Properties

Label 810.3.d.c.161.1
Level $810$
Weight $3$
Character 810.161
Analytic conductor $22.071$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,3,Mod(161,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 810.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.0709014132\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 138x^{12} - 1040x^{10} + 5541x^{8} - 26220x^{6} + 99328x^{4} - 202728x^{2} + 181476 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{14} \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.1
Root \(-2.11536 - 0.410927i\) of defining polynomial
Character \(\chi\) \(=\) 810.161
Dual form 810.3.d.c.161.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} -2.23607i q^{5} -6.63197 q^{7} +2.82843i q^{8} -3.16228 q^{10} -21.0354i q^{11} -9.78248 q^{13} +9.37902i q^{14} +4.00000 q^{16} +12.9017i q^{17} +16.1821 q^{19} +4.47214i q^{20} -29.7486 q^{22} -16.9365i q^{23} -5.00000 q^{25} +13.8345i q^{26} +13.2639 q^{28} +50.0591i q^{29} -10.0642 q^{31} -5.65685i q^{32} +18.2457 q^{34} +14.8295i q^{35} +2.54425 q^{37} -22.8850i q^{38} +6.32456 q^{40} +53.7648i q^{41} -74.8349 q^{43} +42.0709i q^{44} -23.9518 q^{46} +47.2003i q^{47} -5.01700 q^{49} +7.07107i q^{50} +19.5650 q^{52} +1.08813i q^{53} -47.0367 q^{55} -18.7580i q^{56} +70.7943 q^{58} -9.63952i q^{59} -44.9145 q^{61} +14.2330i q^{62} -8.00000 q^{64} +21.8743i q^{65} -3.34135 q^{67} -25.8033i q^{68} +20.9721 q^{70} +38.4670i q^{71} -88.9201 q^{73} -3.59811i q^{74} -32.3642 q^{76} +139.506i q^{77} +117.647 q^{79} -8.94427i q^{80} +76.0349 q^{82} +147.123i q^{83} +28.8490 q^{85} +105.833i q^{86} +59.4972 q^{88} -145.331i q^{89} +64.8771 q^{91} +33.8729i q^{92} +66.7513 q^{94} -36.1843i q^{95} -47.0534 q^{97} +7.09511i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{4} + 8 q^{7} - 40 q^{13} + 64 q^{16} + 80 q^{19} - 48 q^{22} - 80 q^{25} - 16 q^{28} + 32 q^{31} + 96 q^{34} - 88 q^{37} - 184 q^{43} + 24 q^{46} + 168 q^{49} + 80 q^{52} + 152 q^{61} - 128 q^{64}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) − 2.23607i − 0.447214i
\(6\) 0 0
\(7\) −6.63197 −0.947424 −0.473712 0.880680i \(-0.657086\pi\)
−0.473712 + 0.880680i \(0.657086\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −3.16228 −0.316228
\(11\) − 21.0354i − 1.91231i −0.292857 0.956156i \(-0.594606\pi\)
0.292857 0.956156i \(-0.405394\pi\)
\(12\) 0 0
\(13\) −9.78248 −0.752498 −0.376249 0.926519i \(-0.622786\pi\)
−0.376249 + 0.926519i \(0.622786\pi\)
\(14\) 9.37902i 0.669930i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 12.9017i 0.758921i 0.925208 + 0.379460i \(0.123890\pi\)
−0.925208 + 0.379460i \(0.876110\pi\)
\(18\) 0 0
\(19\) 16.1821 0.851691 0.425845 0.904796i \(-0.359977\pi\)
0.425845 + 0.904796i \(0.359977\pi\)
\(20\) 4.47214i 0.223607i
\(21\) 0 0
\(22\) −29.7486 −1.35221
