Properties

Label 1350.3.k.b.449.14
Level $1350$
Weight $3$
Character 1350.449
Analytic conductor $36.785$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,3,Mod(449,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.449");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1350.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7848356886\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 449.14
Character \(\chi\) \(=\) 1350.449
Dual form 1350.3.k.b.899.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(-5.74345 + 3.31598i) q^{7} -2.82843 q^{8} +(18.2172 - 10.5177i) q^{11} +(-8.47187 - 4.89124i) q^{13} +(-8.12247 - 4.68951i) q^{14} +(-2.00000 - 3.46410i) q^{16} +12.9017 q^{17} -16.1821 q^{19} +(25.7630 + 14.8743i) q^{22} +(-8.46823 + 14.6674i) q^{23} -13.8345i q^{26} -13.2639i q^{28} +(43.3525 - 25.0296i) q^{29} +(5.03212 - 8.71588i) q^{31} +(2.82843 - 4.89898i) q^{32} +(9.12285 + 15.8012i) q^{34} +2.54425i q^{37} +(-11.4425 - 19.8190i) q^{38} +(46.5617 + 26.8824i) q^{41} +(64.8089 - 37.4175i) q^{43} +42.0709i q^{44} -23.9518 q^{46} +(-23.6001 - 40.8766i) q^{47} +(-2.50850 + 4.34485i) q^{49} +(16.9437 - 9.78248i) q^{52} -1.08813 q^{53} +(16.2449 - 9.37902i) q^{56} +(61.3097 + 35.3972i) q^{58} +(8.34807 + 4.81976i) q^{59} +(22.4573 + 38.8971i) q^{61} +14.2330 q^{62} +8.00000 q^{64} +(2.89369 + 1.67067i) q^{67} +(-12.9017 + 22.3463i) q^{68} -38.4670i q^{71} +88.9201i q^{73} +(-3.11606 + 1.79906i) q^{74} +(16.1821 - 28.0283i) q^{76} +(-69.7532 + 120.816i) q^{77} +(58.8235 + 101.885i) q^{79} +76.0349i q^{82} +(73.5614 + 127.412i) q^{83} +(91.6537 + 52.9163i) q^{86} +(-51.5261 + 29.7486i) q^{88} -145.331i q^{89} +64.8771 q^{91} +(-16.9365 - 29.3348i) q^{92} +(33.3756 - 57.8083i) q^{94} +(-40.7494 + 23.5267i) q^{97} -7.09511 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} - 72 q^{14} - 64 q^{16} - 160 q^{19} - 144 q^{29} - 32 q^{31} + 96 q^{34} - 216 q^{41} + 48 q^{46} + 168 q^{49} + 144 q^{56} + 288 q^{59} - 152 q^{61} + 256 q^{64} - 576 q^{74} + 160 q^{76}+ \cdots + 168 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 0 0
\(7\) −5.74345 + 3.31598i −0.820493 + 0.473712i −0.850587 0.525835i \(-0.823753\pi\)
0.0300933 + 0.999547i \(0.490420\pi\)
\(8\) −2.82843 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 18.2172 10.5177i 1.65611 0.956156i 0.681627 0.731699i \(-0.261273\pi\)
0.974484 0.224457i \(-0.0720608\pi\)
\(12\) 0 0
\(13\) −8.47187 4.89124i −0.651683 0.376249i 0.137418 0.990513i \(-0.456120\pi\)
−0.789101 + 0.614264i \(0.789453\pi\)
\(14\) −8.12247 4.68951i −0.580176 0.334965i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 12.9017 0.758921 0.379460 0.925208i \(-0.376110\pi\)
0.379460 + 0.925208i \(0.376110\pi\)
\(18\) 0 0
\(19\) −16.1821 −0.851691 −0.425845 0.904796i \(-0.640023\pi\)
−0.425845 + 0.904796i \(0.640023\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 25.7630 + 14.8743i 1.17105 + 0.676105i
\(23\) −8.46823 + 14.6674i −0.368184 + 0.637713i −0.989282 0.146020i \(-0.953354\pi\)
0.621098 + 0.783733i \(0.286687\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 13.8345i 0.532097i
\(27\) 0 0
\(28\) 13.2639i 0.473712i
\(29\) 43.3525 25.0296i 1.49491 0.863089i 0.494930 0.868933i \(-0.335194\pi\)
0.999983 + 0.00584415i \(0.00186026\pi\)
\(30\) 0 0
\(31\) 5.03212 8.71588i 0.162326 0.281158i −0.773376 0.633947i \(-0.781434\pi\)
0.935703 + 0.352790i \(0.114767\pi\)
\(32\) 2.82843 4.89898i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 9.12285 + 15.8012i 0.268319 + 0.464742i
\(35\) 0 0
\(36\) 0 0
\(37\) 2.54425i 0.0687635i 0.999409 + 0.0343817i \(0.0109462\pi\)
−0.999409 + 0.0343817i \(0.989054\pi\)
\(38\) −11.4425 19.8190i −0.301118 0.521552i
\(39\) 0 0
\(40\) 0 0
\(41\) 46.5617 + 26.8824i 1.13565 + 0.655669i 0.945350 0.326057i \(-0.105720\pi\)
0.190301 + 0.981726i \(0.439054\pi\)
\(42\) 0 0
\(43\) 64.8089 37.4175i 1.50718 0.870173i 0.507219 0.861817i \(-0.330673\pi\)
0.999965 0.00835640i \(-0.00265996\pi\)
\(44\) 42.0709i 0.956156i
\(45\) 0 0
\(46\) −23.9518 −0.520690
\(47\) −23.6001 40.8766i −0.502131 0.869716i −0.999997 0.00246200i \(-0.999216\pi\)
0.497866 0.867254i \(-0.334117\pi\)
\(48\) 0 0
\(49\) −2.50850 + 4.34485i −0.0511939 + 0.0886704i
\(50\) 0 0
\(51\) 0 0
\(52\) 16.9437 9.78248i 0.325841 0.188125i
\(53\) −1.08813 −0.0205307 −0.0102654 0.999947i \(-0.503268\pi\)
−0.0102654 + 0.999947i \(0.503268\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 16.2449 9.37902i 0.290088 0.167482i
\(57\) 0 0
\(58\) 61.3097 + 35.3972i 1.05706 + 0.610296i
\(59\) 8.34807 + 4.81976i 0.141493 + 0.0816908i 0.569075 0.822285i \(-0.307301\pi\)
−0.427583 + 0.903976i \(0.640635\pi\)
\(60\) 0 0
\(61\) 22.4573 + 38.8971i 0.368152 + 0.637657i 0.989277 0.146054i \(-0.0466574\pi\)
−0.621125 + 0.783712i \(0.713324\pi\)
\(62\) 14.2330 0.229564
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.89369 + 1.67067i 0.0431894 + 0.0249354i 0.521439 0.853288i \(-0.325395\pi\)
−0.478250 + 0.878224i \(0.658729\pi\)
\(68\) −12.9017 + 22.3463i −0.189730 + 0.328622i
\(69\) 0 0
\(70\) 0 0
\(71\) 38.4670i 0.541788i −0.962609 0.270894i \(-0.912681\pi\)
0.962609 0.270894i \(-0.0873193\pi\)
\(72\) 0 0
\(73\) 88.9201i 1.21808i 0.793138 + 0.609042i \(0.208446\pi\)
−0.793138 + 0.609042i \(0.791554\pi\)
\(74\) −3.11606 + 1.79906i −0.0421089 + 0.0243116i
\(75\) 0 0
\(76\) 16.1821 28.0283i 0.212923 0.368793i
\(77\) −69.7532 + 120.816i −0.905885 + 1.56904i
\(78\) 0 0
