Properties

Label 3969.2.a.z.1.2
Level $3969$
Weight $2$
Character 3969.1
Self dual yes
Analytic conductor $31.693$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3969,2,Mod(1,3969)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3969, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3969.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3969 = 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3969.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.6926245622\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.574857.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 9x^{2} + 3x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.84124\) of defining polynomial
Character \(\chi\) \(=\) 3969.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.84124 q^{2} +1.39017 q^{4} +1.33475 q^{5} +1.12285 q^{8} +O(q^{10})\) \(q-1.84124 q^{2} +1.39017 q^{4} +1.33475 q^{5} +1.12285 q^{8} -2.45760 q^{10} +1.51302 q^{11} +5.17599 q^{13} -4.84777 q^{16} -1.54893 q^{17} +2.50422 q^{19} +1.85553 q^{20} -2.78583 q^{22} -7.36079 q^{23} -3.21843 q^{25} -9.53025 q^{26} +0.0619427 q^{29} -3.84777 q^{31} +6.68021 q^{32} +2.85195 q^{34} +0.563216 q^{37} -4.61087 q^{38} +1.49873 q^{40} -9.02376 q^{41} -10.1998 q^{43} +2.10335 q^{44} +13.5530 q^{46} -9.51851 q^{47} +5.92591 q^{50} +7.19550 q^{52} -1.51075 q^{53} +2.01950 q^{55} -0.114051 q^{58} -8.44331 q^{59} +3.23917 q^{61} +7.08467 q^{62} -2.60434 q^{64} +6.90868 q^{65} +6.93339 q^{67} -2.15327 q^{68} -12.3304 q^{71} +2.75871 q^{73} -1.03702 q^{74} +3.48128 q^{76} -5.91938 q^{79} -6.47058 q^{80} +16.6149 q^{82} -5.60222 q^{83} -2.06744 q^{85} +18.7802 q^{86} +1.69889 q^{88} -1.40657 q^{89} -10.2327 q^{92} +17.5259 q^{94} +3.34251 q^{95} +12.1943 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 4 q^{4} - 4 q^{5} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 2 q^{2} + 4 q^{4} - 4 q^{5} - 3 q^{8} + 7 q^{10} - 4 q^{11} + 8 q^{13} - 2 q^{16} - 12 q^{17} - q^{19} - 5 q^{20} + q^{22} - 3 q^{23} + q^{25} - 11 q^{26} - 7 q^{29} + 3 q^{31} + 2 q^{32} - 3 q^{34} - 20 q^{38} + 3 q^{40} - 5 q^{41} + 7 q^{43} + 10 q^{44} - 3 q^{46} - 27 q^{47} - 19 q^{50} + 10 q^{52} + 21 q^{53} + 2 q^{55} + 10 q^{58} - 30 q^{59} + 14 q^{61} - 6 q^{62} - 25 q^{64} + 11 q^{65} + 2 q^{67} - 27 q^{68} - 3 q^{71} - 15 q^{73} + 36 q^{74} - 5 q^{76} + 4 q^{79} - 20 q^{80} + 5 q^{82} - 9 q^{83} + 6 q^{85} + 8 q^{86} + 18 q^{88} - 28 q^{89} - 27 q^{92} + 3 q^{94} + 14 q^{95} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.84124 −1.30195 −0.650977 0.759098i \(-0.725641\pi\)
−0.650977 + 0.759098i \(0.725641\pi\)
\(3\) 0 0
\(4\) 1.39017 0.695084
\(5\) 1.33475 0.596920 0.298460 0.954422i \(-0.403527\pi\)
0.298460 + 0.954422i \(0.403527\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.12285 0.396987
\(9\) 0 0
\(10\) −2.45760 −0.777162
\(11\) 1.51302 0.456192 0.228096 0.973639i \(-0.426750\pi\)
0.228096 + 0.973639i \(0.426750\pi\)
\(12\) 0 0
\(13\) 5.17599 1.43556 0.717781 0.696269i \(-0.245158\pi\)
0.717781 + 0.696269i \(0.245158\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.84777 −1.21194
\(17\) −1.54893 −0.375670 −0.187835 0.982201i \(-0.560147\pi\)
−0.187835 + 0.982201i \(0.560147\pi\)
\(18\) 0 0
\(19\) 2.50422 0.574507 0.287254 0.957855i \(-0.407258\pi\)
0.287254 + 0.957855i \(0.407258\pi\)
\(20\) 1.85553 0.414909
\(21\) 0 0
\(22\) −2.78583 −0.593940
\(23\) −7.36079 −1.53483 −0.767415 0.641151i \(-0.778457\pi\)
−0.767415 + 0.641151i \(0.778457\pi\)
\(24\) 0 0
\(25\) −3.21843 −0.643687
\(26\) −9.53025 −1.86904
\(27\) 0 0
\(28\) 0 0
\(29\) 0.0619427 0.0115025 0.00575123 0.999983i \(-0.498169\pi\)
0.00575123 + 0.999983i \(0.498169\pi\)
\(30\) 0 0
\(31\) −3.84777 −0.691080 −0.345540 0.938404i \(-0.612304\pi\)
−0.345540 + 0.938404i \(0.612304\pi\)
\(32\) 6.68021 1.18091
\(33\) 0 0
\(34\) 2.85195 0.489105
\(35\) 0 0
\(36\) 0 0
\(37\) 0.563216 0.0925922 0.0462961 0.998928i \(-0.485258\pi\)
0.0462961 + 0.998928i \(0.485258\pi\)
\(38\) −4.61087 −0.747982
\(39\) 0 0
\(40\) 1.49873 0.236969
\(41\) −9.02376 −1.40928 −0.704638 0.709567i \(-0.748890\pi\)
−0.704638 + 0.709567i \(0.748890\pi\)
\(42\) 0 0
\(43\) −10.1998 −1.55545 −0.777724 0.628606i \(-0.783626\pi\)
−0.777724 + 0.628606i \(0.783626\pi\)
\(44\) 2.10335 0.317091
\(45\) 0 0
\(46\) 13.5530 1.99828
\(47\) −9.51851 −1.38842 −0.694209 0.719774i \(-0.744245\pi\)
−0.694209 + 0.719774i \(0.744245\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 5.92591 0.838050
\(51\) 0 0
\(52\) 7.19550 0.997836
\(53\) −1.51075 −0.207517 −0.103759 0.994603i \(-0.533087\pi\)
−0.103759 + 0.994603i \(0.533087\pi\)
\(54\) 0 0
\(55\) 2.01950 0.272310
\(56\) 0 0
\(57\) 0 0
\(58\) −0.114051 −0.0149757
\(59\) −8.44331 −1.09923 −0.549613 0.835419i \(-0.685225\pi\)
