0 0
\(223\) 5.86133 10.1521i 0.392503 0.679836i −0.600276 0.799793i \(-0.704942\pi\)
0.992779 + 0.119957i \(0.0382758\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 26.7019 1.77618
\(227\) 5.59154 9.68482i 0.371123 0.642804i −0.618615 0.785694i \(-0.712306\pi\)
0.989739 + 0.142890i \(0.0456394\pi\)
\(228\) 0 0
\(229\) 4.82824 + 8.36275i 0.319059 + 0.552626i 0.980292 0.197554i \(-0.0632999\pi\)
−0.661233 + 0.750181i \(0.729967\pi\)
\(230\) 9.04494 + 15.6663i 0.596406 + 1.03301i
\(231\) 0 0
\(232\) −0.0347761 + 0.0602340i −0.00228317 + 0.00395456i
\(233\) −19.2898 −1.26372 −0.631860 0.775083i \(-0.717708\pi\)
−0.631860 + 0.775083i \(0.717708\pi\)
\(234\) 0 0
\(235\) −12.7049 −0.828774
\(236\) −5.86881 + 10.1651i −0.382027 + 0.661690i
\(237\) 0 0
\(238\) 0 0
\(239\) 0.194641 + 0.337128i 0.0125903 + 0.0218070i 0.872252 0.489057i \(-0.162659\pi\)
−0.859662 + 0.510864i \(0.829326\pi\)
\(240\) 0 0
\(241\) −5.31807 + 9.21117i −0.342567 + 0.593344i −0.984909 0.173075i \(-0.944630\pi\)
0.642342 + 0.766419i \(0.277963\pi\)
\(242\) −16.0386 −1.03100
\(243\) 0 0
\(244\) 4.50299 0.288274
\(245\) 0 0
\(246\) 0 0
\(247\) −6.48091 11.2253i −0.412370 0.714247i
\(248\) −2.16023 3.74163i −0.137175 0.237594i
\(249\) 0 0
\(250\) −10.0988 + 17.4917i −0.638705 + 1.10627i
\(251\) 3.26628 0.206166 0.103083 0.994673i \(-0.467129\pi\)
0.103083 + 0.994673i \(0.467129\pi\)
\(252\) 0 0
\(253\) −11.1370 −0.700176
\(254\) −7.82531 + 13.5538i −0.491004 + 0.850443i
\(255\) 0 0
\(256\) −10.4896 18.1686i −0.655603 1.13554i
\(257\) −2.34787 4.06663i −0.146456 0.253669i 0.783459 0.621443i \(-0.213453\pi\)
−0.929915 + 0.367774i \(0.880120\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −9.60421 −0.595628
\(261\) 0 0
\(262\) 3.70727 0.229036
\(263\) 9.77491 16.9306i 0.602747 1.04399i −0.389656 0.920960i \(-0.627406\pi\)
0.992403 0.123028i \(-0.0392605\pi\)
\(264\) 0 0
\(265\) 1.00824 + 1.74632i 0.0619355 + 0.107276i
\(266\) 0 0
\(267\) 0 0
\(268\) −4.81929 + 8.34725i −0.294385 + 0.509890i
\(269\) 15.7673 0.961349 0.480675 0.876899i \(-0.340392\pi\)
0.480675 + 0.876899i \(0.340392\pi\)
\(270\) 0 0
\(271\) −14.7976 −0.898893 −0.449446 0.893307i \(-0.648379\pi\)
−0.449446 + 0.893307i \(0.648379\pi\)
\(272\) 3.75442 6.50285i 0.227645 0.394293i
\(273\) 0 0
\(274\) 2.04138 + 3.53578i 0.123324 + 0.213604i
\(275\) −2.43477 4.21715i −0.146822 0.254304i
\(276\) 0 0
\(277\) 3.72561 6.45295i 0.223850 0.387720i −0.732124 0.681172i \(-0.761471\pi\)
0.955974 + 0.293452i \(0.0948040\pi\)
\(278\) −1.39076 −0.0834123
\(279\) 0 0
\(280\) 0 0
\(281\) 12.9938 22.5060i 0.775146 1.34259i −0.159566 0.987187i \(-0.551009\pi\)
0.934712 0.355406i \(-0.115657\pi\)
\(282\) 0 0
\(283\) −9.37768 16.2426i −0.557445 0.965524i −0.997709 0.0676550i \(-0.978448\pi\)
0.440263 0.897869i \(-0.354885\pi\)
\(284\) −8.57064 14.8448i −0.508574 0.880876i
\(285\) 0 0
\(286\) 7.20971 12.4876i 0.426319 0.738406i
\(287\) 0 0
\(288\) 0 0
\(289\) −14.6008 −0.858872
\(290\) −0.0761152 + 0.131835i −0.00446964 + 0.00774165i
\(291\) 0 0
\(292\) −1.91754 3.32127i −0.112215 0.194363i
\(293\) 1.23089 + 2.13196i 0.0719093 + 0.124551i 0.899738 0.436430i \(-0.143757\pi\)
−0.827829 + 0.560981i \(0.810424\pi\)
\(294\) 0 0
\(295\) 5.63487 9.75988i 0.328075 0.568242i
\(296\) −0.632407 −0.0367579
\(297\) 0 0
\(298\) −12.1245 −0.702356
\(299\) −19.0497 + 32.9950i −1.10167 + 1.90815i
\(300\) 0 0
\(301\) 0 0
\(302\) −11.6616 20.1985i −0.671050 1.16229i
\(303\) 0 0
\(304\) 6.06994 10.5134i 0.348135 0.602987i
\(305\) −4.32349 −0.247562
\(306\) 0 0
\(307\) −4.66277 −0.266118 −0.133059 0.991108i \(-0.542480\pi\)
−0.133059 + 0.991108i \(0.542480\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −4.72814 8.18938i −0.268541 0.465126i
\(311\) 13.7410 + 23.8002i 0.779183 + 1.34958i 0.932413 + 0.361393i \(0.117699\pi\)
−0.153231 + 0.988190i \(0.548968\pi\)
\(312\) 0 0
\(313\) −2.74666 + 4.75735i −0.155250 + 0.268901i −0.933150 0.359487i \(-0.882952\pi\)
0.777900 + 0.628388i \(0.216285\pi\)
\(314\) −31.8671 −1.79837
\(315\) 0 0
\(316\) −8.22893 −0.462914
\(317\) 4.93879 8.55424i 0.277390 0.480454i −0.693345 0.720606i \(-0.743864\pi\)
0.970735 + 0.240152i \(0.0771972\pi\)
\(318\) 0 0
\(319\) −0.0468601 0.0811641i −0.00262366 0.00454432i
