Properties

Label 1323.2.g.f.667.2
Level $1323$
Weight $2$
Character 1323.667
Analytic conductor $10.564$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(361,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.991381711347.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 9x^{8} - 8x^{7} + 40x^{6} - 36x^{5} + 90x^{4} - 3x^{3} + 36x^{2} - 9x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 667.2
Root \(0.920620 + 1.59456i\) of defining polynomial
Character \(\chi\) \(=\) 1323.667
Dual form 1323.2.g.f.361.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.920620 - 1.59456i) q^{2} +(-0.695084 + 1.20392i) q^{4} +1.33475 q^{5} -1.12285 q^{8} +(-1.22880 - 2.12835i) q^{10} -1.51302 q^{11} +(2.58800 + 4.48254i) q^{13} +(2.42388 + 4.19829i) q^{16} +(0.774463 + 1.34141i) q^{17} +(1.25211 - 2.16872i) q^{19} +(-0.927765 + 1.60694i) q^{20} +(1.39291 + 2.41260i) q^{22} +7.36079 q^{23} -3.21843 q^{25} +(4.76513 - 8.25344i) q^{26} +(0.0309713 - 0.0536439i) q^{29} +(-1.92388 + 3.33227i) q^{31} +(3.34011 - 5.78523i) q^{32} +(1.42597 - 2.46986i) q^{34} +(-0.281608 + 0.487760i) q^{37} -4.61087 q^{38} -1.49873 q^{40} +(4.51188 + 7.81481i) q^{41} +(5.09988 - 8.83325i) q^{43} +(1.05167 - 1.82155i) q^{44} +(-6.77649 - 11.7372i) q^{46} +(4.75925 + 8.24327i) q^{47} +(2.96296 + 5.13199i) q^{50} -7.19550 q^{52} +(-0.755374 - 1.30835i) q^{53} -2.01950 q^{55} -0.114051 q^{58} +(4.22166 - 7.31212i) q^{59} +(1.61958 + 2.80520i) q^{61} +7.08467 q^{62} -2.60434 q^{64} +(3.45434 + 5.98309i) q^{65} +(-3.46670 + 6.00449i) q^{67} -2.15327 q^{68} +12.3304 q^{71} +(1.37936 + 2.38912i) q^{73} +1.03702 q^{74} +(1.74064 + 3.01488i) q^{76} +(2.95969 + 5.12633i) q^{79} +(3.23529 + 5.60368i) q^{80} +(8.30746 - 14.3889i) q^{82} +(2.80111 - 4.85167i) q^{83} +(1.03372 + 1.79045i) q^{85} -18.7802 q^{86} +1.69889 q^{88} +(0.703287 - 1.21813i) q^{89} +(-5.11636 + 8.86180i) q^{92} +(8.76293 - 15.1778i) q^{94} +(1.67126 - 2.89470i) q^{95} +(6.09713 - 10.5605i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{2} - 4 q^{4} - 8 q^{5} + 6 q^{8} + 7 q^{10} + 8 q^{11} + 8 q^{13} + 2 q^{16} + 12 q^{17} - q^{19} + 5 q^{20} - q^{22} + 6 q^{23} + 2 q^{25} + 11 q^{26} - 7 q^{29} + 3 q^{31} + 2 q^{32} - 3 q^{34}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.920620 1.59456i −0.650977 1.12753i −0.982886 0.184214i \(-0.941026\pi\)
0.331909 0.943311i \(-0.392307\pi\)
\(3\) 0 0
\(4\) −0.695084 + 1.20392i −0.347542 + 0.601960i
\(5\) 1.33475 0.596920 0.298460 0.954422i \(-0.403527\pi\)
0.298460 + 0.954422i \(0.403527\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.12285 −0.396987
\(9\) 0 0
\(10\) −1.22880 2.12835i −0.388581 0.673042i
\(11\) −1.51302 −0.456192 −0.228096 0.973639i \(-0.573250\pi\)
−0.228096 + 0.973639i \(0.573250\pi\)
\(12\) 0 0
\(13\) 2.58800 + 4.48254i 0.717781 + 1.24323i 0.961877 + 0.273482i \(0.0881755\pi\)
−0.244096 + 0.969751i \(0.578491\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2.42388 + 4.19829i 0.605971 + 1.04957i
\(17\) 0.774463 + 1.34141i 0.187835 + 0.325340i 0.944528 0.328430i \(-0.106520\pi\)
−0.756693 + 0.653770i \(0.773186\pi\)
\(18\) 0 0
\(19\) 1.25211 2.16872i 0.287254 0.497538i −0.685900 0.727696i \(-0.740591\pi\)
0.973153 + 0.230158i \(0.0739244\pi\)
\(20\) −0.927765 + 1.60694i −0.207455 + 0.359322i
\(21\) 0 0
\(22\) 1.39291 + 2.41260i 0.296970 + 0.514367i
\(23\) 7.36079 1.53483 0.767415 0.641151i \(-0.221543\pi\)
0.767415 + 0.641151i \(0.221543\pi\)
\(24\) 0 0
\(25\) −3.21843 −0.643687
\(26\) 4.76513 8.25344i 0.934518 1.61863i
\(27\) 0 0
\(28\) 0 0
\(29\) 0.0309713 0.0536439i 0.00575123 0.00996143i −0.863135 0.504972i \(-0.831503\pi\)
0.868887 + 0.495011i \(0.164836\pi\)
\(30\) 0 0
\(31\) −1.92388 + 3.33227i −0.345540 + 0.598493i −0.985452 0.169956i \(-0.945638\pi\)
0.639912 + 0.768448i \(0.278971\pi\)
\(32\) 3.34011 5.78523i 0.590453 1.02269i
\(33\) 0 0
\(34\) 1.42597 2.46986i 0.244552 0.423577i
\(35\) 0 0
\(36\) 0 0
\(37\) −0.281608 + 0.487760i −0.0462961 + 0.0801872i −0.888245 0.459370i \(-0.848075\pi\)
0.841949 + 0.539557i \(0.181408\pi\)
\(38\) −4.61087 −0.747982
\(39\) 0 0
\(40\) −1.49873 −0.236969
\(41\) 4.51188 + 7.81481i 0.704638 + 1.22047i 0.966822 + 0.255450i \(0.0822237\pi\)
−0.262185 + 0.965018i \(0.584443\pi\)
\(42\) 0 0
\(43\) 5.09988 8.83325i 0.777724 1.34706i −0.155526 0.987832i \(-0.549707\pi\)
0.933251 0.359226i \(-0.116959\pi\)
\(44\) 1.05167 1.82155i 0.158546 0.274609i
\(45\) 0 0
\(46\) −6.77649 11.7372i −0.999139 1.73056i
\(47\) 4.75925 + 8.24327i 0.694209 + 1.20240i 0.970447 + 0.241315i \(0.0775788\pi\)
−0.276238 + 0.961089i \(0.589088\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 2.96296 + 5.13199i 0.419025 + 0.725773i
\(51\) 0 0
\(52\) −7.19550 −0.997836
\(53\) −0.755374 1.30835i −0.103759 0.179715i 0.809472 0.587159i \(-0.199754\pi\)
−0.913230 + 0.407444i \(0.866420\pi\)
\(54\) 0 0
\(55\) −2.01950 −0.272310
\(56\) 0 0
\(57\) 0 0
\(58\) −0.114051 −0.0149757
\(59\) 4.22166 7.31212i 0.549613 0.951957i −0.448688 0.893688i \(-0.648109\pi\)
0.998301 0.0582689i \(-0.0185581\pi\)
\(60\) 0 0
\(61\) 1.61958 + 2.80520i 0.207367 + 0.359169i 0.950884 0.309547i \(-0.100177\pi\)
−0.743518 + 0.668716i \(0.766844\pi\)
\(62\) 7.08467 0.899754
\(63\) 0 0
\(64\) −2.60434 −0.325543
\(65\) 3.45434 + 5.98309i 0.428458 + 0.742111i
\(66\) 0 0
\(67\) −3.46670 + 6.00449i −0.423524 + 0.733566i −0.996281 0.0861595i \(-0.972541\pi\)
0.572757 + 0.819725i \(0.305874\pi\)
\(68\) −2.15327 −0.261122
\(69\) 0 0
\(70\) 0 0
\(71\) 12.3304 1.46335 0.731673 0.681656i \(-0.238740\pi\)
0.731673 + 0.681656i \(0.238740\pi\)
\(72\) 0 0
\(73\) 1.37936 + 2.38912i 0.161442 + 0.279625i 0.935386 0.353629i \(-0.115052\pi\)
−0.773944 + 0.633254i \(0.781719\pi\)
\(74\) 1.03702 0.120551
\(75\) 0 0
\(76\) 1.74064 + 3.01488i 0.199665 + 0.345830i