\(23\) − 16.9365i − 0.736368i −0.929753 0.368184i \(-0.879980\pi\)
0.929753 0.368184i \(-0.120020\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 13.8345i 0.532097i
\(27\) 0 0
\(28\) 13.2639 0.473712
\(29\) 50.0591i 1.72618i 0.505053 + 0.863089i \(0.331473\pi\)
−0.505053 + 0.863089i \(0.668527\pi\)
\(30\) 0 0
\(31\) −10.0642 −0.324653 −0.162326 0.986737i \(-0.551900\pi\)
−0.162326 + 0.986737i \(0.551900\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) 18.2457 0.536638
\(35\) 14.8295i 0.423701i
\(36\) 0 0
\(37\) 2.54425 0.0687635 0.0343817 0.999409i \(-0.489054\pi\)
0.0343817 + 0.999409i \(0.489054\pi\)
\(38\) − 22.8850i − 0.602236i
\(39\) 0 0
\(40\) 6.32456 0.158114
\(41\) 53.7648i 1.31134i 0.755049 + 0.655669i \(0.227613\pi\)
−0.755049 + 0.655669i \(0.772387\pi\)
\(42\) 0 0
\(43\) −74.8349 −1.74035 −0.870173 0.492746i \(-0.835993\pi\)
−0.870173 + 0.492746i \(0.835993\pi\)
\(44\) 42.0709i 0.956156i
\(45\) 0 0
\(46\) −23.9518 −0.520690
\(47\) 47.2003i 1.00426i 0.864792 + 0.502131i \(0.167450\pi\)
−0.864792 + 0.502131i \(0.832550\pi\)
\(48\) 0 0
\(49\) −5.01700 −0.102388
\(50\) 7.07107i 0.141421i
\(51\) 0 0
\(52\) 19.5650 0.376249
\(53\) 1.08813i 0.0205307i 0.999947 + 0.0102654i \(0.00326762\pi\)
−0.999947 + 0.0102654i \(0.996732\pi\)
\(54\) 0 0
\(55\) −47.0367 −0.855212
\(56\) − 18.7580i − 0.334965i
\(57\) 0 0
\(58\) 70.7943 1.22059
\(59\) − 9.63952i − 0.163382i −0.996658 0.0816908i \(-0.973968\pi\)
0.996658 0.0816908i \(-0.0260320\pi\)
\(60\) 0 0
\(61\) −44.9145 −0.736303 −0.368152 0.929766i \(-0.620009\pi\)
−0.368152 + 0.929766i \(0.620009\pi\)
\(62\) 14.2330i 0.229564i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 21.8743i 0.336527i
\(66\) 0 0
\(67\) −3.34135 −0.0498708 −0.0249354 0.999689i \(-0.507938\pi\)
−0.0249354 + 0.999689i \(0.507938\pi\)
\(68\) − 25.8033i − 0.379460i
\(69\) 0 0
\(70\) 20.9721 0.299602
\(71\) 38.4670i 0.541788i 0.962609 + 0.270894i \(0.0873193\pi\)
−0.962609 + 0.270894i \(0.912681\pi\)
\(72\) 0 0
\(73\) −88.9201 −1.21808 −0.609042 0.793138i \(-0.708446\pi\)
−0.609042 + 0.793138i \(0.708446\pi\)
\(74\) − 3.59811i − 0.0486231i
\(75\) 0 0
\(76\) −32.3642 −0.425845
\(77\) 139.506i 1.81177i
\(78\) 0 0
\(79\) 117.647 1.48920 0.744602 0.667509i \(-0.232639\pi\)
0.744602 + 0.667509i \(0.232639\pi\)
\(80\) − 8.94427i − 0.111803i
\(81\) 0 0
\(82\) 76.0349 0.927255
\(83\) 147.123i 1.77256i 0.463146 + 0.886282i \(0.346721\pi\)
−0.463146 + 0.886282i \(0.653279\pi\)
\(84\) 0 0
\(85\) 28.8490 0.339400
\(86\) 105.833i 1.23061i
\(87\) 0 0
\(88\) 59.4972 0.676105
\(89\) − 145.331i − 1.63293i −0.577396 0.816464i \(-0.695931\pi\)
0.577396 0.816464i \(-0.304069\pi\)
\(90\) 0 0
\(91\) 64.8771 0.712935
\(92\) 33.8729i 0.368184i
\(93\) 0 0
\(94\) 66.7513 0.710120
\(95\) − 36.1843i − 0.380888i
\(96\) 0 0
\(97\) −47.0534 −0.485086 −0.242543 0.970141i \(-0.577982\pi\)