\(320\) −1.73808 3.01044i −0.0971614 0.168288i
\(321\) 0 0
\(322\) 0 0
\(323\) 3.87885 0.215825
\(324\) 0 0
\(325\) −16.6586 −0.924052
\(326\) 11.2493 19.4844i 0.623041 1.07914i
\(327\) 0 0
\(328\) 5.06616 + 8.77485i 0.279732 + 0.484510i
\(329\) 0 0
\(330\) 0 0
\(331\) 10.3471 17.9217i 0.568729 0.985067i −0.427963 0.903796i \(-0.640769\pi\)
0.996692 0.0812710i \(-0.0258979\pi\)
\(332\) 7.78803 0.427424
\(333\) 0 0
\(334\) 6.49029 0.355133
\(335\) 4.62718 8.01452i 0.252810 0.437880i
\(336\) 0 0
\(337\) 0.748747 + 1.29687i 0.0407869 + 0.0706449i 0.885698 0.464261i \(-0.153680\pi\)
−0.844911 + 0.534906i \(0.820347\pi\)
\(338\) −12.6962 21.9905i −0.690582 1.19612i
\(339\) 0 0
\(340\) 1.43704 2.48903i 0.0779344 0.134986i
\(341\) 5.82174 0.315265
\(342\) 0 0
\(343\) 0 0
\(344\) −5.72639 + 9.91840i −0.308746 + 0.534764i
\(345\) 0 0
\(346\) 9.33593 + 16.1703i 0.501903 + 0.869321i
\(347\) −14.7694 25.5813i −0.792862 1.37328i −0.924188 0.381938i \(-0.875257\pi\)
0.131326 0.991339i \(-0.458077\pi\)
\(348\) 0 0
\(349\) 18.0006 31.1780i 0.963551 1.66892i 0.250094 0.968222i \(-0.419539\pi\)
0.713458 0.700698i \(-0.247128\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.1073 0.538719
\(353\) −14.7465 + 25.5417i −0.784877 + 1.35945i 0.144196 + 0.989549i \(0.453940\pi\)
−0.929073 + 0.369897i \(0.879393\pi\)
\(354\) 0 0
\(355\) 8.22900 + 14.2530i 0.436750 + 0.756473i
\(356\) −0.977687 1.69340i −0.0518173 0.0897502i
\(357\) 0 0
\(358\) −1.56612 + 2.71260i −0.0827720 + 0.143365i
\(359\) 5.41069 0.285566 0.142783 0.989754i \(-0.454395\pi\)
0.142783 + 0.989754i \(0.454395\pi\)
\(360\) 0 0
\(361\) −12.7289 −0.669942
\(362\) 15.6451 27.0981i 0.822289 1.42425i
\(363\) 0 0
\(364\) 0 0
\(365\) 1.84110 + 3.18888i 0.0963676 + 0.166914i
\(366\) 0 0
\(367\) 11.5422 19.9916i 0.602496 1.04355i −0.389946 0.920838i \(-0.627506\pi\)
0.992442 0.122715i \(-0.0391602\pi\)
\(368\) −35.6834 −1.86013
\(369\) 0 0
\(370\) −1.38416 −0.0719591
\(371\) 0 0
\(372\) 0 0
\(373\) −10.7515 18.6222i −0.556692 0.964219i −0.997770 0.0667498i \(-0.978737\pi\)
0.441078 0.897469i \(-0.354596\pi\)
\(374\) 2.15752 + 3.73694i 0.111563 + 0.193232i
\(375\) 0 0
\(376\) 5.34392 9.25595i 0.275592 0.477339i
\(377\) −0.320615 −0.0165125
\(378\) 0 0
\(379\) 5.72168 0.293903 0.146952 0.989144i \(-0.453054\pi\)
0.146952 + 0.989144i \(0.453054\pi\)
\(380\) 2.32333 4.02412i 0.119184 0.206433i
\(381\) 0 0
\(382\) 20.8925 + 36.1869i 1.06895 + 1.85148i
\(383\) −17.4604 30.2424i −0.892187 1.54531i −0.837248 0.546823i \(-0.815837\pi\)
−0.0549390 0.998490i \(-0.517496\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 11.3917 0.579823
\(387\) 0 0
\(388\) 16.9521 0.860611
\(389\) −14.4411 + 25.0127i −0.732192 + 1.26819i 0.223752 + 0.974646i \(0.428169\pi\)
−0.955944 + 0.293548i \(0.905164\pi\)
\(390\) 0 0
\(391\) −5.70066 9.87383i −0.288295 0.499341i
\(392\) 0 0
\(393\) 0 0
\(394\) 8.99455 15.5790i 0.453139 0.784860i
\(395\) 7.90091 0.397538
\(396\) 0 0
\(397\) −11.1845 −0.561335 −0.280667 0.959805i \(-0.590556\pi\)
−0.280667 + 0.959805i \(0.590556\pi\)
\(398\) −7.99049 + 13.8399i −0.400527 + 0.693734i
\(399\) 0 0
\(400\) −7.80111 13.5119i −0.390056 0.675596i
\(401\) −0.541061 0.937146i −0.0270193 0.0467988i 0.852200 0.523217i \(-0.175268\pi\)
−0.879219 + 0.476418i \(0.841935\pi\)
\(402\) 0 0
\(403\) 9.95802 17.2478i 0.496044 0.859174i
\(404\) −1.55514 −0.0773711
\(405\) 0 0
\(406\) 0 0
\(407\) 0.426078 0.737988i 0.0211199 0.0365807i
\(408\) 0 0
\(409\) 10.8674 + 18.8229i 0.537360 + 0.930735i 0.999045 + 0.0436908i \(0.0139116\pi\)
−0.461685 + 0.887044i \(0.652755\pi\)
\(410\) 11.0884 + 19.2057i 0.547618 + 0.948501i
\(411\) 0 0
\(412\) −1.34182 + 2.32410i −0.0661069 + 0.114500i
\(413\) 0 0
\(414\) 0 0
\(415\) −7.47759 −0.367060
\(416\) 17.2884 29.9443i 0.847632 1.46814i
\(417\) 0 0
\(418\) 3.48816 + 6.04167i 0.170611 + 0.295508i
\(419\) −12.5906 21.8075i −0.615090 1.06537i −0.990369 0.138455i \(-0.955787\pi\)
0.375279 0.926912i \(-0.377547\pi\)
\(420\) 0 0
\(421\) −14.8304 + 25.6869i −0.722788 + 1.25191i 0.237090 + 0.971488i \(0.423806\pi\)
−0.959878 + 0.280418i \(0.909527\pi\)
\(422\) 10.4663 0.509493
\(423\) 0 0
\(424\) −1.69634 −0.0823816
\(425\) 2.49256 4.31724i 0.120907 0.209417i
\(426\) 0 0
\(427\) 0 0