\(77\) 0 0
\(78\) 0 0
\(79\) 2.95969 + 5.12633i 0.332991 + 0.576758i 0.983097 0.183086i \(-0.0586087\pi\)
−0.650106 + 0.759844i \(0.725275\pi\)
\(80\) 3.23529 + 5.60368i 0.361716 + 0.626511i
\(81\) 0 0
\(82\) 8.30746 14.3889i 0.917406 1.58899i
\(83\) 2.80111 4.85167i 0.307462 0.532540i −0.670344 0.742050i \(-0.733854\pi\)
0.977806 + 0.209510i \(0.0671870\pi\)
\(84\) 0 0
\(85\) 1.03372 + 1.79045i 0.112122 + 0.194202i
\(86\) −18.7802 −2.02512
\(87\) 0 0
\(88\) 1.69889 0.181102
\(89\) 0.703287 1.21813i 0.0745483 0.129121i −0.826341 0.563169i \(-0.809582\pi\)
0.900890 + 0.434048i \(0.142915\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −5.11636 + 8.86180i −0.533418 + 0.923906i
\(93\) 0 0
\(94\) 8.76293 15.1778i 0.903827 1.56548i
\(95\) 1.67126 2.89470i 0.171467 0.296990i
\(96\) 0 0
\(97\) 6.09713 10.5605i 0.619070 1.07226i −0.370586 0.928798i \(-0.620843\pi\)
0.989656 0.143462i \(-0.0458236\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 2.23708 3.87474i 0.223708 0.387474i
\(101\) 1.11867 0.111312 0.0556560 0.998450i \(-0.482275\pi\)
0.0556560 + 0.998450i \(0.482275\pi\)
\(102\) 0 0
\(103\) −1.93045 −0.190213 −0.0951063 0.995467i \(-0.530319\pi\)
−0.0951063 + 0.995467i \(0.530319\pi\)
\(104\) −2.90593 5.03322i −0.284950 0.493548i
\(105\) 0 0
\(106\) −1.39082 + 2.40898i −0.135089 + 0.233981i
\(107\) −2.88969 + 5.00509i −0.279357 + 0.483860i −0.971225 0.238163i \(-0.923455\pi\)
0.691868 + 0.722024i \(0.256788\pi\)
\(108\) 0 0
\(109\) −4.12106 7.13788i −0.394726 0.683685i 0.598340 0.801242i \(-0.295827\pi\)
−0.993066 + 0.117557i \(0.962494\pi\)
\(110\) 1.85920 + 3.22022i 0.177267 + 0.307036i
\(111\) 0 0
\(112\) 0 0
\(113\) −7.25105 12.5592i −0.682121 1.18147i −0.974332 0.225115i \(-0.927724\pi\)
0.292211 0.956354i \(-0.405609\pi\)
\(114\) 0 0
\(115\) 9.82483 0.916170
\(116\) 0.0430553 + 0.0745740i 0.00399759 + 0.00692403i
\(117\) 0 0
\(118\) −15.5462 −1.43114
\(119\) 0 0
\(120\) 0 0
\(121\) −8.71078 −0.791889
\(122\) 2.98204 5.16505i 0.269982 0.467622i
\(123\) 0 0
\(124\) −2.67452 4.63241i −0.240179 0.416002i
\(125\) −10.9696 −0.981149
\(126\) 0 0
\(127\) 8.50004 0.754257 0.377128 0.926161i \(-0.376912\pi\)
0.377128 + 0.926161i \(0.376912\pi\)
\(128\) −4.28260 7.41769i −0.378532 0.655637i
\(129\) 0 0
\(130\) 6.36027 11.0163i 0.557832 0.966194i
\(131\) −2.01346 −0.175917 −0.0879585 0.996124i \(-0.528034\pi\)
−0.0879585 + 0.996124i \(0.528034\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.7660 1.10282
\(135\) 0 0
\(136\) −0.869605 1.50620i −0.0745680 0.129156i
\(137\) −2.21740 −0.189445 −0.0947225 0.995504i \(-0.530196\pi\)
−0.0947225 + 0.995504i \(0.530196\pi\)
\(138\) 0 0
\(139\) −0.377669 0.654143i −0.0320335 0.0554836i 0.849564 0.527485i \(-0.176865\pi\)
−0.881598 + 0.472002i \(0.843532\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −11.3516 19.6615i −0.952604 1.64996i
\(143\) −3.91568 6.78216i −0.327446 0.567153i
\(144\) 0 0
\(145\) 0.0413391 0.0716014i 0.00343303 0.00594618i
\(146\) 2.53973 4.39894i 0.210189 0.364059i
\(147\) 0 0
\(148\) −0.391482 0.678068i −0.0321797 0.0557368i
\(149\) −6.58499 −0.539463 −0.269732 0.962936i \(-0.586935\pi\)
−0.269732 + 0.962936i \(0.586935\pi\)
\(150\) 0 0
\(151\) 12.6671 1.03083 0.515417 0.856939i \(-0.327637\pi\)
0.515417 + 0.856939i \(0.327637\pi\)
\(152\) −1.40593 + 2.43514i −0.114036 + 0.197516i
\(153\) 0 0
\(154\) 0 0
\(155\) −2.56791 + 4.44775i −0.206260 + 0.357252i
\(156\) 0 0
\(157\) −8.65372 + 14.9887i −0.690642 + 1.19623i 0.280986 + 0.959712i \(0.409338\pi\)
−0.971628 + 0.236515i \(0.923995\pi\)
\(158\) 5.44950 9.43882i 0.433539 0.750912i
\(159\) 0 0
\(160\) 4.45822 7.72186i 0.352453 0.610467i
\(161\) 0 0
\(162\) 0 0
\(163\) 6.10963 10.5822i 0.478543 0.828861i −0.521154 0.853463i \(-0.674498\pi\)
0.999697 + 0.0246014i \(0.00783167\pi\)
\(164\) −12.5445 −0.979564
\(165\) 0 0
\(166\) −10.3150 −0.800602
\(167\) 1.76248 + 3.05270i 0.136385 + 0.236225i 0.926126 0.377215i \(-0.123118\pi\)
−0.789741 + 0.613440i \(0.789785\pi\)
\(168\) 0 0
\(169\) −6.89546 + 11.9433i −0.530420 + 0.918714i
\(170\) 1.90332 3.29665i 0.145978 0.252842i
\(171\) 0 0
\(172\) 7.08968 + 12.2797i 0.540583 + 0.936318i
\(173\) −5.07046 8.78229i −0.385500 0.667705i 0.606339 0.795206i \(-0.292638\pi\)
−0.991838 + 0.127502i \(0.959304\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3.66738 6.35208i −0.276439 0.478806i
\(177\) 0 0
\(178\) −2.58984 −0.194117
\(179\) −0.850579 1.47325i −0.0635752 0.110116i 0.832486 0.554046i \(-0.186917\pi\)
−0.896061 + 0.443931i \(0.853584\pi\)
\(180\) 0 0
\(181\) 16.9941 1.26316 0.631581 0.775310i \(-0.282406\pi\)
0.631581 + 0.775310i \(0.282406\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −8.26505 −0.609308
\(185\) −0.375877 + 0.651039i −0.0276351 + 0.0478653i
\(186\) 0 0
\(187\) −1.17178 2.02957i −0.0856887 0.148417i
\(188\) −13.2323 −0.965066
\(189\) 0 0
\(190\) −6.15437 −0.446485
\(191\) 11.3470 + 19.6535i 0.821038 + 1.42208i 0.904910 + 0.425603i \(0.139938\pi\)
−0.0838717 + 0.996477i \(0.526729\pi\)
\(192\) 0 0
\(193\) −3.09349 + 5.35808i −0.222674 + 0.385683i −0.955619 0.294605i \(-0.904812\pi\)
0.732945 + 0.680288i \(0.238145\pi\)
\(194\) −22.4526 −1.61200
\(195\) 0 0
\(196\) 0 0
\(197\) −9.77010 −0.696091 −0.348045 0.937478i \(-0.613154\pi\)
−0.348045 + 0.937478i \(0.613154\pi\)
\(198\) 0 0
\(199\) 4.33973 + 7.51664i 0.307636 + 0.532840i 0.977845 0.209332i \(-0.0671289\pi\)
−0.670209 + 0.742172i \(0.733796\pi\)
\(200\) 3.61381 0.255535
\(201\) 0 0
\(202\) −1.02987 1.78379i −0.0724615 0.125507i
\(203\) 0 0
\(204\) 0 0
\(205\) 6.02225 + 10.4308i 0.420612 + 0.728522i
\(206\) 1.77721 + 3.07822i 0.123824 + 0.214470i
\(207\) 0 0
\(208\) −12.5460 + 21.7303i −0.869909 + 1.50673i
\(209\) −1.89446 + 3.28130i −0.131043 + 0.226973i