\(79\) 58.8235 + 101.885i 0.744602 + 1.28969i 0.950381 + 0.311090i \(0.100694\pi\)
−0.205779 + 0.978599i \(0.565973\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 76.0349i 0.927255i
\(83\) 73.5614 + 127.412i 0.886282 + 1.53509i 0.844237 + 0.535970i \(0.180054\pi\)
0.0420449 + 0.999116i \(0.486613\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 91.6537 + 52.9163i 1.06574 + 0.615305i
\(87\) 0 0
\(88\) −51.5261 + 29.7486i −0.585524 + 0.338052i
\(89\) 145.331i 1.63293i −0.577396 0.816464i \(-0.695931\pi\)
0.577396 0.816464i \(-0.304069\pi\)
\(90\) 0 0
\(91\) 64.8771 0.712935
\(92\) −16.9365 29.3348i −0.184092 0.318856i
\(93\) 0 0
\(94\) 33.3756 57.8083i 0.355060 0.614982i
\(95\) 0 0
\(96\) 0 0
\(97\) −40.7494 + 23.5267i −0.420097 + 0.242543i −0.695119 0.718895i \(-0.744648\pi\)
0.275022 + 0.961438i \(0.411315\pi\)
\(98\) −7.09511 −0.0723991
\(99\) 0 0
\(100\) 0 0
\(101\) 19.3600 11.1775i 0.191683 0.110668i −0.401087 0.916040i \(-0.631368\pi\)
0.592770 + 0.805372i \(0.298034\pi\)
\(102\) 0 0
\(103\) 107.300 + 61.9495i 1.04174 + 0.601452i 0.920327 0.391150i \(-0.127923\pi\)
0.121418 + 0.992601i \(0.461256\pi\)
\(104\) 23.9621 + 13.8345i 0.230405 + 0.133024i
\(105\) 0 0
\(106\) −0.769422 1.33268i −0.00725870 0.0125724i
\(107\) 47.3690 0.442701 0.221351 0.975194i \(-0.428954\pi\)
0.221351 + 0.975194i \(0.428954\pi\)
\(108\) 0 0
\(109\) 26.8745 0.246555 0.123278 0.992372i \(-0.460659\pi\)
0.123278 + 0.992372i \(0.460659\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 22.9738 + 13.2639i 0.205123 + 0.118428i
\(113\) 9.40495 16.2899i 0.0832297 0.144158i −0.821406 0.570344i \(-0.806810\pi\)
0.904635 + 0.426186i \(0.140143\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 100.118i 0.863089i
\(117\) 0 0
\(118\) 13.6323i 0.115528i
\(119\) −74.1001 + 42.7817i −0.622690 + 0.359510i
\(120\) 0 0
\(121\) 160.745 278.418i 1.32847 2.30098i
\(122\) −31.7593 + 55.0088i −0.260323 + 0.450892i
\(123\) 0 0
\(124\) 10.0642 + 17.4318i 0.0811632 + 0.140579i
\(125\) 0 0
\(126\) 0 0
\(127\) 128.820i 1.01433i −0.861849 0.507166i \(-0.830693\pi\)
0.861849 0.507166i \(-0.169307\pi\)
\(128\) 5.65685 + 9.79796i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) 26.6836 + 15.4058i 0.203692 + 0.117601i 0.598376 0.801215i \(-0.295813\pi\)
−0.394685 + 0.918817i \(0.629146\pi\)
\(132\) 0 0
\(133\) 92.9413 53.6597i 0.698806 0.403456i
\(134\) 4.72538i 0.0352640i
\(135\) 0 0
\(136\) −36.4914 −0.268319
\(137\) 53.2723 + 92.2703i 0.388849 + 0.673506i 0.992295 0.123898i \(-0.0395395\pi\)
−0.603446 + 0.797404i \(0.706206\pi\)
\(138\) 0 0
\(139\) 57.1183 98.9317i 0.410923 0.711739i −0.584068 0.811705i \(-0.698540\pi\)
0.994991 + 0.0999656i \(0.0318733\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 47.1122 27.2002i 0.331776 0.191551i
\(143\) −205.779 −1.43901
\(144\) 0 0
\(145\) 0 0
\(146\) −108.904 + 62.8760i −0.745921 + 0.430658i
\(147\) 0 0
\(148\) −4.40677 2.54425i −0.0297755 0.0171909i
\(149\) 104.689 + 60.4419i 0.702607 + 0.405651i 0.808318 0.588746i \(-0.200378\pi\)
−0.105710 + 0.994397i \(0.533712\pi\)
\(150\) 0 0
\(151\) −63.4938 109.975i −0.420489 0.728308i 0.575498 0.817803i \(-0.304808\pi\)
−0.995987 + 0.0894947i \(0.971475\pi\)
\(152\) 45.7700 0.301118
\(153\) 0 0
\(154\) −197.292 −1.28112
\(155\) 0 0
\(156\) 0 0
\(157\) −90.2510 52.1064i −0.574847 0.331888i 0.184236 0.982882i \(-0.441019\pi\)
−0.759083 + 0.650994i \(0.774352\pi\)
\(158\) −83.1891 + 144.088i −0.526513 + 0.911947i
\(159\) 0 0
\(160\) 0 0
\(161\) 112.322i 0.697652i
\(162\) 0 0
\(163\) 188.533i 1.15664i 0.815809 + 0.578321i \(0.196292\pi\)
−0.815809 + 0.578321i \(0.803708\pi\)
\(164\) −93.1234 + 53.7648i −0.567826 + 0.327834i
\(165\) 0 0
\(166\) −104.032 + 180.188i −0.626696 + 1.08547i
\(167\) −33.9581 + 58.8172i −0.203342 + 0.352199i −0.949603 0.313454i \(-0.898514\pi\)
0.746261 + 0.665653i \(0.231847\pi\)
\(168\) 0 0
\(169\) −36.6516 63.4824i −0.216873 0.375635i
\(170\) 0 0
\(171\) 0 0
\(172\) 149.670i 0.870173i
\(173\) 61.1963 + 105.995i 0.353736 + 0.612689i 0.986901 0.161328i \(-0.0515778\pi\)
−0.633165 + 0.774017i \(0.718244\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −72.8689 42.0709i −0.414028 0.239039i
\(177\) 0 0
\(178\) 177.993 102.764i 0.999961 0.577328i
\(179\) 78.4259i 0.438134i 0.975710 + 0.219067i \(0.0703013\pi\)
−0.975710 + 0.219067i \(0.929699\pi\)
\(180\) 0 0
\(181\) 219.562 1.21305 0.606525 0.795064i \(-0.292563\pi\)
0.606525 + 0.795064i \(0.292563\pi\)
\(182\) 45.8750 + 79.4579i 0.252061 + 0.436582i
\(183\) 0 0
\(184\) 23.9518 41.4857i 0.130173 0.225466i
\(185\) 0 0
\(186\) 0 0
\(187\) 235.032 135.696i 1.25686 0.725647i
\(188\) 94.4006 0.502131
\(189\) 0 0
\(190\) 0 0
\(191\) 279.710 161.491i 1.46445 0.845501i 0.465239 0.885185i \(-0.345968\pi\)
0.999212 + 0.0396836i \(0.0126350\pi\)
\(192\) 0 0
\(193\) −149.635 86.3918i −0.775311 0.447626i 0.0594550 0.998231i \(-0.481064\pi\)
−0.834766 + 0.550605i \(0.814397\pi\)
\(194\) −57.6284 33.2718i −0.297054 0.171504i
\(195\) 0 0
\(196\) −5.01700 8.68970i −0.0255970 0.0443352i
\(197\) −71.7321 −0.364123 −0.182061 0.983287i \(-0.558277\pi\)
−0.182061 + 0.983287i \(0.558277\pi\)
\(198\) 0 0
\(199\) −133.225 −0.669472 −0.334736 0.942312i \(-0.608647\pi\)
−0.334736 + 0.942312i \(0.608647\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 27.3792 + 15.8074i 0.135541 + 0.0782544i
\(203\) −165.995 + 287.512i −0.817711 + 1.41632i
\(204\) 0 0
\(205\) 0 0
\(206\) 175.220i 0.850581i
\(207\) 0 0
\(208\) 39.1299i 0.188125i