\(428\) −4.01715 6.95791i −0.194176 0.336323i
\(429\) 0 0
\(430\) −12.5335 + 21.7086i −0.604418 + 1.04688i
\(431\) 4.89034 0.235559 0.117780 0.993040i \(-0.462422\pi\)
0.117780 + 0.993040i \(0.462422\pi\)
\(432\) 0 0
\(433\) 9.71430 0.466839 0.233420 0.972376i \(-0.425008\pi\)
0.233420 + 0.972376i \(0.425008\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −5.72896 9.92285i −0.274367 0.475218i
\(437\) −9.21651 15.9635i −0.440885 0.763636i
\(438\) 0 0
\(439\) 7.41176 12.8375i 0.353744 0.612703i −0.633158 0.774022i \(-0.718242\pi\)
0.986902 + 0.161320i \(0.0515751\pi\)
\(440\) −2.26760 −0.108103
\(441\) 0 0
\(442\) 14.7617 0.702141
\(443\) −10.9510 + 18.9676i −0.520297 + 0.901180i 0.479425 + 0.877583i \(0.340845\pi\)
−0.999722 + 0.0235972i \(0.992488\pi\)
\(444\) 0 0
\(445\) 0.938715 + 1.62590i 0.0444994 + 0.0770751i
\(446\) 10.7921 + 18.6925i 0.511021 + 0.885115i
\(447\) 0 0
\(448\) 0 0
\(449\) −21.4952 −1.01442 −0.507212 0.861822i \(-0.669324\pi\)
−0.507212 + 0.861822i \(0.669324\pi\)
\(450\) 0 0
\(451\) −13.6531 −0.642899
\(452\) −10.0802 + 17.4594i −0.474131 + 0.821220i
\(453\) 0 0
\(454\) 10.2954 + 17.8321i 0.483185 + 0.836902i
\(455\) 0 0
\(456\) 0 0
\(457\) −20.3128 + 35.1827i −0.950190 + 1.64578i −0.205181 + 0.978724i \(0.565778\pi\)
−0.745009 + 0.667054i \(0.767555\pi\)
\(458\) −17.7799 −0.830800
\(459\) 0 0
\(460\) −13.6582 −0.636815
\(461\) −1.41541 + 2.45155i −0.0659220 + 0.114180i −0.897103 0.441822i \(-0.854332\pi\)
0.831181 + 0.556003i \(0.187666\pi\)
\(462\) 0 0
\(463\) −13.9324 24.1317i −0.647494 1.12149i −0.983719 0.179711i \(-0.942484\pi\)
0.336225 0.941782i \(-0.390850\pi\)
\(464\) −0.150142 0.260053i −0.00697016 0.0120727i
\(465\) 0 0
\(466\) 17.7586 30.7588i 0.822653 1.42488i
\(467\) −26.6438 −1.23293 −0.616464 0.787383i \(-0.711436\pi\)
−0.616464 + 0.787383i \(0.711436\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 11.6964 20.2587i 0.539513 0.934463i
\(471\) 0 0
\(472\) 4.74028 + 8.21041i 0.218189 + 0.377915i
\(473\) −7.71620 13.3648i −0.354791 0.614516i
\(474\) 0 0
\(475\) 4.02983 6.97987i 0.184901 0.320258i
\(476\) 0 0
\(477\) 0 0
\(478\) −0.716762 −0.0327839
\(479\) −15.7895 + 27.3483i −0.721443 + 1.24958i 0.238979 + 0.971025i \(0.423187\pi\)
−0.960422 + 0.278551i \(0.910146\pi\)
\(480\) 0 0
\(481\) −1.45760 2.52464i −0.0664609 0.115114i
\(482\) −9.79185 16.9600i −0.446007 0.772506i
\(483\) 0 0
\(484\) 6.05472 10.4871i 0.275215 0.476686i
\(485\) −16.2763 −0.739070
\(486\) 0 0
\(487\) 0.306174 0.0138741 0.00693703 0.999976i \(-0.497792\pi\)
0.00693703 + 0.999976i \(0.497792\pi\)
\(488\) 1.81855 3.14982i 0.0823218 0.142586i
\(489\) 0 0
\(490\) 0 0
\(491\) 9.06981 + 15.7094i 0.409315 + 0.708954i 0.994813 0.101720i \(-0.0324345\pi\)
−0.585498 + 0.810674i \(0.699101\pi\)
\(492\) 0 0
\(493\) 0.0479723 0.0830905i 0.00216057 0.00374221i
\(494\) 23.8658 1.07377
\(495\) 0 0
\(496\) 18.6531 0.837549
\(497\) 0 0
\(498\) 0 0
\(499\) 10.6546 + 18.4543i 0.476964 + 0.826126i 0.999652 0.0263983i \(-0.00840381\pi\)
−0.522687 + 0.852524i \(0.675070\pi\)
\(500\) −7.62478 13.2065i −0.340990 0.590613i
\(501\) 0 0
\(502\) −3.00701 + 5.20829i −0.134209 + 0.232457i
\(503\) 17.0738 0.761285 0.380642 0.924722i \(-0.375703\pi\)
0.380642 + 0.924722i \(0.375703\pi\)
\(504\) 0 0
\(505\) 1.49315 0.0664443
\(506\) 10.2529 17.7586i 0.455799 0.789466i
\(507\) 0 0
\(508\) −5.90824 10.2334i −0.262136 0.454032i
\(509\) 18.3868 + 31.8468i 0.814979 + 1.41159i 0.909343 + 0.416048i \(0.136585\pi\)
−0.0943635 + 0.995538i \(0.530082\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 21.4975 0.950065
\(513\) 0 0
\(514\) 8.64598 0.381358
\(515\) 1.28834 2.23146i 0.0567709 0.0983300i
\(516\) 0 0
\(517\) 7.20083 + 12.4722i 0.316692 + 0.548527i
\(518\) 0 0
\(519\) 0 0
\(520\) −3.87870 + 6.71810i −0.170092 + 0.294608i
\(521\) −19.1507 −0.839008 −0.419504 0.907754i \(-0.637796\pi\)
−0.419504 + 0.907754i \(0.637796\pi\)
\(522\) 0 0
\(523\) 41.9429 1.83404 0.917018 0.398847i \(-0.130589\pi\)
0.917018 + 0.398847i \(0.130589\pi\)
\(524\) −1.39952 + 2.42405i −0.0611385 + 0.105895i
\(525\) 0 0
\(526\) 17.9980 + 31.1734i 0.784749 + 1.35922i
\(527\) 2.97996 + 5.16144i 0.129809 + 0.224836i
\(528\) 0 0
\(529\) −15.5906 + 27.0037i −0.677851 + 1.17407i
\(530\) −3.71282 −0.161274
\(531\) 0 0