\(210\) 0 0
\(211\) −2.84219 4.92283i −0.195665 0.338901i 0.751453 0.659786i \(-0.229353\pi\)
−0.947118 + 0.320885i \(0.896020\pi\)
\(212\) 2.10019 0.144242
\(213\) 0 0
\(214\) 10.6412 0.727420
\(215\) 6.80708 11.7902i 0.464239 0.804086i
\(216\) 0 0
\(217\) 0 0
\(218\) −7.58786 + 13.1426i −0.513915 + 0.890126i
\(219\) 0 0
\(220\) 1.40372 2.43132i 0.0946390 0.163920i
\(221\) −4.00862 + 6.94313i −0.269649 + 0.467045i
\(222\) 0 0
\(223\) −5.86133 + 10.1521i −0.392503 + 0.679836i −0.992779 0.119957i \(-0.961724\pi\)
0.600276 + 0.799793i \(0.295058\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −13.3509 + 23.1245i −0.888091 + 1.53822i
\(227\) 11.1831 0.742247 0.371123 0.928584i \(-0.378973\pi\)
0.371123 + 0.928584i \(0.378973\pi\)
\(228\) 0 0
\(229\) 9.65647 0.638118 0.319059 0.947735i \(-0.396633\pi\)
0.319059 + 0.947735i \(0.396633\pi\)
\(230\) −9.04494 15.6663i −0.596406 1.03301i
\(231\) 0 0
\(232\) −0.0347761 + 0.0602340i −0.00228317 + 0.00395456i
\(233\) 9.64492 16.7055i 0.631860 1.09441i −0.355311 0.934748i \(-0.615625\pi\)
0.987171 0.159666i \(-0.0510416\pi\)
\(234\) 0 0
\(235\) 6.35243 + 11.0027i 0.414387 + 0.717739i
\(236\) 5.86881 + 10.1651i 0.382027 + 0.661690i
\(237\) 0 0
\(238\) 0 0
\(239\) 0.194641 + 0.337128i 0.0125903 + 0.0218070i 0.872252 0.489057i \(-0.162659\pi\)
−0.859662 + 0.510864i \(0.829326\pi\)
\(240\) 0 0
\(241\) −10.6361 −0.685134 −0.342567 0.939493i \(-0.611296\pi\)
−0.342567 + 0.939493i \(0.611296\pi\)
\(242\) 8.01932 + 13.8899i 0.515502 + 0.892875i
\(243\) 0 0
\(244\) −4.50299 −0.288274
\(245\) 0 0
\(246\) 0 0
\(247\) 12.9618 0.824741
\(248\) 2.16023 3.74163i 0.137175 0.237594i
\(249\) 0 0
\(250\) 10.0988 + 17.4917i 0.638705 + 1.10627i
\(251\) −3.26628 −0.206166 −0.103083 0.994673i \(-0.532871\pi\)
−0.103083 + 0.994673i \(0.532871\pi\)
\(252\) 0 0
\(253\) −11.1370 −0.700176
\(254\) −7.82531 13.5538i −0.491004 0.850443i
\(255\) 0 0
\(256\) −10.4896 + 18.1686i −0.655603 + 1.13554i
\(257\) −4.69573 −0.292912 −0.146456 0.989217i \(-0.546787\pi\)
−0.146456 + 0.989217i \(0.546787\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −9.60421 −0.595628
\(261\) 0 0
\(262\) 1.85363 + 3.21059i 0.114518 + 0.198351i
\(263\) −19.5498 −1.20549 −0.602747 0.797932i \(-0.705927\pi\)
−0.602747 + 0.797932i \(0.705927\pi\)
\(264\) 0 0
\(265\) −1.00824 1.74632i −0.0619355 0.107276i
\(266\) 0 0
\(267\) 0 0
\(268\) −4.81929 8.34725i −0.294385 0.509890i
\(269\) 7.88365 + 13.6549i 0.480675 + 0.832553i 0.999754 0.0221730i \(-0.00705846\pi\)
−0.519079 + 0.854726i \(0.673725\pi\)
\(270\) 0 0
\(271\) −7.39882 + 12.8151i −0.449446 + 0.778464i −0.998350 0.0574218i \(-0.981712\pi\)
0.548904 + 0.835886i \(0.315045\pi\)
\(272\) −3.75442 + 6.50285i −0.227645 + 0.394293i
\(273\) 0 0
\(274\) 2.04138 + 3.53578i 0.123324 + 0.213604i
\(275\) 4.86954 0.293644
\(276\) 0 0
\(277\) −7.45122 −0.447701 −0.223850 0.974624i \(-0.571863\pi\)
−0.223850 + 0.974624i \(0.571863\pi\)
\(278\) −0.695380 + 1.20443i −0.0417061 + 0.0722371i
\(279\) 0 0
\(280\) 0 0
\(281\) 12.9938 22.5060i 0.775146 1.34259i −0.159566 0.987187i \(-0.551009\pi\)
0.934712 0.355406i \(-0.115657\pi\)
\(282\) 0 0
\(283\) 9.37768 16.2426i 0.557445 0.965524i −0.440263 0.897869i \(-0.645115\pi\)
0.997709 0.0676550i \(-0.0215517\pi\)
\(284\) −8.57064 + 14.8448i −0.508574 + 0.880876i
\(285\) 0 0
\(286\) −7.20971 + 12.4876i −0.426319 + 0.738406i
\(287\) 0 0
\(288\) 0 0
\(289\) 7.30041 12.6447i 0.429436 0.743805i
\(290\) −0.152230 −0.00893928
\(291\) 0 0
\(292\) −3.83507 −0.224431
\(293\) −1.23089 2.13196i −0.0719093 0.124551i 0.827829 0.560981i \(-0.189576\pi\)
−0.899738 + 0.436430i \(0.856243\pi\)
\(294\) 0 0
\(295\) 5.63487 9.75988i 0.328075 0.568242i
\(296\) 0.316203 0.547680i 0.0183790 0.0318333i
\(297\) 0 0
\(298\) 6.06227 + 10.5002i 0.351178 + 0.608258i
\(299\) 19.0497 + 32.9950i 1.10167 + 1.90815i
\(300\) 0 0
\(301\) 0 0
\(302\) −11.6616 20.1985i −0.671050 1.16229i
\(303\) 0 0
\(304\) 12.1399 0.696270
\(305\) 2.16175 + 3.74425i 0.123781 + 0.214395i
\(306\) 0 0
\(307\) 4.66277 0.266118 0.133059 0.991108i \(-0.457520\pi\)
0.133059 + 0.991108i \(0.457520\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 9.45629 0.537081
\(311\) −13.7410 + 23.8002i −0.779183 + 1.34958i 0.153231 + 0.988190i \(0.451032\pi\)
−0.932413 + 0.361393i \(0.882301\pi\)
\(312\) 0 0
\(313\) 2.74666 + 4.75735i 0.155250 + 0.268901i 0.933150 0.359487i \(-0.117048\pi\)
−0.777900 + 0.628388i \(0.783715\pi\)
\(314\) 31.8671 1.79837
\(315\) 0 0
\(316\) −8.22893 −0.462914
\(317\) 4.93879 + 8.55424i 0.277390 + 0.480454i 0.970735 0.240152i \(-0.0771972\pi\)
−0.693345 + 0.720606i \(0.743864\pi\)
\(318\) 0 0
\(319\) −0.0468601 + 0.0811641i −0.00262366 + 0.00454432i
\(320\) −3.47615 −0.194323
\(321\) 0 0
\(322\) 0 0
\(323\) 3.87885 0.215825
\(324\) 0 0
\(325\) −8.32930 14.4268i −0.462026 0.800253i
\(326\) −22.4986 −1.24608
\(327\) 0 0
\(328\) −5.06616 8.77485i −0.279732 0.484510i
\(329\) 0 0
\(330\) 0 0
\(331\) 10.3471 + 17.9217i 0.568729 + 0.985067i 0.996692 + 0.0812710i \(0.0258979\pi\)
−0.427963 + 0.903796i \(0.640769\pi\)
\(332\) 3.89401 + 6.74463i 0.213712 + 0.370160i
\(333\) 0 0
\(334\) 3.24514 5.62076i 0.177566 0.307554i
\(335\) −4.62718 + 8.01452i −0.252810 + 0.437880i
\(336\) 0 0
\(337\) 0.748747 + 1.29687i 0.0407869 + 0.0706449i 0.885698 0.464261i \(-0.153680\pi\)
−0.844911 + 0.534906i \(0.820347\pi\)
\(338\) 25.3924 1.38116
\(339\) 0 0
\(340\) −2.87408 −0.155869
\(341\) 2.91087 5.04177i 0.157632 0.273027i
\(342\) 0 0
\(343\) 0 0
\(344\) −5.72639 + 9.91840i −0.308746 + 0.534764i
\(345\) 0 0
\(346\) −9.33593 + 16.1703i −0.501903 + 0.869321i
\(347\) −14.7694 + 25.5813i −0.792862 + 1.37328i 0.131326 + 0.991339i \(0.458077\pi\)
−0.924188 + 0.381938i \(0.875257\pi\)
\(348\) 0 0