−0.549613 + 0.835419i \(0.685225\pi\)
\(60\) 0 0
\(61\) 3.23917 0.414733 0.207367 0.978263i \(-0.433511\pi\)
0.207367 + 0.978263i \(0.433511\pi\)
\(62\) 7.08467 0.899754
\(63\) 0 0
\(64\) −2.60434 −0.325543
\(65\) 6.90868 0.856916
\(66\) 0 0
\(67\) 6.93339 0.847049 0.423524 0.905885i \(-0.360793\pi\)
0.423524 + 0.905885i \(0.360793\pi\)
\(68\) −2.15327 −0.261122
\(69\) 0 0
\(70\) 0 0
\(71\) −12.3304 −1.46335 −0.731673 0.681656i \(-0.761260\pi\)
−0.731673 + 0.681656i \(0.761260\pi\)
\(72\) 0 0
\(73\) 2.75871 0.322883 0.161442 0.986882i \(-0.448386\pi\)
0.161442 + 0.986882i \(0.448386\pi\)
\(74\) −1.03702 −0.120551
\(75\) 0 0
\(76\) 3.48128 0.399331
\(77\) 0 0
\(78\) 0 0
\(79\) −5.91938 −0.665982 −0.332991 0.942930i \(-0.608058\pi\)
−0.332991 + 0.942930i \(0.608058\pi\)
\(80\) −6.47058 −0.723432
\(81\) 0 0
\(82\) 16.6149 1.83481
\(83\) −5.60222 −0.614924 −0.307462 0.951560i \(-0.599480\pi\)
−0.307462 + 0.951560i \(0.599480\pi\)
\(84\) 0 0
\(85\) −2.06744 −0.224245
\(86\) 18.7802 2.02512
\(87\) 0 0
\(88\) 1.69889 0.181102
\(89\) −1.40657 −0.149097 −0.0745483 0.997217i \(-0.523751\pi\)
−0.0745483 + 0.997217i \(0.523751\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −10.2327 −1.06684
\(93\) 0 0
\(94\) 17.5259 1.80765
\(95\) 3.34251 0.342935
\(96\) 0 0
\(97\) 12.1943 1.23814 0.619070 0.785336i \(-0.287510\pi\)
0.619070 + 0.785336i \(0.287510\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −4.47416 −0.447416
\(101\) 1.11867 0.111312 0.0556560 0.998450i \(-0.482275\pi\)
0.0556560 + 0.998450i \(0.482275\pi\)
\(102\) 0 0
\(103\) 1.93045 0.190213 0.0951063 0.995467i \(-0.469681\pi\)
0.0951063 + 0.995467i \(0.469681\pi\)
\(104\) 5.81186 0.569900
\(105\) 0 0
\(106\) 2.78165 0.270178
\(107\) −5.77938 −0.558714 −0.279357 0.960187i \(-0.590121\pi\)
−0.279357 + 0.960187i \(0.590121\pi\)
\(108\) 0 0
\(109\) 8.24211 0.789451 0.394726 0.918799i \(-0.370840\pi\)
0.394726 + 0.918799i \(0.370840\pi\)
\(110\) −3.71839 −0.354535
\(111\) 0 0
\(112\) 0 0
\(113\) −14.5021 −1.36424 −0.682121 0.731239i \(-0.738942\pi\)
−0.682121 + 0.731239i \(0.738942\pi\)
\(114\) 0 0
\(115\) −9.82483 −0.916170
\(116\) 0.0861107 0.00799518
\(117\) 0 0
\(118\) 15.5462 1.43114
\(119\) 0 0
\(120\) 0 0
\(121\) −8.71078 −0.791889
\(122\) −5.96409 −0.539963
\(123\) 0 0
\(124\) −5.34904 −0.480358
\(125\) −10.9696 −0.981149
\(126\) 0 0
\(127\) 8.50004 0.754257 0.377128 0.926161i \(-0.376912\pi\)
0.377128 + 0.926161i \(0.376912\pi\)
\(128\) −8.56521 −0.757065
\(129\) 0 0
\(130\) −12.7205 −1.11566
\(131\) −2.01346 −0.175917 −0.0879585 0.996124i \(-0.528034\pi\)
−0.0879585 + 0.996124i \(0.528034\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −12.7660 −1.10282
\(135\) 0 0
\(136\) −1.73921 −0.149136
\(137\) 2.21740 0.189445 0.0947225 0.995504i \(-0.469804\pi\)
0.0947225 + 0.995504i \(0.469804\pi\)
\(138\) 0 0
\(139\) −0.755339 −0.0640670 −0.0320335 0.999487i \(-0.510198\pi\)
−0.0320335 + 0.999487i \(0.510198\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 22.7032 1.90521
\(143\) 7.83136 0.654891
\(144\) 0 0
\(145\) 0.0826782 0.00686605
\(146\) −5.07946 −0.420379
\(147\) 0 0
\(148\) 0.782965 0.0643593
\(149\) 6.58499 0.539463 0.269732 0.962936i \(-0.413065\pi\)
0.269732 + 0.962936i \(0.413065\pi\)
\(150\) 0 0
\(151\) 12.6671 1.03083 0.515417 0.856939i \(-0.327637\pi\)
0.515417 + 0.856939i \(0.327637\pi\)
\(152\) 2.81186 0.228072
\(153\) 0 0
\(154\) 0 0
\(155\) −5.13582 −0.412519
\(156\) 0 0
\(157\) −17.3074 −1.38128 −0.690642 0.723197i \(-0.742672\pi\)
−0.690642 + 0.723197i \(0.742672\pi\)
\(158\) 10.8990 0.867078
\(159\) 0 0
\(160\) 8.91644 0.704906
\(161\) 0 0
\(162\) 0 0
\(163\) −12.2193 −0.957086 −0.478543 0.878064i \(-0.658835\pi\)
−0.478543 + 0.878064i \(0.658835\pi\)
\(164\) −12.5445 −0.979564
\(165\) 0 0
\(166\) 10.3150 0.800602
\(167\) −3.52495 −0.272769 −0.136385 0.990656i \(-0.543548\pi\)
−0.136385 + 0.990656i \(0.543548\pi\)
\(168\) 0 0
\(169\) 13.7909 1.06084
\(170\) 3.80665 0.291956
\(171\) 0 0
\(172\) −14.1794 −1.08117
\(173\) 10.1409 0.770999 0.385500 0.922708i \(-0.374029\pi\)
0.385500 + 0.922708i \(0.374029\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −7.33475 −0.552878
\(177\) 0 0
\(178\) 2.58984 0.194117
\(179\) −1.70116 −0.127150 −0.0635752 0.997977i \(-0.520250\pi\)
−0.0635752 + 0.997977i \(0.520250\pi\)
\(180\) 0 0
\(181\) −16.9941 −1.26316 −0.631581 0.775310i \(-0.717594\pi\)
−0.631581 + 0.775310i \(0.717594\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −8.26505 −0.609308
\(185\) 0.751755 0.0552701
\(186\) 0 0
\(187\) −2.34355 −0.171377
\(188\) −13.2323 −0.965066
\(189\) 0 0
\(190\) −6.15437 −0.446485
\(191\) 22.6939 1.64208 0.821038 0.570873i \(-0.193395\pi\)
0.821038 + 0.570873i \(0.193395\pi\)
\(192\) 0 0
\(193\) 6.18698 0.445348 0.222674 0.974893i \(-0.428521\pi\)