\(532\) 0 0
\(533\) −23.3535 + 40.4494i −1.01155 + 1.75206i
\(534\) 0 0
\(535\) 3.85702 + 6.68056i 0.166754 + 0.288826i
\(536\) 3.89258 + 6.74214i 0.168134 + 0.291216i
\(537\) 0 0
\(538\) −14.5157 + 25.1419i −0.625816 + 1.08395i
\(539\) 0 0
\(540\) 0 0
\(541\) 2.88544 0.124055 0.0620273 0.998074i \(-0.480243\pi\)
0.0620273 + 0.998074i \(0.480243\pi\)
\(542\) 13.6230 23.5957i 0.585158 1.01352i
\(543\) 0 0
\(544\) 5.17358 + 8.96090i 0.221815 + 0.384196i
\(545\) 5.50059 + 9.52731i 0.235620 + 0.408105i
\(546\) 0 0
\(547\) 1.38738 2.40301i 0.0593201 0.102745i −0.834840 0.550492i \(-0.814440\pi\)
0.894160 + 0.447747i \(0.147773\pi\)
\(548\) −3.08255 −0.131680
\(549\) 0 0
\(550\) 8.96600 0.382311
\(551\) 0.0775590 0.134336i 0.00330413 0.00572291i
\(552\) 0 0
\(553\) 0 0
\(554\) 6.85975 + 11.8814i 0.291443 + 0.504794i
\(555\) 0 0
\(556\) 0.525024 0.909368i 0.0222660 0.0385658i
\(557\) 31.0688 1.31643 0.658214 0.752831i \(-0.271312\pi\)
0.658214 + 0.752831i \(0.271312\pi\)
\(558\) 0 0
\(559\) −52.7939 −2.23294
\(560\) 0 0
\(561\) 0 0
\(562\) 23.9248 + 41.4389i 1.00920 + 1.74799i
\(563\) 0.144020 + 0.249451i 0.00606973 + 0.0105131i 0.869044 0.494734i \(-0.164735\pi\)
−0.862975 + 0.505247i \(0.831401\pi\)
\(564\) 0 0
\(565\) 9.67836 16.7634i 0.407172 0.705242i
\(566\) 34.5331 1.45154
\(567\) 0 0
\(568\) −13.8451 −0.580929
\(569\) −8.04004 + 13.9258i −0.337056 + 0.583798i −0.983878 0.178843i \(-0.942765\pi\)
0.646821 + 0.762641i \(0.276098\pi\)
\(570\) 0 0
\(571\) 7.64289 + 13.2379i 0.319845 + 0.553988i 0.980456 0.196741i \(-0.0630358\pi\)
−0.660610 + 0.750729i \(0.729702\pi\)
\(572\) 5.44345 + 9.42834i 0.227602 + 0.394218i
\(573\) 0 0
\(574\) 0 0
\(575\) −23.6902 −0.987950
\(576\) 0 0
\(577\) −24.1625 −1.00590 −0.502949 0.864316i \(-0.667752\pi\)
−0.502949 + 0.864316i \(0.667752\pi\)
\(578\) 13.4418 23.2819i 0.559106 0.968400i
\(579\) 0 0
\(580\) −0.0574683 0.0995380i −0.00238624 0.00413309i
\(581\) 0 0
\(582\) 0 0
\(583\) 1.14289 1.97955i 0.0473338 0.0819845i
\(584\) −3.09762 −0.128180
\(585\) 0 0
\(586\) −4.53273 −0.187245
\(587\) −18.0145 + 31.2020i −0.743537 + 1.28784i 0.207339 + 0.978269i \(0.433520\pi\)
−0.950875 + 0.309574i \(0.899814\pi\)
\(588\) 0 0
\(589\) 4.81783 + 8.34472i 0.198515 + 0.343838i
\(590\) 10.3752 + 17.9703i 0.427138 + 0.739825i
\(591\) 0 0
\(592\) 1.36517 2.36455i 0.0561082 0.0971823i
\(593\) 24.9337 1.02390 0.511951 0.859014i \(-0.328923\pi\)
0.511951 + 0.859014i \(0.328923\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.57712 7.92780i 0.187486 0.324735i
\(597\) 0 0
\(598\) −35.0751 60.7518i −1.43433 2.48433i
\(599\) 19.7642 + 34.2325i 0.807542 + 1.39870i 0.914561 + 0.404447i \(0.132536\pi\)
−0.107019 + 0.994257i \(0.534131\pi\)
\(600\) 0 0
\(601\) 1.86447 3.22936i 0.0760534 0.131728i −0.825490 0.564416i \(-0.809101\pi\)
0.901544 + 0.432688i \(0.142435\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 17.6094 0.716516
\(605\) −5.81337 + 10.0691i −0.236347 + 0.409365i
\(606\) 0 0
\(607\) −11.8264 20.4839i −0.480018 0.831415i 0.519719 0.854337i \(-0.326036\pi\)
−0.999737 + 0.0229218i \(0.992703\pi\)
\(608\) 8.36436 + 14.4875i 0.339219 + 0.587545i
\(609\) 0 0
\(610\) 3.98029 6.89407i 0.161157 0.279133i
\(611\) 49.2677 1.99316
\(612\) 0 0
\(613\) −3.79903 −0.153442 −0.0767208 0.997053i \(-0.524445\pi\)
−0.0767208 + 0.997053i \(0.524445\pi\)
\(614\) 4.29264 7.43507i 0.173237 0.300055i
\(615\) 0 0
\(616\) 0 0
\(617\) 17.5615 + 30.4174i 0.706999 + 1.22456i 0.965965 + 0.258672i \(0.0832849\pi\)
−0.258966 + 0.965886i \(0.583382\pi\)
\(618\) 0 0
\(619\) 10.5816 18.3279i 0.425311 0.736660i −0.571138 0.820854i \(-0.693498\pi\)
0.996449 + 0.0841934i \(0.0268314\pi\)
\(620\) 7.13965 0.286735
\(621\) 0 0
\(622\) −50.6011 −2.02892
\(623\) 0 0
\(624\) 0 0
\(625\) −0.725240 1.25615i −0.0290096 0.0502461i
\(626\) −5.05726 8.75943i −0.202129 0.350097i
\(627\) 0 0
\(628\) 12.0301 20.8368i 0.480054 0.831477i
\(629\) 0.872381 0.0347841
\(630\) 0 0
\(631\) 4.74845 0.189033 0.0945164 0.995523i \(-0.469870\pi\)
0.0945164 + 0.995523i \(0.469870\pi\)
\(632\) −3.32329 + 5.75610i −0.132193 + 0.228965i
\(633\) 0 0
\(634\) 9.09350 + 15.7504i 0.361149 + 0.625529i
\(635\) 5.67273 + 9.82546i 0.225115 + 0.389911i
\(636\) 0 0
\(637\) 0 0