\(209\) −294.793 + 170.199i −1.41049 + 0.814349i
\(210\) 0 0
\(211\) 188.164 325.909i 0.891771 1.54459i 0.0540209 0.998540i \(-0.482796\pi\)
0.837750 0.546053i \(-0.183870\pi\)
\(212\) 1.08813 1.88469i 0.00513268 0.00889006i
\(213\) 0 0
\(214\) 33.4949 + 58.0150i 0.156518 + 0.271098i
\(215\) 0 0
\(216\) 0 0
\(217\) 66.7457i 0.307584i
\(218\) 19.0032 + 32.9144i 0.0871705 + 0.150984i
\(219\) 0 0
\(220\) 0 0
\(221\) −109.301 63.1051i −0.494576 0.285543i
\(222\) 0 0
\(223\) −51.2488 + 29.5885i −0.229815 + 0.132684i −0.610487 0.792026i \(-0.709026\pi\)
0.380672 + 0.924710i \(0.375693\pi\)
\(224\) 37.5161i 0.167482i
\(225\) 0 0
\(226\) 26.6012 0.117705
\(227\) −74.9193 129.764i −0.330041 0.571647i 0.652479 0.757807i \(-0.273729\pi\)
−0.982520 + 0.186160i \(0.940396\pi\)
\(228\) 0 0
\(229\) −85.4319 + 147.972i −0.373065 + 0.646167i −0.990035 0.140819i \(-0.955026\pi\)
0.616970 + 0.786986i \(0.288360\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −122.619 + 70.7943i −0.528532 + 0.305148i
\(233\) 448.983 1.92697 0.963483 0.267770i \(-0.0862867\pi\)
0.963483 + 0.267770i \(0.0862867\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −16.6961 + 9.63952i −0.0707463 + 0.0408454i
\(237\) 0 0
\(238\) −104.793 60.5024i −0.440308 0.254212i
\(239\) −200.845 115.958i −0.840356 0.485180i 0.0170289 0.999855i \(-0.494579\pi\)
−0.857385 + 0.514675i \(0.827913\pi\)
\(240\) 0 0
\(241\) 198.671 + 344.108i 0.824359 + 1.42783i 0.902408 + 0.430882i \(0.141798\pi\)
−0.0780488 + 0.996950i \(0.524869\pi\)
\(242\) 454.655 1.87874
\(243\) 0 0
\(244\) −89.8290 −0.368152
\(245\) 0 0
\(246\) 0 0
\(247\) 137.093 + 79.1506i 0.555032 + 0.320448i
\(248\) −14.2330 + 24.6522i −0.0573910 + 0.0994042i
\(249\) 0 0
\(250\) 0 0
\(251\) 193.179i 0.769636i 0.922992 + 0.384818i \(0.125736\pi\)
−0.922992 + 0.384818i \(0.874264\pi\)
\(252\) 0 0
\(253\) 356.266i 1.40816i
\(254\) 157.772 91.0895i 0.621148 0.358620i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 60.4331 104.673i 0.235148 0.407289i −0.724167 0.689624i \(-0.757776\pi\)
0.959316 + 0.282335i \(0.0911091\pi\)
\(258\) 0 0
\(259\) −8.43669 14.6128i −0.0325741 0.0564200i
\(260\) 0 0
\(261\) 0 0
\(262\) 43.5741i 0.166313i
\(263\) −150.518 260.705i −0.572312 0.991273i −0.996328 0.0856183i \(-0.972713\pi\)
0.424016 0.905655i \(-0.360620\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 131.439 + 75.8862i 0.494131 + 0.285287i
\(267\) 0 0
\(268\) −5.78738 + 3.34135i −0.0215947 + 0.0124677i
\(269\) 128.065i 0.476077i −0.971256 0.238038i \(-0.923496\pi\)
0.971256 0.238038i \(-0.0765044\pi\)
\(270\) 0 0
\(271\) −512.831 −1.89236 −0.946182 0.323635i \(-0.895095\pi\)
−0.946182 + 0.323635i \(0.895095\pi\)
\(272\) −25.8033 44.6927i −0.0948651 0.164311i
\(273\) 0 0
\(274\) −75.3384 + 130.490i −0.274958 + 0.476240i
\(275\) 0 0
\(276\) 0 0
\(277\) −240.341 + 138.761i −0.867658 + 0.500942i −0.866569 0.499057i \(-0.833680\pi\)
−0.00108844 + 0.999999i \(0.500346\pi\)
\(278\) 161.555 0.581133
\(279\) 0 0
\(280\) 0 0
\(281\) 89.3698 51.5977i 0.318042 0.183622i −0.332478 0.943111i \(-0.607885\pi\)
0.650519 + 0.759490i \(0.274551\pi\)
\(282\) 0 0
\(283\) −142.087 82.0340i −0.502075 0.289873i 0.227495 0.973779i \(-0.426946\pi\)
−0.729570 + 0.683906i \(0.760280\pi\)
\(284\) 66.6267 + 38.4670i 0.234601 + 0.135447i
\(285\) 0 0
\(286\) −145.508 252.026i −0.508768 0.881211i
\(287\) −356.567 −1.24239
\(288\) 0 0
\(289\) −122.547 −0.424039
\(290\) 0 0
\(291\) 0 0
\(292\) −154.014 88.9201i −0.527446 0.304521i
\(293\) 146.494 253.735i 0.499979 0.865988i −0.500021 0.866013i \(-0.666675\pi\)
1.00000 2.47977e-5i \(7.89334e-6\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 7.19622i 0.0243116i
\(297\) 0 0
\(298\) 170.956i 0.573677i
\(299\) 143.484 82.8402i 0.479878 0.277058i
\(300\) 0 0
\(301\) −248.151 + 429.811i −0.824423 + 1.42794i
\(302\) 89.7938 155.527i 0.297331 0.514992i
\(303\) 0 0
\(304\) 32.3642 + 56.0565i 0.106461 + 0.184396i
\(305\) 0 0
\(306\) 0 0
\(307\) 467.606i 1.52315i −0.648079 0.761573i \(-0.724427\pi\)
0.648079 0.761573i \(-0.275573\pi\)
\(308\) −139.506 241.632i −0.452943 0.784520i
\(309\) 0 0
\(310\) 0 0
\(311\) −465.753 268.902i −1.49760 0.864638i −0.497601 0.867406i \(-0.665786\pi\)
−0.999996 + 0.00276786i \(0.999119\pi\)
\(312\) 0 0
\(313\) 230.586 133.129i 0.736697 0.425332i −0.0841703 0.996451i \(-0.526824\pi\)
0.820867 + 0.571119i \(0.193491\pi\)
\(314\) 147.379i 0.469361i
\(315\) 0 0
\(316\) −235.294 −0.744602
\(317\) −238.437 412.986i −0.752168 1.30279i −0.946770 0.321911i \(-0.895675\pi\)
0.194602 0.980882i \(-0.437659\pi\)
\(318\) 0 0
\(319\) 526.508 911.939i 1.65050 2.85874i
\(320\) 0 0
\(321\) 0 0
\(322\) 137.566 79.4237i 0.427223 0.246657i
\(323\) −208.776 −0.646366
\(324\) 0 0
\(325\) 0 0
\(326\) −230.904 + 133.313i −0.708296 + 0.408935i
\(327\) 0 0
\(328\) −131.696 76.0349i −0.401513 0.231814i
\(329\) 271.093 + 156.515i 0.823990 + 0.475731i
\(330\) 0 0
\(331\) −17.6720 30.6088i −0.0533898 0.0924738i 0.838095 0.545524i \(-0.183669\pi\)
−0.891485 + 0.453050i \(0.850336\pi\)
\(332\) −294.246 −0.886282
\(333\) 0 0
\(334\) −96.0482 −0.287569
\(335\) 0 0
\(336\) 0 0
\(337\) 215.201 + 124.246i 0.638579 + 0.368684i 0.784067 0.620676i \(-0.213142\pi\)
−0.145488 + 0.989360i \(0.546475\pi\)
\(338\) 51.8331 89.7776i 0.153352 0.265614i
\(339\) 0 0
\(340\) 0 0
\(341\) 211.706i 0.620838i
\(342\) 0 0
\(343\) 358.239i 1.04443i
\(344\) −183.307 + 105.833i −0.532870 + 0.307653i
\(345\) 0 0
\(346\) −86.5447 + 149.900i −0.250129 + 0.433237i