0.222674 + 0.974893i \(0.428521\pi\)
\(194\) −22.4526 −1.61200
\(195\) 0 0
\(196\) 0 0
\(197\) 9.77010 0.696091 0.348045 0.937478i \(-0.386846\pi\)
0.348045 + 0.937478i \(0.386846\pi\)
\(198\) 0 0
\(199\) 8.67947 0.615271 0.307636 0.951504i \(-0.400462\pi\)
0.307636 + 0.951504i \(0.400462\pi\)
\(200\) −3.61381 −0.255535
\(201\) 0 0
\(202\) −2.05974 −0.144923
\(203\) 0 0
\(204\) 0 0
\(205\) −12.0445 −0.841224
\(206\) −3.55442 −0.247648
\(207\) 0 0
\(208\) −25.0920 −1.73982
\(209\) 3.78892 0.262085
\(210\) 0 0
\(211\) 5.68439 0.391330 0.195665 0.980671i \(-0.437314\pi\)
0.195665 + 0.980671i \(0.437314\pi\)
\(212\) −2.10019 −0.144242
\(213\) 0 0
\(214\) 10.6412 0.727420
\(215\) −13.6142 −0.928478
\(216\) 0 0
\(217\) 0 0
\(218\) −15.1757 −1.02783
\(219\) 0 0
\(220\) 2.80745 0.189278
\(221\) −8.01723 −0.539298
\(222\) 0 0
\(223\) −11.7227 −0.785007 −0.392503 0.919751i \(-0.628391\pi\)
−0.392503 + 0.919751i \(0.628391\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 26.7019 1.77618
\(227\) 11.1831 0.742247 0.371123 0.928584i \(-0.378973\pi\)
0.371123 + 0.928584i \(0.378973\pi\)
\(228\) 0 0
\(229\) −9.65647 −0.638118 −0.319059 0.947735i \(-0.603367\pi\)
−0.319059 + 0.947735i \(0.603367\pi\)
\(230\) 18.0899 1.19281
\(231\) 0 0
\(232\) 0.0695523 0.00456633
\(233\) 19.2898 1.26372 0.631860 0.775083i \(-0.282292\pi\)
0.631860 + 0.775083i \(0.282292\pi\)
\(234\) 0 0
\(235\) −12.7049 −0.828774
\(236\) −11.7376 −0.764054
\(237\) 0 0
\(238\) 0 0
\(239\) 0.389282 0.0251806 0.0125903 0.999921i \(-0.495992\pi\)
0.0125903 + 0.999921i \(0.495992\pi\)
\(240\) 0 0
\(241\) 10.6361 0.685134 0.342567 0.939493i \(-0.388704\pi\)
0.342567 + 0.939493i \(0.388704\pi\)
\(242\) 16.0386 1.03100
\(243\) 0 0
\(244\) 4.50299 0.288274
\(245\) 0 0
\(246\) 0 0
\(247\) 12.9618 0.824741
\(248\) −4.32046 −0.274350
\(249\) 0 0
\(250\) 20.1976 1.27741
\(251\) −3.26628 −0.206166 −0.103083 0.994673i \(-0.532871\pi\)
−0.103083 + 0.994673i \(0.532871\pi\)
\(252\) 0 0
\(253\) −11.1370 −0.700176
\(254\) −15.6506 −0.982007
\(255\) 0 0
\(256\) 20.9793 1.31121
\(257\) −4.69573 −0.292912 −0.146456 0.989217i \(-0.546787\pi\)
−0.146456 + 0.989217i \(0.546787\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 9.60421 0.595628
\(261\) 0 0
\(262\) 3.70727 0.229036
\(263\) 19.5498 1.20549 0.602747 0.797932i \(-0.294073\pi\)
0.602747 + 0.797932i \(0.294073\pi\)
\(264\) 0 0
\(265\) −2.01648 −0.123871
\(266\) 0 0
\(267\) 0 0
\(268\) 9.63858 0.588770
\(269\) −15.7673 −0.961349 −0.480675 0.876899i \(-0.659608\pi\)
−0.480675 + 0.876899i \(0.659608\pi\)
\(270\) 0 0
\(271\) −14.7976 −0.898893 −0.449446 0.893307i \(-0.648379\pi\)
−0.449446 + 0.893307i \(0.648379\pi\)
\(272\) 7.50884 0.455290
\(273\) 0 0
\(274\) −4.08276 −0.246649
\(275\) −4.86954 −0.293644
\(276\) 0 0
\(277\) −7.45122 −0.447701 −0.223850 0.974624i \(-0.571863\pi\)
−0.223850 + 0.974624i \(0.571863\pi\)
\(278\) 1.39076 0.0834123
\(279\) 0 0
\(280\) 0 0
\(281\) 25.9876 1.55029 0.775146 0.631782i \(-0.217676\pi\)
0.775146 + 0.631782i \(0.217676\pi\)
\(282\) 0 0
\(283\) 18.7554 1.11489 0.557445 0.830214i \(-0.311782\pi\)
0.557445 + 0.830214i \(0.311782\pi\)
\(284\) −17.1413 −1.01715
\(285\) 0 0
\(286\) −14.4194 −0.852638
\(287\) 0 0
\(288\) 0 0
\(289\) −14.6008 −0.858872
\(290\) −0.152230 −0.00893928
\(291\) 0 0
\(292\) 3.83507 0.224431
\(293\) 2.46178 0.143819 0.0719093 0.997411i \(-0.477091\pi\)
0.0719093 + 0.997411i \(0.477091\pi\)
\(294\) 0 0
\(295\) −11.2697 −0.656150
\(296\) 0.632407 0.0367579
\(297\) 0 0
\(298\) −12.1245 −0.702356
\(299\) −38.0994 −2.20334
\(300\) 0 0
\(301\) 0 0
\(302\) −23.3232 −1.34210
\(303\) 0 0
\(304\) −12.1399 −0.696270
\(305\) 4.32349 0.247562
\(306\) 0 0
\(307\) −4.66277 −0.266118 −0.133059 0.991108i \(-0.542480\pi\)
−0.133059 + 0.991108i \(0.542480\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 9.45629 0.537081
\(311\) 27.4821 1.55837 0.779183 0.626797i \(-0.215634\pi\)
0.779183 + 0.626797i \(0.215634\pi\)
\(312\) 0 0
\(313\) 5.49332 0.310501 0.155250 0.987875i \(-0.450382\pi\)
0.155250 + 0.987875i \(0.450382\pi\)
\(314\) 31.8671 1.79837
\(315\) 0 0
\(316\) −8.22893 −0.462914
\(317\) 9.87758 0.554780 0.277390 0.960757i \(-0.410531\pi\)
0.277390 + 0.960757i \(0.410531\pi\)
\(318\) 0 0
\(319\) 0.0937203 0.00524733
\(320\) −3.47615 −0.194323
\(321\) 0 0
\(322\) 0 0
\(323\) −3.87885 −0.215825
\(324\) 0 0
\(325\) −16.6586 −0.924052
\(326\) 22.4986 1.24608
\(327\) 0 0
\(328\) −10.1323 −0.559464
\(329\) 0 0
\(330\) 0 0
\(331\) −20.6942 −1.13746 −0.568729 0.822525i \(-0.692565\pi\)
−0.568729 + 0.822525i \(0.692565\pi\)
\(332\) −7.78803 −0.427424
\(333\) 0 0
\(334\) 6.49029 0.355133
\(335\) 9.25437 0.505620
\(336\) 0 0
\(337\) −1.49749 −0.0815737 −0.0407869 0.999168i \(-0.512986\pi\)