\(638\) 0.172562 0.00683178
\(639\) 0 0
\(640\) −11.4324 −0.451907
\(641\) −4.93735 + 8.55174i −0.195013 + 0.337773i −0.946905 0.321514i \(-0.895808\pi\)
0.751891 + 0.659287i \(0.229142\pi\)
\(642\) 0 0
\(643\) 21.9748 + 38.0615i 0.866602 + 1.50100i 0.865448 + 0.501000i \(0.167034\pi\)
0.00115462 + 0.999999i \(0.499632\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −3.57095 + 6.18507i −0.140497 + 0.243348i
\(647\) 44.3872 1.74504 0.872521 0.488577i \(-0.162484\pi\)
0.872521 + 0.488577i \(0.162484\pi\)
\(648\) 0 0
\(649\) −12.7749 −0.501457
\(650\) 15.3362 26.5631i 0.601537 1.04189i
\(651\) 0 0
\(652\) 8.49341 + 14.7110i 0.332628 + 0.576128i
\(653\) 20.9956 + 36.3655i 0.821622 + 1.42309i 0.904474 + 0.426529i \(0.140264\pi\)
−0.0828523 + 0.996562i \(0.526403\pi\)
\(654\) 0 0
\(655\) 1.34374 2.32742i 0.0525042 0.0909399i
\(656\) −43.7451 −1.70796
\(657\) 0 0
\(658\) 0 0
\(659\) 19.6365 34.0114i 0.764928 1.32489i −0.175356 0.984505i \(-0.556108\pi\)
0.940284 0.340390i \(-0.110559\pi\)
\(660\) 0 0
\(661\) 0.0933694 + 0.161721i 0.00363165 + 0.00629020i 0.867836 0.496852i \(-0.165511\pi\)
−0.864204 + 0.503142i \(0.832177\pi\)
\(662\) 19.0515 + 32.9982i 0.740459 + 1.28251i
\(663\) 0 0
\(664\) 3.14522 5.44769i 0.122058 0.211411i
\(665\) 0 0
\(666\) 0 0
\(667\) −0.455947 −0.0176543
\(668\) −2.45014 + 4.24376i −0.0947987 + 0.164196i
\(669\) 0 0
\(670\) 8.51976 + 14.7567i 0.329147 + 0.570099i
\(671\) 2.45046 + 4.24432i 0.0945989 + 0.163850i
\(672\) 0 0
\(673\) −5.43382 + 9.41166i −0.209458 + 0.362793i −0.951544 0.307512i \(-0.900503\pi\)
0.742086 + 0.670305i \(0.233837\pi\)
\(674\) −2.75725 −0.106205
\(675\) 0 0
\(676\) 19.1717 0.737372
\(677\) 14.1950 24.5865i 0.545560 0.944937i −0.453012 0.891505i \(-0.649650\pi\)
0.998571 0.0534326i \(-0.0170162\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.16071 2.01041i −0.0445111 0.0770956i
\(681\) 0 0
\(682\) −5.35961 + 9.28312i −0.205230 + 0.355469i
\(683\) 11.8407 0.453071 0.226536 0.974003i \(-0.427260\pi\)
0.226536 + 0.974003i \(0.427260\pi\)
\(684\) 0 0
\(685\) 2.95968 0.113083
\(686\) 0 0
\(687\) 0 0
\(688\) −24.7230 42.8216i −0.942557 1.63256i
\(689\) −3.90981 6.77199i −0.148952 0.257992i
\(690\) 0 0
\(691\) −5.95416 + 10.3129i −0.226507 + 0.392321i −0.956770 0.290844i \(-0.906064\pi\)
0.730264 + 0.683165i \(0.239397\pi\)
\(692\) −14.0976 −0.535909
\(693\) 0 0
\(694\) 54.3880 2.06454
\(695\) −0.504096 + 0.873119i −0.0191214 + 0.0331193i
\(696\) 0 0
\(697\) −6.98857 12.1046i −0.264711 0.458493i
\(698\) 33.1435 + 57.4062i 1.25450 + 2.17286i
\(699\) 0 0
\(700\) 0 0
\(701\) 31.3902 1.18559 0.592795 0.805353i \(-0.298024\pi\)
0.592795 + 0.805353i \(0.298024\pi\)
\(702\) 0 0
\(703\) 1.41042 0.0531949
\(704\) −1.97020 + 3.41249i −0.0742549 + 0.128613i
\(705\) 0 0
\(706\) −27.1518 47.0284i −1.02187 1.76994i
\(707\) 0 0
\(708\) 0 0
\(709\) −0.312609 + 0.541455i −0.0117403 + 0.0203348i −0.871836 0.489798i \(-0.837070\pi\)
0.860096 + 0.510133i \(0.170404\pi\)
\(710\) −30.3031 −1.13726
\(711\) 0 0
\(712\) −1.57937 −0.0591894
\(713\) 14.1613 24.5281i 0.530345 0.918584i
\(714\) 0 0
\(715\) −5.22647 9.05251i −0.195459 0.338545i
\(716\) −1.18245 2.04806i −0.0441901 0.0765395i
\(717\) 0 0
\(718\) −4.98119 + 8.62768i −0.185897 + 0.321982i
\(719\) 24.3939 0.909739 0.454869 0.890558i \(-0.349686\pi\)
0.454869 + 0.890558i \(0.349686\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 11.7185 20.2970i 0.436116 0.755376i
\(723\) 0 0
\(724\) 11.8123 + 20.4595i 0.439002 + 0.760373i
\(725\) −0.0996792 0.172649i −0.00370199 0.00641204i
\(726\) 0 0
\(727\) −18.9253 + 32.7796i −0.701900 + 1.21573i 0.265899 + 0.964001i \(0.414331\pi\)
−0.967799 + 0.251726i \(0.919002\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −6.77982 −0.250932
\(731\) 7.89934 13.6821i 0.292168 0.506049i
\(732\) 0 0
\(733\) −1.20077 2.07980i −0.0443516 0.0768193i 0.842997 0.537918i \(-0.180789\pi\)
−0.887349 + 0.461098i \(0.847456\pi\)
\(734\) 21.2519 + 36.8093i 0.784421 + 1.35866i
\(735\) 0 0
\(736\) 24.5858 42.5839i 0.906245 1.56966i
\(737\) −10.4903 −0.386416
\(738\) 0 0
\(739\) 30.3880 1.11784 0.558920 0.829222i \(-0.311216\pi\)
0.558920 + 0.829222i \(0.311216\pi\)
\(740\) 0.522533 0.905053i 0.0192087 0.0332704i
\(741\) 0 0
\(742\) 0 0
