Properties

Label 189.2.h.b.37.4
Level $189$
Weight $2$
Character 189.37
Analytic conductor $1.509$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(37,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.991381711347.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 9x^{8} - 8x^{7} + 40x^{6} - 36x^{5} + 90x^{4} - 3x^{3} + 36x^{2} - 9x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.4
Root \(0.920620 - 1.59456i\) of defining polynomial
Character \(\chi\) \(=\) 189.37
Dual form 189.2.h.b.46.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.84124 q^{2} +1.39017 q^{4} +(0.667377 + 1.15593i) q^{5} +(1.90267 - 1.83844i) q^{7} -1.12285 q^{8} +(1.22880 + 2.12835i) q^{10} +(0.756508 - 1.31031i) q^{11} +(-2.58800 + 4.48254i) q^{13} +(3.50326 - 3.38501i) q^{14} -4.84777 q^{16} +(-0.774463 - 1.34141i) q^{17} +(-1.25211 + 2.16872i) q^{19} +(0.927765 + 1.60694i) q^{20} +(1.39291 - 2.41260i) q^{22} +(-3.68039 - 6.37463i) q^{23} +(1.60922 - 2.78725i) q^{25} +(-4.76513 + 8.25344i) q^{26} +(2.64502 - 2.55574i) q^{28} +(0.0309713 + 0.0536439i) q^{29} -3.84777 q^{31} -6.68021 q^{32} +(-1.42597 - 2.46986i) q^{34} +(3.39490 + 0.972416i) q^{35} +(-0.281608 + 0.487760i) q^{37} +(-2.30543 + 3.99313i) q^{38} +(-0.749363 - 1.29794i) q^{40} +(-4.51188 + 7.81481i) q^{41} +(5.09988 + 8.83325i) q^{43} +(1.05167 - 1.82155i) q^{44} +(-6.77649 - 11.7372i) q^{46} +9.51851 q^{47} +(0.240269 - 6.99588i) q^{49} +(2.96296 - 5.13199i) q^{50} +(-3.59775 + 6.23148i) q^{52} +(-0.755374 - 1.30835i) q^{53} +2.01950 q^{55} +(-2.13641 + 2.06429i) q^{56} +(0.0570257 + 0.0987714i) q^{58} +8.44331 q^{59} +3.23917 q^{61} -7.08467 q^{62} -2.60434 q^{64} -6.90868 q^{65} +6.93339 q^{67} +(-1.07663 - 1.86478i) q^{68} +(6.25084 + 1.79045i) q^{70} +12.3304 q^{71} +(-1.37936 - 2.38912i) q^{73} +(-0.518508 + 0.898083i) q^{74} +(-1.74064 + 3.01488i) q^{76} +(-0.969547 - 3.88388i) q^{77} -5.91938 q^{79} +(-3.23529 - 5.60368i) q^{80} +(-8.30746 + 14.3889i) q^{82} +(-2.80111 - 4.85167i) q^{83} +(1.03372 - 1.79045i) q^{85} +(9.39010 + 16.2641i) q^{86} +(-0.849444 + 1.47128i) q^{88} +(-0.703287 + 1.21813i) q^{89} +(3.31680 + 13.2867i) q^{91} +(-5.11636 - 8.86180i) q^{92} +17.5259 q^{94} -3.34251 q^{95} +(-6.09713 - 10.5605i) q^{97} +(0.442393 - 12.8811i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{2} + 8 q^{4} - 4 q^{5} - 4 q^{7} + 6 q^{8} - 7 q^{10} - 4 q^{11} - 8 q^{13} + 20 q^{14} - 4 q^{16} - 12 q^{17} + q^{19} - 5 q^{20} - q^{22} - 3 q^{23} - q^{25} - 11 q^{26} - 2 q^{28} - 7 q^{29}+ \cdots - 59 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.84124 1.30195 0.650977 0.759098i \(-0.274359\pi\)
0.650977 + 0.759098i \(0.274359\pi\)
\(3\) 0 0
\(4\) 1.39017 0.695084
\(5\) 0.667377 + 1.15593i 0.298460 + 0.516948i 0.975784 0.218737i \(-0.0701937\pi\)
−0.677324 + 0.735685i \(0.736860\pi\)
\(6\) 0 0
\(7\) 1.90267 1.83844i 0.719140 0.694865i
\(8\) −1.12285 −0.396987
\(9\) 0 0
\(10\) 1.22880 + 2.12835i 0.388581 + 0.673042i
\(11\) 0.756508 1.31031i 0.228096 0.395073i −0.729148 0.684356i \(-0.760083\pi\)
0.957244 + 0.289283i \(0.0934167\pi\)
\(12\) 0 0
\(13\) −2.58800 + 4.48254i −0.717781 + 1.24323i 0.244096 + 0.969751i \(0.421509\pi\)
−0.961877 + 0.273482i \(0.911824\pi\)
\(14\) 3.50326 3.38501i 0.936287 0.904683i
\(15\) 0 0
\(16\) −4.84777 −1.21194
\(17\) −0.774463 1.34141i −0.187835 0.325340i 0.756693 0.653770i \(-0.226814\pi\)
−0.944528 + 0.328430i \(0.893480\pi\)
\(18\) 0 0
\(19\) −1.25211 + 2.16872i −0.287254 + 0.497538i −0.973153 0.230158i \(-0.926076\pi\)
0.685900 + 0.727696i \(0.259409\pi\)
\(20\) 0.927765 + 1.60694i 0.207455 + 0.359322i
\(21\) 0 0
\(22\) 1.39291 2.41260i 0.296970 0.514367i
\(23\) −3.68039 6.37463i −0.767415 1.32920i −0.938960 0.344025i \(-0.888209\pi\)
0.171545 0.985176i \(-0.445124\pi\)
\(24\) 0 0
\(25\) 1.60922 2.78725i 0.321843 0.557449i
\(26\) −4.76513 + 8.25344i −0.934518 + 1.61863i
\(27\) 0 0
\(28\) 2.64502 2.55574i 0.499862 0.482990i
\(29\) 0.0309713 + 0.0536439i 0.00575123 + 0.00996143i 0.868887 0.495011i \(-0.164836\pi\)
−0.863135 + 0.504972i \(0.831503\pi\)
\(30\) 0 0
\(31\) −3.84777 −0.691080 −0.345540 0.938404i \(-0.612304\pi\)
−0.345540 + 0.938404i \(0.612304\pi\)
\(32\) −6.68021 −1.18091
\(33\) 0 0
\(34\) −1.42597 2.46986i −0.244552 0.423577i
\(35\) 3.39490 + 0.972416i 0.573844 + 0.164368i
\(36\) 0 0
\(37\) −0.281608 + 0.487760i −0.0462961 + 0.0801872i −0.888245 0.459370i \(-0.848075\pi\)
0.841949 + 0.539557i \(0.181408\pi\)
\(38\) −2.30543 + 3.99313i −0.373991 + 0.647771i
\(39\) 0 0
\(40\) −0.749363 1.29794i −0.118485 0.205222i
\(41\) −4.51188 + 7.81481i −0.704638 + 1.22047i 0.262185 + 0.965018i \(0.415557\pi\)
−0.966822 + 0.255450i \(0.917776\pi\)
\(42\) 0 0
\(43\) 5.09988 + 8.83325i 0.777724 + 1.34706i 0.933251 + 0.359226i \(0.116959\pi\)
−0.155526 + 0.987832i \(0.549707\pi\)
\(44\) 1.05167 1.82155i 0.158546 0.274609i
\(45\) 0 0
\(46\) −6.77649 11.7372i −0.999139 1.73056i
\(47\) 9.51851 1.38842 0.694209 0.719774i \(-0.255755\pi\)
0.694209 + 0.719774i \(0.255755\pi\)
\(48\) 0 0
\(49\) 0.240269 6.99588i 0.0343242 0.999411i
\(50\) 2.96296 5.13199i 0.419025 0.725773i
\(51\) 0 0
\(52\) −3.59775 + 6.23148i −0.498918 + 0.864151i
\(53\) −0.755374 1.30835i −0.103759 0.179715i 0.809472 0.587159i \(-0.199754\pi\)
−0.913230 + 0.407444i \(0.866420\pi\)
\(54\) 0 0
\(55\) 2.01950 0.272310
\(56\) −2.13641 + 2.06429i −0.285489 + 0.275853i
\(57\) 0 0
\(58\) 0.0570257 + 0.0987714i 0.00748784 + 0.0129693i
\(59\) 8.44331 1.09923 0.549613 0.835419i \(-0.314775\pi\)
0.549613 + 0.835419i \(0.314775\pi\)
\(60\) 0 0
\(61\) 3.23917 0.414733 0.207367 0.978263i \(-0.433511\pi\)
0.207367 + 0.978263i \(0.433511\pi\)
\(62\) −7.08467 −0.899754
\(63\) 0 0
\(64\) −2.60434 −0.325543
\(65\) −6.90868 −0.856916
\(66\) 0 0
\(67\) 6.93339 0.847049 0.423524 0.905885i \(-0.360793\pi\)
0.423524 + 0.905885i \(0.360793\pi\)
\(68\) −1.07663 1.86478i −0.130561 0.226138i
\(69\) 0 0
\(70\) 6.25084 + 1.79045i 0.747118 + 0.214000i
\(71\) 12.3304 1.46335 0.731673 0.681656i \(-0.238740\pi\)
0.731673 + 0.681656i \(0.238740\pi\)
\(72\) 0 0
\(73\) −1.37936 2.38912i −0.161442 0.279625i 0.773944 0.633254i \(-0.218281\pi\)