\(347\) −1.34645 + 2.33212i −0.00388026 + 0.00672082i −0.867959 0.496636i \(-0.834568\pi\)
0.864079 + 0.503357i \(0.167902\pi\)
\(348\) 0 0
\(349\) 196.192 + 339.815i 0.562156 + 0.973682i 0.997308 + 0.0733253i \(0.0233611\pi\)
−0.435152 + 0.900357i \(0.643306\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 118.994i 0.338052i
\(353\) 9.89124 + 17.1321i 0.0280205 + 0.0485329i 0.879696 0.475537i \(-0.157746\pi\)
−0.851675 + 0.524070i \(0.824413\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 251.720 + 145.331i 0.707079 + 0.408232i
\(357\) 0 0
\(358\) −96.0517 + 55.4555i −0.268301 + 0.154904i
\(359\) 415.325i 1.15689i −0.815720 0.578447i \(-0.803659\pi\)
0.815720 0.578447i \(-0.196341\pi\)
\(360\) 0 0
\(361\) −99.1389 −0.274623
\(362\) 155.254 + 268.908i 0.428878 + 0.742839i
\(363\) 0 0
\(364\) −64.8771 + 112.370i −0.178234 + 0.308710i
\(365\) 0 0
\(366\) 0 0
\(367\) −461.927 + 266.694i −1.25866 + 0.726685i −0.972813 0.231591i \(-0.925607\pi\)
−0.285843 + 0.958276i \(0.592274\pi\)
\(368\) 67.7458 0.184092
\(369\) 0 0
\(370\) 0 0
\(371\) 6.24961 3.60821i 0.0168453 0.00972564i
\(372\) 0 0
\(373\) −186.697 107.790i −0.500529 0.288981i 0.228403 0.973567i \(-0.426650\pi\)
−0.728932 + 0.684586i \(0.759983\pi\)
\(374\) 332.386 + 191.903i 0.888733 + 0.513110i
\(375\) 0 0
\(376\) 66.7513 + 115.617i 0.177530 + 0.307491i
\(377\) −489.702 −1.29895
\(378\) 0 0
\(379\) −176.846 −0.466612 −0.233306 0.972403i \(-0.574954\pi\)
−0.233306 + 0.972403i \(0.574954\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 395.570 + 228.382i 1.03552 + 0.597860i
\(383\) −8.60134 + 14.8980i −0.0224578 + 0.0388980i −0.877036 0.480425i \(-0.840482\pi\)
0.854578 + 0.519323i \(0.173816\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 244.353i 0.633039i
\(387\) 0 0
\(388\) 94.1068i 0.242543i
\(389\) 298.375 172.267i 0.767030 0.442845i −0.0647844 0.997899i \(-0.520636\pi\)
0.831814 + 0.555055i \(0.187303\pi\)
\(390\) 0 0
\(391\) −109.254 + 189.234i −0.279422 + 0.483974i
\(392\) 7.09511 12.2891i 0.0180998 0.0313497i
\(393\) 0 0
\(394\) −50.7223 87.8536i −0.128737 0.222979i
\(395\) 0 0
\(396\) 0 0
\(397\) 68.9955i 0.173792i 0.996217 + 0.0868960i \(0.0276948\pi\)
−0.996217 + 0.0868960i \(0.972305\pi\)
\(398\) −94.2042 163.167i −0.236694 0.409966i
\(399\) 0 0
\(400\) 0 0
\(401\) 154.315 + 89.0938i 0.384825 + 0.222179i 0.679916 0.733290i \(-0.262016\pi\)
−0.295090 + 0.955469i \(0.595350\pi\)
\(402\) 0 0
\(403\) −85.2629 + 49.2266i −0.211571 + 0.122150i
\(404\) 44.7100i 0.110668i
\(405\) 0 0
\(406\) −469.506 −1.15642
\(407\) 26.7597 + 46.3492i 0.0657487 + 0.113880i
\(408\) 0 0
\(409\) 5.64530 9.77795i 0.0138027 0.0239070i −0.859042 0.511906i \(-0.828940\pi\)
0.872844 + 0.487999i \(0.162273\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −214.599 + 123.899i −0.520872 + 0.300726i
\(413\) −63.9290 −0.154792
\(414\) 0 0
\(415\) 0 0
\(416\) −47.9242 + 27.6690i −0.115202 + 0.0665121i
\(417\) 0 0
\(418\) −416.901 240.698i −0.997370 0.575832i
\(419\) −56.3602 32.5396i −0.134511 0.0776601i 0.431234 0.902240i \(-0.358078\pi\)
−0.565746 + 0.824580i \(0.691412\pi\)
\(420\) 0 0
\(421\) 115.044 + 199.262i 0.273263 + 0.473306i 0.969696 0.244317i \(-0.0785636\pi\)
−0.696432 + 0.717623i \(0.745230\pi\)
\(422\) 532.207 1.26116
\(423\) 0 0
\(424\) 3.07769 0.00725870
\(425\) 0 0
\(426\) 0 0
\(427\) −257.964 148.936i −0.604132 0.348796i
\(428\) −47.3690 + 82.0455i −0.110675 + 0.191695i
\(429\) 0 0
\(430\) 0 0
\(431\) 67.4877i 0.156584i 0.996930 + 0.0782920i \(0.0249467\pi\)
−0.996930 + 0.0782920i \(0.975053\pi\)
\(432\) 0 0
\(433\) 132.060i 0.304989i −0.988304 0.152495i \(-0.951269\pi\)
0.988304 0.152495i \(-0.0487307\pi\)
\(434\) −81.7464 + 47.1963i −0.188356 + 0.108747i
\(435\) 0 0
\(436\) −26.8745 + 46.5480i −0.0616388 + 0.106762i
\(437\) 137.034 237.350i 0.313579 0.543134i
\(438\) 0 0
\(439\) 344.511 + 596.711i 0.784764 + 1.35925i 0.929140 + 0.369728i \(0.120549\pi\)
−0.144376 + 0.989523i \(0.546118\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 178.488i 0.403819i
\(443\) 34.0413 + 58.9612i 0.0768426 + 0.133095i 0.901886 0.431974i \(-0.142183\pi\)
−0.825043 + 0.565069i \(0.808849\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −72.4767 41.8444i −0.162504 0.0938216i
\(447\) 0 0
\(448\) −45.9476 + 26.5279i −0.102562 + 0.0592140i
\(449\) 685.554i 1.52685i 0.645898 + 0.763423i \(0.276483\pi\)
−0.645898 + 0.763423i \(0.723517\pi\)
\(450\) 0 0
\(451\) 1130.97 2.50769
\(452\) 18.8099 + 32.5797i 0.0416148 + 0.0720790i
\(453\) 0 0
\(454\) 105.952 183.514i 0.233374 0.404216i
\(455\) 0 0
\(456\) 0 0
\(457\) 449.810 259.698i 0.984266 0.568266i 0.0807109 0.996738i \(-0.474281\pi\)
0.903555 + 0.428471i \(0.140948\pi\)
\(458\) −241.638 −0.527593
\(459\) 0 0
\(460\) 0 0
\(461\) −77.5379 + 44.7665i −0.168195 + 0.0971074i −0.581734 0.813379i \(-0.697626\pi\)
0.413539 + 0.910486i \(0.364292\pi\)
\(462\) 0 0
\(463\) −441.640 254.981i −0.953865 0.550714i −0.0595857 0.998223i \(-0.518978\pi\)
−0.894279 + 0.447509i \(0.852311\pi\)
\(464\) −173.410 100.118i −0.373728 0.215772i
\(465\) 0 0
\(466\) 317.479 + 549.890i 0.681285 + 1.18002i
\(467\) 539.803 1.15590 0.577948 0.816074i \(-0.303854\pi\)
0.577948 + 0.816074i \(0.303854\pi\)
\(468\) 0 0
\(469\) −22.1597 −0.0472488
\(470\) 0 0
\(471\) 0 0
\(472\) −23.6119 13.6323i −0.0500252 0.0288821i
\(473\) 787.093 1363.28i 1.66404 2.88221i
\(474\) 0 0
\(475\) 0 0
\(476\) 171.127i 0.359510i
\(477\) 0 0
\(478\) 327.979i 0.686148i