−0.0407869 + 0.999168i \(0.512986\pi\)
\(338\) −25.3924 −1.38116
\(339\) 0 0
\(340\) −2.87408 −0.155869
\(341\) −5.82174 −0.315265
\(342\) 0 0
\(343\) 0 0
\(344\) −11.4528 −0.617493
\(345\) 0 0
\(346\) −18.6719 −1.00381
\(347\) −29.5388 −1.58572 −0.792862 0.609401i \(-0.791410\pi\)
−0.792862 + 0.609401i \(0.791410\pi\)
\(348\) 0 0
\(349\) −36.0013 −1.92710 −0.963551 0.267523i \(-0.913795\pi\)
−0.963551 + 0.267523i \(0.913795\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.1073 0.538719
\(353\) −29.4930 −1.56975 −0.784877 0.619652i \(-0.787274\pi\)
−0.784877 + 0.619652i \(0.787274\pi\)
\(354\) 0 0
\(355\) −16.4580 −0.873500
\(356\) −1.95537 −0.103635
\(357\) 0 0
\(358\) 3.13224 0.165544
\(359\) −5.41069 −0.285566 −0.142783 0.989754i \(-0.545605\pi\)
−0.142783 + 0.989754i \(0.545605\pi\)
\(360\) 0 0
\(361\) −12.7289 −0.669942
\(362\) 31.2902 1.64458
\(363\) 0 0
\(364\) 0 0
\(365\) 3.68220 0.192735
\(366\) 0 0
\(367\) −23.0843 −1.20499 −0.602496 0.798122i \(-0.705827\pi\)
−0.602496 + 0.798122i \(0.705827\pi\)
\(368\) 35.6834 1.86013
\(369\) 0 0
\(370\) −1.38416 −0.0719591
\(371\) 0 0
\(372\) 0 0
\(373\) 21.5030 1.11338 0.556692 0.830719i \(-0.312070\pi\)
0.556692 + 0.830719i \(0.312070\pi\)
\(374\) 4.31504 0.223125
\(375\) 0 0
\(376\) −10.6878 −0.551184
\(377\) 0.320615 0.0165125
\(378\) 0 0
\(379\) 5.72168 0.293903 0.146952 0.989144i \(-0.453054\pi\)
0.146952 + 0.989144i \(0.453054\pi\)
\(380\) 4.64665 0.238368
\(381\) 0 0
\(382\) −41.7850 −2.13791
\(383\) −34.9209 −1.78437 −0.892187 0.451666i \(-0.850830\pi\)
−0.892187 + 0.451666i \(0.850830\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −11.3917 −0.579823
\(387\) 0 0
\(388\) 16.9521 0.860611
\(389\) −28.8822 −1.46438 −0.732192 0.681098i \(-0.761503\pi\)
−0.732192 + 0.681098i \(0.761503\pi\)
\(390\) 0 0
\(391\) 11.4013 0.576589
\(392\) 0 0
\(393\) 0 0
\(394\) −17.9891 −0.906278
\(395\) −7.90091 −0.397538
\(396\) 0 0
\(397\) −11.1845 −0.561335 −0.280667 0.959805i \(-0.590556\pi\)
−0.280667 + 0.959805i \(0.590556\pi\)
\(398\) −15.9810 −0.801055
\(399\) 0 0
\(400\) 15.6022 0.780111
\(401\) −1.08212 −0.0540386 −0.0270193 0.999635i \(-0.508602\pi\)
−0.0270193 + 0.999635i \(0.508602\pi\)
\(402\) 0 0
\(403\) −19.9160 −0.992088
\(404\) 1.55514 0.0773711
\(405\) 0 0
\(406\) 0 0
\(407\) 0.852155 0.0422398
\(408\) 0 0
\(409\) −21.7349 −1.07472 −0.537360 0.843353i \(-0.680578\pi\)
−0.537360 + 0.843353i \(0.680578\pi\)
\(410\) 22.1768 1.09524
\(411\) 0 0
\(412\) 2.68365 0.132214
\(413\) 0 0
\(414\) 0 0
\(415\) −7.47759 −0.367060
\(416\) 34.5767 1.69526
\(417\) 0 0
\(418\) −6.97632 −0.341223
\(419\) −25.1811 −1.23018 −0.615090 0.788457i \(-0.710880\pi\)
−0.615090 + 0.788457i \(0.710880\pi\)
\(420\) 0 0
\(421\) 29.6607 1.44558 0.722788 0.691070i \(-0.242860\pi\)
0.722788 + 0.691070i \(0.242860\pi\)
\(422\) −10.4663 −0.509493
\(423\) 0 0
\(424\) −1.69634 −0.0823816
\(425\) 4.98512 0.241814
\(426\) 0 0
\(427\) 0 0
\(428\) −8.03431 −0.388353
\(429\) 0 0
\(430\) 25.0669 1.20884
\(431\) −4.89034 −0.235559 −0.117780 0.993040i \(-0.537578\pi\)
−0.117780 + 0.993040i \(0.537578\pi\)
\(432\) 0 0
\(433\) 9.71430 0.466839 0.233420 0.972376i \(-0.425008\pi\)
0.233420 + 0.972376i \(0.425008\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 11.4579 0.548735
\(437\) −18.4330 −0.881771
\(438\) 0 0
\(439\) −14.8235 −0.707488 −0.353744 0.935342i \(-0.615092\pi\)
−0.353744 + 0.935342i \(0.615092\pi\)
\(440\) 2.26760 0.108103
\(441\) 0 0
\(442\) 14.7617 0.702141
\(443\) −21.9020 −1.04059 −0.520297 0.853986i \(-0.674179\pi\)
−0.520297 + 0.853986i \(0.674179\pi\)
\(444\) 0 0
\(445\) −1.87743 −0.0889987
\(446\) 21.5842 1.02204
\(447\) 0 0
\(448\) 0 0
\(449\) 21.4952 1.01442 0.507212 0.861822i \(-0.330676\pi\)
0.507212 + 0.861822i \(0.330676\pi\)
\(450\) 0 0
\(451\) −13.6531 −0.642899
\(452\) −20.1603 −0.948263
\(453\) 0 0
\(454\) −20.5907 −0.966371
\(455\) 0 0
\(456\) 0 0
\(457\) 40.6255 1.90038 0.950190 0.311670i \(-0.100888\pi\)
0.950190 + 0.311670i \(0.100888\pi\)
\(458\) 17.7799 0.830800
\(459\) 0 0
\(460\) −13.6582 −0.636815
\(461\) −2.83081 −0.131844 −0.0659220 0.997825i \(-0.520999\pi\)
−0.0659220 + 0.997825i \(0.520999\pi\)
\(462\) 0 0
\(463\) 27.8648 1.29499 0.647494 0.762070i \(-0.275817\pi\)
0.647494 + 0.762070i \(0.275817\pi\)
\(464\) −0.300284 −0.0139403
\(465\) 0 0
\(466\) −35.5173 −1.64531
\(467\) 26.6438 1.23293 0.616464 0.787383i \(-0.288564\pi\)
0.616464 + 0.787383i \(0.288564\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 23.3927 1.07903
\(471\) 0 0
\(472\) −9.48056 −0.436378
\(473\) −15.4324 −0.709582
\(474\) 0 0
\(475\) −8.05966 −0.369803
\(476\) 0 0
\(477\) 0 0
\(478\) −0.716762 −0.0327839
\(479\) −31.5791 −1.44289 −0.721443 0.692474i \(-0.756521\pi\)
−0.721443 + 0.692474i \(0.756521\pi\)