−0.935386 + 0.353629i \(0.884948\pi\)
\(74\) −0.518508 + 0.898083i −0.0602754 + 0.104400i
\(75\) 0 0
\(76\) −1.74064 + 3.01488i −0.199665 + 0.345830i
\(77\) −0.969547 3.88388i −0.110490 0.442609i
\(78\) 0 0
\(79\) −5.91938 −0.665982 −0.332991 0.942930i \(-0.608058\pi\)
−0.332991 + 0.942930i \(0.608058\pi\)
\(80\) −3.23529 5.60368i −0.361716 0.626511i
\(81\) 0 0
\(82\) −8.30746 + 14.3889i −0.917406 + 1.58899i
\(83\) −2.80111 4.85167i −0.307462 0.532540i 0.670344 0.742050i \(-0.266146\pi\)
−0.977806 + 0.209510i \(0.932813\pi\)
\(84\) 0 0
\(85\) 1.03372 1.79045i 0.112122 0.194202i
\(86\) 9.39010 + 16.2641i 1.01256 + 1.75381i
\(87\) 0 0
\(88\) −0.849444 + 1.47128i −0.0905511 + 0.156839i
\(89\) −0.703287 + 1.21813i −0.0745483 + 0.129121i −0.900890 0.434048i \(-0.857085\pi\)
0.826341 + 0.563169i \(0.190418\pi\)
\(90\) 0 0
\(91\) 3.31680 + 13.2867i 0.347695 + 1.39282i
\(92\) −5.11636 8.86180i −0.533418 0.923906i
\(93\) 0 0
\(94\) 17.5259 1.80765
\(95\) −3.34251 −0.342935
\(96\) 0 0
\(97\) −6.09713 10.5605i −0.619070 1.07226i −0.989656 0.143462i \(-0.954176\pi\)
0.370586 0.928798i \(-0.379157\pi\)
\(98\) 0.442393 12.8811i 0.0446885 1.30119i
\(99\) 0 0
\(100\) 2.23708 3.87474i 0.223708 0.387474i
\(101\) 0.559336 0.968798i 0.0556560 0.0963990i −0.836855 0.547425i \(-0.815608\pi\)
0.892511 + 0.451025i \(0.148942\pi\)
\(102\) 0 0
\(103\) −0.965224 1.67182i −0.0951063 0.164729i 0.814547 0.580098i \(-0.196986\pi\)
−0.909653 + 0.415369i \(0.863652\pi\)
\(104\) 2.90593 5.03322i 0.284950 0.493548i
\(105\) 0 0
\(106\) −1.39082 2.40898i −0.135089 0.233981i
\(107\) −2.88969 + 5.00509i −0.279357 + 0.483860i −0.971225 0.238163i \(-0.923455\pi\)
0.691868 + 0.722024i \(0.256788\pi\)
\(108\) 0 0
\(109\) −4.12106 7.13788i −0.394726 0.683685i 0.598340 0.801242i \(-0.295827\pi\)
−0.993066 + 0.117557i \(0.962494\pi\)
\(110\) 3.71839 0.354535
\(111\) 0 0
\(112\) −9.22368 + 8.91234i −0.871556 + 0.842137i
\(113\) −7.25105 + 12.5592i −0.682121 + 1.18147i 0.292211 + 0.956354i \(0.405609\pi\)
−0.974332 + 0.225115i \(0.927724\pi\)
\(114\) 0 0
\(115\) 4.91242 8.50856i 0.458085 0.793427i
\(116\) 0.0430553 + 0.0745740i 0.00399759 + 0.00692403i
\(117\) 0 0
\(118\) 15.5462 1.43114
\(119\) −3.93965 1.12845i −0.361147 0.103445i
\(120\) 0 0
\(121\) 4.35539 + 7.54376i 0.395945 + 0.685796i
\(122\) 5.96409 0.539963
\(123\) 0 0
\(124\) −5.34904 −0.480358
\(125\) 10.9696 0.981149
\(126\) 0 0
\(127\) 8.50004 0.754257 0.377128 0.926161i \(-0.376912\pi\)
0.377128 + 0.926161i \(0.376912\pi\)
\(128\) 8.56521 0.757065
\(129\) 0 0
\(130\) −12.7205 −1.11566
\(131\) −1.00673 1.74371i −0.0879585 0.152349i 0.818690 0.574236i \(-0.194701\pi\)
−0.906648 + 0.421888i \(0.861368\pi\)
\(132\) 0 0
\(133\) 1.60471 + 6.42827i 0.139146 + 0.557402i
\(134\) 12.7660 1.10282
\(135\) 0 0
\(136\) 0.869605 + 1.50620i 0.0745680 + 0.129156i
\(137\) 1.10870 1.92032i 0.0947225 0.164064i −0.814770 0.579784i \(-0.803137\pi\)
0.909493 + 0.415720i \(0.136470\pi\)
\(138\) 0 0
\(139\) 0.377669 0.654143i 0.0320335 0.0554836i −0.849564 0.527485i \(-0.823135\pi\)
0.881598 + 0.472002i \(0.156468\pi\)
\(140\) 4.71948 + 1.35182i 0.398869 + 0.114250i
\(141\) 0 0
\(142\) 22.7032 1.90521
\(143\) 3.91568 + 6.78216i 0.327446 + 0.567153i
\(144\) 0 0
\(145\) −0.0413391 + 0.0716014i −0.00343303 + 0.00594618i
\(146\) −2.53973 4.39894i −0.210189 0.364059i
\(147\) 0 0
\(148\) −0.391482 + 0.678068i −0.0321797 + 0.0557368i
\(149\) 3.29249 + 5.70277i 0.269732 + 0.467189i 0.968792 0.247873i \(-0.0797317\pi\)
−0.699061 + 0.715062i \(0.746398\pi\)
\(150\) 0 0
\(151\) −6.33356 + 10.9700i −0.515417 + 0.892729i 0.484422 + 0.874834i \(0.339030\pi\)
−0.999840 + 0.0178950i \(0.994304\pi\)
\(152\) 1.40593 2.43514i 0.114036 0.197516i
\(153\) 0 0
\(154\) −1.78517 7.15115i −0.143853 0.576256i
\(155\) −2.56791 4.44775i −0.206260 0.357252i
\(156\) 0 0
\(157\) −17.3074 −1.38128 −0.690642 0.723197i \(-0.742672\pi\)
−0.690642 + 0.723197i \(0.742672\pi\)
\(158\) −10.8990 −0.867078
\(159\) 0 0
\(160\) −4.45822 7.72186i −0.352453 0.610467i
\(161\) −18.7219 5.36260i −1.47549 0.422632i
\(162\) 0 0
\(163\) 6.10963 10.5822i 0.478543 0.828861i −0.521154 0.853463i \(-0.674498\pi\)
0.999697 + 0.0246014i \(0.00783167\pi\)
\(164\) −6.27227 + 10.8639i −0.489782 + 0.848327i
\(165\) 0 0
\(166\) −5.15752 8.93309i −0.400301 0.693342i
\(167\) −1.76248 + 3.05270i −0.136385 + 0.236225i −0.926126 0.377215i \(-0.876882\pi\)
0.789741 + 0.613440i \(0.210215\pi\)
\(168\) 0 0
\(169\) −6.89546 11.9433i −0.530420 0.918714i
\(170\) 1.90332 3.29665i 0.145978 0.252842i
\(171\) 0 0
\(172\) 7.08968 + 12.2797i 0.540583 + 0.936318i
\(173\) −10.1409 −0.770999 −0.385500 0.922708i \(-0.625971\pi\)
−0.385500 + 0.922708i \(0.625971\pi\)
\(174\) 0 0
\(175\) −2.06239 8.26164i −0.155902 0.624522i
\(176\) −3.66738 + 6.35208i −0.276439 + 0.478806i
\(177\) 0 0
\(178\) −1.29492 + 2.24287i −0.0970584 + 0.168110i
\(179\) −0.850579 1.47325i −0.0635752 0.110116i 0.832486 0.554046i \(-0.186917\pi\)
−0.896061 + 0.443931i \(0.853584\pi\)
\(180\) 0 0
\(181\) −16.9941 −1.26316 −0.631581 0.775310i \(-0.717594\pi\)
−0.631581 + 0.775310i \(0.717594\pi\)
\(182\) 6.10702 + 24.4639i 0.452683 + 1.81339i
\(183\) 0 0
\(184\) 4.13252 + 7.15774i 0.304654 + 0.527676i
\(185\) −0.751755 −0.0552701
\(186\) 0 0
\(187\) −2.34355 −0.171377
\(188\) 13.2323 0.965066
\(189\) 0 0
\(190\) −6.15437 −0.446485
\(191\) −22.6939 −1.64208 −0.821038 0.570873i \(-0.806605\pi\)
−0.821038 + 0.570873i \(0.806605\pi\)
\(192\) 0 0
\(193\) 6.18698 0.445348 0.222674 0.974893i \(-0.428521\pi\)
0.222674 + 0.974893i \(0.428521\pi\)
\(194\) −11.2263 19.4445i −0.806001 1.39603i
\(195\) 0 0
\(196\) 0.334014 9.72544i 0.0238582 0.694674i
\(197\) −9.77010 −0.696091 −0.348045 0.937478i \(-0.613154\pi\)
−0.348045 + 0.937478i \(0.613154\pi\)
\(198\) 0 0
\(199\) −4.33973 7.51664i −0.307636 0.532840i 0.670209 0.742172i \(-0.266204\pi\)
−0.977845 + 0.209332i \(0.932871\pi\)
\(200\) −1.80691 + 3.12965i −0.127768 + 0.221300i
\(201\) 0 0
\(202\) 1.02987 1.78379i 0.0724615 0.125507i
\(203\) 0.157549 + 0.0451275i 0.0110578 + 0.00316733i
\(204\) 0 0
\(205\) −12.0445 −0.841224
\(206\) −1.77721 3.07822i −0.123824 0.214470i
\(207\) 0 0