\(349\) −18.0006 + 31.1780i −0.963551 + 1.66892i −0.250094 + 0.968222i \(0.580461\pi\)
−0.713458 + 0.700698i \(0.752872\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −5.05363 + 8.75315i −0.269360 + 0.466545i
\(353\) −29.4930 −1.56975 −0.784877 0.619652i \(-0.787274\pi\)
−0.784877 + 0.619652i \(0.787274\pi\)
\(354\) 0 0
\(355\) 16.4580 0.873500
\(356\) 0.977687 + 1.69340i 0.0518173 + 0.0897502i
\(357\) 0 0
\(358\) −1.56612 + 2.71260i −0.0827720 + 0.143365i
\(359\) −2.70535 + 4.68580i −0.142783 + 0.247307i −0.928544 0.371224i \(-0.878938\pi\)
0.785761 + 0.618531i \(0.212272\pi\)
\(360\) 0 0
\(361\) 6.36444 + 11.0235i 0.334971 + 0.580186i
\(362\) −15.6451 27.0981i −0.822289 1.42425i
\(363\) 0 0
\(364\) 0 0
\(365\) 1.84110 + 3.18888i 0.0963676 + 0.166914i
\(366\) 0 0
\(367\) 23.0843 1.20499 0.602496 0.798122i \(-0.294173\pi\)
0.602496 + 0.798122i \(0.294173\pi\)
\(368\) 17.8417 + 30.9027i 0.930063 + 1.61092i
\(369\) 0 0
\(370\) 1.38416 0.0719591
\(371\) 0 0
\(372\) 0 0
\(373\) 21.5030 1.11338 0.556692 0.830719i \(-0.312070\pi\)
0.556692 + 0.830719i \(0.312070\pi\)
\(374\) −2.15752 + 3.73694i −0.111563 + 0.193232i
\(375\) 0 0
\(376\) −5.34392 9.25595i −0.275592 0.477339i
\(377\) 0.320615 0.0165125
\(378\) 0 0
\(379\) 5.72168 0.293903 0.146952 0.989144i \(-0.453054\pi\)
0.146952 + 0.989144i \(0.453054\pi\)
\(380\) 2.32333 + 4.02412i 0.119184 + 0.206433i
\(381\) 0 0
\(382\) 20.8925 36.1869i 1.06895 1.85148i
\(383\) −34.9209 −1.78437 −0.892187 0.451666i \(-0.850830\pi\)
−0.892187 + 0.451666i \(0.850830\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 11.3917 0.579823
\(387\) 0 0
\(388\) 8.47603 + 14.6809i 0.430305 + 0.745311i
\(389\) 28.8822 1.46438 0.732192 0.681098i \(-0.238497\pi\)
0.732192 + 0.681098i \(0.238497\pi\)
\(390\) 0 0
\(391\) 5.70066 + 9.87383i 0.288295 + 0.499341i
\(392\) 0 0
\(393\) 0 0
\(394\) 8.99455 + 15.5790i 0.453139 + 0.784860i
\(395\) 3.95046 + 6.84239i 0.198769 + 0.344278i
\(396\) 0 0
\(397\) −5.59226 + 9.68607i −0.280667 + 0.486130i −0.971549 0.236838i \(-0.923889\pi\)
0.690882 + 0.722968i \(0.257222\pi\)
\(398\) 7.99049 13.8399i 0.400527 0.693734i
\(399\) 0 0
\(400\) −7.80111 13.5119i −0.390056 0.675596i
\(401\) 1.08212 0.0540386 0.0270193 0.999635i \(-0.491398\pi\)
0.0270193 + 0.999635i \(0.491398\pi\)
\(402\) 0 0
\(403\) −19.9160 −0.992088
\(404\) −0.777570 + 1.34679i −0.0386856 + 0.0670054i
\(405\) 0 0
\(406\) 0 0
\(407\) 0.426078 0.737988i 0.0211199 0.0365807i
\(408\) 0 0
\(409\) −10.8674 + 18.8229i −0.537360 + 0.930735i 0.461685 + 0.887044i \(0.347245\pi\)
−0.999045 + 0.0436908i \(0.986088\pi\)
\(410\) 11.0884 19.2057i 0.547618 0.948501i
\(411\) 0 0
\(412\) 1.34182 2.32410i 0.0661069 0.114500i
\(413\) 0 0
\(414\) 0 0
\(415\) 3.73879 6.47578i 0.183530 0.317884i
\(416\) 34.5767 1.69526
\(417\) 0 0
\(418\) 6.97632 0.341223
\(419\) 12.5906 + 21.8075i 0.615090 + 1.06537i 0.990369 + 0.138455i \(0.0442135\pi\)
−0.375279 + 0.926912i \(0.622453\pi\)
\(420\) 0 0
\(421\) −14.8304 + 25.6869i −0.722788 + 1.25191i 0.237090 + 0.971488i \(0.423806\pi\)
−0.959878 + 0.280418i \(0.909527\pi\)
\(422\) −5.23316 + 9.06411i −0.254746 + 0.441234i
\(423\) 0 0
\(424\) 0.848171 + 1.46907i 0.0411908 + 0.0713446i
\(425\) −2.49256 4.31724i −0.120907 0.209417i
\(426\) 0 0
\(427\) 0 0
\(428\) −4.01715 6.95791i −0.194176 0.336323i
\(429\) 0 0
\(430\) −25.0669 −1.20884
\(431\) −2.44517 4.23516i −0.117780 0.204000i 0.801108 0.598520i \(-0.204244\pi\)
−0.918887 + 0.394520i \(0.870911\pi\)
\(432\) 0 0
\(433\) −9.71430 −0.466839 −0.233420 0.972376i \(-0.574992\pi\)
−0.233420 + 0.972376i \(0.574992\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 11.4579 0.548735
\(437\) 9.21651 15.9635i 0.440885 0.763636i
\(438\) 0 0
\(439\) −7.41176 12.8375i −0.353744 0.612703i 0.633158 0.774022i \(-0.281758\pi\)
−0.986902 + 0.161320i \(0.948425\pi\)
\(440\) 2.26760 0.108103
\(441\) 0 0
\(442\) 14.7617 0.702141
\(443\) −10.9510 18.9676i −0.520297 0.901180i −0.999722 0.0235972i \(-0.992488\pi\)
0.479425 0.877583i \(-0.340845\pi\)
\(444\) 0 0
\(445\) 0.938715 1.62590i 0.0444994 0.0770751i
\(446\) 21.5842 1.02204
\(447\) 0 0
\(448\) 0 0
\(449\) −21.4952 −1.01442 −0.507212 0.861822i \(-0.669324\pi\)
−0.507212 + 0.861822i \(0.669324\pi\)
\(450\) 0 0
\(451\) −6.82655 11.8239i −0.321450 0.556767i
\(452\) 20.1603 0.948263
\(453\) 0 0
\(454\) −10.2954 17.8321i −0.483185 0.836902i
\(455\) 0 0
\(456\) 0 0
\(457\) −20.3128 35.1827i −0.950190 1.64578i −0.745009 0.667054i \(-0.767555\pi\)
−0.205181 0.978724i \(-0.565778\pi\)
\(458\) −8.88995 15.3978i −0.415400 0.719494i
\(459\) 0 0
\(460\) −6.82908 + 11.8283i −0.318408 + 0.551498i
\(461\) 1.41541 2.45155i 0.0659220 0.114180i −0.831181 0.556003i \(-0.812334\pi\)
0.897103 + 0.441822i \(0.145668\pi\)
\(462\) 0 0
\(463\) −13.9324 24.1317i −0.647494 1.12149i −0.983719 0.179711i \(-0.942484\pi\)
0.336225 0.941782i \(-0.390850\pi\)
\(464\) 0.300284 0.0139403
\(465\) 0 0
\(466\) −35.5173 −1.64531
\(467\) −13.3219 + 23.0742i −0.616464 + 1.06775i 0.373661 + 0.927565i \(0.378102\pi\)
−0.990126 + 0.140182i \(0.955231\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 11.6964 20.2587i 0.539513 0.934463i
\(471\) 0 0
\(472\) −4.74028 + 8.21041i −0.218189 + 0.377915i
\(473\) −7.71620 + 13.3648i −0.354791 + 0.614516i
\(474\) 0 0
\(475\) −4.02983 + 6.97987i −0.184901 + 0.320258i
\(476\) 0 0
\(477\) 0 0
\(478\) 0.358381 0.620734i 0.0163920 0.0283917i
\(479\) −31.5791 −1.44289 −0.721443 0.692474i \(-0.756521\pi\)
−0.721443 + 0.692474i \(0.756521\pi\)
\(480\) 0 0
\(481\) −2.91520 −0.132922
\(482\) 9.79185 + 16.9600i 0.446007 + 0.772506i
\(483\) 0 0
\(484\) 6.05472 10.4871i 0.275215 0.476686i
\(485\) 8.13817 14.0957i 0.369535 0.640054i
\(486\) 0 0
\(487\) −0.153087 0.265154i −0.00693703 0.0120153i 0.862536 0.505996i \(-0.168875\pi\)