\(743\) 2.54785 + 4.41300i 0.0934715 + 0.161897i 0.908970 0.416862i \(-0.136870\pi\)
−0.815498 + 0.578760i \(0.803537\pi\)
\(744\) 0 0
\(745\) −4.39467 + 7.61179i −0.161008 + 0.278874i
\(746\) 39.5922 1.44957
\(747\) 0 0
\(748\) −3.25793 −0.119122
\(749\) 0 0
\(750\) 0 0
\(751\) 0.487506 + 0.844384i 0.0177893 + 0.0308120i 0.874783 0.484515i \(-0.161004\pi\)
−0.856994 + 0.515327i \(0.827671\pi\)
\(752\) 23.0718 + 39.9615i 0.841341 + 1.45724i
\(753\) 0 0
\(754\) 0.295165 0.511240i 0.0107493 0.0186183i
\(755\) −16.9075 −0.615326
\(756\) 0 0
\(757\) 11.6346 0.422865 0.211433 0.977393i \(-0.432187\pi\)
0.211433 + 0.977393i \(0.432187\pi\)
\(758\) −5.26750 + 9.12357i −0.191324 + 0.331383i
\(759\) 0 0
\(760\) −1.87657 3.25031i −0.0680703 0.117901i
\(761\) −27.0875 46.9169i −0.981920 1.70073i −0.654897 0.755718i \(-0.727288\pi\)
−0.327023 0.945016i \(-0.606045\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −31.5484 −1.14138
\(765\) 0 0
\(766\) 64.2978 2.32317
\(767\) −21.8513 + 37.8475i −0.789004 + 1.36659i
\(768\) 0 0
\(769\) −10.4326 18.0698i −0.376208 0.651612i 0.614299 0.789074i \(-0.289439\pi\)
−0.990507 + 0.137462i \(0.956106\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.30047 + 7.44863i −0.154777 + 0.268082i
\(773\) −54.9945 −1.97801 −0.989007 0.147868i \(-0.952759\pi\)
−0.989007 + 0.147868i \(0.952759\pi\)
\(774\) 0 0
\(775\) 12.3838 0.444839
\(776\) 6.84616 11.8579i 0.245763 0.425674i
\(777\) 0 0
\(778\) −26.5895 46.0544i −0.953281 1.65113i
\(779\) −11.2987 19.5700i −0.404819 0.701168i
\(780\) 0 0
\(781\) 9.32802 16.1566i 0.333783 0.578129i
\(782\) 20.9926 0.750693
\(783\) 0 0
\(784\) 0 0
\(785\) −11.5506 + 20.0062i −0.412258 + 0.714051i
\(786\) 0 0
\(787\) −4.59475 7.95833i −0.163785 0.283684i 0.772438 0.635090i \(-0.219037\pi\)
−0.936223 + 0.351406i \(0.885704\pi\)
\(788\) 6.79103 + 11.7624i 0.241921 + 0.419019i
\(789\) 0 0
\(790\) −7.27374 + 12.5985i −0.258788 + 0.448234i
\(791\) 0 0
\(792\) 0 0
\(793\) 16.7659 0.595375
\(794\) 10.2967 17.8344i 0.365416 0.632919i
\(795\) 0 0
\(796\) −6.03296 10.4494i −0.213832 0.370369i
\(797\) −3.53774 6.12754i −0.125313 0.217049i 0.796542 0.604583i \(-0.206660\pi\)
−0.921855 + 0.387534i \(0.873327\pi\)
\(798\) 0 0
\(799\) −7.37174 + 12.7682i −0.260793 + 0.451707i
\(800\) 21.4998 0.760133
\(801\) 0 0
\(802\) 1.99245 0.0703558
\(803\) 2.08699 3.61477i 0.0736483 0.127563i
\(804\) 0 0
\(805\) 0 0
\(806\) 18.3351 + 31.7573i 0.645827 + 1.11860i
\(807\) 0 0
\(808\) −0.628050 + 1.08781i −0.0220947 + 0.0382692i
\(809\) −5.94119 −0.208881 −0.104441 0.994531i \(-0.533305\pi\)
−0.104441 + 0.994531i \(0.533305\pi\)
\(810\) 0 0
\(811\) 44.4139 1.55958 0.779791 0.626039i \(-0.215325\pi\)
0.779791 + 0.626039i \(0.215325\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0.784512 + 1.35881i 0.0274971 + 0.0476264i
\(815\) −8.15485 14.1246i −0.285652 0.494764i
\(816\) 0 0
\(817\) 12.7712 22.1204i 0.446808 0.773894i
\(818\) −40.0191 −1.39924
\(819\) 0 0
\(820\) −16.7439 −0.584721
\(821\) 3.17761 5.50378i 0.110899 0.192083i −0.805234 0.592958i \(-0.797960\pi\)
0.916133 + 0.400874i \(0.131294\pi\)
\(822\) 0 0
\(823\) 4.73216 + 8.19635i 0.164953 + 0.285707i 0.936639 0.350297i \(-0.113919\pi\)
−0.771686 + 0.636004i \(0.780586\pi\)
\(824\) 1.08380 + 1.87720i 0.0377560 + 0.0653953i
\(825\) 0 0
\(826\) 0 0
\(827\) 4.86261 0.169090 0.0845448 0.996420i \(-0.473056\pi\)
0.0845448 + 0.996420i \(0.473056\pi\)
\(828\) 0 0
\(829\) −40.7853 −1.41653 −0.708266 0.705946i \(-0.750522\pi\)
−0.708266 + 0.705946i \(0.750522\pi\)
\(830\) 6.88402 11.9235i 0.238948 0.413870i
\(831\) 0 0
\(832\) 6.74003 + 11.6741i 0.233668 + 0.404725i
\(833\) 0 0
\(834\) 0 0
\(835\) 2.35247 4.07460i 0.0814107 0.141007i
\(836\) −5.26724 −0.182171
\(837\) 0 0
\(838\) 46.3645 1.60164
\(839\) −9.60171 + 16.6307i −0.331488 + 0.574154i −0.982804 0.184653i \(-0.940884\pi\)
0.651316 + 0.758807i \(0.274217\pi\)
\(840\) 0 0
\(841\) 14.4981 + 25.1114i 0.499934 + 0.865911i
\(842\) −27.3063 47.2959i −0.941036 1.62992i
\(843\) 0 0
\(844\) −3.95113 + 6.84355i −0.136003 + 0.235565i
\(845\) −18.4075 −0.633236
\(846\) 0 0
\(847\) 0 0
\(848\) 3.66188 6.34256i 0.125749 0.217804i
\(849\) 0 0
\(850\) 4.58940 + 7.94907i 0.157415 + 0.272651i
\(851\) −2.07286 3.59029i −0.0710566 0.123074i