\(479\) 94.2261 54.4015i 0.196714 0.113573i −0.398408 0.917208i \(-0.630437\pi\)
0.595122 + 0.803635i \(0.297104\pi\)
\(480\) 0 0
\(481\) 12.4445 21.5546i 0.0258722 0.0448120i
\(482\) −280.963 + 486.642i −0.582910 + 1.00963i
\(483\) 0 0
\(484\) 321.490 + 556.837i 0.664235 + 1.15049i
\(485\) 0 0
\(486\) 0 0
\(487\) 342.524i 0.703334i 0.936125 + 0.351667i \(0.114385\pi\)
−0.936125 + 0.351667i \(0.885615\pi\)
\(488\) −63.5187 110.018i −0.130161 0.225446i
\(489\) 0 0
\(490\) 0 0
\(491\) −430.657 248.640i −0.877102 0.506395i −0.00740027 0.999973i \(-0.502356\pi\)
−0.869702 + 0.493577i \(0.835689\pi\)
\(492\) 0 0
\(493\) 559.319 322.923i 1.13452 0.655016i
\(494\) 223.872i 0.453182i
\(495\) 0 0
\(496\) −40.2569 −0.0811632
\(497\) 127.556 + 220.933i 0.256652 + 0.444533i
\(498\) 0 0
\(499\) 77.5164 134.262i 0.155343 0.269063i −0.777841 0.628462i \(-0.783685\pi\)
0.933184 + 0.359399i \(0.117018\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −236.595 + 136.598i −0.471304 + 0.272107i
\(503\) −580.438 −1.15395 −0.576976 0.816761i \(-0.695767\pi\)
−0.576976 + 0.816761i \(0.695767\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −436.335 + 251.918i −0.862321 + 0.497862i
\(507\) 0 0
\(508\) 223.123 + 128.820i 0.439218 + 0.253583i
\(509\) 158.209 + 91.3419i 0.310823 + 0.179454i 0.647295 0.762240i \(-0.275900\pi\)
−0.336472 + 0.941694i \(0.609234\pi\)
\(510\) 0 0
\(511\) −294.858 510.709i −0.577021 0.999430i
\(512\) −22.6274 −0.0441942
\(513\) 0 0
\(514\) 170.931 0.332550
\(515\) 0 0
\(516\) 0 0
\(517\) −859.858 496.439i −1.66317 0.960231i
\(518\) 11.9313 20.6656i 0.0230334 0.0398950i
\(519\) 0 0
\(520\) 0 0
\(521\) 47.7611i 0.0916720i −0.998949 0.0458360i \(-0.985405\pi\)
0.998949 0.0458360i \(-0.0145952\pi\)
\(522\) 0 0
\(523\) 266.851i 0.510230i −0.966911 0.255115i \(-0.917887\pi\)
0.966911 0.255115i \(-0.0821134\pi\)
\(524\) −53.3672 + 30.8116i −0.101846 + 0.0588007i
\(525\) 0 0
\(526\) 212.865 368.692i 0.404685 0.700936i
\(527\) 64.9227 112.449i 0.123193 0.213376i
\(528\) 0 0
\(529\) 121.078 + 209.714i 0.228881 + 0.396434i
\(530\) 0 0
\(531\) 0 0
\(532\) 214.639i 0.403456i
\(533\) −262.977 455.489i −0.493389 0.854576i
\(534\) 0 0
\(535\) 0 0
\(536\) −8.18459 4.72538i −0.0152698 0.00881600i
\(537\) 0 0
\(538\) 156.847 90.5554i 0.291536 0.168319i
\(539\) 105.535i 0.195798i
\(540\) 0 0
\(541\) −707.266 −1.30733 −0.653666 0.756783i \(-0.726770\pi\)
−0.653666 + 0.756783i \(0.726770\pi\)
\(542\) −362.626 628.087i −0.669052 1.15883i
\(543\) 0 0
\(544\) 36.4914 63.2050i 0.0670798 0.116186i
\(545\) 0 0
\(546\) 0 0
\(547\) 178.686 103.164i 0.326665 0.188600i −0.327695 0.944784i \(-0.606272\pi\)
0.654359 + 0.756184i \(0.272938\pi\)
\(548\) −213.089 −0.388849
\(549\) 0 0
\(550\) 0 0
\(551\) −701.535 + 405.032i −1.27320 + 0.735084i
\(552\) 0 0
\(553\) −675.700 390.116i −1.22188 0.705454i
\(554\) −339.894 196.238i −0.613527 0.354220i
\(555\) 0 0
\(556\) 114.237 + 197.863i 0.205461 + 0.355870i
\(557\) 643.753 1.15575 0.577876 0.816125i \(-0.303882\pi\)
0.577876 + 0.816125i \(0.303882\pi\)
\(558\) 0 0
\(559\) −732.071 −1.30961
\(560\) 0 0
\(561\) 0 0
\(562\) 126.388 + 72.9701i 0.224890 + 0.129840i
\(563\) 361.822 626.694i 0.642668 1.11313i −0.342167 0.939639i \(-0.611161\pi\)
0.984835 0.173494i \(-0.0555058\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 232.027i 0.409942i
\(567\) 0 0
\(568\) 108.801i 0.191551i
\(569\) 329.204 190.066i 0.578566 0.334035i −0.181997 0.983299i \(-0.558256\pi\)
0.760563 + 0.649264i \(0.224923\pi\)
\(570\) 0 0
\(571\) −20.7292 + 35.9040i −0.0363033 + 0.0628791i −0.883606 0.468231i \(-0.844892\pi\)
0.847303 + 0.531110i \(0.178225\pi\)
\(572\) 205.779 356.419i 0.359753 0.623110i
\(573\) 0 0
\(574\) −252.131 436.703i −0.439252 0.760807i
\(575\) 0 0
\(576\) 0 0
\(577\) 601.252i 1.04203i −0.853547 0.521016i \(-0.825553\pi\)
0.853547 0.521016i \(-0.174447\pi\)
\(578\) −86.6540 150.089i −0.149920 0.259670i
\(579\) 0 0
\(580\) 0 0
\(581\) −844.993 487.857i −1.45438 0.839685i
\(582\) 0 0
\(583\) −19.8227 + 11.4446i −0.0340011 + 0.0196306i
\(584\) 251.504i 0.430658i
\(585\) 0 0
\(586\) 414.347 0.707076
\(587\) 363.988 + 630.446i 0.620082 + 1.07401i 0.989470 + 0.144738i \(0.0462340\pi\)
−0.369388 + 0.929275i \(0.620433\pi\)
\(588\) 0 0
\(589\) −81.4303 + 141.041i −0.138252 + 0.239459i
\(590\) 0 0
\(591\) 0 0
\(592\) 8.81354 5.08850i 0.0148877 0.00859544i
\(593\) −418.998 −0.706573 −0.353286 0.935515i \(-0.614936\pi\)
−0.353286 + 0.935515i \(0.614936\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −209.377 + 120.884i −0.351304 + 0.202825i
\(597\) 0 0
\(598\) 202.916 + 117.154i 0.339325 + 0.195909i
\(599\) −760.433 439.036i −1.26950 0.732948i −0.294610 0.955618i \(-0.595190\pi\)
−0.974894 + 0.222669i \(0.928523\pi\)
\(600\) 0 0
\(601\) 266.229 + 461.122i 0.442977 + 0.767259i 0.997909 0.0646372i \(-0.0205890\pi\)
−0.554932 + 0.831896i \(0.687256\pi\)
\(602\) −701.878 −1.16591
\(603\) 0 0
\(604\) 253.975 0.420489
\(605\) 0 0
\(606\) 0 0
\(607\) −81.8641 47.2643i −0.134867 0.0778653i 0.431049 0.902329i \(-0.358144\pi\)
−0.565915 + 0.824463i \(0.691477\pi\)
\(608\) −45.7700 + 79.2759i −0.0752795 + 0.130388i
\(609\) 0 0
\(610\) 0 0
\(611\) 461.736i 0.755705i
\(612\) 0 0
\(613\) 816.657i 1.33223i 0.745849 + 0.666115i \(0.232044\pi\)
−0.745849 + 0.666115i \(0.767956\pi\)
\(614\) 572.698 330.647i 0.932733 0.538513i
\(615\) 0 0
\(616\) 197.292 341.719i 0.320279 0.554739i
\(617\) 94.8195 164.232i 0.153678 0.266179i −0.778899 0.627150i \(-0.784221\pi\)