−0.869473 + 0.493980i \(0.835541\pi\)
\(488\) −1.81855 3.14982i −0.0823218 0.142586i
\(489\) 0 0
\(490\) 0 0
\(491\) 9.06981 + 15.7094i 0.409315 + 0.708954i 0.994813 0.101720i \(-0.0324345\pi\)
−0.585498 + 0.810674i \(0.699101\pi\)
\(492\) 0 0
\(493\) 0.0959447 0.00432113
\(494\) −11.9329 20.6684i −0.536887 0.929916i
\(495\) 0 0
\(496\) −18.6531 −0.837549
\(497\) 0 0
\(498\) 0 0
\(499\) −21.3091 −0.953928 −0.476964 0.878923i \(-0.658263\pi\)
−0.476964 + 0.878923i \(0.658263\pi\)
\(500\) 7.62478 13.2065i 0.340990 0.590613i
\(501\) 0 0
\(502\) 3.00701 + 5.20829i 0.134209 + 0.232457i
\(503\) −17.0738 −0.761285 −0.380642 0.924722i \(-0.624297\pi\)
−0.380642 + 0.924722i \(0.624297\pi\)
\(504\) 0 0
\(505\) 1.49315 0.0664443
\(506\) 10.2529 + 17.7586i 0.455799 + 0.789466i
\(507\) 0 0
\(508\) −5.90824 + 10.2334i −0.262136 + 0.454032i
\(509\) 36.7735 1.62996 0.814979 0.579490i \(-0.196748\pi\)
0.814979 + 0.579490i \(0.196748\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 21.4975 0.950065
\(513\) 0 0
\(514\) 4.32299 + 7.48764i 0.190679 + 0.330265i
\(515\) −2.57667 −0.113542
\(516\) 0 0
\(517\) −7.20083 12.4722i −0.316692 0.548527i
\(518\) 0 0
\(519\) 0 0
\(520\) −3.87870 6.71810i −0.170092 0.294608i
\(521\) −9.57535 16.5850i −0.419504 0.726602i 0.576386 0.817178i \(-0.304463\pi\)
−0.995890 + 0.0905758i \(0.971129\pi\)
\(522\) 0 0
\(523\) 20.9715 36.3236i 0.917018 1.58832i 0.113097 0.993584i \(-0.463923\pi\)
0.803920 0.594737i \(-0.202744\pi\)
\(524\) 1.39952 2.42405i 0.0611385 0.105895i
\(525\) 0 0
\(526\) 17.9980 + 31.1734i 0.784749 + 1.35922i
\(527\) −5.95991 −0.259618
\(528\) 0 0
\(529\) 31.1812 1.35570
\(530\) −1.85641 + 3.21539i −0.0806372 + 0.139668i
\(531\) 0 0
\(532\) 0 0
\(533\) −23.3535 + 40.4494i −1.01155 + 1.75206i
\(534\) 0 0
\(535\) −3.85702 + 6.68056i −0.166754 + 0.288826i
\(536\) 3.89258 6.74214i 0.168134 0.291216i
\(537\) 0 0
\(538\) 14.5157 25.1419i 0.625816 1.08395i
\(539\) 0 0
\(540\) 0 0
\(541\) −1.44272 + 2.49886i −0.0620273 + 0.107434i −0.895371 0.445320i \(-0.853090\pi\)
0.833344 + 0.552754i \(0.186423\pi\)
\(542\) 27.2460 1.17032
\(543\) 0 0
\(544\) 10.3472 0.443631
\(545\) −5.50059 9.52731i −0.235620 0.408105i
\(546\) 0 0
\(547\) 1.38738 2.40301i 0.0593201 0.102745i −0.834840 0.550492i \(-0.814440\pi\)
0.894160 + 0.447747i \(0.147773\pi\)
\(548\) 1.54128 2.66957i 0.0658401 0.114038i
\(549\) 0 0
\(550\) −4.48300 7.76478i −0.191156 0.331091i
\(551\) −0.0775590 0.134336i −0.00330413 0.00572291i
\(552\) 0 0
\(553\) 0 0
\(554\) 6.85975 + 11.8814i 0.291443 + 0.504794i
\(555\) 0 0
\(556\) 1.05005 0.0445319
\(557\) −15.5344 26.9064i −0.658214 1.14006i −0.981078 0.193614i \(-0.937979\pi\)
0.322864 0.946445i \(-0.395354\pi\)
\(558\) 0 0
\(559\) 52.7939 2.23294
\(560\) 0 0
\(561\) 0 0
\(562\) −47.8495 −2.01841
\(563\) −0.144020 + 0.249451i −0.00606973 + 0.0105131i −0.869044 0.494734i \(-0.835265\pi\)
0.862975 + 0.505247i \(0.168599\pi\)
\(564\) 0 0
\(565\) −9.67836 16.7634i −0.407172 0.705242i
\(566\) −34.5331 −1.45154
\(567\) 0 0
\(568\) −13.8451 −0.580929
\(569\) −8.04004 13.9258i −0.337056 0.583798i 0.646821 0.762641i \(-0.276098\pi\)
−0.983878 + 0.178843i \(0.942765\pi\)
\(570\) 0 0
\(571\) 7.64289 13.2379i 0.319845 0.553988i −0.660610 0.750729i \(-0.729702\pi\)
0.980456 + 0.196741i \(0.0630358\pi\)
\(572\) 10.8869 0.455204
\(573\) 0 0
\(574\) 0 0
\(575\) −23.6902 −0.987950
\(576\) 0 0
\(577\) −12.0812 20.9253i −0.502949 0.871133i −0.999994 0.00340833i \(-0.998915\pi\)
0.497045 0.867725i \(-0.334418\pi\)
\(578\) −26.8836 −1.11821
\(579\) 0 0
\(580\) 0.0574683 + 0.0995380i 0.00238624 + 0.00413309i
\(581\) 0 0
\(582\) 0 0
\(583\) 1.14289 + 1.97955i 0.0473338 + 0.0819845i
\(584\) −1.54881 2.68262i −0.0640902 0.111007i
\(585\) 0 0
\(586\) −2.26636 + 3.92546i −0.0936226 + 0.162159i
\(587\) 18.0145 31.2020i 0.743537 1.28784i −0.207339 0.978269i \(-0.566480\pi\)
0.950875 0.309574i \(-0.100186\pi\)
\(588\) 0 0
\(589\) 4.81783 + 8.34472i 0.198515 + 0.343838i
\(590\) −20.7503 −0.854276
\(591\) 0 0
\(592\) −2.73034 −0.112216
\(593\) 12.4668 21.5932i 0.511951 0.886726i −0.487953 0.872870i \(-0.662256\pi\)
0.999904 0.0138558i \(-0.00441057\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.57712 7.92780i 0.187486 0.324735i
\(597\) 0 0
\(598\) 35.0751 60.7518i 1.43433 2.48433i
\(599\) 19.7642 34.2325i 0.807542 1.39870i −0.107019 0.994257i \(-0.534131\pi\)
0.914561 0.404447i \(-0.132536\pi\)
\(600\) 0 0
\(601\) −1.86447 + 3.22936i −0.0760534 + 0.131728i −0.901544 0.432688i \(-0.857565\pi\)
0.825490 + 0.564416i \(0.190899\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −8.80470 + 15.2502i −0.358258 + 0.620521i
\(605\) −11.6267 −0.472694
\(606\) 0 0
\(607\) −23.6528 −0.960036 −0.480018 0.877259i \(-0.659370\pi\)
−0.480018 + 0.877259i \(0.659370\pi\)
\(608\) −8.36436 14.4875i −0.339219 0.587545i
\(609\) 0 0
\(610\) 3.98029 6.89407i 0.161157 0.279133i
\(611\) −24.6339 + 42.6671i −0.996580 + 1.72613i
\(612\) 0 0
\(613\) 1.89952 + 3.29006i 0.0767208 + 0.132884i 0.901833 0.432084i \(-0.142222\pi\)
−0.825113 + 0.564968i \(0.808888\pi\)
\(614\) −4.29264 7.43507i −0.173237 0.300055i
\(615\) 0 0
\(616\) 0 0
\(617\) 17.5615 + 30.4174i 0.706999 + 1.22456i 0.965965 + 0.258672i \(0.0832849\pi\)
−0.258966 + 0.965886i \(0.583382\pi\)
\(618\) 0 0
\(619\) 21.1632 0.850622 0.425311 0.905047i \(-0.360165\pi\)
0.425311 + 0.905047i \(0.360165\pi\)
\(620\) −3.56983 6.18312i −0.143368 0.248320i
\(621\) 0 0
\(622\) 50.6011 2.02892
\(623\) 0 0
\(624\) 0 0
\(625\) 1.45048 0.0580192
\(626\) 5.05726 8.75943i 0.202129 0.350097i
\(627\) 0 0
\(628\) −12.0301 20.8368i −0.480054 0.831477i
\(629\) −0.872381 −0.0347841
\(630\) 0 0
\(631\) 4.74845 0.189033 0.0945164 0.995523i \(-0.469870\pi\)
0.0945164 + 0.995523i \(0.469870\pi\)