\(480\) 0 0
\(481\) 2.91520 0.132922
\(482\) −19.5837 −0.892013
\(483\) 0 0
\(484\) −12.1094 −0.550429
\(485\) 16.2763 0.739070
\(486\) 0 0
\(487\) 0.306174 0.0138741 0.00693703 0.999976i \(-0.497792\pi\)
0.00693703 + 0.999976i \(0.497792\pi\)
\(488\) 3.63710 0.164644
\(489\) 0 0
\(490\) 0 0
\(491\) 18.1396 0.818629 0.409315 0.912393i \(-0.365768\pi\)
0.409315 + 0.912393i \(0.365768\pi\)
\(492\) 0 0
\(493\) −0.0959447 −0.00432113
\(494\) −23.8658 −1.07377
\(495\) 0 0
\(496\) 18.6531 0.837549
\(497\) 0 0
\(498\) 0 0
\(499\) −21.3091 −0.953928 −0.476964 0.878923i \(-0.658263\pi\)
−0.476964 + 0.878923i \(0.658263\pi\)
\(500\) −15.2496 −0.681981
\(501\) 0 0
\(502\) 6.01401 0.268418
\(503\) −17.0738 −0.761285 −0.380642 0.924722i \(-0.624297\pi\)
−0.380642 + 0.924722i \(0.624297\pi\)
\(504\) 0 0
\(505\) 1.49315 0.0664443
\(506\) 20.5059 0.911597
\(507\) 0 0
\(508\) 11.8165 0.524271
\(509\) 36.7735 1.62996 0.814979 0.579490i \(-0.196748\pi\)
0.814979 + 0.579490i \(0.196748\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −21.4975 −0.950065
\(513\) 0 0
\(514\) 8.64598 0.381358
\(515\) 2.57667 0.113542
\(516\) 0 0
\(517\) −14.4017 −0.633384
\(518\) 0 0
\(519\) 0 0
\(520\) 7.75740 0.340184
\(521\) 19.1507 0.839008 0.419504 0.907754i \(-0.362204\pi\)
0.419504 + 0.907754i \(0.362204\pi\)
\(522\) 0 0
\(523\) 41.9429 1.83404 0.917018 0.398847i \(-0.130589\pi\)
0.917018 + 0.398847i \(0.130589\pi\)
\(524\) −2.79905 −0.122277
\(525\) 0 0
\(526\) −35.9959 −1.56950
\(527\) 5.95991 0.259618
\(528\) 0 0
\(529\) 31.1812 1.35570
\(530\) 3.71282 0.161274
\(531\) 0 0
\(532\) 0 0
\(533\) −46.7069 −2.02310
\(534\) 0 0
\(535\) −7.71405 −0.333507
\(536\) 7.78515 0.336267
\(537\) 0 0
\(538\) 29.0314 1.25163
\(539\) 0 0
\(540\) 0 0
\(541\) 2.88544 0.124055 0.0620273 0.998074i \(-0.480243\pi\)
0.0620273 + 0.998074i \(0.480243\pi\)
\(542\) 27.2460 1.17032
\(543\) 0 0
\(544\) −10.3472 −0.443631
\(545\) 11.0012 0.471239
\(546\) 0 0
\(547\) −2.77476 −0.118640 −0.0593201 0.998239i \(-0.518893\pi\)
−0.0593201 + 0.998239i \(0.518893\pi\)
\(548\) 3.08255 0.131680
\(549\) 0 0
\(550\) 8.96600 0.382311
\(551\) 0.155118 0.00660825
\(552\) 0 0
\(553\) 0 0
\(554\) 13.7195 0.582886
\(555\) 0 0
\(556\) −1.05005 −0.0445319
\(557\) −31.0688 −1.31643 −0.658214 0.752831i \(-0.728688\pi\)
−0.658214 + 0.752831i \(0.728688\pi\)
\(558\) 0 0
\(559\) −52.7939 −2.23294
\(560\) 0 0
\(561\) 0 0
\(562\) −47.8495 −2.01841
\(563\) 0.288041 0.0121395 0.00606973 0.999982i \(-0.498068\pi\)
0.00606973 + 0.999982i \(0.498068\pi\)
\(564\) 0 0
\(565\) −19.3567 −0.814344
\(566\) −34.5331 −1.45154
\(567\) 0 0
\(568\) −13.8451 −0.580929
\(569\) −16.0801 −0.674112 −0.337056 0.941485i \(-0.609431\pi\)
−0.337056 + 0.941485i \(0.609431\pi\)
\(570\) 0 0
\(571\) −15.2858 −0.639690 −0.319845 0.947470i \(-0.603631\pi\)
−0.319845 + 0.947470i \(0.603631\pi\)
\(572\) 10.8869 0.455204
\(573\) 0 0
\(574\) 0 0
\(575\) 23.6902 0.987950
\(576\) 0 0
\(577\) −24.1625 −1.00590 −0.502949 0.864316i \(-0.667752\pi\)
−0.502949 + 0.864316i \(0.667752\pi\)
\(578\) 26.8836 1.11821
\(579\) 0 0
\(580\) 0.114937 0.00477248
\(581\) 0 0
\(582\) 0 0
\(583\) −2.28579 −0.0946676
\(584\) 3.09762 0.128180
\(585\) 0 0
\(586\) −4.53273 −0.187245
\(587\) −36.0289 −1.48707 −0.743537 0.668695i \(-0.766853\pi\)
−0.743537 + 0.668695i \(0.766853\pi\)
\(588\) 0 0
\(589\) −9.63566 −0.397030
\(590\) 20.7503 0.854276
\(591\) 0 0
\(592\) −2.73034 −0.112216
\(593\) −24.9337 −1.02390 −0.511951 0.859014i \(-0.671077\pi\)
−0.511951 + 0.859014i \(0.671077\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 9.15424 0.374972
\(597\) 0 0
\(598\) 70.1501 2.86865
\(599\) 39.5283 1.61508 0.807542 0.589810i \(-0.200797\pi\)
0.807542 + 0.589810i \(0.200797\pi\)
\(600\) 0 0
\(601\) −3.72895 −0.152107 −0.0760534 0.997104i \(-0.524232\pi\)
−0.0760534 + 0.997104i \(0.524232\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 17.6094 0.716516
\(605\) −11.6267 −0.472694
\(606\) 0 0
\(607\) 23.6528 0.960036 0.480018 0.877259i \(-0.340630\pi\)
0.480018 + 0.877259i \(0.340630\pi\)
\(608\) 16.7287 0.678439
\(609\) 0 0
\(610\) −7.96059 −0.322315
\(611\) −49.2677 −1.99316
\(612\) 0 0
\(613\) −3.79903 −0.153442 −0.0767208 0.997053i \(-0.524445\pi\)
−0.0767208 + 0.997053i \(0.524445\pi\)
\(614\) 8.58528 0.346474
\(615\) 0 0
\(616\) 0 0
\(617\) 35.1230 1.41400 0.706999 0.707214i \(-0.250048\pi\)
0.706999 + 0.707214i \(0.250048\pi\)
\(618\) 0 0
\(619\) −21.1632 −0.850622 −0.425311 0.905047i \(-0.639835\pi\)
−0.425311 + 0.905047i \(0.639835\pi\)
\(620\) −7.13965 −0.286735
\(621\) 0 0
\(622\) −50.6011 −2.02892
\(623\) 0 0
\(624\) 0 0
\(625\) 1.45048 0.0580192
\(626\) −10.1145 −0.404257
\(627\) 0 0
\(628\) −24.0602 −0.960107
\(629\) −0.872381 −0.0347841
\(630\) 0 0