\(208\) 12.5460 21.7303i 0.869909 1.50673i
\(209\) 1.89446 + 3.28130i 0.131043 + 0.226973i
\(210\) 0 0
\(211\) −2.84219 + 4.92283i −0.195665 + 0.338901i −0.947118 0.320885i \(-0.896020\pi\)
0.751453 + 0.659786i \(0.229353\pi\)
\(212\) −1.05010 1.81882i −0.0721209 0.124917i
\(213\) 0 0
\(214\) −5.32062 + 9.21558i −0.363710 + 0.629964i
\(215\) −6.80708 + 11.7902i −0.464239 + 0.804086i
\(216\) 0 0
\(217\) −7.32102 + 7.07390i −0.496983 + 0.480207i
\(218\) −7.58786 13.1426i −0.513915 0.890126i
\(219\) 0 0
\(220\) 2.80745 0.189278
\(221\) 8.01723 0.539298
\(222\) 0 0
\(223\) 5.86133 + 10.1521i 0.392503 + 0.679836i 0.992779 0.119957i \(-0.0382758\pi\)
−0.600276 + 0.799793i \(0.704942\pi\)
\(224\) −12.7102 + 12.2812i −0.849236 + 0.820571i
\(225\) 0 0
\(226\) −13.3509 + 23.1245i −0.888091 + 1.53822i
\(227\) 5.59154 9.68482i 0.371123 0.642804i −0.618615 0.785694i \(-0.712306\pi\)
0.989739 + 0.142890i \(0.0456394\pi\)
\(228\) 0 0
\(229\) 4.82824 + 8.36275i 0.319059 + 0.552626i 0.980292 0.197554i \(-0.0632999\pi\)
−0.661233 + 0.750181i \(0.729967\pi\)
\(230\) 9.04494 15.6663i 0.596406 1.03301i
\(231\) 0 0
\(232\) −0.0347761 0.0602340i −0.00228317 0.00395456i
\(233\) 9.64492 16.7055i 0.631860 1.09441i −0.355311 0.934748i \(-0.615625\pi\)
0.987171 0.159666i \(-0.0510416\pi\)
\(234\) 0 0
\(235\) 6.35243 + 11.0027i 0.414387 + 0.717739i
\(236\) 11.7376 0.764054
\(237\) 0 0
\(238\) −7.25384 2.07775i −0.470197 0.134680i
\(239\) 0.194641 0.337128i 0.0125903 0.0218070i −0.859662 0.510864i \(-0.829326\pi\)
0.872252 + 0.489057i \(0.162659\pi\)
\(240\) 0 0
\(241\) −5.31807 + 9.21117i −0.342567 + 0.593344i −0.984909 0.173075i \(-0.944630\pi\)
0.642342 + 0.766419i \(0.277963\pi\)
\(242\) 8.01932 + 13.8899i 0.515502 + 0.892875i
\(243\) 0 0
\(244\) 4.50299 0.288274
\(245\) 8.24709 4.39115i 0.526888 0.280540i
\(246\) 0 0
\(247\) −6.48091 11.2253i −0.412370 0.714247i
\(248\) 4.32046 0.274350
\(249\) 0 0
\(250\) 20.1976 1.27741
\(251\) 3.26628 0.206166 0.103083 0.994673i \(-0.467129\pi\)
0.103083 + 0.994673i \(0.467129\pi\)
\(252\) 0 0
\(253\) −11.1370 −0.700176
\(254\) 15.6506 0.982007
\(255\) 0 0
\(256\) 20.9793 1.31121
\(257\) −2.34787 4.06663i −0.146456 0.253669i 0.783459 0.621443i \(-0.213453\pi\)
−0.929915 + 0.367774i \(0.880120\pi\)
\(258\) 0 0
\(259\) 0.360911 + 1.44576i 0.0224259 + 0.0898354i
\(260\) −9.60421 −0.595628
\(261\) 0 0
\(262\) −1.85363 3.21059i −0.114518 0.198351i
\(263\) 9.77491 16.9306i 0.602747 1.04399i −0.389656 0.920960i \(-0.627406\pi\)
0.992403 0.123028i \(-0.0392605\pi\)
\(264\) 0 0
\(265\) 1.00824 1.74632i 0.0619355 0.107276i
\(266\) 2.95466 + 11.8360i 0.181162 + 0.725711i
\(267\) 0 0
\(268\) 9.63858 0.588770
\(269\) −7.88365 13.6549i −0.480675 0.832553i 0.519079 0.854726i \(-0.326275\pi\)
−0.999754 + 0.0221730i \(0.992942\pi\)
\(270\) 0 0
\(271\) 7.39882 12.8151i 0.449446 0.778464i −0.548904 0.835886i \(-0.684955\pi\)
0.998350 + 0.0574218i \(0.0182880\pi\)
\(272\) 3.75442 + 6.50285i 0.227645 + 0.394293i
\(273\) 0 0
\(274\) 2.04138 3.53578i 0.123324 0.213604i
\(275\) −2.43477 4.21715i −0.146822 0.254304i
\(276\) 0 0
\(277\) 3.72561 6.45295i 0.223850 0.387720i −0.732124 0.681172i \(-0.761471\pi\)
0.955974 + 0.293452i \(0.0948040\pi\)
\(278\) 0.695380 1.20443i 0.0417061 0.0722371i
\(279\) 0 0
\(280\) −3.81196 1.09188i −0.227808 0.0652521i
\(281\) 12.9938 + 22.5060i 0.775146 + 1.34259i 0.934712 + 0.355406i \(0.115657\pi\)
−0.159566 + 0.987187i \(0.551009\pi\)
\(282\) 0 0
\(283\) 18.7554 1.11489 0.557445 0.830214i \(-0.311782\pi\)
0.557445 + 0.830214i \(0.311782\pi\)
\(284\) 17.1413 1.01715
\(285\) 0 0
\(286\) 7.20971 + 12.4876i 0.426319 + 0.738406i
\(287\) 5.78246 + 23.1638i 0.341328 + 1.36732i
\(288\) 0 0
\(289\) 7.30041 12.6447i 0.429436 0.743805i
\(290\) −0.0761152 + 0.131835i −0.00446964 + 0.00774165i
\(291\) 0 0
\(292\) −1.91754 3.32127i −0.112215 0.194363i
\(293\) 1.23089 2.13196i 0.0719093 0.124551i −0.827829 0.560981i \(-0.810424\pi\)
0.899738 + 0.436430i \(0.143757\pi\)
\(294\) 0 0
\(295\) 5.63487 + 9.75988i 0.328075 + 0.568242i
\(296\) 0.316203 0.547680i 0.0183790 0.0318333i
\(297\) 0 0
\(298\) 6.06227 + 10.5002i 0.351178 + 0.608258i
\(299\) 38.0994 2.20334
\(300\) 0 0
\(301\) 25.9428 + 7.43089i 1.49532 + 0.428309i
\(302\) −11.6616 + 20.1985i −0.671050 + 1.16229i
\(303\) 0 0
\(304\) 6.06994 10.5134i 0.348135 0.602987i
\(305\) 2.16175 + 3.74425i 0.123781 + 0.214395i
\(306\) 0 0
\(307\) −4.66277 −0.266118 −0.133059 0.991108i \(-0.542480\pi\)
−0.133059 + 0.991108i \(0.542480\pi\)
\(308\) −1.34783 5.39924i −0.0767999 0.307650i
\(309\) 0 0
\(310\) −4.72814 8.18938i −0.268541 0.465126i
\(311\) −27.4821 −1.55837 −0.779183 0.626797i \(-0.784366\pi\)
−0.779183 + 0.626797i \(0.784366\pi\)
\(312\) 0 0
\(313\) 5.49332 0.310501 0.155250 0.987875i \(-0.450382\pi\)
0.155250 + 0.987875i \(0.450382\pi\)
\(314\) −31.8671 −1.79837
\(315\) 0 0
\(316\) −8.22893 −0.462914
\(317\) −9.87758 −0.554780 −0.277390 0.960757i \(-0.589469\pi\)
−0.277390 + 0.960757i \(0.589469\pi\)
\(318\) 0 0
\(319\) 0.0937203 0.00524733
\(320\) −1.73808 3.01044i −0.0971614 0.168288i
\(321\) 0 0
\(322\) −34.4716 9.87383i −1.92103 0.550247i
\(323\) 3.87885 0.215825
\(324\) 0 0
\(325\) 8.32930 + 14.4268i 0.462026 + 0.800253i
\(326\) 11.2493 19.4844i 0.623041 1.07914i
\(327\) 0 0
\(328\) 5.06616 8.77485i 0.279732 0.484510i
\(329\) 18.1105 17.4992i 0.998466 0.964763i
\(330\) 0 0
\(331\) −20.6942 −1.13746 −0.568729 0.822525i \(-0.692565\pi\)
−0.568729 + 0.822525i \(0.692565\pi\)
\(332\) −3.89401 6.74463i −0.213712 0.370160i
\(333\) 0 0
\(334\) −3.24514 + 5.62076i −0.177566 + 0.307554i
\(335\) 4.62718 + 8.01452i 0.252810 + 0.437880i
\(336\) 0 0
\(337\) 0.748747 1.29687i 0.0407869 0.0706449i −0.844911 0.534906i \(-0.820347\pi\)
0.885698 + 0.464261i \(0.153680\pi\)
\(338\) −12.6962 21.9905i −0.690582 1.19612i
\(339\) 0 0
\(340\) 1.43704 2.48903i 0.0779344 0.134986i
\(341\) −2.91087 + 5.04177i −0.157632 + 0.273027i
\(342\) 0 0
\(343\) −12.4044 13.7525i −0.669772 0.742567i
\(344\) −5.72639 9.91840i −0.308746 0.534764i
\(345\) 0 0
\(346\) −18.6719 −1.00381
\(347\) 29.5388 1.58572 0.792862 0.609401i \(-0.208590\pi\)
0.792862 + 0.609401i \(0.208590\pi\)