\(632\) −3.32329 5.75610i −0.132193 0.228965i
\(633\) 0 0
\(634\) 9.09350 15.7504i 0.361149 0.625529i
\(635\) 11.3455 0.450231
\(636\) 0 0
\(637\) 0 0
\(638\) 0.172562 0.00683178
\(639\) 0 0
\(640\) −5.71622 9.90078i −0.225953 0.391363i
\(641\) 9.87469 0.390027 0.195013 0.980801i \(-0.437525\pi\)
0.195013 + 0.980801i \(0.437525\pi\)
\(642\) 0 0
\(643\) −21.9748 38.0615i −0.866602 1.50100i −0.865448 0.501000i \(-0.832966\pi\)
−0.00115462 0.999999i \(-0.500368\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −3.57095 6.18507i −0.140497 0.243348i
\(647\) 22.1936 + 38.4404i 0.872521 + 1.51125i 0.859381 + 0.511336i \(0.170849\pi\)
0.0131398 + 0.999914i \(0.495817\pi\)
\(648\) 0 0
\(649\) −6.38743 + 11.0634i −0.250729 + 0.434275i
\(650\) −15.3362 + 26.5631i −0.601537 + 1.04189i
\(651\) 0 0
\(652\) 8.49341 + 14.7110i 0.332628 + 0.576128i
\(653\) −41.9912 −1.64324 −0.821622 0.570033i \(-0.806930\pi\)
−0.821622 + 0.570033i \(0.806930\pi\)
\(654\) 0 0
\(655\) −2.68748 −0.105008
\(656\) −21.8726 + 37.8844i −0.853980 + 1.47914i
\(657\) 0 0
\(658\) 0 0
\(659\) 19.6365 34.0114i 0.764928 1.32489i −0.175356 0.984505i \(-0.556108\pi\)
0.940284 0.340390i \(-0.110559\pi\)
\(660\) 0 0
\(661\) −0.0933694 + 0.161721i −0.00363165 + 0.00629020i −0.867836 0.496852i \(-0.834489\pi\)
0.864204 + 0.503142i \(0.167823\pi\)
\(662\) 19.0515 32.9982i 0.740459 1.28251i
\(663\) 0 0
\(664\) −3.14522 + 5.44769i −0.122058 + 0.211411i
\(665\) 0 0
\(666\) 0 0
\(667\) 0.227973 0.394862i 0.00882717 0.0152891i
\(668\) −4.90028 −0.189597
\(669\) 0 0
\(670\) 17.0395 0.658294
\(671\) −2.45046 4.24432i −0.0945989 0.163850i
\(672\) 0 0
\(673\) −5.43382 + 9.41166i −0.209458 + 0.362793i −0.951544 0.307512i \(-0.900503\pi\)
0.742086 + 0.670305i \(0.233837\pi\)
\(674\) 1.37862 2.38785i 0.0531026 0.0919764i
\(675\) 0 0
\(676\) −9.58584 16.6032i −0.368686 0.638583i
\(677\) −14.1950 24.5865i −0.545560 0.944937i −0.998571 0.0534326i \(-0.982984\pi\)
0.453012 0.891505i \(-0.350350\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.16071 2.01041i −0.0445111 0.0770956i
\(681\) 0 0
\(682\) −10.7192 −0.410460
\(683\) −5.92034 10.2543i −0.226536 0.392371i 0.730243 0.683187i \(-0.239407\pi\)
−0.956779 + 0.290816i \(0.906073\pi\)
\(684\) 0 0
\(685\) −2.95968 −0.113083
\(686\) 0 0
\(687\) 0 0
\(688\) 49.4461 1.88511
\(689\) 3.90981 6.77199i 0.148952 0.257992i
\(690\) 0 0
\(691\) 5.95416 + 10.3129i 0.226507 + 0.392321i 0.956770 0.290844i \(-0.0939361\pi\)
−0.730264 + 0.683165i \(0.760603\pi\)
\(692\) 14.0976 0.535909
\(693\) 0 0
\(694\) 54.3880 2.06454
\(695\) −0.504096 0.873119i −0.0191214 0.0331193i
\(696\) 0 0
\(697\) −6.98857 + 12.1046i −0.264711 + 0.458493i
\(698\) 66.2870 2.50900
\(699\) 0 0
\(700\) 0 0
\(701\) 31.3902 1.18559 0.592795 0.805353i \(-0.298024\pi\)
0.592795 + 0.805353i \(0.298024\pi\)
\(702\) 0 0
\(703\) 0.705208 + 1.22146i 0.0265974 + 0.0460681i
\(704\) 3.94041 0.148510
\(705\) 0 0
\(706\) 27.1518 + 47.0284i 1.02187 + 1.76994i
\(707\) 0 0
\(708\) 0 0
\(709\) −0.312609 0.541455i −0.0117403 0.0203348i 0.860096 0.510133i \(-0.170404\pi\)
−0.871836 + 0.489798i \(0.837070\pi\)
\(710\) −15.1516 26.2433i −0.568628 0.984893i
\(711\) 0 0
\(712\) −0.789685 + 1.36777i −0.0295947 + 0.0512595i
\(713\) −14.1613 + 24.5281i −0.530345 + 0.918584i
\(714\) 0 0
\(715\) −5.22647 9.05251i −0.195459 0.338545i
\(716\) 2.36489 0.0883802
\(717\) 0 0
\(718\) 9.96239 0.371793
\(719\) 12.1969 21.1257i 0.454869 0.787857i −0.543811 0.839208i \(-0.683019\pi\)
0.998681 + 0.0513506i \(0.0163526\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 11.7185 20.2970i 0.436116 0.755376i
\(723\) 0 0
\(724\) −11.8123 + 20.4595i −0.439002 + 0.760373i
\(725\) −0.0996792 + 0.172649i −0.00370199 + 0.00641204i
\(726\) 0 0
\(727\) 18.9253 32.7796i 0.701900 1.21573i −0.265899 0.964001i \(-0.585669\pi\)
0.967799 0.251726i \(-0.0809980\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 3.38991 5.87150i 0.125466 0.217314i
\(731\) 15.7987 0.584335
\(732\) 0 0
\(733\) −2.40155 −0.0887033 −0.0443516 0.999016i \(-0.514122\pi\)
−0.0443516 + 0.999016i \(0.514122\pi\)
\(734\) −21.2519 36.8093i −0.784421 1.35866i
\(735\) 0 0
\(736\) 24.5858 42.5839i 0.906245 1.56966i
\(737\) 5.24517 9.08490i 0.193208 0.334646i
\(738\) 0 0
\(739\) −15.1940 26.3167i −0.558920 0.968077i −0.997587 0.0694277i \(-0.977883\pi\)
0.438667 0.898650i \(-0.355451\pi\)
\(740\) −0.522533 0.905053i −0.0192087 0.0332704i
\(741\) 0 0
\(742\) 0 0
\(743\) 2.54785 + 4.41300i 0.0934715 + 0.161897i 0.908970 0.416862i \(-0.136870\pi\)
−0.815498 + 0.578760i \(0.803537\pi\)
\(744\) 0 0
\(745\) −8.78934 −0.322016
\(746\) −19.7961 34.2879i −0.724787 1.25537i
\(747\) 0 0
\(748\) 3.25793 0.119122
\(749\) 0 0
\(750\) 0 0
\(751\) −0.975011 −0.0355787 −0.0177893 0.999842i \(-0.505663\pi\)
−0.0177893 + 0.999842i \(0.505663\pi\)
\(752\) −23.0718 + 39.9615i −0.841341 + 1.45724i
\(753\) 0 0
\(754\) −0.295165 0.511240i −0.0107493 0.0186183i
\(755\) 16.9075 0.615326
\(756\) 0 0
\(757\) 11.6346 0.422865 0.211433 0.977393i \(-0.432187\pi\)
0.211433 + 0.977393i \(0.432187\pi\)
\(758\) −5.26750 9.12357i −0.191324 0.331383i
\(759\) 0 0
\(760\) −1.87657 + 3.25031i −0.0680703 + 0.117901i
\(761\) −54.1749 −1.96384 −0.981920 0.189298i \(-0.939379\pi\)
−0.981920 + 0.189298i \(0.939379\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −31.5484 −1.14138
\(765\) 0 0
\(766\) 32.1489 + 55.6835i 1.16159 + 2.01193i
\(767\) 43.7025 1.57801
\(768\) 0 0
\(769\) 10.4326 + 18.0698i 0.376208 + 0.651612i 0.990507 0.137462i \(-0.0438943\pi\)
−0.614299 + 0.789074i \(0.710561\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.30047 7.44863i −0.154777 0.268082i
\(773\) −27.4972 47.6266i −0.989007 1.71301i −0.622561 0.782572i \(-0.713908\pi\)