\(852\) 0 0
\(853\) −6.95055 + 12.0387i −0.237982 + 0.412198i −0.960135 0.279536i \(-0.909819\pi\)
0.722153 + 0.691734i \(0.243153\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −6.48937 −0.221802
\(857\) 28.4919 49.3494i 0.973265 1.68574i 0.287718 0.957715i \(-0.407103\pi\)
0.685547 0.728029i \(-0.259563\pi\)
\(858\) 0 0
\(859\) 10.0501 + 17.4073i 0.342905 + 0.593929i 0.984971 0.172721i \(-0.0552557\pi\)
−0.642066 + 0.766650i \(0.721922\pi\)
\(860\) −9.46298 16.3904i −0.322685 0.558907i
\(861\) 0 0
\(862\) −4.50214 + 7.79794i −0.153344 + 0.265599i
\(863\) −6.17786 −0.210297 −0.105148 0.994457i \(-0.533532\pi\)
−0.105148 + 0.994457i \(0.533532\pi\)
\(864\) 0 0
\(865\) 13.5356 0.460225
\(866\) −8.94318 + 15.4900i −0.303902 + 0.526373i
\(867\) 0 0
\(868\) 0 0
\(869\) −4.47806 7.75623i −0.151908 0.263112i
\(870\) 0 0
\(871\) −17.9436 + 31.0792i −0.607996 + 1.05308i
\(872\) −9.25465 −0.313402
\(873\) 0 0
\(874\) 33.9396 1.14802
\(875\) 0 0
\(876\) 0 0
\(877\) 18.6287 + 32.2658i 0.629046 + 1.08954i 0.987743 + 0.156086i \(0.0498877\pi\)
−0.358697 + 0.933454i \(0.616779\pi\)
\(878\) 13.6468 + 23.6370i 0.460558 + 0.797710i
\(879\) 0 0
\(880\) 4.89504 8.47846i 0.165012 0.285809i
\(881\) 11.7848 0.397041 0.198520 0.980097i \(-0.436386\pi\)
0.198520 + 0.980097i \(0.436386\pi\)
\(882\) 0 0
\(883\) −29.2308 −0.983693 −0.491847 0.870682i \(-0.663678\pi\)
−0.491847 + 0.870682i \(0.663678\pi\)
\(884\) −5.57265 + 9.65211i −0.187428 + 0.324636i
\(885\) 0 0
\(886\) −20.1634 34.9240i −0.677402 1.17329i
\(887\) 14.2581 + 24.6957i 0.478739 + 0.829201i 0.999703 0.0243782i \(-0.00776058\pi\)
−0.520964 + 0.853579i \(0.674427\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −3.45680 −0.115872
\(891\) 0 0
\(892\) −16.2964 −0.545645
\(893\) −11.9182 + 20.6430i −0.398828 + 0.690790i
\(894\) 0 0
\(895\) 1.13531 + 1.96642i 0.0379493 + 0.0657301i
\(896\) 0 0
\(897\) 0 0
\(898\) 19.7890 34.2755i 0.660366 1.14379i
\(899\) 0.238341 0.00794912
\(900\) 0 0
\(901\) 2.34004 0.0779579
\(902\) 12.5693 21.7707i 0.418513 0.724885i
\(903\) 0 0
\(904\) 8.14183 + 14.1021i 0.270793 + 0.469028i
\(905\) −11.3415 19.6440i −0.377003 0.652989i
\(906\) 0 0
\(907\) 3.94577 6.83428i 0.131017 0.226929i −0.793052 0.609154i \(-0.791509\pi\)
0.924069 + 0.382226i \(0.124842\pi\)
\(908\) −15.5463 −0.515923
\(909\) 0 0
\(910\) 0 0
\(911\) 14.2206 24.6308i 0.471150 0.816055i −0.528306 0.849054i \(-0.677173\pi\)
0.999455 + 0.0329991i \(0.0105058\pi\)
\(912\) 0 0
\(913\) 4.23813 + 7.34065i 0.140262 + 0.242940i
\(914\) −37.4007 64.7798i −1.23710 2.14273i
\(915\) 0 0
\(916\) 6.71206 11.6256i 0.221773 0.384121i
\(917\) 0 0
\(918\) 0 0
\(919\) −7.98542 −0.263415 −0.131707 0.991289i \(-0.542046\pi\)
−0.131707 + 0.991289i \(0.542046\pi\)
\(920\) −5.51590 + 9.55382i −0.181854 + 0.314980i
\(921\) 0 0
\(922\) −2.60610 4.51390i −0.0858274 0.148657i
\(923\) −31.9110 55.2714i −1.05036 1.81928i
\(924\) 0 0
\(925\) 0.906337 1.56982i 0.0298002 0.0516154i
\(926\) 51.3059 1.68602
\(927\) 0 0
\(928\) 0.413790 0.0135833
\(929\) 9.40031 16.2818i 0.308414 0.534189i −0.669601 0.742721i \(-0.733535\pi\)
0.978016 + 0.208531i \(0.0668684\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 13.4081 + 23.2234i 0.439196 + 0.760709i
\(933\) 0 0
\(934\) 24.5288 42.4852i 0.802608 1.39016i
\(935\) 3.12806 0.102299
\(936\) 0 0
\(937\) 48.5788 1.58700 0.793500 0.608570i \(-0.208256\pi\)
0.793500 + 0.608570i \(0.208256\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 8.83094 + 15.2956i 0.288034 + 0.498889i
\(941\) 10.2425 + 17.7406i 0.333898 + 0.578328i 0.983272 0.182141i \(-0.0583027\pi\)
−0.649375 + 0.760468i \(0.724969\pi\)
\(942\) 0 0
\(943\) −33.2110 + 57.5231i −1.08150 + 1.87321i
\(944\) −40.9312 −1.33220
\(945\) 0 0
\(946\) 28.4148 0.923843
\(947\) −7.42524 + 12.8609i −0.241288 + 0.417923i −0.961081 0.276265i \(-0.910903\pi\)
0.719793 + 0.694188i \(0.244236\pi\)
\(948\) 0 0
\(949\) −7.13954 12.3661i −0.231759 0.401419i
\(950\) 7.41989 + 12.8516i 0.240733 + 0.416962i
\(951\) 0 0
\(952\) 0 0
\(953\) −46.4678 −1.50524 −0.752620 0.658456i \(-0.771210\pi\)
−0.752620 + 0.658456i \(0.771210\pi\)
\(954\) 0 0
\(955\) 30.2908 0.980188
\(956\) 0.270584 0.468665i 0.00875130 0.0151577i
\(957\) 0 0
\(958\) −29.0724 50.3548i −0.939285 1.62689i