\(348\) 0 0
\(349\) 18.0006 + 31.1780i 0.963551 + 1.66892i 0.713458 + 0.700698i \(0.247128\pi\)
0.250094 + 0.968222i \(0.419539\pi\)
\(350\) −3.79735 15.2117i −0.202977 0.813098i
\(351\) 0 0
\(352\) −5.05363 + 8.75315i −0.269360 + 0.466545i
\(353\) −14.7465 + 25.5417i −0.784877 + 1.35945i 0.144196 + 0.989549i \(0.453940\pi\)
−0.929073 + 0.369897i \(0.879393\pi\)
\(354\) 0 0
\(355\) 8.22900 + 14.2530i 0.436750 + 0.756473i
\(356\) −0.977687 + 1.69340i −0.0518173 + 0.0897502i
\(357\) 0 0
\(358\) −1.56612 2.71260i −0.0827720 0.143365i
\(359\) −2.70535 + 4.68580i −0.142783 + 0.247307i −0.928544 0.371224i \(-0.878938\pi\)
0.785761 + 0.618531i \(0.212272\pi\)
\(360\) 0 0
\(361\) 6.36444 + 11.0235i 0.334971 + 0.580186i
\(362\) −31.2902 −1.64458
\(363\) 0 0
\(364\) 4.61090 + 18.4707i 0.241677 + 0.968126i
\(365\) 1.84110 3.18888i 0.0963676 0.166914i
\(366\) 0 0
\(367\) 11.5422 19.9916i 0.602496 1.04355i −0.389946 0.920838i \(-0.627506\pi\)
0.992442 0.122715i \(-0.0391602\pi\)
\(368\) 17.8417 + 30.9027i 0.930063 + 1.61092i
\(369\) 0 0
\(370\) −1.38416 −0.0719591
\(371\) −3.84254 1.10063i −0.199495 0.0571421i
\(372\) 0 0
\(373\) −10.7515 18.6222i −0.556692 0.964219i −0.997770 0.0667498i \(-0.978737\pi\)
0.441078 0.897469i \(-0.354596\pi\)
\(374\) −4.31504 −0.223125
\(375\) 0 0
\(376\) −10.6878 −0.551184
\(377\) −0.320615 −0.0165125
\(378\) 0 0
\(379\) 5.72168 0.293903 0.146952 0.989144i \(-0.453054\pi\)
0.146952 + 0.989144i \(0.453054\pi\)
\(380\) −4.64665 −0.238368
\(381\) 0 0
\(382\) −41.7850 −2.13791
\(383\) −17.4604 30.2424i −0.892187 1.54531i −0.837248 0.546823i \(-0.815837\pi\)
−0.0549390 0.998490i \(-0.517496\pi\)
\(384\) 0 0
\(385\) 3.84244 3.71274i 0.195829 0.189219i
\(386\) 11.3917 0.579823
\(387\) 0 0
\(388\) −8.47603 14.6809i −0.430305 0.745311i
\(389\) −14.4411 + 25.0127i −0.732192 + 1.26819i 0.223752 + 0.974646i \(0.428169\pi\)
−0.955944 + 0.293548i \(0.905164\pi\)
\(390\) 0 0
\(391\) −5.70066 + 9.87383i −0.288295 + 0.499341i
\(392\) −0.269786 + 7.85531i −0.0136262 + 0.396753i
\(393\) 0 0
\(394\) −17.9891 −0.906278
\(395\) −3.95046 6.84239i −0.198769 0.344278i
\(396\) 0 0
\(397\) 5.59226 9.68607i 0.280667 0.486130i −0.690882 0.722968i \(-0.742778\pi\)
0.971549 + 0.236838i \(0.0761109\pi\)
\(398\) −7.99049 13.8399i −0.400527 0.693734i
\(399\) 0 0
\(400\) −7.80111 + 13.5119i −0.390056 + 0.675596i
\(401\) −0.541061 0.937146i −0.0270193 0.0467988i 0.852200 0.523217i \(-0.175268\pi\)
−0.879219 + 0.476418i \(0.841935\pi\)
\(402\) 0 0
\(403\) 9.95802 17.2478i 0.496044 0.859174i
\(404\) 0.777570 1.34679i 0.0386856 0.0670054i
\(405\) 0 0
\(406\) 0.290086 + 0.0830905i 0.0143967 + 0.00412371i
\(407\) 0.426078 + 0.737988i 0.0211199 + 0.0365807i
\(408\) 0 0
\(409\) −21.7349 −1.07472 −0.537360 0.843353i \(-0.680578\pi\)
−0.537360 + 0.843353i \(0.680578\pi\)
\(410\) −22.1768 −1.09524
\(411\) 0 0
\(412\) −1.34182 2.32410i −0.0661069 0.114500i
\(413\) 16.0648 15.5225i 0.790497 0.763814i
\(414\) 0 0
\(415\) 3.73879 6.47578i 0.183530 0.317884i
\(416\) 17.2884 29.9443i 0.847632 1.46814i
\(417\) 0 0
\(418\) 3.48816 + 6.04167i 0.170611 + 0.295508i
\(419\) −12.5906 + 21.8075i −0.615090 + 1.06537i 0.375279 + 0.926912i \(0.377547\pi\)
−0.990369 + 0.138455i \(0.955787\pi\)
\(420\) 0 0
\(421\) −14.8304 25.6869i −0.722788 1.25191i −0.959878 0.280418i \(-0.909527\pi\)
0.237090 0.971488i \(-0.423806\pi\)
\(422\) −5.23316 + 9.06411i −0.254746 + 0.441234i
\(423\) 0 0
\(424\) 0.848171 + 1.46907i 0.0411908 + 0.0713446i
\(425\) −4.98512 −0.241814
\(426\) 0 0
\(427\) 6.16305 5.95502i 0.298251 0.288184i
\(428\) −4.01715 + 6.95791i −0.194176 + 0.336323i
\(429\) 0 0
\(430\) −12.5335 + 21.7086i −0.604418 + 1.04688i
\(431\) −2.44517 4.23516i −0.117780 0.204000i 0.801108 0.598520i \(-0.204244\pi\)
−0.918887 + 0.394520i \(0.870911\pi\)
\(432\) 0 0
\(433\) 9.71430 0.466839 0.233420 0.972376i \(-0.425008\pi\)
0.233420 + 0.972376i \(0.425008\pi\)
\(434\) −13.4798 + 13.0247i −0.647049 + 0.625208i
\(435\) 0 0
\(436\) −5.72896 9.92285i −0.274367 0.475218i
\(437\) 18.4330 0.881771
\(438\) 0 0
\(439\) −14.8235 −0.707488 −0.353744 0.935342i \(-0.615092\pi\)
−0.353744 + 0.935342i \(0.615092\pi\)
\(440\) −2.26760 −0.108103
\(441\) 0 0
\(442\) 14.7617 0.702141
\(443\) 21.9020 1.04059 0.520297 0.853986i \(-0.325821\pi\)
0.520297 + 0.853986i \(0.325821\pi\)
\(444\) 0 0
\(445\) −1.87743 −0.0889987
\(446\) 10.7921 + 18.6925i 0.511021 + 0.885115i
\(447\) 0 0
\(448\) −4.95519 + 4.78793i −0.234111 + 0.226208i
\(449\) −21.4952 −1.01442 −0.507212 0.861822i \(-0.669324\pi\)
−0.507212 + 0.861822i \(0.669324\pi\)
\(450\) 0 0
\(451\) 6.82655 + 11.8239i 0.321450 + 0.556767i
\(452\) −10.0802 + 17.4594i −0.474131 + 0.821220i
\(453\) 0 0
\(454\) 10.2954 17.8321i 0.483185 0.836902i
\(455\) −13.1449 + 12.7012i −0.616242 + 0.595441i
\(456\) 0 0
\(457\) 40.6255 1.90038 0.950190 0.311670i \(-0.100888\pi\)
0.950190 + 0.311670i \(0.100888\pi\)
\(458\) 8.88995 + 15.3978i 0.415400 + 0.719494i
\(459\) 0 0
\(460\) 6.82908 11.8283i 0.318408 0.551498i
\(461\) −1.41541 2.45155i −0.0659220 0.114180i 0.831181 0.556003i \(-0.187666\pi\)
−0.897103 + 0.441822i \(0.854332\pi\)
\(462\) 0 0
\(463\) −13.9324 + 24.1317i −0.647494 + 1.12149i 0.336225 + 0.941782i \(0.390850\pi\)
−0.983719 + 0.179711i \(0.942484\pi\)
\(464\) −0.150142 0.260053i −0.00697016 0.0120727i
\(465\) 0 0
\(466\) 17.7586 30.7588i 0.822653 1.42488i
\(467\) 13.3219 23.0742i 0.616464 1.06775i −0.373661 0.927565i \(-0.621898\pi\)
0.990126 0.140182i \(-0.0447689\pi\)
\(468\) 0 0
\(469\) 13.1919 12.7466i 0.609146 0.588585i
\(470\) 11.6964 + 20.2587i 0.539513 + 0.934463i
\(471\) 0 0
\(472\) −9.48056 −0.436378
\(473\) 15.4324 0.709582
\(474\) 0 0
\(475\) 4.02983 + 6.97987i 0.184901 + 0.320258i
\(476\) −5.47677 1.56873i −0.251027 0.0719027i
\(477\) 0 0
\(478\) 0.358381 0.620734i 0.0163920 0.0283917i
\(479\) −15.7895 + 27.3483i −0.721443 + 1.24958i 0.238979 + 0.971025i \(0.423187\pi\)
−0.960422 + 0.278551i \(0.910146\pi\)
\(480\) 0 0
\(481\) −1.45760 2.52464i −0.0664609 0.115114i
\(482\) −9.79185 + 16.9600i −0.446007 + 0.772506i
\(483\) 0 0
\(484\) 6.05472 + 10.4871i 0.275215 + 0.476686i