\(631\) 4.74845 0.189033 0.0945164 0.995523i \(-0.469870\pi\)
0.0945164 + 0.995523i \(0.469870\pi\)
\(632\) −6.64657 −0.264386
\(633\) 0 0
\(634\) −18.1870 −0.722298
\(635\) 11.3455 0.450231
\(636\) 0 0
\(637\) 0 0
\(638\) −0.172562 −0.00683178
\(639\) 0 0
\(640\) −11.4324 −0.451907
\(641\) −9.87469 −0.390027 −0.195013 0.980801i \(-0.562475\pi\)
−0.195013 + 0.980801i \(0.562475\pi\)
\(642\) 0 0
\(643\) −43.9496 −1.73320 −0.866602 0.499000i \(-0.833701\pi\)
−0.866602 + 0.499000i \(0.833701\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 7.14190 0.280994
\(647\) −44.3872 −1.74504 −0.872521 0.488577i \(-0.837516\pi\)
−0.872521 + 0.488577i \(0.837516\pi\)
\(648\) 0 0
\(649\) −12.7749 −0.501457
\(650\) 30.6725 1.20307
\(651\) 0 0
\(652\) −16.9868 −0.665255
\(653\) 41.9912 1.64324 0.821622 0.570033i \(-0.193070\pi\)
0.821622 + 0.570033i \(0.193070\pi\)
\(654\) 0 0
\(655\) −2.68748 −0.105008
\(656\) 43.7451 1.70796
\(657\) 0 0
\(658\) 0 0
\(659\) 39.2729 1.52986 0.764928 0.644115i \(-0.222774\pi\)
0.764928 + 0.644115i \(0.222774\pi\)
\(660\) 0 0
\(661\) −0.186739 −0.00726330 −0.00363165 0.999993i \(-0.501156\pi\)
−0.00363165 + 0.999993i \(0.501156\pi\)
\(662\) 38.1030 1.48092
\(663\) 0 0
\(664\) −6.29045 −0.244117
\(665\) 0 0
\(666\) 0 0
\(667\) −0.455947 −0.0176543
\(668\) −4.90028 −0.189597
\(669\) 0 0
\(670\) −17.0395 −0.658294
\(671\) 4.90091 0.189198
\(672\) 0 0
\(673\) 10.8676 0.418917 0.209458 0.977818i \(-0.432830\pi\)
0.209458 + 0.977818i \(0.432830\pi\)
\(674\) 2.75725 0.106205
\(675\) 0 0
\(676\) 19.1717 0.737372
\(677\) 28.3901 1.09112 0.545560 0.838072i \(-0.316317\pi\)
0.545560 + 0.838072i \(0.316317\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −2.32142 −0.0890223
\(681\) 0 0
\(682\) 10.7192 0.410460
\(683\) −11.8407 −0.453071 −0.226536 0.974003i \(-0.572740\pi\)
−0.226536 + 0.974003i \(0.572740\pi\)
\(684\) 0 0
\(685\) 2.95968 0.113083
\(686\) 0 0
\(687\) 0 0
\(688\) 49.4461 1.88511
\(689\) −7.81962 −0.297904
\(690\) 0 0
\(691\) 11.9083 0.453014 0.226507 0.974010i \(-0.427269\pi\)
0.226507 + 0.974010i \(0.427269\pi\)
\(692\) 14.0976 0.535909
\(693\) 0 0
\(694\) 54.3880 2.06454
\(695\) −1.00819 −0.0382429
\(696\) 0 0
\(697\) 13.9771 0.529422
\(698\) 66.2870 2.50900
\(699\) 0 0
\(700\) 0 0
\(701\) −31.3902 −1.18559 −0.592795 0.805353i \(-0.701976\pi\)
−0.592795 + 0.805353i \(0.701976\pi\)
\(702\) 0 0
\(703\) 1.41042 0.0531949
\(704\) −3.94041 −0.148510
\(705\) 0 0
\(706\) 54.3037 2.04375
\(707\) 0 0
\(708\) 0 0
\(709\) 0.625218 0.0234806 0.0117403 0.999931i \(-0.496263\pi\)
0.0117403 + 0.999931i \(0.496263\pi\)
\(710\) 30.3031 1.13726
\(711\) 0 0
\(712\) −1.57937 −0.0591894
\(713\) 28.3226 1.06069
\(714\) 0 0
\(715\) 10.4529 0.390918
\(716\) −2.36489 −0.0883802
\(717\) 0 0
\(718\) 9.96239 0.371793
\(719\) −24.3939 −0.909739 −0.454869 0.890558i \(-0.650314\pi\)
−0.454869 + 0.890558i \(0.650314\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 23.4369 0.872233
\(723\) 0 0
\(724\) −23.6246 −0.878003
\(725\) −0.199358 −0.00740399
\(726\) 0 0
\(727\) 37.8506 1.40380 0.701900 0.712275i \(-0.252335\pi\)
0.701900 + 0.712275i \(0.252335\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −6.77982 −0.250932
\(731\) 15.7987 0.584335
\(732\) 0 0
\(733\) 2.40155 0.0887033 0.0443516 0.999016i \(-0.485878\pi\)
0.0443516 + 0.999016i \(0.485878\pi\)
\(734\) 42.5038 1.56884
\(735\) 0 0
\(736\) −49.1716 −1.81249
\(737\) 10.4903 0.386416
\(738\) 0 0
\(739\) 30.3880 1.11784 0.558920 0.829222i \(-0.311216\pi\)
0.558920 + 0.829222i \(0.311216\pi\)
\(740\) 1.04507 0.0384174
\(741\) 0 0
\(742\) 0 0
\(743\) 5.09570 0.186943 0.0934715 0.995622i \(-0.470204\pi\)
0.0934715 + 0.995622i \(0.470204\pi\)
\(744\) 0 0
\(745\) 8.78934 0.322016
\(746\) −39.5922 −1.44957
\(747\) 0 0
\(748\) −3.25793 −0.119122
\(749\) 0 0
\(750\) 0 0
\(751\) −0.975011 −0.0355787 −0.0177893 0.999842i \(-0.505663\pi\)
−0.0177893 + 0.999842i \(0.505663\pi\)
\(752\) 46.1435 1.68268
\(753\) 0 0
\(754\) −0.590329 −0.0214985
\(755\) 16.9075 0.615326
\(756\) 0 0
\(757\) 11.6346 0.422865 0.211433 0.977393i \(-0.432187\pi\)
0.211433 + 0.977393i \(0.432187\pi\)
\(758\) −10.5350 −0.382648
\(759\) 0 0
\(760\) 3.75314 0.136141
\(761\) −54.1749 −1.96384 −0.981920 0.189298i \(-0.939379\pi\)
−0.981920 + 0.189298i \(0.939379\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 31.5484 1.14138
\(765\) 0 0
\(766\) 64.2978 2.32317
\(767\) −43.7025 −1.57801
\(768\) 0 0
\(769\) 20.8652 0.752417 0.376208 0.926535i \(-0.377228\pi\)
0.376208 + 0.926535i \(0.377228\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 8.60094 0.309554
\(773\) 54.9945 1.97801 0.989007 0.147868i \(-0.0472409\pi\)
0.989007 + 0.147868i \(0.0472409\pi\)
\(774\) 0 0
\(775\) 12.3838 0.444839
\(776\) 13.6923 0.491526