0.932577 + 0.360971i \(0.117555\pi\)
\(618\) 0 0
\(619\) −47.7312 82.6728i −0.0771101 0.133559i 0.824892 0.565291i \(-0.191236\pi\)
−0.902002 + 0.431732i \(0.857903\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 760.571i 1.22278i
\(623\) 481.914 + 834.700i 0.773538 + 1.33981i
\(624\) 0 0
\(625\) 0 0
\(626\) 326.098 + 188.273i 0.520923 + 0.300755i
\(627\) 0 0
\(628\) 180.502 104.213i 0.287423 0.165944i
\(629\) 32.8250i 0.0521861i
\(630\) 0 0
\(631\) −192.912 −0.305724 −0.152862 0.988248i \(-0.548849\pi\)
−0.152862 + 0.988248i \(0.548849\pi\)
\(632\) −166.378 288.175i −0.263257 0.455974i
\(633\) 0 0
\(634\) 337.201 584.050i 0.531863 0.921214i
\(635\) 0 0
\(636\) 0 0
\(637\) 42.5034 24.5394i 0.0667244 0.0385233i
\(638\) 1489.19 2.33415
\(639\) 0 0
\(640\) 0 0
\(641\) 277.039 159.949i 0.432198 0.249530i −0.268084 0.963395i \(-0.586391\pi\)
0.700283 + 0.713866i \(0.253057\pi\)
\(642\) 0 0
\(643\) 131.937 + 76.1741i 0.205190 + 0.118467i 0.599074 0.800693i \(-0.295535\pi\)
−0.393884 + 0.919160i \(0.628869\pi\)
\(644\) 194.547 + 112.322i 0.302092 + 0.174413i
\(645\) 0 0
\(646\) −147.627 255.698i −0.228525 0.395817i
\(647\) −632.862 −0.978148 −0.489074 0.872242i \(-0.662665\pi\)
−0.489074 + 0.872242i \(0.662665\pi\)
\(648\) 0 0
\(649\) 202.772 0.312437
\(650\) 0 0
\(651\) 0 0
\(652\) −326.548 188.533i −0.500841 0.289160i
\(653\) −408.937 + 708.299i −0.626243 + 1.08468i 0.362056 + 0.932156i \(0.382075\pi\)
−0.988299 + 0.152529i \(0.951258\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 215.059i 0.327834i
\(657\) 0 0
\(658\) 442.692i 0.672785i
\(659\) 368.474 212.738i 0.559141 0.322820i −0.193660 0.981069i \(-0.562036\pi\)
0.752800 + 0.658249i \(0.228703\pi\)
\(660\) 0 0
\(661\) −142.986 + 247.659i −0.216318 + 0.374673i −0.953679 0.300825i \(-0.902738\pi\)
0.737362 + 0.675498i \(0.236071\pi\)
\(662\) 24.9920 43.2874i 0.0377523 0.0653889i
\(663\) 0 0
\(664\) −208.063 360.376i −0.313348 0.542735i
\(665\) 0 0
\(666\) 0 0
\(667\) 847.824i 1.27110i
\(668\) −67.9163 117.634i −0.101671 0.176100i
\(669\) 0 0
\(670\) 0 0
\(671\) 818.218 + 472.398i 1.21940 + 0.704021i
\(672\) 0 0
\(673\) −1036.99 + 598.709i −1.54085 + 0.889612i −0.542068 + 0.840335i \(0.682358\pi\)
−0.998785 + 0.0492769i \(0.984308\pi\)
\(674\) 351.422i 0.521398i
\(675\) 0 0
\(676\) 146.606 0.216873
\(677\) 452.777 + 784.232i 0.668799 + 1.15839i 0.978240 + 0.207475i \(0.0665245\pi\)
−0.309442 + 0.950918i \(0.600142\pi\)
\(678\) 0 0
\(679\) 156.028 270.249i 0.229791 0.398010i
\(680\) 0 0
\(681\) 0 0
\(682\) 259.285 149.698i 0.380184 0.219499i
\(683\) 31.1970 0.0456764 0.0228382 0.999739i \(-0.492730\pi\)
0.0228382 + 0.999739i \(0.492730\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 438.751 253.313i 0.639579 0.369261i
\(687\) 0 0
\(688\) −259.236 149.670i −0.376796 0.217543i
\(689\) 9.21848 + 5.32229i 0.0133795 + 0.00772466i
\(690\) 0 0
\(691\) 101.532 + 175.858i 0.146935 + 0.254498i 0.930093 0.367324i \(-0.119726\pi\)
−0.783158 + 0.621822i \(0.786393\pi\)
\(692\) −244.785 −0.353736
\(693\) 0 0
\(694\) −3.80834 −0.00548752
\(695\) 0 0
\(696\) 0 0
\(697\) 600.723 + 346.828i 0.861870 + 0.497601i
\(698\) −277.458 + 480.571i −0.397504 + 0.688497i
\(699\) 0 0
\(700\) 0 0
\(701\) 633.699i 0.903993i 0.892020 + 0.451997i \(0.149288\pi\)
−0.892020 + 0.451997i \(0.850712\pi\)
\(702\) 0 0
\(703\) 41.1714i 0.0585652i
\(704\) 145.738 84.1418i 0.207014 0.119520i
\(705\) 0 0
\(706\) −13.9883 + 24.2285i −0.0198135 + 0.0343180i
\(707\) −74.1289 + 128.395i −0.104850 + 0.181605i
\(708\) 0 0
\(709\) −74.6901 129.367i −0.105346 0.182464i 0.808534 0.588450i \(-0.200262\pi\)
−0.913879 + 0.405986i \(0.866928\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 411.057i 0.577328i
\(713\) 85.2262 + 147.616i 0.119532 + 0.207035i
\(714\) 0 0
\(715\) 0 0
\(716\) −135.838 78.4259i −0.189717 0.109533i
\(717\) 0 0
\(718\) 508.667 293.679i 0.708451 0.409024i
\(719\) 257.590i 0.358262i 0.983825 + 0.179131i \(0.0573285\pi\)
−0.983825 + 0.179131i \(0.942671\pi\)
\(720\) 0 0
\(721\) −821.694 −1.13966
\(722\) −70.1018 121.420i −0.0970939 0.168172i
\(723\) 0 0
\(724\) −219.562 + 380.293i −0.303263 + 0.525266i
\(725\) 0 0
\(726\) 0 0
\(727\) 526.008 303.691i 0.723532 0.417731i −0.0925193 0.995711i \(-0.529492\pi\)
0.816051 + 0.577980i \(0.196159\pi\)
\(728\) −183.500 −0.252061
\(729\) 0 0
\(730\) 0 0
\(731\) 836.143 482.747i 1.14383 0.660393i
\(732\) 0 0
\(733\) 768.411 + 443.643i 1.04831 + 0.605242i 0.922176 0.386771i \(-0.126410\pi\)
0.126134 + 0.992013i \(0.459743\pi\)
\(734\) −653.263 377.162i −0.890004 0.513844i
\(735\) 0 0
\(736\) 47.9035 + 82.9713i 0.0650863 + 0.112733i
\(737\) 70.2867 0.0953686
\(738\) 0 0
\(739\) 30.1955 0.0408599 0.0204300 0.999791i \(-0.493496\pi\)
0.0204300 + 0.999791i \(0.493496\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 8.83828 + 5.10278i 0.0119114 + 0.00687707i
\(743\) −285.008 + 493.648i −0.383591 + 0.664399i −0.991573 0.129552i \(-0.958646\pi\)
0.607982 + 0.793951i \(0.291979\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 304.876i 0.408680i
\(747\) 0 0
\(748\) 542.784i 0.725647i
\(749\) −272.062 + 157.075i −0.363233 + 0.209713i
\(750\) 0 0
\(751\) −213.747 + 370.221i −0.284617 + 0.492970i −0.972516 0.232836i \(-0.925200\pi\)
0.687900 + 0.725806i \(0.258533\pi\)
\(752\) −94.4006 + 163.507i −0.125533 + 0.217429i
\(753\) 0 0
\(754\) −346.272 599.760i −0.459247 0.795438i
\(755\) 0 0
\(756\) 0 0