\(485\) 8.13817 14.0957i 0.369535 0.640054i
\(486\) 0 0
\(487\) −0.153087 0.265154i −0.00693703 0.0120153i 0.862536 0.505996i \(-0.168875\pi\)
−0.869473 + 0.493980i \(0.835541\pi\)
\(488\) −3.63710 −0.164644
\(489\) 0 0
\(490\) 15.1849 8.08516i 0.685983 0.365250i
\(491\) 9.06981 15.7094i 0.409315 0.708954i −0.585498 0.810674i \(-0.699101\pi\)
0.994813 + 0.101720i \(0.0324345\pi\)
\(492\) 0 0
\(493\) 0.0479723 0.0830905i 0.00216057 0.00374221i
\(494\) −11.9329 20.6684i −0.536887 0.929916i
\(495\) 0 0
\(496\) 18.6531 0.837549
\(497\) 23.4606 22.6687i 1.05235 1.01683i
\(498\) 0 0
\(499\) 10.6546 + 18.4543i 0.476964 + 0.826126i 0.999652 0.0263983i \(-0.00840381\pi\)
−0.522687 + 0.852524i \(0.675070\pi\)
\(500\) 15.2496 0.681981
\(501\) 0 0
\(502\) 6.01401 0.268418
\(503\) 17.0738 0.761285 0.380642 0.924722i \(-0.375703\pi\)
0.380642 + 0.924722i \(0.375703\pi\)
\(504\) 0 0
\(505\) 1.49315 0.0664443
\(506\) −20.5059 −0.911597
\(507\) 0 0
\(508\) 11.8165 0.524271
\(509\) 18.3868 + 31.8468i 0.814979 + 1.41159i 0.909343 + 0.416048i \(0.136585\pi\)
−0.0943635 + 0.995538i \(0.530082\pi\)
\(510\) 0 0
\(511\) −7.01670 2.00982i −0.310401 0.0889093i
\(512\) 21.4975 0.950065
\(513\) 0 0
\(514\) −4.32299 7.48764i −0.190679 0.330265i
\(515\) 1.28834 2.23146i 0.0567709 0.0983300i
\(516\) 0 0
\(517\) 7.20083 12.4722i 0.316692 0.548527i
\(518\) 0.664525 + 2.66200i 0.0291975 + 0.116961i
\(519\) 0 0
\(520\) 7.75740 0.340184
\(521\) 9.57535 + 16.5850i 0.419504 + 0.726602i 0.995890 0.0905758i \(-0.0288707\pi\)
−0.576386 + 0.817178i \(0.695537\pi\)
\(522\) 0 0
\(523\) −20.9715 + 36.3236i −0.917018 + 1.58832i −0.113097 + 0.993584i \(0.536077\pi\)
−0.803920 + 0.594737i \(0.797256\pi\)
\(524\) −1.39952 2.42405i −0.0611385 0.105895i
\(525\) 0 0
\(526\) 17.9980 31.1734i 0.784749 1.35922i
\(527\) 2.97996 + 5.16144i 0.129809 + 0.224836i
\(528\) 0 0
\(529\) −15.5906 + 27.0037i −0.677851 + 1.17407i
\(530\) 1.85641 3.21539i 0.0806372 0.139668i
\(531\) 0 0
\(532\) 2.23082 + 8.93637i 0.0967183 + 0.387441i
\(533\) −23.3535 40.4494i −1.01155 1.75206i
\(534\) 0 0
\(535\) −7.71405 −0.333507
\(536\) −7.78515 −0.336267
\(537\) 0 0
\(538\) −14.5157 25.1419i −0.625816 1.08395i
\(539\) −8.98500 5.60726i −0.387011 0.241522i
\(540\) 0 0
\(541\) −1.44272 + 2.49886i −0.0620273 + 0.107434i −0.895371 0.445320i \(-0.853090\pi\)
0.833344 + 0.552754i \(0.186423\pi\)
\(542\) 13.6230 23.5957i 0.585158 1.01352i
\(543\) 0 0
\(544\) 5.17358 + 8.96090i 0.221815 + 0.384196i
\(545\) 5.50059 9.52731i 0.235620 0.408105i
\(546\) 0 0
\(547\) 1.38738 + 2.40301i 0.0593201 + 0.102745i 0.894160 0.447747i \(-0.147773\pi\)
−0.834840 + 0.550492i \(0.814440\pi\)
\(548\) 1.54128 2.66957i 0.0658401 0.114038i
\(549\) 0 0
\(550\) −4.48300 7.76478i −0.191156 0.331091i
\(551\) −0.155118 −0.00660825
\(552\) 0 0
\(553\) −11.2626 + 10.8824i −0.478935 + 0.462768i
\(554\) 6.85975 11.8814i 0.291443 0.504794i
\(555\) 0 0
\(556\) 0.525024 0.909368i 0.0222660 0.0385658i
\(557\) −15.5344 26.9064i −0.658214 1.14006i −0.981078 0.193614i \(-0.937979\pi\)
0.322864 0.946445i \(-0.395354\pi\)
\(558\) 0 0
\(559\) −52.7939 −2.23294
\(560\) −16.4577 4.71405i −0.695465 0.199205i
\(561\) 0 0
\(562\) 23.9248 + 41.4389i 1.00920 + 1.74799i
\(563\) −0.288041 −0.0121395 −0.00606973 0.999982i \(-0.501932\pi\)
−0.00606973 + 0.999982i \(0.501932\pi\)
\(564\) 0 0
\(565\) −19.3567 −0.814344
\(566\) 34.5331 1.45154
\(567\) 0 0
\(568\) −13.8451 −0.580929
\(569\) 16.0801 0.674112 0.337056 0.941485i \(-0.390569\pi\)
0.337056 + 0.941485i \(0.390569\pi\)
\(570\) 0 0
\(571\) −15.2858 −0.639690 −0.319845 0.947470i \(-0.603631\pi\)
−0.319845 + 0.947470i \(0.603631\pi\)
\(572\) 5.44345 + 9.42834i 0.227602 + 0.394218i
\(573\) 0 0
\(574\) 10.6469 + 42.6501i 0.444393 + 1.78018i
\(575\) −23.6902 −0.987950
\(576\) 0 0
\(577\) 12.0812 + 20.9253i 0.502949 + 0.871133i 0.999994 + 0.00340833i \(0.00108491\pi\)
−0.497045 + 0.867725i \(0.665582\pi\)
\(578\) 13.4418 23.2819i 0.559106 0.968400i
\(579\) 0 0
\(580\) −0.0574683 + 0.0995380i −0.00238624 + 0.00413309i
\(581\) −14.2491 4.08142i −0.591152 0.169326i
\(582\) 0 0
\(583\) −2.28579 −0.0946676
\(584\) 1.54881 + 2.68262i 0.0640902 + 0.111007i
\(585\) 0 0
\(586\) 2.26636 3.92546i 0.0936226 0.162159i
\(587\) −18.0145 31.2020i −0.743537 1.28784i −0.950875 0.309574i \(-0.899814\pi\)
0.207339 0.978269i \(-0.433520\pi\)
\(588\) 0 0
\(589\) 4.81783 8.34472i 0.198515 0.343838i
\(590\) 10.3752 + 17.9703i 0.427138 + 0.739825i
\(591\) 0 0
\(592\) 1.36517 2.36455i 0.0561082 0.0971823i
\(593\) −12.4668 + 21.5932i −0.511951 + 0.886726i 0.487953 + 0.872870i \(0.337744\pi\)
−0.999904 + 0.0138558i \(0.995589\pi\)
\(594\) 0 0
\(595\) −1.32482 5.30706i −0.0543124 0.217568i
\(596\) 4.57712 + 7.92780i 0.187486 + 0.324735i
\(597\) 0 0
\(598\) 70.1501 2.86865
\(599\) −39.5283 −1.61508 −0.807542 0.589810i \(-0.799203\pi\)
−0.807542 + 0.589810i \(0.799203\pi\)
\(600\) 0 0
\(601\) 1.86447 + 3.22936i 0.0760534 + 0.131728i 0.901544 0.432688i \(-0.142435\pi\)
−0.825490 + 0.564416i \(0.809101\pi\)
\(602\) 47.7669 + 13.6821i 1.94683 + 0.557639i
\(603\) 0 0
\(604\) −8.80470 + 15.2502i −0.358258 + 0.620521i
\(605\) −5.81337 + 10.0691i −0.236347 + 0.409365i
\(606\) 0 0
\(607\) −11.8264 20.4839i −0.480018 0.831415i 0.519719 0.854337i \(-0.326036\pi\)
−0.999737 + 0.0229218i \(0.992703\pi\)
\(608\) 8.36436 14.4875i 0.339219 0.587545i
\(609\) 0 0
\(610\) 3.98029 + 6.89407i 0.161157 + 0.279133i
\(611\) −24.6339 + 42.6671i −0.996580 + 1.72613i
\(612\) 0 0
\(613\) 1.89952 + 3.29006i 0.0767208 + 0.132884i 0.901833 0.432084i \(-0.142222\pi\)
−0.825113 + 0.564968i \(0.808888\pi\)
\(614\) −8.58528 −0.346474
\(615\) 0 0
\(616\) 1.08865 + 4.36101i 0.0438631 + 0.175710i
\(617\) 17.5615 30.4174i 0.706999 1.22456i −0.258966 0.965886i \(-0.583382\pi\)
0.965965 0.258672i \(-0.0832849\pi\)
\(618\) 0 0
\(619\) 10.5816 18.3279i 0.425311 0.736660i −0.571138 0.820854i \(-0.693498\pi\)
0.996449 + 0.0841934i \(0.0268314\pi\)
\(620\) −3.56983 6.18312i −0.143368 0.248320i
\(621\) 0 0
\(622\) −50.6011 −2.02892
\(623\) 0.901339 + 3.61064i 0.0361114 + 0.144657i
\(624\) 0 0
\(625\) −0.725240 1.25615i −0.0290096 0.0502461i
\(626\) 10.1145 0.404257