−0.242543 + 0.970141i \(0.577982\pi\)
\(98\) 7.09511i 0.0723991i
\(99\) 0 0
\(100\) 10.0000 0.100000
\(101\) − 22.3550i − 0.221337i −0.993857 0.110668i \(-0.964701\pi\)
0.993857 0.110668i \(-0.0352991\pi\)
\(102\) 0 0
\(103\) 123.899 1.20290 0.601452 0.798909i \(-0.294589\pi\)
0.601452 + 0.798909i \(0.294589\pi\)
\(104\) − 27.6690i − 0.266048i
\(105\) 0 0
\(106\) 1.53884 0.0145174
\(107\) 47.3690i 0.442701i 0.975194 + 0.221351i \(0.0710465\pi\)
−0.975194 + 0.221351i \(0.928954\pi\)
\(108\) 0 0
\(109\) −26.8745 −0.246555 −0.123278 0.992372i \(-0.539341\pi\)
−0.123278 + 0.992372i \(0.539341\pi\)
\(110\) 66.5199i 0.604726i
\(111\) 0 0
\(112\) −26.5279 −0.236856
\(113\) 18.8099i 0.166459i 0.996530 + 0.0832297i \(0.0265235\pi\)
−0.996530 + 0.0832297i \(0.973476\pi\)
\(114\) 0 0
\(115\) −37.8711 −0.329314
\(116\) − 100.118i − 0.863089i
\(117\) 0 0
\(118\) −13.6323 −0.115528
\(119\) − 85.5634i − 0.719020i
\(120\) 0 0
\(121\) −321.490 −2.65694
\(122\) 63.5187i 0.520645i
\(123\) 0 0
\(124\) 20.1285 0.162326
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) −128.820 −1.01433 −0.507166 0.861849i \(-0.669307\pi\)
−0.507166 + 0.861849i \(0.669307\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 30.9349 0.237961
\(131\) 30.8116i 0.235203i 0.993061 + 0.117601i \(0.0375205\pi\)
−0.993061 + 0.117601i \(0.962480\pi\)
\(132\) 0 0
\(133\) −107.319 −0.806912
\(134\) 4.72538i 0.0352640i
\(135\) 0 0
\(136\) −36.4914 −0.268319
\(137\) − 106.545i − 0.777697i −0.921302 0.388849i \(-0.872873\pi\)
0.921302 0.388849i \(-0.127127\pi\)
\(138\) 0 0
\(139\) 114.237 0.821845 0.410923 0.911670i \(-0.365207\pi\)
0.410923 + 0.911670i \(0.365207\pi\)
\(140\) − 29.6591i − 0.211850i
\(141\) 0 0
\(142\) 54.4005 0.383102
\(143\) 205.779i 1.43901i
\(144\) 0 0
\(145\) 111.936 0.771970
\(146\) 125.752i 0.861315i
\(147\) 0 0
\(148\) −5.08850 −0.0343817
\(149\) − 120.884i − 0.811301i −0.914028 0.405651i \(-0.867045\pi\)
0.914028 0.405651i \(-0.132955\pi\)
\(150\) 0 0
\(151\) 126.988 0.840978 0.420489 0.907298i \(-0.361859\pi\)
0.420489 + 0.907298i \(0.361859\pi\)
\(152\) 45.7700i 0.301118i
\(153\) 0 0
\(154\) 197.292 1.28112
\(155\) 22.5043i 0.145189i
\(156\) 0 0
\(157\) 104.213 0.663776 0.331888 0.943319i \(-0.392314\pi\)
0.331888 + 0.943319i \(0.392314\pi\)
\(158\) − 166.378i − 1.05303i
\(159\) 0 0
\(160\) −12.6491 −0.0790569
\(161\) 112.322i 0.697652i
\(162\) 0 0
\(163\) −188.533 −1.15664 −0.578321 0.815809i \(-0.696292\pi\)
−0.578321 + 0.815809i \(0.696292\pi\)
\(164\) − 107.530i − 0.655669i
\(165\) 0 0
\(166\) 208.063 1.25339
\(167\) 67.9163i 0.406684i 0.979108 + 0.203342i \(0.0651804\pi\)
−0.979108 + 0.203342i \(0.934820\pi\)
\(168\) 0 0
\(169\) −73.3031 −0.433746
\(170\) − 40.7986i − 0.239992i
\(171\) 0 0
\(172\) 149.670 0.870173
\(173\) 122.393i 0.707472i 0.935345 + 0.353736i \(0.115089\pi\)