−0.366447 0.930439i \(-0.619426\pi\)
\(774\) 0 0
\(775\) 6.19189 10.7247i 0.222419 0.385242i
\(776\) −6.84616 + 11.8579i −0.245763 + 0.425674i
\(777\) 0 0
\(778\) −26.5895 46.0544i −0.953281 1.65113i
\(779\) 22.5975 0.809639
\(780\) 0 0
\(781\) −18.6560 −0.667566
\(782\) 10.4963 18.1801i 0.375346 0.650119i
\(783\) 0 0
\(784\) 0 0
\(785\) −11.5506 + 20.0062i −0.412258 + 0.714051i
\(786\) 0 0
\(787\) 4.59475 7.95833i 0.163785 0.283684i −0.772438 0.635090i \(-0.780963\pi\)
0.936223 + 0.351406i \(0.114296\pi\)
\(788\) 6.79103 11.7624i 0.241921 0.419019i
\(789\) 0 0
\(790\) 7.27374 12.5985i 0.258788 0.448234i
\(791\) 0 0
\(792\) 0 0
\(793\) −8.38296 + 14.5197i −0.297688 + 0.515610i
\(794\) 20.5934 0.730832
\(795\) 0 0
\(796\) −12.0659 −0.427665
\(797\) 3.53774 + 6.12754i 0.125313 + 0.217049i 0.921855 0.387534i \(-0.126673\pi\)
−0.796542 + 0.604583i \(0.793340\pi\)
\(798\) 0 0
\(799\) −7.37174 + 12.7682i −0.260793 + 0.451707i
\(800\) −10.7499 + 18.6194i −0.380067 + 0.658295i
\(801\) 0 0
\(802\) −0.996224 1.72551i −0.0351779 0.0609299i
\(803\) −2.08699 3.61477i −0.0736483 0.127563i
\(804\) 0 0
\(805\) 0 0
\(806\) 18.3351 + 31.7573i 0.645827 + 1.11860i
\(807\) 0 0
\(808\) −1.25610 −0.0441894
\(809\) 2.97060 + 5.14522i 0.104441 + 0.180896i 0.913510 0.406817i \(-0.133361\pi\)
−0.809069 + 0.587714i \(0.800028\pi\)
\(810\) 0 0
\(811\) −44.4139 −1.55958 −0.779791 0.626039i \(-0.784675\pi\)
−0.779791 + 0.626039i \(0.784675\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1.56902 −0.0549942
\(815\) 8.15485 14.1246i 0.285652 0.494764i
\(816\) 0 0
\(817\) −12.7712 22.1204i −0.446808 0.773894i
\(818\) 40.0191 1.39924
\(819\) 0 0
\(820\) −16.7439 −0.584721
\(821\) 3.17761 + 5.50378i 0.110899 + 0.192083i 0.916133 0.400874i \(-0.131294\pi\)
−0.805234 + 0.592958i \(0.797960\pi\)
\(822\) 0 0
\(823\) 4.73216 8.19635i 0.164953 0.285707i −0.771686 0.636004i \(-0.780586\pi\)
0.936639 + 0.350297i \(0.113919\pi\)
\(824\) 2.16760 0.0755120
\(825\) 0 0
\(826\) 0 0
\(827\) 4.86261 0.169090 0.0845448 0.996420i \(-0.473056\pi\)
0.0845448 + 0.996420i \(0.473056\pi\)
\(828\) 0 0
\(829\) −20.3926 35.3211i −0.708266 1.22675i −0.965500 0.260403i \(-0.916145\pi\)
0.257234 0.966349i \(-0.417189\pi\)
\(830\) −13.7680 −0.477896
\(831\) 0 0
\(832\) −6.74003 11.6741i −0.233668 0.404725i
\(833\) 0 0
\(834\) 0 0
\(835\) 2.35247 + 4.07460i 0.0814107 + 0.141007i
\(836\) −2.63362 4.56156i −0.0910856 0.157765i
\(837\) 0 0
\(838\) 23.1823 40.1529i 0.800818 1.38706i
\(839\) 9.60171 16.6307i 0.331488 0.574154i −0.651316 0.758807i \(-0.725783\pi\)
0.982804 + 0.184653i \(0.0591161\pi\)
\(840\) 0 0
\(841\) 14.4981 + 25.1114i 0.499934 + 0.865911i
\(842\) 54.6126 1.88207
\(843\) 0 0
\(844\) 7.90225 0.272007
\(845\) −9.20374 + 15.9413i −0.316618 + 0.548399i
\(846\) 0 0
\(847\) 0 0
\(848\) 3.66188 6.34256i 0.125749 0.217804i
\(849\) 0 0
\(850\) −4.58940 + 7.94907i −0.157415 + 0.272651i
\(851\) −2.07286 + 3.59029i −0.0710566 + 0.123074i
\(852\) 0 0
\(853\) 6.95055 12.0387i 0.237982 0.412198i −0.722153 0.691734i \(-0.756847\pi\)
0.960135 + 0.279536i \(0.0901806\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 3.24469 5.61996i 0.110901 0.192086i
\(857\) 56.9838 1.94653 0.973265 0.229686i \(-0.0737700\pi\)
0.973265 + 0.229686i \(0.0737700\pi\)
\(858\) 0 0
\(859\) 20.1002 0.685810 0.342905 0.939370i \(-0.388589\pi\)
0.342905 + 0.939370i \(0.388589\pi\)
\(860\) 9.46298 + 16.3904i 0.322685 + 0.558907i
\(861\) 0 0
\(862\) −4.50214 + 7.79794i −0.153344 + 0.265599i
\(863\) 3.08893 5.35018i 0.105148 0.182122i −0.808650 0.588289i \(-0.799802\pi\)
0.913799 + 0.406167i \(0.133135\pi\)
\(864\) 0 0
\(865\) −6.76781 11.7222i −0.230112 0.398566i
\(866\) 8.94318 + 15.4900i 0.303902 + 0.526373i
\(867\) 0 0
\(868\) 0 0
\(869\) −4.47806 7.75623i −0.151908 0.263112i
\(870\) 0 0
\(871\) −35.8872 −1.21599
\(872\) 4.62732 + 8.01476i 0.156701 + 0.271414i
\(873\) 0 0
\(874\) −33.9396 −1.14802
\(875\) 0 0
\(876\) 0 0
\(877\) −37.2574 −1.25809 −0.629046 0.777368i \(-0.716554\pi\)
−0.629046 + 0.777368i \(0.716554\pi\)
\(878\) −13.6468 + 23.6370i −0.460558 + 0.797710i
\(879\) 0 0
\(880\) −4.89504 8.47846i −0.165012 0.285809i
\(881\) −11.7848 −0.397041 −0.198520 0.980097i \(-0.563614\pi\)
−0.198520 + 0.980097i \(0.563614\pi\)
\(882\) 0 0
\(883\) −29.2308 −0.983693 −0.491847 0.870682i \(-0.663678\pi\)
−0.491847 + 0.870682i \(0.663678\pi\)
\(884\) −5.57265 9.65211i −0.187428 0.324636i
\(885\) 0 0
\(886\) −20.1634 + 34.9240i −0.677402 + 1.17329i
\(887\) 28.5161 0.957479 0.478739 0.877957i \(-0.341094\pi\)
0.478739 + 0.877957i \(0.341094\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −3.45680 −0.115872
\(891\) 0 0
\(892\) −8.14822 14.1131i −0.272823 0.472543i
\(893\) 23.8364 0.797656
\(894\) 0 0
\(895\) −1.13531 1.96642i −0.0379493 0.0657301i
\(896\) 0 0
\(897\) 0 0
\(898\) 19.7890 + 34.2755i 0.660366 + 1.14379i
\(899\) 0.119171 + 0.206410i 0.00397456 + 0.00688414i
\(900\) 0 0
\(901\) 1.17002 2.02653i 0.0389790 0.0675135i
\(902\) −12.5693 + 21.7707i −0.418513 + 0.724885i
\(903\) 0 0
\(904\) 8.14183 + 14.1021i 0.270793 + 0.469028i
\(905\) 22.6829 0.754006
\(906\) 0 0
\(907\) −7.89155 −0.262035 −0.131017 0.991380i \(-0.541824\pi\)
−0.131017 + 0.991380i \(0.541824\pi\)
\(908\) −7.77317 + 13.4635i −0.257962 + 0.446803i
\(909\) 0 0
\(910\) 0 0
\(911\) 14.2206 24.6308i 0.471150 0.816055i −0.528306 0.849054i \(-0.677173\pi\)
0.999455 + 0.0329991i \(0.0105058\pi\)
\(912\) 0 0
\(913\) −4.23813 + 7.34065i −0.140262 + 0.242940i
\(914\) −37.4007 + 64.7798i −1.23710 + 2.14273i
\(915\) 0 0
\(916\) −6.71206 + 11.6256i −0.221773 + 0.384121i
\(917\) 0 0
\(918\) 0 0
\(919\) 3.99271 6.91558i 0.131707 0.228124i −0.792627 0.609706i \(-0.791287\pi\)
0.924335 + 0.381582i \(0.124621\pi\)
\(920\) −11.0318 −0.363708
\(921\) 0 0