\(627\) 0 0
\(628\) −24.0602 −0.960107
\(629\) 0.872381 0.0347841
\(630\) 0 0
\(631\) 4.74845 0.189033 0.0945164 0.995523i \(-0.469870\pi\)
0.0945164 + 0.995523i \(0.469870\pi\)
\(632\) 6.64657 0.264386
\(633\) 0 0
\(634\) −18.1870 −0.722298
\(635\) 5.67273 + 9.82546i 0.225115 + 0.389911i
\(636\) 0 0
\(637\) 30.7375 + 19.1823i 1.21786 + 0.760031i
\(638\) 0.172562 0.00683178
\(639\) 0 0
\(640\) 5.71622 + 9.90078i 0.225953 + 0.391363i
\(641\) −4.93735 + 8.55174i −0.195013 + 0.337773i −0.946905 0.321514i \(-0.895808\pi\)
0.751891 + 0.659287i \(0.229142\pi\)
\(642\) 0 0
\(643\) 21.9748 38.0615i 0.866602 1.50100i 0.00115462 0.999999i \(-0.499632\pi\)
0.865448 0.501000i \(-0.167034\pi\)
\(644\) −26.0266 7.45491i −1.02559 0.293764i
\(645\) 0 0
\(646\) 7.14190 0.280994
\(647\) −22.1936 38.4404i −0.872521 1.51125i −0.859381 0.511336i \(-0.829151\pi\)
−0.0131398 0.999914i \(-0.504183\pi\)
\(648\) 0 0
\(649\) 6.38743 11.0634i 0.250729 0.434275i
\(650\) 15.3362 + 26.5631i 0.601537 + 1.04189i
\(651\) 0 0
\(652\) 8.49341 14.7110i 0.332628 0.576128i
\(653\) 20.9956 + 36.3655i 0.821622 + 1.42309i 0.904474 + 0.426529i \(0.140264\pi\)
−0.0828523 + 0.996562i \(0.526403\pi\)
\(654\) 0 0
\(655\) 1.34374 2.32742i 0.0525042 0.0909399i
\(656\) 21.8726 37.8844i 0.853980 1.47914i
\(657\) 0 0
\(658\) 33.3459 32.2203i 1.29996 1.25608i
\(659\) 19.6365 + 34.0114i 0.764928 + 1.32489i 0.940284 + 0.340390i \(0.110559\pi\)
−0.175356 + 0.984505i \(0.556108\pi\)
\(660\) 0 0
\(661\) −0.186739 −0.00726330 −0.00363165 0.999993i \(-0.501156\pi\)
−0.00363165 + 0.999993i \(0.501156\pi\)
\(662\) −38.1030 −1.48092
\(663\) 0 0
\(664\) 3.14522 + 5.44769i 0.122058 + 0.211411i
\(665\) −6.35969 + 6.14502i −0.246618 + 0.238293i
\(666\) 0 0
\(667\) 0.227973 0.394862i 0.00882717 0.0152891i
\(668\) −2.45014 + 4.24376i −0.0947987 + 0.164196i
\(669\) 0 0
\(670\) 8.51976 + 14.7567i 0.329147 + 0.570099i
\(671\) 2.45046 4.24432i 0.0945989 0.163850i
\(672\) 0 0
\(673\) −5.43382 9.41166i −0.209458 0.362793i 0.742086 0.670305i \(-0.233837\pi\)
−0.951544 + 0.307512i \(0.900503\pi\)
\(674\) 1.37862 2.38785i 0.0531026 0.0919764i
\(675\) 0 0
\(676\) −9.58584 16.6032i −0.368686 0.638583i
\(677\) −28.3901 −1.09112 −0.545560 0.838072i \(-0.683683\pi\)
−0.545560 + 0.838072i \(0.683683\pi\)
\(678\) 0 0
\(679\) −31.0157 8.88396i −1.19027 0.340935i
\(680\) −1.16071 + 2.01041i −0.0445111 + 0.0770956i
\(681\) 0 0
\(682\) −5.35961 + 9.28312i −0.205230 + 0.355469i
\(683\) −5.92034 10.2543i −0.226536 0.392371i 0.730243 0.683187i \(-0.239407\pi\)
−0.956779 + 0.290816i \(0.906073\pi\)
\(684\) 0 0
\(685\) 2.95968 0.113083
\(686\) −22.8394 25.3217i −0.872012 0.966788i
\(687\) 0 0
\(688\) −24.7230 42.8216i −0.942557 1.63256i
\(689\) 7.81962 0.297904
\(690\) 0 0
\(691\) 11.9083 0.453014 0.226507 0.974010i \(-0.427269\pi\)
0.226507 + 0.974010i \(0.427269\pi\)
\(692\) −14.0976 −0.535909
\(693\) 0 0
\(694\) 54.3880 2.06454
\(695\) 1.00819 0.0382429
\(696\) 0 0
\(697\) 13.9771 0.529422
\(698\) 33.1435 + 57.4062i 1.25450 + 2.17286i
\(699\) 0 0
\(700\) −2.86706 11.4851i −0.108365 0.434095i
\(701\) 31.3902 1.18559 0.592795 0.805353i \(-0.298024\pi\)
0.592795 + 0.805353i \(0.298024\pi\)
\(702\) 0 0
\(703\) −0.705208 1.22146i −0.0265974 0.0460681i
\(704\) −1.97020 + 3.41249i −0.0742549 + 0.128613i
\(705\) 0 0
\(706\) −27.1518 + 47.0284i −1.02187 + 1.76994i
\(707\) −0.716849 2.87160i −0.0269599 0.107998i
\(708\) 0 0
\(709\) 0.625218 0.0234806 0.0117403 0.999931i \(-0.496263\pi\)
0.0117403 + 0.999931i \(0.496263\pi\)
\(710\) 15.1516 + 26.2433i 0.568628 + 0.984893i
\(711\) 0 0
\(712\) 0.789685 1.36777i 0.0295947 0.0512595i
\(713\) 14.1613 + 24.5281i 0.530345 + 0.918584i
\(714\) 0 0
\(715\) −5.22647 + 9.05251i −0.195459 + 0.338545i
\(716\) −1.18245 2.04806i −0.0441901 0.0765395i
\(717\) 0 0
\(718\) −4.98119 + 8.62768i −0.185897 + 0.321982i
\(719\) −12.1969 + 21.1257i −0.454869 + 0.787857i −0.998681 0.0513506i \(-0.983647\pi\)
0.543811 + 0.839208i \(0.316981\pi\)
\(720\) 0 0
\(721\) −4.91003 1.40640i −0.182859 0.0523771i
\(722\) 11.7185 + 20.2970i 0.436116 + 0.755376i
\(723\) 0 0
\(724\) −23.6246 −0.878003
\(725\) 0.199358 0.00740399
\(726\) 0 0
\(727\) −18.9253 32.7796i −0.701900 1.21573i −0.967799 0.251726i \(-0.919002\pi\)
0.265899 0.964001i \(-0.414331\pi\)
\(728\) −3.72426 14.9189i −0.138030 0.552932i
\(729\) 0 0
\(730\) 3.38991 5.87150i 0.125466 0.217314i
\(731\) 7.89934 13.6821i 0.292168 0.506049i
\(732\) 0 0
\(733\) −1.20077 2.07980i −0.0443516 0.0768193i 0.842997 0.537918i \(-0.180789\pi\)
−0.887349 + 0.461098i \(0.847456\pi\)
\(734\) 21.2519 36.8093i 0.784421 1.35866i
\(735\) 0 0
\(736\) 24.5858 + 42.5839i 0.906245 + 1.56966i
\(737\) 5.24517 9.08490i 0.193208 0.334646i
\(738\) 0 0
\(739\) −15.1940 26.3167i −0.558920 0.968077i −0.997587 0.0694277i \(-0.977883\pi\)
0.438667 0.898650i \(-0.355451\pi\)
\(740\) −1.04507 −0.0384174
\(741\) 0 0
\(742\) −7.07504 2.02653i −0.259733 0.0743963i
\(743\) 2.54785 4.41300i 0.0934715 0.161897i −0.815498 0.578760i \(-0.803537\pi\)
0.908970 + 0.416862i \(0.136870\pi\)
\(744\) 0 0
\(745\) −4.39467 + 7.61179i −0.161008 + 0.278874i
\(746\) −19.7961 34.2879i −0.724787 1.25537i
\(747\) 0 0
\(748\) −3.25793 −0.119122
\(749\) 3.70345 + 14.8355i 0.135321 + 0.542079i
\(750\) 0 0
\(751\) 0.487506 + 0.844384i 0.0177893 + 0.0308120i 0.874783 0.484515i \(-0.161004\pi\)
−0.856994 + 0.515327i \(0.827671\pi\)
\(752\) −46.1435 −1.68268
\(753\) 0 0
\(754\) −0.590329 −0.0214985
\(755\) −16.9075 −0.615326
\(756\) 0 0
\(757\) 11.6346 0.422865 0.211433 0.977393i \(-0.432187\pi\)
0.211433 + 0.977393i \(0.432187\pi\)
\(758\) 10.5350 0.382648
\(759\) 0 0
\(760\) 3.75314 0.136141
\(761\) −27.0875 46.9169i −0.981920 1.70073i −0.654897 0.755718i \(-0.727288\pi\)
−0.327023 0.945016i \(-0.606045\pi\)
\(762\) 0 0
\(763\) −20.9636 6.00468i −0.758932 0.217384i
\(764\) −31.5484 −1.14138
\(765\) 0 0
\(766\) −32.1489 55.6835i −1.16159 2.01193i
\(767\) −21.8513 + 37.8475i −0.789004 + 1.36659i
\(768\) 0 0
\(769\) −10.4326 + 18.0698i −0.376208 + 0.651612i −0.990507 0.137462i \(-0.956106\pi\)
0.614299 + 0.789074i \(0.289439\pi\)
\(770\) 7.07485 6.83604i 0.254960 0.246354i