−0.935345 + 0.353736i \(0.884911\pi\)
\(174\) 0 0
\(175\) 33.1598 0.189485
\(176\) − 84.1418i − 0.478078i
\(177\) 0 0
\(178\) −205.529 −1.15466
\(179\) 78.4259i 0.438134i 0.975710 + 0.219067i \(0.0703013\pi\)
−0.975710 + 0.219067i \(0.929699\pi\)
\(180\) 0 0
\(181\) 219.562 1.21305 0.606525 0.795064i \(-0.292563\pi\)
0.606525 + 0.795064i \(0.292563\pi\)
\(182\) − 91.7500i − 0.504121i
\(183\) 0 0
\(184\) 47.9035 0.260345
\(185\) − 5.68911i − 0.0307520i
\(186\) 0 0
\(187\) 271.392 1.45129
\(188\) − 94.4006i − 0.502131i
\(189\) 0 0
\(190\) −51.1724 −0.269328
\(191\) − 322.982i − 1.69100i −0.533973 0.845501i \(-0.679302\pi\)
0.533973 0.845501i \(-0.320698\pi\)
\(192\) 0 0
\(193\) −172.784 −0.895252 −0.447626 0.894221i \(-0.647730\pi\)
−0.447626 + 0.894221i \(0.647730\pi\)
\(194\) 66.5435i 0.343008i
\(195\) 0 0
\(196\) 10.0340 0.0511939
\(197\) − 71.7321i − 0.364123i −0.983287 0.182061i \(-0.941723\pi\)
0.983287 0.182061i \(-0.0582769\pi\)
\(198\) 0 0
\(199\) 133.225 0.669472 0.334736 0.942312i \(-0.391353\pi\)
0.334736 + 0.942312i \(0.391353\pi\)
\(200\) − 14.1421i − 0.0707107i
\(201\) 0 0
\(202\) −31.6148 −0.156509
\(203\) − 331.991i − 1.63542i
\(204\) 0 0
\(205\) 120.222 0.586448
\(206\) − 175.220i − 0.850581i
\(207\) 0 0
\(208\) −39.1299 −0.188125
\(209\) − 340.398i − 1.62870i
\(210\) 0 0
\(211\) −376.327 −1.78354 −0.891771 0.452486i \(-0.850537\pi\)
−0.891771 + 0.452486i \(0.850537\pi\)
\(212\) − 2.17626i − 0.0102654i
\(213\) 0 0
\(214\) 66.9899 0.313037
\(215\) 167.336i 0.778307i
\(216\) 0 0
\(217\) 66.7457 0.307584
\(218\) 38.0063i 0.174341i
\(219\) 0 0
\(220\) 94.0733 0.427606
\(221\) − 126.210i − 0.571087i
\(222\) 0 0
\(223\) 59.1770 0.265368 0.132684 0.991158i \(-0.457641\pi\)
0.132684 + 0.991158i \(0.457641\pi\)
\(224\) 37.5161i 0.167482i
\(225\) 0 0
\(226\) 26.6012 0.117705
\(227\) 149.839i 0.660082i 0.943967 + 0.330041i \(0.107063\pi\)
−0.943967 + 0.330041i \(0.892937\pi\)
\(228\) 0 0
\(229\) −170.864 −0.746130 −0.373065 0.927805i \(-0.621693\pi\)
−0.373065 + 0.927805i \(0.621693\pi\)
\(230\) 53.5578i 0.232860i
\(231\) 0 0
\(232\) −141.589 −0.610296
\(233\) − 448.983i − 1.92697i −0.267770 0.963483i \(-0.586287\pi\)
0.267770 0.963483i \(-0.413713\pi\)
\(234\) 0 0
\(235\) 105.543 0.449119
\(236\) 19.2790i 0.0816908i
\(237\) 0 0
\(238\) −121.005 −0.508424
\(239\) 231.916i 0.970360i 0.874414 + 0.485180i \(0.161246\pi\)
−0.874414 + 0.485180i \(0.838754\pi\)
\(240\) 0 0
\(241\) −397.341 −1.64872 −0.824359 0.566067i \(-0.808464\pi\)
−0.824359 + 0.566067i \(0.808464\pi\)
\(242\) 454.655i 1.87874i
\(243\) 0 0
\(244\) 89.8290 0.368152
\(245\) 11.2184i 0.0457892i
\(246\) 0 0
\(247\) −158.301 −0.640896
\(248\) − 28.4660i − 0.114782i
\(249\) 0 0
\(250\) 15.8114 0.0632456
\(251\) − 193.179i − 0.769636i −0.922992 0.384818i \(-0.874264\pi\)
0.922992 0.384818i \(-0.125736\pi\)