\(777\) 0 0
\(778\) 53.1790 1.90656
\(779\) −22.5975 −0.809639
\(780\) 0 0
\(781\) −18.6560 −0.667566
\(782\) −20.9926 −0.750693
\(783\) 0 0
\(784\) 0 0
\(785\) −23.1012 −0.824516
\(786\) 0 0
\(787\) 9.18949 0.327570 0.163785 0.986496i \(-0.447630\pi\)
0.163785 + 0.986496i \(0.447630\pi\)
\(788\) 13.5821 0.483841
\(789\) 0 0
\(790\) 14.5475 0.517576
\(791\) 0 0
\(792\) 0 0
\(793\) 16.7659 0.595375
\(794\) 20.5934 0.730832
\(795\) 0 0
\(796\) 12.0659 0.427665
\(797\) −7.07547 −0.250626 −0.125313 0.992117i \(-0.539994\pi\)
−0.125313 + 0.992117i \(0.539994\pi\)
\(798\) 0 0
\(799\) 14.7435 0.521586
\(800\) −21.4998 −0.760133
\(801\) 0 0
\(802\) 1.99245 0.0703558
\(803\) 4.17398 0.147297
\(804\) 0 0
\(805\) 0 0
\(806\) 36.6702 1.29165
\(807\) 0 0
\(808\) 1.25610 0.0441894
\(809\) 5.94119 0.208881 0.104441 0.994531i \(-0.466695\pi\)
0.104441 + 0.994531i \(0.466695\pi\)
\(810\) 0 0
\(811\) 44.4139 1.55958 0.779791 0.626039i \(-0.215325\pi\)
0.779791 + 0.626039i \(0.215325\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1.56902 −0.0549942
\(815\) −16.3097 −0.571304
\(816\) 0 0
\(817\) −25.5424 −0.893616
\(818\) 40.0191 1.39924
\(819\) 0 0
\(820\) −16.7439 −0.584721
\(821\) 6.35522 0.221799 0.110899 0.993832i \(-0.464627\pi\)
0.110899 + 0.993832i \(0.464627\pi\)
\(822\) 0 0
\(823\) −9.46433 −0.329906 −0.164953 0.986301i \(-0.552747\pi\)
−0.164953 + 0.986301i \(0.552747\pi\)
\(824\) 2.16760 0.0755120
\(825\) 0 0
\(826\) 0 0
\(827\) −4.86261 −0.169090 −0.0845448 0.996420i \(-0.526944\pi\)
−0.0845448 + 0.996420i \(0.526944\pi\)
\(828\) 0 0
\(829\) −40.7853 −1.41653 −0.708266 0.705946i \(-0.750522\pi\)
−0.708266 + 0.705946i \(0.750522\pi\)
\(830\) 13.7680 0.477896
\(831\) 0 0
\(832\) −13.4801 −0.467337
\(833\) 0 0
\(834\) 0 0
\(835\) −4.70494 −0.162821
\(836\) 5.26724 0.182171
\(837\) 0 0
\(838\) 46.3645 1.60164
\(839\) −19.2034 −0.662976 −0.331488 0.943459i \(-0.607551\pi\)
−0.331488 + 0.943459i \(0.607551\pi\)
\(840\) 0 0
\(841\) −28.9962 −0.999868
\(842\) −54.6126 −1.88207
\(843\) 0 0
\(844\) 7.90225 0.272007
\(845\) 18.4075 0.633236
\(846\) 0 0
\(847\) 0 0
\(848\) 7.32376 0.251499
\(849\) 0 0
\(850\) −9.17880 −0.314830
\(851\) −4.14571 −0.142113
\(852\) 0 0
\(853\) 13.9011 0.475965 0.237982 0.971269i \(-0.423514\pi\)
0.237982 + 0.971269i \(0.423514\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −6.48937 −0.221802
\(857\) 56.9838 1.94653 0.973265 0.229686i \(-0.0737700\pi\)
0.973265 + 0.229686i \(0.0737700\pi\)
\(858\) 0 0
\(859\) −20.1002 −0.685810 −0.342905 0.939370i \(-0.611411\pi\)
−0.342905 + 0.939370i \(0.611411\pi\)
\(860\) −18.9260 −0.645370
\(861\) 0 0
\(862\) 9.00429 0.306687
\(863\) 6.17786 0.210297 0.105148 0.994457i \(-0.466468\pi\)
0.105148 + 0.994457i \(0.466468\pi\)
\(864\) 0 0
\(865\) 13.5356 0.460225
\(866\) −17.8864 −0.607803
\(867\) 0 0
\(868\) 0 0
\(869\) −8.95612 −0.303816
\(870\) 0 0
\(871\) 35.8872 1.21599
\(872\) 9.25465 0.313402
\(873\) 0 0
\(874\) 33.9396 1.14802
\(875\) 0 0
\(876\) 0 0
\(877\) −37.2574 −1.25809 −0.629046 0.777368i \(-0.716554\pi\)
−0.629046 + 0.777368i \(0.716554\pi\)
\(878\) 27.2937 0.921117
\(879\) 0 0
\(880\) −9.79009 −0.330024
\(881\) −11.7848 −0.397041 −0.198520 0.980097i \(-0.563614\pi\)
−0.198520 + 0.980097i \(0.563614\pi\)
\(882\) 0 0
\(883\) −29.2308 −0.983693 −0.491847 0.870682i \(-0.663678\pi\)
−0.491847 + 0.870682i \(0.663678\pi\)
\(884\) −11.1453 −0.374857
\(885\) 0 0
\(886\) 40.3268 1.35480
\(887\) 28.5161 0.957479 0.478739 0.877957i \(-0.341094\pi\)
0.478739 + 0.877957i \(0.341094\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 3.45680 0.115872
\(891\) 0 0
\(892\) −16.2964 −0.545645
\(893\) −23.8364 −0.797656
\(894\) 0 0
\(895\) −2.27063 −0.0758986
\(896\) 0 0
\(897\) 0 0
\(898\) −39.5779 −1.32073
\(899\) −0.238341 −0.00794912
\(900\) 0 0
\(901\) 2.34004 0.0779579
\(902\) 25.1386 0.837025
\(903\) 0 0
\(904\) −16.2837 −0.541587
\(905\) −22.6829 −0.754006
\(906\) 0 0
\(907\) −7.89155 −0.262035 −0.131017 0.991380i \(-0.541824\pi\)
−0.131017 + 0.991380i \(0.541824\pi\)
\(908\) 15.5463 0.515923
\(909\) 0 0
\(910\) 0 0
\(911\) 28.4412 0.942299 0.471150 0.882053i \(-0.343839\pi\)
0.471150 + 0.882053i \(0.343839\pi\)
\(912\) 0 0
\(913\) −8.47625 −0.280523
\(914\) −74.8013 −2.47421
\(915\) 0 0
\(916\) −13.4241 −0.443545
\(917\) 0 0
\(918\) 0 0
\(919\) −7.98542 −0.263415 −0.131707 0.991289i \(-0.542046\pi\)
−0.131707 + 0.991289i \(0.542046\pi\)
\(920\) −11.0318 −0.363708
\(921\) 0 0
\(922\) 5.21221 0.171655
\(923\) −63.8219 −2.10072
\(924\) 0 0
\(925\) −1.81267 −0.0596004
\(926\) −51.3059 −1.68602
\(927\) 0 0
\(928\) 0.413790 0.0135833
\(929\) 18.8006 0.616829 0.308414 0.951252i \(-0.400202\pi\)
0.308414 + 0.951252i \(0.400202\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 26.8161 0.878391