\(757\) 587.791i 0.776474i −0.921560 0.388237i \(-0.873084\pi\)
0.921560 0.388237i \(-0.126916\pi\)
\(758\) −125.049 216.591i −0.164972 0.285740i
\(759\) 0 0
\(760\) 0 0
\(761\) 1135.73 + 655.716i 1.49242 + 0.861651i 0.999962 0.00868376i \(-0.00276416\pi\)
0.492461 + 0.870335i \(0.336097\pi\)
\(762\) 0 0
\(763\) −154.353 + 89.1155i −0.202297 + 0.116796i
\(764\) 645.963i 0.845501i
\(765\) 0 0
\(766\) −24.3283 −0.0317601
\(767\) −47.1492 81.6648i −0.0614722 0.106473i
\(768\) 0 0
\(769\) −595.762 + 1031.89i −0.774724 + 1.34186i 0.160226 + 0.987080i \(0.448778\pi\)
−0.934950 + 0.354780i \(0.884556\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 299.270 172.784i 0.387655 0.223813i
\(773\) −204.848 −0.265003 −0.132502 0.991183i \(-0.542301\pi\)
−0.132502 + 0.991183i \(0.542301\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 115.257 66.5435i 0.148527 0.0857520i
\(777\) 0 0
\(778\) 421.965 + 243.622i 0.542372 + 0.313139i
\(779\) −753.467 435.014i −0.967223 0.558427i
\(780\) 0 0
\(781\) −404.585 700.761i −0.518034 0.897261i
\(782\) −309.017 −0.395163
\(783\) 0 0
\(784\) 20.0680 0.0255970
\(785\) 0 0
\(786\) 0 0
\(787\) −115.378 66.6137i −0.146605 0.0846426i 0.424903 0.905239i \(-0.360308\pi\)
−0.571508 + 0.820596i \(0.693642\pi\)
\(788\) 71.7321 124.244i 0.0910306 0.157670i
\(789\) 0 0
\(790\) 0 0
\(791\) 124.747i 0.157708i
\(792\) 0 0
\(793\) 439.375i 0.554067i
\(794\) −84.5018 + 48.7872i −0.106425 + 0.0614448i
\(795\) 0 0
\(796\) 133.225 230.752i 0.167368 0.289890i
\(797\) 304.460 527.341i 0.382008 0.661657i −0.609341 0.792908i \(-0.708566\pi\)
0.991349 + 0.131251i \(0.0418993\pi\)
\(798\) 0 0
\(799\) −304.481 527.376i −0.381077 0.660046i
\(800\) 0 0
\(801\) 0 0
\(802\) 251.995i 0.314208i
\(803\) 935.237 + 1619.88i 1.16468 + 2.01728i
\(804\) 0 0
\(805\) 0 0
\(806\) −120.580 69.6169i −0.149603 0.0863733i
\(807\) 0 0
\(808\) −54.7584 + 31.6148i −0.0677703 + 0.0391272i
\(809\) 164.342i 0.203142i −0.994828 0.101571i \(-0.967613\pi\)
0.994828 0.101571i \(-0.0323869\pi\)
\(810\) 0 0
\(811\) −1026.77 −1.26606 −0.633028 0.774129i \(-0.718188\pi\)
−0.633028 + 0.774129i \(0.718188\pi\)
\(812\) −331.991 575.025i −0.408855 0.708158i
\(813\) 0 0
\(814\) −37.8439 + 65.5476i −0.0464913 + 0.0805253i
\(815\) 0 0
\(816\) 0 0
\(817\) −1048.75 + 605.494i −1.28365 + 0.741118i
\(818\) 15.9673 0.0195200
\(819\) 0 0
\(820\) 0 0
\(821\) −262.140 + 151.347i −0.319293 + 0.184344i −0.651078 0.759011i \(-0.725683\pi\)
0.331784 + 0.943355i \(0.392349\pi\)
\(822\) 0 0
\(823\) −603.723 348.559i −0.733563 0.423523i 0.0861609 0.996281i \(-0.472540\pi\)
−0.819724 + 0.572758i \(0.805873\pi\)
\(824\) −303.489 175.220i −0.368312 0.212645i
\(825\) 0 0
\(826\) −45.2046 78.2967i −0.0547271 0.0947902i
\(827\) −454.516 −0.549596 −0.274798 0.961502i \(-0.588611\pi\)
−0.274798 + 0.961502i \(0.588611\pi\)
\(828\) 0 0
\(829\) −591.488 −0.713496 −0.356748 0.934201i \(-0.616115\pi\)
−0.356748 + 0.934201i \(0.616115\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −67.7750 39.1299i −0.0814603 0.0470311i
\(833\) −32.3638 + 56.0558i −0.0388521 + 0.0672939i
\(834\) 0 0
\(835\) 0 0
\(836\) 680.796i 0.814349i
\(837\) 0 0
\(838\) 92.0359i 0.109828i
\(839\) −1342.11 + 774.866i −1.59965 + 0.923559i −0.608097 + 0.793863i \(0.708067\pi\)
−0.991554 + 0.129696i \(0.958600\pi\)
\(840\) 0 0
\(841\) 832.459 1441.86i 0.989844 1.71446i
\(842\) −162.697 + 281.799i −0.193226 + 0.334678i
\(843\) 0 0
\(844\) 376.327 + 651.818i 0.445886 + 0.772297i
\(845\) 0 0
\(846\) 0 0
\(847\) 2132.11i 2.51725i
\(848\) 2.17626 + 3.76938i 0.00256634 + 0.00444503i
\(849\) 0 0
\(850\) 0 0
\(851\) −37.3175 21.5453i −0.0438514 0.0253176i
\(852\) 0 0
\(853\) 1421.62 820.773i 1.66661 0.962219i 0.697169 0.716907i \(-0.254443\pi\)
0.969444 0.245312i \(-0.0788905\pi\)
\(854\) 421.254i 0.493272i
\(855\) 0 0
\(856\) −133.980 −0.156518
\(857\) −159.321 275.953i −0.185906 0.321998i 0.757976 0.652283i \(-0.226189\pi\)
−0.943881 + 0.330285i \(0.892855\pi\)
\(858\) 0 0
\(859\) −314.166 + 544.152i −0.365735 + 0.633471i −0.988894 0.148624i \(-0.952516\pi\)
0.623159 + 0.782095i \(0.285849\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −82.6552 + 47.7210i −0.0958878 + 0.0553608i
\(863\) −183.620 −0.212770 −0.106385 0.994325i \(-0.533928\pi\)
−0.106385 + 0.994325i \(0.533928\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 161.740 93.3807i 0.186767 0.107830i
\(867\) 0 0
\(868\) −115.607 66.7457i −0.133188 0.0768960i
\(869\) 2143.20 + 1237.38i 2.46629 + 1.42391i
\(870\) 0 0
\(871\) −16.3433 28.3075i −0.0187639 0.0325000i
\(872\) −76.0126 −0.0871705
\(873\) 0 0
\(874\) 387.590 0.443467
\(875\) 0 0
\(876\) 0 0
\(877\) 1251.66 + 722.647i 1.42721 + 0.823999i 0.996900 0.0786834i \(-0.0250716\pi\)
0.430308 + 0.902682i \(0.358405\pi\)
\(878\) −487.213 + 843.877i −0.554912 + 0.961136i
\(879\) 0 0
\(880\) 0 0
\(881\) 608.977i 0.691234i 0.938376 + 0.345617i \(0.112330\pi\)
−0.938376 + 0.345617i \(0.887670\pi\)
\(882\) 0 0
\(883\) 120.519i 0.136488i 0.997669 + 0.0682440i \(0.0217396\pi\)
−0.997669 + 0.0682440i \(0.978260\pi\)
\(884\) 218.602 126.210i 0.247288 0.142772i
\(885\) 0 0
\(886\) −48.1416 + 83.3837i −0.0543359 + 0.0941126i
\(887\) 803.710 1392.07i 0.906100 1.56941i 0.0866653 0.996237i \(-0.472379\pi\)
0.819434 0.573173i \(-0.194288\pi\)
\(888\) 0 0
\(889\) 427.165 + 739.872i 0.480501 + 0.832252i
\(890\) 0 0
\(891\) 0 0
\(892\) 118.354i 0.132684i
\(893\) 381.900 + 661.471i 0.427660 + 0.740729i
\(894\) 0 0
\(895\) 0 0
\(896\) −64.9797 37.5161i −0.0725220 0.0418706i