\(252\) 0 0
\(253\) −356.266 −1.40816
\(254\) 182.179i 0.717240i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) − 120.866i − 0.470297i −0.971959 0.235148i \(-0.924442\pi\)
0.971959 0.235148i \(-0.0755576\pi\)
\(258\) 0 0
\(259\) −16.8734 −0.0651482
\(260\) − 43.7486i − 0.168264i
\(261\) 0 0
\(262\) 43.5741 0.166313
\(263\) − 301.036i − 1.14462i −0.820036 0.572312i \(-0.806047\pi\)
0.820036 0.572312i \(-0.193953\pi\)
\(264\) 0 0
\(265\) 2.43313 0.00918161
\(266\) 151.772i 0.570573i
\(267\) 0 0
\(268\) 6.68269 0.0249354
\(269\) − 128.065i − 0.476077i −0.971256 0.238038i \(-0.923496\pi\)
0.971256 0.238038i \(-0.0765044\pi\)
\(270\) 0 0
\(271\) −512.831 −1.89236 −0.946182 0.323635i \(-0.895095\pi\)
−0.946182 + 0.323635i \(0.895095\pi\)
\(272\) 51.6066i 0.189730i
\(273\) 0 0
\(274\) −150.677 −0.549915
\(275\) 105.177i 0.382463i
\(276\) 0 0
\(277\) −277.522 −1.00188 −0.500942 0.865481i \(-0.667013\pi\)
−0.500942 + 0.865481i \(0.667013\pi\)
\(278\) − 161.555i − 0.581133i
\(279\) 0 0
\(280\) −41.9442 −0.149801
\(281\) − 103.195i − 0.367243i −0.982997 0.183622i \(-0.941218\pi\)
0.982997 0.183622i \(-0.0587821\pi\)
\(282\) 0 0
\(283\) −164.068 −0.579746 −0.289873 0.957065i \(-0.593613\pi\)
−0.289873 + 0.957065i \(0.593613\pi\)
\(284\) − 76.9339i − 0.270894i
\(285\) 0 0
\(286\) 291.015 1.01754
\(287\) − 356.567i − 1.24239i
\(288\) 0 0
\(289\) 122.547 0.424039
\(290\) − 158.301i − 0.545865i
\(291\) 0 0
\(292\) 177.840 0.609042
\(293\) 292.987i 0.999957i 0.866038 + 0.499979i \(0.166659\pi\)
−0.866038 + 0.499979i \(0.833341\pi\)
\(294\) 0 0
\(295\) −21.5546 −0.0730665
\(296\) 7.19622i 0.0243116i
\(297\) 0 0
\(298\) −170.956 −0.573677
\(299\) 165.680i 0.554115i
\(300\) 0 0
\(301\) 496.303 1.64885
\(302\) − 179.588i − 0.594661i
\(303\) 0 0
\(304\) 64.7285 0.212923
\(305\) 100.432i 0.329285i
\(306\) 0 0
\(307\) −467.606 −1.52315 −0.761573 0.648079i \(-0.775573\pi\)
−0.761573 + 0.648079i \(0.775573\pi\)
\(308\) − 279.013i − 0.905885i
\(309\) 0 0
\(310\) 31.8259 0.102664
\(311\) − 537.805i − 1.72928i −0.502395 0.864638i \(-0.667548\pi\)
0.502395 0.864638i \(-0.332452\pi\)
\(312\) 0 0
\(313\) −266.258 −0.850664 −0.425332 0.905037i \(-0.639843\pi\)
−0.425332 + 0.905037i \(0.639843\pi\)
\(314\) − 147.379i − 0.469361i
\(315\) 0 0
\(316\) −235.294 −0.744602
\(317\) 476.875i 1.50434i 0.658971 + 0.752168i \(0.270992\pi\)
−0.658971 + 0.752168i \(0.729008\pi\)
\(318\) 0 0
\(319\) 1053.02 3.30099
\(320\) 17.8885i 0.0559017i
\(321\) 0 0
\(322\) 158.847 0.493315
\(323\) 208.776i 0.646366i
\(324\) 0 0
\(325\) 48.9124 0.150500
\(326\) 266.625i 0.817869i
\(327\) 0 0
\(328\) −152.070 −0.463628
\(329\) − 313.031i − 0.951461i
\(330\) 0 0
\(331\) 35.3440 0.106780 0.0533898 0.998574i \(-0.482997\pi\)
0.0533898 + 0.998574i \(0.482997\pi\)
\(332\) − 294.246i − 0.886282i
\(333\) 0 0
\(334\) 96.0482 0.287569