\(959\) 0 0
\(960\) 0 0
\(961\) 8.09733 14.0250i 0.261204 0.452419i
\(962\) 5.36759 0.173058
\(963\) 0 0
\(964\) 14.7860 0.476226
\(965\) 4.12905 7.15172i 0.132919 0.230222i
\(966\) 0 0
\(967\) 0.863670 + 1.49592i 0.0277738 + 0.0481056i 0.879578 0.475754i \(-0.157825\pi\)
−0.851804 + 0.523860i \(0.824492\pi\)
\(968\) −4.89045 8.47050i −0.157185 0.272252i
\(969\) 0 0
\(970\) 14.9843 25.9536i 0.481118 0.833320i
\(971\) −7.56171 −0.242667 −0.121333 0.992612i \(-0.538717\pi\)
−0.121333 + 0.992612i \(0.538717\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −0.281870 + 0.488213i −0.00903169 + 0.0156434i
\(975\) 0 0
\(976\) 7.85137 + 13.5990i 0.251316 + 0.435293i
\(977\) −28.3101 49.0345i −0.905721 1.56875i −0.819947 0.572440i \(-0.805997\pi\)
−0.0857737 0.996315i \(-0.527336\pi\)
\(978\) 0 0
\(979\) 1.06408 1.84305i 0.0340083 0.0589041i
\(980\) 0 0
\(981\) 0 0
\(982\) −33.3994 −1.06582
\(983\) 16.1486 27.9702i 0.515061 0.892112i −0.484786 0.874633i \(-0.661103\pi\)
0.999847 0.0174790i \(-0.00556402\pi\)
\(984\) 0 0
\(985\) −6.52033 11.2936i −0.207755 0.359842i
\(986\) 0.0883286 + 0.152990i 0.00281296 + 0.00487218i
\(987\) 0 0
\(988\) −9.00955 + 15.6050i −0.286632 + 0.496461i
\(989\) −75.0782 −2.38735
\(990\) 0 0
\(991\) 14.3100 0.454573 0.227287 0.973828i \(-0.427015\pi\)
0.227287 + 0.973828i \(0.427015\pi\)
\(992\) −12.8520 + 22.2602i −0.408050 + 0.706764i
\(993\) 0 0
\(994\) 0 0
\(995\) 5.79247 + 10.0329i 0.183634 + 0.318063i
\(996\) 0 0
\(997\) −28.1262 + 48.7160i −0.890765 + 1.54285i −0.0518058 + 0.998657i \(0.516498\pi\)
−0.838960 + 0.544194i \(0.816836\pi\)
\(998\) −39.2353 −1.24197
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.f.e.883.2 10
3.2 odd 2 441.2.f.e.295.4 10
7.2 even 3 189.2.h.b.46.4 10
7.3 odd 6 1323.2.g.f.667.2 10
7.4 even 3 189.2.g.b.100.2 10
7.5 odd 6 1323.2.h.f.802.4 10
7.6 odd 2 1323.2.f.f.883.2 10
9.2 odd 6 3969.2.a.z.1.2 5
9.4 even 3 inner 1323.2.f.e.442.2 10
9.5 odd 6 441.2.f.e.148.4 10
9.7 even 3 3969.2.a.bc.1.4 5
21.2 odd 6 63.2.h.b.25.2 yes 10
21.5 even 6 441.2.h.f.214.2 10
21.11 odd 6 63.2.g.b.16.4 yes 10
21.17 even 6 441.2.g.f.79.4 10
21.20 even 2 441.2.f.f.295.4 10
28.11 odd 6 3024.2.t.i.289.2 10
28.23 odd 6 3024.2.q.i.2881.4 10
63.2 odd 6 567.2.e.f.487.4 10
63.4 even 3 189.2.h.b.37.4 10
63.5 even 6 441.2.g.f.67.4 10
63.11 odd 6 567.2.e.f.163.4 10
63.13 odd 6 1323.2.f.f.442.2 10
63.16 even 3 567.2.e.e.487.2 10
63.20 even 6 3969.2.a.ba.1.2 5
63.23 odd 6 63.2.g.b.4.4 10
63.25 even 3 567.2.e.e.163.2 10
63.31 odd 6 1323.2.h.f.226.4 10
63.32 odd 6 63.2.h.b.58.2 yes 10
63.34 odd 6 3969.2.a.bb.1.4 5
63.40 odd 6 1323.2.g.f.361.2 10
63.41 even 6 441.2.f.f.148.4 10
63.58 even 3 189.2.g.b.172.2 10
63.59 even 6 441.2.h.f.373.2 10
84.11 even 6 1008.2.t.i.961.5 10
84.23 even 6 1008.2.q.i.529.2 10
252.23 even 6 1008.2.t.i.193.5 10
252.67 odd 6 3024.2.q.i.2305.4 10
252.95 even 6 1008.2.q.i.625.2 10
252.247 odd 6 3024.2.t.i.1873.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.g.b.4.4 10 63.23 odd 6
63.2.g.b.16.4 yes 10 21.11 odd 6
63.2.h.b.25.2 yes 10 21.2 odd 6
63.2.h.b.58.2 yes 10 63.32 odd 6
189.2.g.b.100.2 10 7.4 even 3
189.2.g.b.172.2 10 63.58 even 3
189.2.h.b.37.4 10 63.4 even 3
189.2.h.b.46.4 10 7.2 even 3
441.2.f.e.148.4 10 9.5 odd 6
441.2.f.e.295.4 10 3.2 odd 2
441.2.f.f.148.4 10 63.41 even 6
441.2.f.f.295.4 10 21.20 even 2
441.2.g.f.67.4 10 63.5 even 6
441.2.g.f.79.4 10 21.17 even 6
441.2.h.f.214.2 10 21.5 even 6
441.2.h.f.373.2 10 63.59 even 6
567.2.e.e.163.2 10 63.25 even 3
567.2.e.e.487.2 10 63.16 even 3
567.2.e.f.163.4 10 63.11 odd 6
567.2.e.f.487.4 10 63.2 odd 6
1008.2.q.i.529.2 10 84.23 even 6
1008.2.q.i.625.2 10 252.95 even 6
1008.2.t.i.193.5 10 252.23 even 6
1008.2.t.i.961.5 10 84.11 even 6
1323.2.f.e.442.2 10 9.4 even 3 inner
1323.2.f.e.883.2 10 1.1 even 1 trivial
1323.2.f.f.442.2 10 63.13 odd 6
1323.2.f.f.883.2 10 7.6 odd 2
1323.2.g.f.361.2 10 63.40 odd 6
1323.2.g.f.667.2 10 7.3 odd 6
1323.2.h.f.226.4 10 63.31 odd 6
1323.2.h.f.802.4 10 7.5 odd 6
3024.2.q.i.2305.4 10 252.67 odd 6
3024.2.q.i.2881.4 10 28.23 odd 6
3024.2.t.i.289.2 10 28.11 odd 6
3024.2.t.i.1873.2 10 252.247 odd 6
3969.2.a.z.1.2 5 9.2 odd 6
3969.2.a.ba.1.2 5 63.20 even 6
3969.2.a.bb.1.4 5 63.34 odd 6
3969.2.a.bc.1.4 5 9.7 even 3