\(897\) 0 0
\(898\) −839.629 + 484.760i −0.934999 + 0.539822i
\(899\) 503.807i 0.560408i
\(900\) 0 0
\(901\) −14.0386 −0.0155812
\(902\) 799.714 + 1385.15i 0.886601 + 1.53564i
\(903\) 0 0
\(904\) −26.6012 + 46.0747i −0.0294261 + 0.0509676i
\(905\) 0 0
\(906\) 0 0
\(907\) 561.175 323.994i 0.618715 0.357215i −0.157653 0.987495i \(-0.550393\pi\)
0.776369 + 0.630279i \(0.217060\pi\)
\(908\) 299.677 0.330041
\(909\) 0 0
\(910\) 0 0
\(911\) 173.671 100.269i 0.190638 0.110065i −0.401643 0.915796i \(-0.631561\pi\)
0.592281 + 0.805731i \(0.298227\pi\)
\(912\) 0 0
\(913\) 2680.17 + 1547.40i 2.93556 + 1.69485i
\(914\) 636.127 + 367.268i 0.695981 + 0.401825i
\(915\) 0 0
\(916\) −170.864 295.945i −0.186532 0.323084i
\(917\) −204.341 −0.222837
\(918\) 0 0
\(919\) 619.581 0.674191 0.337095 0.941471i \(-0.390556\pi\)
0.337095 + 0.941471i \(0.390556\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −109.655 63.3094i −0.118932 0.0686653i
\(923\) −188.151 + 325.887i −0.203847 + 0.353074i
\(924\) 0 0
\(925\) 0 0
\(926\) 721.194i 0.778828i
\(927\) 0 0
\(928\) 283.177i 0.305148i
\(929\) −615.591 + 355.411i −0.662638 + 0.382574i −0.793281 0.608855i \(-0.791629\pi\)
0.130643 + 0.991429i \(0.458296\pi\)
\(930\) 0 0
\(931\) 40.5929 70.3089i 0.0436014 0.0755198i
\(932\) −448.983 + 777.661i −0.481741 + 0.834401i
\(933\) 0 0
\(934\) 381.699 + 661.122i 0.408671 + 0.707839i
\(935\) 0 0
\(936\) 0 0
\(937\) 435.674i 0.464967i 0.972600 + 0.232483i \(0.0746851\pi\)
−0.972600 + 0.232483i \(0.925315\pi\)
\(938\) −15.6693 27.1400i −0.0167050 0.0289339i
\(939\) 0 0
\(940\) 0 0
\(941\) −109.205 63.0496i −0.116052 0.0670027i 0.440850 0.897581i \(-0.354677\pi\)
−0.556902 + 0.830578i \(0.688010\pi\)
\(942\) 0 0
\(943\) −788.590 + 455.293i −0.836257 + 0.482813i
\(944\) 38.5581i 0.0408454i
\(945\) 0 0
\(946\) 2226.23 2.35331
\(947\) 283.686 + 491.359i 0.299563 + 0.518858i 0.976036 0.217609i \(-0.0698258\pi\)
−0.676473 + 0.736467i \(0.736493\pi\)
\(948\) 0 0
\(949\) 434.930 753.320i 0.458303 0.793804i
\(950\) 0 0
\(951\) 0 0
\(952\) 209.587 121.005i 0.220154 0.127106i
\(953\) −873.128 −0.916189 −0.458095 0.888903i \(-0.651468\pi\)
−0.458095 + 0.888903i \(0.651468\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 401.690 231.916i 0.420178 0.242590i
\(957\) 0 0
\(958\) 133.256 + 76.9353i 0.139098 + 0.0803082i
\(959\) −611.934 353.300i −0.638095 0.368405i
\(960\) 0 0
\(961\) 429.856 + 744.532i 0.447300 + 0.774747i
\(962\) 35.1985 0.0365888
\(963\) 0 0
\(964\) −794.682 −0.824359
\(965\) 0 0
\(966\) 0 0
\(967\) 728.109 + 420.374i 0.752957 + 0.434720i 0.826761 0.562553i \(-0.190181\pi\)
−0.0738046 + 0.997273i \(0.523514\pi\)
\(968\) −454.655 + 787.486i −0.469685 + 0.813518i
\(969\) 0 0
\(970\) 0 0
\(971\) 258.099i 0.265807i −0.991129 0.132903i \(-0.957570\pi\)
0.991129 0.132903i \(-0.0424300\pi\)
\(972\) 0 0
\(973\) 757.613i 0.778636i
\(974\) −419.504 + 242.201i −0.430703 + 0.248666i
\(975\) 0 0
\(976\) 89.8290 155.588i 0.0920379 0.159414i
\(977\) −575.995 + 997.653i −0.589555 + 1.02114i 0.404736 + 0.914434i \(0.367364\pi\)
−0.994291 + 0.106706i \(0.965970\pi\)
\(978\) 0 0
\(979\) −1528.55 2647.52i −1.56134 2.70431i
\(980\) 0 0
\(981\) 0 0
\(982\) 703.260i 0.716151i
\(983\) −319.689 553.718i −0.325218 0.563294i 0.656338 0.754467i \(-0.272104\pi\)
−0.981556 + 0.191172i \(0.938771\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 790.996 + 456.682i 0.802228 + 0.463166i
\(987\) 0 0
\(988\) −274.186 + 158.301i −0.277516 + 0.160224i
\(989\) 1267.44i 1.28153i
\(990\) 0 0
\(991\) 1875.09 1.89212 0.946060 0.323992i \(-0.105025\pi\)
0.946060 + 0.323992i \(0.105025\pi\)
\(992\) −28.4660 49.3045i −0.0286955 0.0497021i
\(993\) 0 0
\(994\) −180.391 + 312.447i −0.181480 + 0.314333i
\(995\) 0 0
\(996\) 0 0
\(997\) −818.736 + 472.697i −0.821199 + 0.474120i −0.850830 0.525441i \(-0.823900\pi\)
0.0296306 + 0.999561i \(0.490567\pi\)
\(998\) 219.249 0.219689
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.3.k.b.449.14 32
3.2 odd 2 450.3.k.c.149.3 32
5.2 odd 4 1350.3.i.g.1151.2 16
5.3 odd 4 270.3.h.a.71.6 16
5.4 even 2 inner 1350.3.k.b.449.3 32
9.2 odd 6 inner 1350.3.k.b.899.3 32
9.7 even 3 450.3.k.c.299.14 32
15.2 even 4 450.3.i.g.401.6 16
15.8 even 4 90.3.h.a.41.3 yes 16
15.14 odd 2 450.3.k.c.149.14 32
20.3 even 4 2160.3.bs.d.881.1 16
45.2 even 12 1350.3.i.g.251.2 16
45.7 odd 12 450.3.i.g.101.6 16
45.13 odd 12 810.3.d.c.161.13 16
45.23 even 12 810.3.d.c.161.1 16
45.29 odd 6 inner 1350.3.k.b.899.14 32
45.34 even 6 450.3.k.c.299.3 32
45.38 even 12 270.3.h.a.251.6 16
45.43 odd 12 90.3.h.a.11.3 16
60.23 odd 4 720.3.bs.d.401.5 16
180.43 even 12 720.3.bs.d.641.5 16
180.83 odd 12 2160.3.bs.d.1601.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.3.h.a.11.3 16 45.43 odd 12
90.3.h.a.41.3 yes 16 15.8 even 4
270.3.h.a.71.6 16 5.3 odd 4
270.3.h.a.251.6 16 45.38 even 12
450.3.i.g.101.6 16 45.7 odd 12
450.3.i.g.401.6 16 15.2 even 4
450.3.k.c.149.3 32 3.2 odd 2
450.3.k.c.149.14 32 15.14 odd 2
450.3.k.c.299.3 32 45.34 even 6
450.3.k.c.299.14 32 9.7 even 3
720.3.bs.d.401.5 16 60.23 odd 4
720.3.bs.d.641.5 16 180.43 even 12
810.3.d.c.161.1 16 45.23 even 12
810.3.d.c.161.13 16 45.13 odd 12
1350.3.i.g.251.2 16 45.2 even 12
1350.3.i.g.1151.2 16 5.2 odd 4
1350.3.k.b.449.3 32 5.4 even 2 inner
1350.3.k.b.449.14 32 1.1 even 1 trivial
1350.3.k.b.899.3 32 9.2 odd 6 inner
1350.3.k.b.899.14 32 45.29 odd 6 inner
2160.3.bs.d.881.1 16 20.3 even 4
2160.3.bs.d.1601.1 16 180.83 odd 12