\(933\) 0 0
\(934\) −49.0577 −1.60522
\(935\) −3.12806 −0.102299
\(936\) 0 0
\(937\) 48.5788 1.58700 0.793500 0.608570i \(-0.208256\pi\)
0.793500 + 0.608570i \(0.208256\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −17.6619 −0.576067
\(941\) 20.4851 0.667795 0.333898 0.942609i \(-0.391636\pi\)
0.333898 + 0.942609i \(0.391636\pi\)
\(942\) 0 0
\(943\) 66.4220 2.16300
\(944\) 40.9312 1.33220
\(945\) 0 0
\(946\) 28.4148 0.923843
\(947\) −14.8505 −0.482576 −0.241288 0.970454i \(-0.577570\pi\)
−0.241288 + 0.970454i \(0.577570\pi\)
\(948\) 0 0
\(949\) 14.2791 0.463519
\(950\) 14.8398 0.481466
\(951\) 0 0
\(952\) 0 0
\(953\) 46.4678 1.50524 0.752620 0.658456i \(-0.228790\pi\)
0.752620 + 0.658456i \(0.228790\pi\)
\(954\) 0 0
\(955\) 30.2908 0.980188
\(956\) 0.541167 0.0175026
\(957\) 0 0
\(958\) 58.1447 1.87857
\(959\) 0 0
\(960\) 0 0
\(961\) −16.1947 −0.522409
\(962\) −5.36759 −0.173058
\(963\) 0 0
\(964\) 14.7860 0.476226
\(965\) 8.25809 0.265837
\(966\) 0 0
\(967\) −1.72734 −0.0555475 −0.0277738 0.999614i \(-0.508842\pi\)
−0.0277738 + 0.999614i \(0.508842\pi\)
\(968\) −9.78089 −0.314370
\(969\) 0 0
\(970\) −29.9687 −0.962235
\(971\) 7.56171 0.242667 0.121333 0.992612i \(-0.461283\pi\)
0.121333 + 0.992612i \(0.461283\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −0.563740 −0.0180634
\(975\) 0 0
\(976\) −15.7027 −0.502633
\(977\) −56.6202 −1.81144 −0.905721 0.423875i \(-0.860670\pi\)
−0.905721 + 0.423875i \(0.860670\pi\)
\(978\) 0 0
\(979\) −2.12817 −0.0680166
\(980\) 0 0
\(981\) 0 0
\(982\) −33.3994 −1.06582
\(983\) 32.2972 1.03012 0.515061 0.857154i \(-0.327769\pi\)
0.515061 + 0.857154i \(0.327769\pi\)
\(984\) 0 0
\(985\) 13.0407 0.415510
\(986\) 0.176657 0.00562591
\(987\) 0 0
\(988\) 18.0191 0.573264
\(989\) 75.0782 2.38735
\(990\) 0 0
\(991\) 14.3100 0.454573 0.227287 0.973828i \(-0.427015\pi\)
0.227287 + 0.973828i \(0.427015\pi\)
\(992\) −25.7039 −0.816100
\(993\) 0 0
\(994\) 0 0
\(995\) 11.5849 0.367268
\(996\) 0 0
\(997\) 56.2524 1.78153 0.890765 0.454463i \(-0.150169\pi\)
0.890765 + 0.454463i \(0.150169\pi\)
\(998\) 39.2353 1.24197
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3969.2.a.z.1.2 5
3.2 odd 2 3969.2.a.bc.1.4 5
7.2 even 3 567.2.e.f.487.4 10
7.4 even 3 567.2.e.f.163.4 10
7.6 odd 2 3969.2.a.ba.1.2 5
9.2 odd 6 1323.2.f.e.442.2 10
9.4 even 3 441.2.f.e.295.4 10
9.5 odd 6 1323.2.f.e.883.2 10
9.7 even 3 441.2.f.e.148.4 10
21.2 odd 6 567.2.e.e.487.2 10
21.11 odd 6 567.2.e.e.163.2 10
21.20 even 2 3969.2.a.bb.1.4 5
63.2 odd 6 189.2.g.b.172.2 10
63.4 even 3 63.2.g.b.16.4 yes 10
63.5 even 6 1323.2.h.f.802.4 10
63.11 odd 6 189.2.h.b.37.4 10
63.13 odd 6 441.2.f.f.295.4 10
63.16 even 3 63.2.g.b.4.4 10
63.20 even 6 1323.2.f.f.442.2 10
63.23 odd 6 189.2.h.b.46.4 10
63.25 even 3 63.2.h.b.58.2 yes 10
63.31 odd 6 441.2.g.f.79.4 10
63.32 odd 6 189.2.g.b.100.2 10
63.34 odd 6 441.2.f.f.148.4 10
63.38 even 6 1323.2.h.f.226.4 10
63.40 odd 6 441.2.h.f.214.2 10
63.41 even 6 1323.2.f.f.883.2 10
63.47 even 6 1323.2.g.f.361.2 10
63.52 odd 6 441.2.h.f.373.2 10
63.58 even 3 63.2.h.b.25.2 yes 10
63.59 even 6 1323.2.g.f.667.2 10
63.61 odd 6 441.2.g.f.67.4 10
252.11 even 6 3024.2.q.i.2305.4 10
252.23 even 6 3024.2.q.i.2881.4 10
252.67 odd 6 1008.2.t.i.961.5 10
252.79 odd 6 1008.2.t.i.193.5 10
252.95 even 6 3024.2.t.i.289.2 10
252.151 odd 6 1008.2.q.i.625.2 10
252.191 even 6 3024.2.t.i.1873.2 10
252.247 odd 6 1008.2.q.i.529.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.g.b.4.4 10 63.16 even 3
63.2.g.b.16.4 yes 10 63.4 even 3
63.2.h.b.25.2 yes 10 63.58 even 3
63.2.h.b.58.2 yes 10 63.25 even 3
189.2.g.b.100.2 10 63.32 odd 6
189.2.g.b.172.2 10 63.2 odd 6
189.2.h.b.37.4 10 63.11 odd 6
189.2.h.b.46.4 10 63.23 odd 6
441.2.f.e.148.4 10 9.7 even 3
441.2.f.e.295.4 10 9.4 even 3
441.2.f.f.148.4 10 63.34 odd 6
441.2.f.f.295.4 10 63.13 odd 6
441.2.g.f.67.4 10 63.61 odd 6
441.2.g.f.79.4 10 63.31 odd 6
441.2.h.f.214.2 10 63.40 odd 6
441.2.h.f.373.2 10 63.52 odd 6
567.2.e.e.163.2 10 21.11 odd 6
567.2.e.e.487.2 10 21.2 odd 6
567.2.e.f.163.4 10 7.4 even 3
567.2.e.f.487.4 10 7.2 even 3
1008.2.q.i.529.2 10 252.247 odd 6
1008.2.q.i.625.2 10 252.151 odd 6
1008.2.t.i.193.5 10 252.79 odd 6
1008.2.t.i.961.5 10 252.67 odd 6
1323.2.f.e.442.2 10 9.2 odd 6
1323.2.f.e.883.2 10 9.5 odd 6
1323.2.f.f.442.2 10 63.20 even 6
1323.2.f.f.883.2 10 63.41 even 6
1323.2.g.f.361.2 10 63.47 even 6
1323.2.g.f.667.2 10 63.59 even 6
1323.2.h.f.226.4 10 63.38 even 6
1323.2.h.f.802.4 10 63.5 even 6
3024.2.q.i.2305.4 10 252.11 even 6
3024.2.q.i.2881.4 10 252.23 even 6
3024.2.t.i.289.2 10 252.95 even 6
3024.2.t.i.1873.2 10 252.191 even 6
3969.2.a.z.1.2 5 1.1 even 1 trivial
3969.2.a.ba.1.2 5 7.6 odd 2
3969.2.a.bb.1.4 5 21.20 even 2
3969.2.a.bc.1.4 5 3.2 odd 2