\(771\) 0 0
\(772\) 8.60094 0.309554
\(773\) 27.4972 + 47.6266i 0.989007 + 1.71301i 0.622561 + 0.782572i \(0.286092\pi\)
0.366447 + 0.930439i \(0.380574\pi\)
\(774\) 0 0
\(775\) −6.19189 + 10.7247i −0.222419 + 0.385242i
\(776\) 6.84616 + 11.8579i 0.245763 + 0.425674i
\(777\) 0 0
\(778\) −26.5895 + 46.0544i −0.953281 + 1.65113i
\(779\) −11.2987 19.5700i −0.404819 0.701168i
\(780\) 0 0
\(781\) 9.32802 16.1566i 0.333783 0.578129i
\(782\) −10.4963 + 18.1801i −0.375346 + 0.650119i
\(783\) 0 0
\(784\) −1.16477 + 33.9144i −0.0415989 + 1.21123i
\(785\) −11.5506 20.0062i −0.412258 0.714051i
\(786\) 0 0
\(787\) 9.18949 0.327570 0.163785 0.986496i \(-0.447630\pi\)
0.163785 + 0.986496i \(0.447630\pi\)
\(788\) −13.5821 −0.483841
\(789\) 0 0
\(790\) −7.27374 12.5985i −0.258788 0.448234i
\(791\) 9.29301 + 37.2266i 0.330421 + 1.32362i
\(792\) 0 0
\(793\) −8.38296 + 14.5197i −0.297688 + 0.515610i
\(794\) 10.2967 17.8344i 0.365416 0.632919i
\(795\) 0 0
\(796\) −6.03296 10.4494i −0.213832 0.370369i
\(797\) −3.53774 + 6.12754i −0.125313 + 0.217049i −0.921855 0.387534i \(-0.873327\pi\)
0.796542 + 0.604583i \(0.206660\pi\)
\(798\) 0 0
\(799\) −7.37174 12.7682i −0.260793 0.451707i
\(800\) −10.7499 + 18.6194i −0.380067 + 0.658295i
\(801\) 0 0
\(802\) −0.996224 1.72551i −0.0351779 0.0609299i
\(803\) −4.17398 −0.147297
\(804\) 0 0
\(805\) −6.29579 25.2201i −0.221898 0.888892i
\(806\) 18.3351 31.7573i 0.645827 1.11860i
\(807\) 0 0
\(808\) −0.628050 + 1.08781i −0.0220947 + 0.0382692i
\(809\) 2.97060 + 5.14522i 0.104441 + 0.180896i 0.913510 0.406817i \(-0.133361\pi\)
−0.809069 + 0.587714i \(0.800028\pi\)
\(810\) 0 0
\(811\) 44.4139 1.55958 0.779791 0.626039i \(-0.215325\pi\)
0.779791 + 0.626039i \(0.215325\pi\)
\(812\) 0.219020 + 0.0627347i 0.00768609 + 0.00220156i
\(813\) 0 0
\(814\) 0.784512 + 1.35881i 0.0274971 + 0.0476264i
\(815\) 16.3097 0.571304
\(816\) 0 0
\(817\) −25.5424 −0.893616
\(818\) −40.0191 −1.39924
\(819\) 0 0
\(820\) −16.7439 −0.584721
\(821\) −6.35522 −0.221799 −0.110899 0.993832i \(-0.535373\pi\)
−0.110899 + 0.993832i \(0.535373\pi\)
\(822\) 0 0
\(823\) −9.46433 −0.329906 −0.164953 0.986301i \(-0.552747\pi\)
−0.164953 + 0.986301i \(0.552747\pi\)
\(824\) 1.08380 + 1.87720i 0.0377560 + 0.0653953i
\(825\) 0 0
\(826\) 29.5792 28.5807i 1.02919 0.994450i
\(827\) 4.86261 0.169090 0.0845448 0.996420i \(-0.473056\pi\)
0.0845448 + 0.996420i \(0.473056\pi\)
\(828\) 0 0
\(829\) 20.3926 + 35.3211i 0.708266 + 1.22675i 0.965500 + 0.260403i \(0.0838555\pi\)
−0.257234 + 0.966349i \(0.582811\pi\)
\(830\) 6.88402 11.9235i 0.238948 0.413870i
\(831\) 0 0
\(832\) 6.74003 11.6741i 0.233668 0.404725i
\(833\) −9.57041 + 5.09575i −0.331595 + 0.176557i
\(834\) 0 0
\(835\) −4.70494 −0.162821
\(836\) 2.63362 + 4.56156i 0.0910856 + 0.157765i
\(837\) 0 0
\(838\) −23.1823 + 40.1529i −0.800818 + 1.38706i
\(839\) −9.60171 16.6307i −0.331488 0.574154i 0.651316 0.758807i \(-0.274217\pi\)
−0.982804 + 0.184653i \(0.940884\pi\)
\(840\) 0 0
\(841\) 14.4981 25.1114i 0.499934 0.865911i
\(842\) −27.3063 47.2959i −0.941036 1.62992i
\(843\) 0 0
\(844\) −3.95113 + 6.84355i −0.136003 + 0.235565i
\(845\) 9.20374 15.9413i 0.316618 0.548399i
\(846\) 0 0
\(847\) 22.1556 + 6.34612i 0.761276 + 0.218055i
\(848\) 3.66188 + 6.34256i 0.125749 + 0.217804i
\(849\) 0 0
\(850\) −9.17880 −0.314830
\(851\) 4.14571 0.142113
\(852\) 0 0
\(853\) −6.95055 12.0387i −0.237982 0.412198i 0.722153 0.691734i \(-0.243153\pi\)
−0.960135 + 0.279536i \(0.909819\pi\)
\(854\) 11.3477 10.9646i 0.388309 0.375202i
\(855\) 0 0
\(856\) 3.24469 5.61996i 0.110901 0.192086i
\(857\) 28.4919 49.3494i 0.973265 1.68574i 0.287718 0.957715i \(-0.407103\pi\)
0.685547 0.728029i \(-0.259563\pi\)
\(858\) 0 0
\(859\) 10.0501 + 17.4073i 0.342905 + 0.593929i 0.984971 0.172721i \(-0.0552557\pi\)
−0.642066 + 0.766650i \(0.721922\pi\)
\(860\) −9.46298 + 16.3904i −0.322685 + 0.558907i
\(861\) 0 0
\(862\) −4.50214 7.79794i −0.153344 0.265599i
\(863\) 3.08893 5.35018i 0.105148 0.182122i −0.808650 0.588289i \(-0.799802\pi\)
0.913799 + 0.406167i \(0.133135\pi\)
\(864\) 0 0
\(865\) −6.76781 11.7222i −0.230112 0.398566i
\(866\) 17.8864 0.607803
\(867\) 0 0
\(868\) −10.1774 + 9.83390i −0.345445 + 0.333784i
\(869\) −4.47806 + 7.75623i −0.151908 + 0.263112i
\(870\) 0 0
\(871\) −17.9436 + 31.0792i −0.607996 + 1.05308i
\(872\) 4.62732 + 8.01476i 0.156701 + 0.271414i
\(873\) 0 0
\(874\) 33.9396 1.14802
\(875\) 20.8714 20.1669i 0.705583 0.681767i
\(876\) 0 0
\(877\) 18.6287 + 32.2658i 0.629046 + 1.08954i 0.987743 + 0.156086i \(0.0498877\pi\)
−0.358697 + 0.933454i \(0.616779\pi\)
\(878\) −27.2937 −0.921117
\(879\) 0 0
\(880\) −9.79009 −0.330024
\(881\) 11.7848 0.397041 0.198520 0.980097i \(-0.436386\pi\)
0.198520 + 0.980097i \(0.436386\pi\)
\(882\) 0 0
\(883\) −29.2308 −0.983693 −0.491847 0.870682i \(-0.663678\pi\)
−0.491847 + 0.870682i \(0.663678\pi\)
\(884\) 11.1453 0.374857
\(885\) 0 0
\(886\) 40.3268 1.35480
\(887\) 14.2581 + 24.6957i 0.478739 + 0.829201i 0.999703 0.0243782i \(-0.00776058\pi\)
−0.520964 + 0.853579i \(0.674427\pi\)
\(888\) 0 0
\(889\) 16.1727 15.6268i 0.542416 0.524107i
\(890\) −3.45680 −0.115872
\(891\) 0 0
\(892\) 8.14822 + 14.1131i 0.272823 + 0.472543i
\(893\) −11.9182 + 20.6430i −0.398828 + 0.690790i
\(894\) 0 0
\(895\) 1.13531 1.96642i 0.0379493 0.0657301i
\(896\) 16.2967 15.7466i 0.544435 0.526058i
\(897\) 0 0
\(898\) −39.5779 −1.32073
\(899\) −0.119171 0.206410i −0.00397456 0.00688414i
\(900\) 0 0
\(901\) −1.17002 + 2.02653i −0.0389790 + 0.0675135i
\(902\) 12.5693 + 21.7707i 0.418513 + 0.724885i
\(903\) 0 0
\(904\) 8.14183 14.1021i 0.270793 0.469028i
\(905\) −11.3415 19.6440i −0.377003 0.652989i
\(906\) 0 0
\(907\) 3.94577 6.83428i 0.131017 0.226929i −0.793052 0.609154i \(-0.791509\pi\)
0.924069 + 0.382226i \(0.124842\pi\)
\(908\) 7.77317 13.4635i 0.257962 0.446803i
\(909\) 0 0
\(910\) −24.2029 + 23.3860i −0.802319 + 0.775237i
\(911\) 14.2206 + 24.6308i 0.471150 + 0.816055i 0.999455 0.0329991i \(-0.0105058\pi\)
−0.528306 + 0.849054i \(0.677173\pi\)
\(912\) 0 0
\(913\) −8.47625 −0.280523
\(914\) 74.8013 2.47421
\(915\) 0 0
\(916\) 6.71206 + 11.6256i 0.221773 + 0.384121i