\(922\) −5.21221 −0.171655
\(923\) 31.9110 + 55.2714i 1.05036 + 1.81928i
\(924\) 0 0
\(925\) 0.906337 1.56982i 0.0298002 0.0516154i
\(926\) −25.6529 + 44.4322i −0.843008 + 1.46013i
\(927\) 0 0
\(928\) −0.206895 0.358353i −0.00679167 0.0117635i
\(929\) −9.40031 16.2818i −0.308414 0.534189i 0.669601 0.742721i \(-0.266465\pi\)
−0.978016 + 0.208531i \(0.933132\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 13.4081 + 23.2234i 0.439196 + 0.760709i
\(933\) 0 0
\(934\) 49.0577 1.60522
\(935\) −1.56403 2.70898i −0.0511493 0.0885932i
\(936\) 0 0
\(937\) −48.5788 −1.58700 −0.793500 0.608570i \(-0.791744\pi\)
−0.793500 + 0.608570i \(0.791744\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −17.6619 −0.576067
\(941\) −10.2425 + 17.7406i −0.333898 + 0.578328i −0.983272 0.182141i \(-0.941697\pi\)
0.649375 + 0.760468i \(0.275031\pi\)
\(942\) 0 0
\(943\) 33.2110 + 57.5231i 1.08150 + 1.87321i
\(944\) 40.9312 1.33220
\(945\) 0 0
\(946\) 28.4148 0.923843
\(947\) −7.42524 12.8609i −0.241288 0.417923i 0.719793 0.694188i \(-0.244236\pi\)
−0.961081 + 0.276265i \(0.910903\pi\)
\(948\) 0 0
\(949\) −7.13954 + 12.3661i −0.231759 + 0.401419i
\(950\) 14.8398 0.481466
\(951\) 0 0
\(952\) 0 0
\(953\) −46.4678 −1.50524 −0.752620 0.658456i \(-0.771210\pi\)
−0.752620 + 0.658456i \(0.771210\pi\)
\(954\) 0 0
\(955\) 15.1454 + 26.2326i 0.490094 + 0.848868i
\(956\) −0.541167 −0.0175026
\(957\) 0 0
\(958\) 29.0724 + 50.3548i 0.939285 + 1.62689i
\(959\) 0 0
\(960\) 0 0
\(961\) 8.09733 + 14.0250i 0.261204 + 0.452419i
\(962\) 2.68380 + 4.64847i 0.0865291 + 0.149873i
\(963\) 0 0
\(964\) 7.39301 12.8051i 0.238113 0.412423i
\(965\) −4.12905 + 7.15172i −0.132919 + 0.230222i
\(966\) 0 0
\(967\) 0.863670 + 1.49592i 0.0277738 + 0.0481056i 0.879578 0.475754i \(-0.157825\pi\)
−0.851804 + 0.523860i \(0.824492\pi\)
\(968\) 9.78089 0.314370
\(969\) 0 0
\(970\) −29.9687 −0.962235
\(971\) −3.78085 + 6.54863i −0.121333 + 0.210156i −0.920294 0.391228i \(-0.872050\pi\)
0.798960 + 0.601384i \(0.205384\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −0.281870 + 0.488213i −0.00903169 + 0.0156434i
\(975\) 0 0
\(976\) −7.85137 + 13.5990i −0.251316 + 0.435293i
\(977\) −28.3101 + 49.0345i −0.905721 + 1.56875i −0.0857737 + 0.996315i \(0.527336\pi\)
−0.819947 + 0.572440i \(0.805997\pi\)
\(978\) 0 0
\(979\) −1.06408 + 1.84305i −0.0340083 + 0.0589041i
\(980\) 0 0
\(981\) 0 0
\(982\) 16.6997 28.9247i 0.532909 0.923025i
\(983\) 32.2972 1.03012 0.515061 0.857154i \(-0.327769\pi\)
0.515061 + 0.857154i \(0.327769\pi\)
\(984\) 0 0
\(985\) −13.0407 −0.415510
\(986\) −0.0883286 0.152990i −0.00281296 0.00487218i
\(987\) 0 0
\(988\) −9.00955 + 15.6050i −0.286632 + 0.496461i
\(989\) 37.5391 65.0197i 1.19367 2.06750i
\(990\) 0 0
\(991\) −7.15502 12.3929i −0.227287 0.393672i 0.729716 0.683750i \(-0.239652\pi\)
−0.957003 + 0.290078i \(0.906319\pi\)
\(992\) 12.8520 + 22.2602i 0.408050 + 0.706764i
\(993\) 0 0
\(994\) 0 0
\(995\) 5.79247 + 10.0329i 0.183634 + 0.318063i
\(996\) 0 0
\(997\) −56.2524 −1.78153 −0.890765 0.454463i \(-0.849831\pi\)
−0.890765 + 0.454463i \(0.849831\pi\)
\(998\) 19.6176 + 33.9787i 0.620985 + 1.07558i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.g.f.667.2 10
3.2 odd 2 441.2.g.f.79.4 10
7.2 even 3 1323.2.f.f.883.2 10
7.3 odd 6 189.2.h.b.46.4 10
7.4 even 3 1323.2.h.f.802.4 10
7.5 odd 6 1323.2.f.e.883.2 10
7.6 odd 2 189.2.g.b.100.2 10
9.4 even 3 1323.2.h.f.226.4 10
9.5 odd 6 441.2.h.f.373.2 10
21.2 odd 6 441.2.f.f.295.4 10
21.5 even 6 441.2.f.e.295.4 10
21.11 odd 6 441.2.h.f.214.2 10
21.17 even 6 63.2.h.b.25.2 yes 10
21.20 even 2 63.2.g.b.16.4 yes 10
28.3 even 6 3024.2.q.i.2881.4 10
28.27 even 2 3024.2.t.i.289.2 10
63.2 odd 6 3969.2.a.ba.1.2 5
63.4 even 3 inner 1323.2.g.f.361.2 10
63.5 even 6 441.2.f.e.148.4 10
63.13 odd 6 189.2.h.b.37.4 10
63.16 even 3 3969.2.a.bb.1.4 5
63.20 even 6 567.2.e.f.163.4 10
63.23 odd 6 441.2.f.f.148.4 10
63.31 odd 6 189.2.g.b.172.2 10
63.32 odd 6 441.2.g.f.67.4 10
63.34 odd 6 567.2.e.e.163.2 10
63.38 even 6 567.2.e.f.487.4 10
63.40 odd 6 1323.2.f.e.442.2 10
63.41 even 6 63.2.h.b.58.2 yes 10
63.47 even 6 3969.2.a.z.1.2 5
63.52 odd 6 567.2.e.e.487.2 10
63.58 even 3 1323.2.f.f.442.2 10
63.59 even 6 63.2.g.b.4.4 10
63.61 odd 6 3969.2.a.bc.1.4 5
84.59 odd 6 1008.2.q.i.529.2 10
84.83 odd 2 1008.2.t.i.961.5 10
252.31 even 6 3024.2.t.i.1873.2 10
252.59 odd 6 1008.2.t.i.193.5 10
252.139 even 6 3024.2.q.i.2305.4 10
252.167 odd 6 1008.2.q.i.625.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.g.b.4.4 10 63.59 even 6
63.2.g.b.16.4 yes 10 21.20 even 2
63.2.h.b.25.2 yes 10 21.17 even 6
63.2.h.b.58.2 yes 10 63.41 even 6
189.2.g.b.100.2 10 7.6 odd 2
189.2.g.b.172.2 10 63.31 odd 6
189.2.h.b.37.4 10 63.13 odd 6
189.2.h.b.46.4 10 7.3 odd 6
441.2.f.e.148.4 10 63.5 even 6
441.2.f.e.295.4 10 21.5 even 6
441.2.f.f.148.4 10 63.23 odd 6
441.2.f.f.295.4 10 21.2 odd 6
441.2.g.f.67.4 10 63.32 odd 6
441.2.g.f.79.4 10 3.2 odd 2
441.2.h.f.214.2 10 21.11 odd 6
441.2.h.f.373.2 10 9.5 odd 6
567.2.e.e.163.2 10 63.34 odd 6
567.2.e.e.487.2 10 63.52 odd 6
567.2.e.f.163.4 10 63.20 even 6
567.2.e.f.487.4 10 63.38 even 6
1008.2.q.i.529.2 10 84.59 odd 6
1008.2.q.i.625.2 10 252.167 odd 6
1008.2.t.i.193.5 10 252.59 odd 6
1008.2.t.i.961.5 10 84.83 odd 2
1323.2.f.e.442.2 10 63.40 odd 6
1323.2.f.e.883.2 10 7.5 odd 6
1323.2.f.f.442.2 10 63.58 even 3
1323.2.f.f.883.2 10 7.2 even 3
1323.2.g.f.361.2 10 63.4 even 3 inner
1323.2.g.f.667.2 10 1.1 even 1 trivial
1323.2.h.f.226.4 10 9.4 even 3
1323.2.h.f.802.4 10 7.4 even 3
3024.2.q.i.2305.4 10 252.139 even 6
3024.2.q.i.2881.4 10 28.3 even 6
3024.2.t.i.289.2 10 28.27 even 2
3024.2.t.i.1873.2 10 252.31 even 6
3969.2.a.z.1.2 5 63.47 even 6
3969.2.a.ba.1.2 5 63.2 odd 6
3969.2.a.bb.1.4 5 63.16 even 3
3969.2.a.bc.1.4 5 63.61 odd 6