\(917\) −5.12118 1.46688i −0.169116 0.0484406i
\(918\) 0 0
\(919\) 3.99271 6.91558i 0.131707 0.228124i −0.792627 0.609706i \(-0.791287\pi\)
0.924335 + 0.381582i \(0.124621\pi\)
\(920\) −5.51590 + 9.55382i −0.181854 + 0.314980i
\(921\) 0 0
\(922\) −2.60610 4.51390i −0.0858274 0.148657i
\(923\) −31.9110 + 55.2714i −1.05036 + 1.81928i
\(924\) 0 0
\(925\) 0.906337 + 1.56982i 0.0298002 + 0.0516154i
\(926\) −25.6529 + 44.4322i −0.843008 + 1.46013i
\(927\) 0 0
\(928\) −0.206895 0.358353i −0.00679167 0.0117635i
\(929\) −18.8006 −0.616829 −0.308414 0.951252i \(-0.599798\pi\)
−0.308414 + 0.951252i \(0.599798\pi\)
\(930\) 0 0
\(931\) 14.8712 + 9.28068i 0.487385 + 0.304162i
\(932\) 13.4081 23.2234i 0.439196 0.760709i
\(933\) 0 0
\(934\) 24.5288 42.4852i 0.802608 1.39016i
\(935\) −1.56403 2.70898i −0.0511493 0.0885932i
\(936\) 0 0
\(937\) 48.5788 1.58700 0.793500 0.608570i \(-0.208256\pi\)
0.793500 + 0.608570i \(0.208256\pi\)
\(938\) 24.2895 23.4696i 0.793081 0.766310i
\(939\) 0 0
\(940\) 8.83094 + 15.2956i 0.288034 + 0.498889i
\(941\) −20.4851 −0.667795 −0.333898 0.942609i \(-0.608364\pi\)
−0.333898 + 0.942609i \(0.608364\pi\)
\(942\) 0 0
\(943\) 66.4220 2.16300
\(944\) −40.9312 −1.33220
\(945\) 0 0
\(946\) 28.4148 0.923843
\(947\) 14.8505 0.482576 0.241288 0.970454i \(-0.422430\pi\)
0.241288 + 0.970454i \(0.422430\pi\)
\(948\) 0 0
\(949\) 14.2791 0.463519
\(950\) 7.41989 + 12.8516i 0.240733 + 0.416962i
\(951\) 0 0
\(952\) 4.42363 + 1.26708i 0.143371 + 0.0410662i
\(953\) −46.4678 −1.50524 −0.752620 0.658456i \(-0.771210\pi\)
−0.752620 + 0.658456i \(0.771210\pi\)
\(954\) 0 0
\(955\) −15.1454 26.2326i −0.490094 0.848868i
\(956\) 0.270584 0.468665i 0.00875130 0.0151577i
\(957\) 0 0
\(958\) −29.0724 + 50.3548i −0.939285 + 1.62689i
\(959\) −1.42092 5.69201i −0.0458838 0.183804i
\(960\) 0 0
\(961\) −16.1947 −0.522409
\(962\) −2.68380 4.64847i −0.0865291 0.149873i
\(963\) 0 0
\(964\) −7.39301 + 12.8051i −0.238113 + 0.412423i
\(965\) 4.12905 + 7.15172i 0.132919 + 0.230222i
\(966\) 0 0
\(967\) 0.863670 1.49592i 0.0277738 0.0481056i −0.851804 0.523860i \(-0.824492\pi\)
0.879578 + 0.475754i \(0.157825\pi\)
\(968\) −4.89045 8.47050i −0.157185 0.272252i
\(969\) 0 0
\(970\) 14.9843 25.9536i 0.481118 0.833320i
\(971\) 3.78085 6.54863i 0.121333 0.210156i −0.798960 0.601384i \(-0.794616\pi\)
0.920294 + 0.391228i \(0.127950\pi\)
\(972\) 0 0
\(973\) −0.484024 1.93894i −0.0155171 0.0621595i
\(974\) −0.281870 0.488213i −0.00903169 0.0156434i
\(975\) 0 0
\(976\) −15.7027 −0.502633
\(977\) 56.6202 1.81144 0.905721 0.423875i \(-0.139330\pi\)
0.905721 + 0.423875i \(0.139330\pi\)
\(978\) 0 0
\(979\) 1.06408 + 1.84305i 0.0340083 + 0.0589041i
\(980\) 11.4648 6.10443i 0.366231 0.194999i
\(981\) 0 0
\(982\) 16.6997 28.9247i 0.532909 0.923025i
\(983\) 16.1486 27.9702i 0.515061 0.892112i −0.484786 0.874633i \(-0.661103\pi\)
0.999847 0.0174790i \(-0.00556402\pi\)
\(984\) 0 0
\(985\) −6.52033 11.2936i −0.207755 0.359842i
\(986\) 0.0883286 0.152990i 0.00281296 0.00487218i
\(987\) 0 0
\(988\) −9.00955 15.6050i −0.286632 0.496461i
\(989\) 37.5391 65.0197i 1.19367 2.06750i
\(990\) 0 0
\(991\) −7.15502 12.3929i −0.227287 0.393672i 0.729716 0.683750i \(-0.239652\pi\)
−0.957003 + 0.290078i \(0.906319\pi\)
\(992\) 25.7039 0.816100
\(993\) 0 0
\(994\) 43.1965 41.7384i 1.37011 1.32386i
\(995\) 5.79247 10.0329i 0.183634 0.318063i
\(996\) 0 0
\(997\) −28.1262 + 48.7160i −0.890765 + 1.54285i −0.0518058 + 0.998657i \(0.516498\pi\)
−0.838960 + 0.544194i \(0.816836\pi\)
\(998\) 19.6176 + 33.9787i 0.620985 + 1.07558i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 189.2.h.b.37.4 10
3.2 odd 2 63.2.h.b.58.2 yes 10
4.3 odd 2 3024.2.q.i.2305.4 10
7.2 even 3 1323.2.f.e.442.2 10
7.3 odd 6 1323.2.g.f.361.2 10
7.4 even 3 189.2.g.b.172.2 10
7.5 odd 6 1323.2.f.f.442.2 10
7.6 odd 2 1323.2.h.f.226.4 10
9.2 odd 6 63.2.g.b.16.4 yes 10
9.4 even 3 567.2.e.e.163.2 10
9.5 odd 6 567.2.e.f.163.4 10
9.7 even 3 189.2.g.b.100.2 10
12.11 even 2 1008.2.q.i.625.2 10
21.2 odd 6 441.2.f.e.148.4 10
21.5 even 6 441.2.f.f.148.4 10
21.11 odd 6 63.2.g.b.4.4 10
21.17 even 6 441.2.g.f.67.4 10
21.20 even 2 441.2.h.f.373.2 10
28.11 odd 6 3024.2.t.i.1873.2 10
36.7 odd 6 3024.2.t.i.289.2 10
36.11 even 6 1008.2.t.i.961.5 10
63.2 odd 6 441.2.f.e.295.4 10
63.4 even 3 567.2.e.e.487.2 10
63.5 even 6 3969.2.a.ba.1.2 5
63.11 odd 6 63.2.h.b.25.2 yes 10
63.16 even 3 1323.2.f.e.883.2 10
63.20 even 6 441.2.g.f.79.4 10
63.23 odd 6 3969.2.a.z.1.2 5
63.25 even 3 inner 189.2.h.b.46.4 10
63.32 odd 6 567.2.e.f.487.4 10
63.34 odd 6 1323.2.g.f.667.2 10
63.38 even 6 441.2.h.f.214.2 10
63.40 odd 6 3969.2.a.bb.1.4 5
63.47 even 6 441.2.f.f.295.4 10
63.52 odd 6 1323.2.h.f.802.4 10
63.58 even 3 3969.2.a.bc.1.4 5
63.61 odd 6 1323.2.f.f.883.2 10
84.11 even 6 1008.2.t.i.193.5 10
252.11 even 6 1008.2.q.i.529.2 10
252.151 odd 6 3024.2.q.i.2881.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.g.b.4.4 10 21.11 odd 6
63.2.g.b.16.4 yes 10 9.2 odd 6
63.2.h.b.25.2 yes 10 63.11 odd 6
63.2.h.b.58.2 yes 10 3.2 odd 2
189.2.g.b.100.2 10 9.7 even 3
189.2.g.b.172.2 10 7.4 even 3
189.2.h.b.37.4 10 1.1 even 1 trivial
189.2.h.b.46.4 10 63.25 even 3 inner
441.2.f.e.148.4 10 21.2 odd 6
441.2.f.e.295.4 10 63.2 odd 6
441.2.f.f.148.4 10 21.5 even 6
441.2.f.f.295.4 10 63.47 even 6
441.2.g.f.67.4 10 21.17 even 6
441.2.g.f.79.4 10 63.20 even 6
441.2.h.f.214.2 10 63.38 even 6
441.2.h.f.373.2 10 21.20 even 2
567.2.e.e.163.2 10 9.4 even 3
567.2.e.e.487.2 10 63.4 even 3
567.2.e.f.163.4 10 9.5 odd 6
567.2.e.f.487.4 10 63.32 odd 6
1008.2.q.i.529.2 10 252.11 even 6
1008.2.q.i.625.2 10 12.11 even 2
1008.2.t.i.193.5 10 84.11 even 6
1008.2.t.i.961.5 10 36.11 even 6
1323.2.f.e.442.2 10 7.2 even 3
1323.2.f.e.883.2 10 63.16 even 3
1323.2.f.f.442.2 10 7.5 odd 6
1323.2.f.f.883.2 10 63.61 odd 6
1323.2.g.f.361.2 10 7.3 odd 6
1323.2.g.f.667.2 10 63.34 odd 6
1323.2.h.f.226.4 10 7.6 odd 2
1323.2.h.f.802.4 10 63.52 odd 6
3024.2.q.i.2305.4 10 4.3 odd 2
3024.2.q.i.2881.4 10 252.151 odd 6
3024.2.t.i.289.2 10 36.7 odd 6
3024.2.t.i.1873.2 10 28.11 odd 6
3969.2.a.z.1.2 5 63.23 odd 6
3969.2.a.ba.1.2 5 63.5 even 6
3969.2.a.bb.1.4 5 63.40 odd 6
3969.2.a.bc.1.4 5 63.58 even 3