\(335\) 7.47148i 0.0223029i
\(336\) 0 0
\(337\) −248.493 −0.737367 −0.368684 0.929555i \(-0.620191\pi\)
−0.368684 + 0.929555i \(0.620191\pi\)
\(338\) 103.666i 0.306705i
\(339\) 0 0
\(340\) −57.6980 −0.169700
\(341\) 211.706i 0.620838i
\(342\) 0 0
\(343\) 358.239 1.04443
\(344\) − 211.665i − 0.615305i
\(345\) 0 0
\(346\) 173.089 0.500258
\(347\) 2.69290i 0.00776053i 0.999992 + 0.00388026i \(0.00123513\pi\)
−0.999992 + 0.00388026i \(0.998765\pi\)
\(348\) 0 0
\(349\) 392.385 1.12431 0.562156 0.827031i \(-0.309972\pi\)
0.562156 + 0.827031i \(0.309972\pi\)
\(350\) − 46.8951i − 0.133986i
\(351\) 0 0
\(352\) −118.994 −0.338052
\(353\) 19.7825i 0.0560410i 0.999607 + 0.0280205i \(0.00892037\pi\)
−0.999607 + 0.0280205i \(0.991080\pi\)
\(354\) 0 0
\(355\) 86.0147 0.242295
\(356\) 290.661i 0.816464i
\(357\) 0 0
\(358\) 110.911 0.309807
\(359\) − 415.325i − 1.15689i −0.815720 0.578447i \(-0.803659\pi\)
0.815720 0.578447i \(-0.196341\pi\)
\(360\) 0 0
\(361\) −99.1389 −0.274623
\(362\) − 310.508i − 0.857757i
\(363\) 0 0
\(364\) −129.754 −0.356467
\(365\) 198.831i 0.544744i
\(366\) 0 0
\(367\) −533.387 −1.45337 −0.726685 0.686970i \(-0.758940\pi\)
−0.726685 + 0.686970i \(0.758940\pi\)
\(368\) − 67.7458i − 0.184092i
\(369\) 0 0
\(370\) −8.04562 −0.0217449
\(371\) − 7.21643i − 0.0194513i
\(372\) 0 0
\(373\) −215.580 −0.577961 −0.288981 0.957335i \(-0.593316\pi\)
−0.288981 + 0.957335i \(0.593316\pi\)
\(374\) − 383.806i − 1.02622i
\(375\) 0 0
\(376\) −133.503 −0.355060
\(377\) − 489.702i − 1.29895i
\(378\) 0 0
\(379\) 176.846 0.466612 0.233306 0.972403i \(-0.425046\pi\)
0.233306 + 0.972403i \(0.425046\pi\)
\(380\) 72.3686i 0.190444i
\(381\) 0 0
\(382\) −456.765 −1.19572
\(383\) − 17.2027i − 0.0449156i −0.999748 0.0224578i \(-0.992851\pi\)
0.999748 0.0224578i \(-0.00714914\pi\)
\(384\) 0 0
\(385\) 311.946 0.810249
\(386\) 244.353i 0.633039i
\(387\) 0 0
\(388\) 94.1068 0.242543
\(389\) 344.533i 0.885689i 0.896598 + 0.442845i \(0.146031\pi\)
−0.896598 + 0.442845i \(0.853969\pi\)
\(390\) 0 0
\(391\) 218.508 0.558845
\(392\) − 14.1902i − 0.0361996i
\(393\) 0 0
\(394\) −101.445 −0.257474
\(395\) − 263.067i − 0.665992i
\(396\) 0 0
\(397\) 68.9955 0.173792 0.0868960 0.996217i \(-0.472305\pi\)
0.0868960 + 0.996217i \(0.472305\pi\)
\(398\) − 188.408i − 0.473388i
\(399\) 0 0
\(400\) −20.0000 −0.0500000
\(401\) 178.188i 0.444358i 0.975006 + 0.222179i \(0.0713169\pi\)
−0.975006 + 0.222179i \(0.928683\pi\)
\(402\) 0 0
\(403\) 98.4532 0.244301
\(404\) 44.7100i 0.110668i
\(405\) 0 0
\(406\) −469.506 −1.15642
\(407\) − 53.5194i − 0.131497i
\(408\) 0 0
\(409\) 11.2906 0.0276054 0.0138027 0.999905i \(-0.495606\pi\)
0.0138027 + 0.999905i \(0.495606\pi\)
\(410\) − 170.019i − 0.414681i
\(411\) 0 0
\(412\) −247.798 −0.601452
\(413\) 63.9290i 0.154792i
\(414\) 0 0
\(415\) 328.977 0.792715
\(416\) 55.3381i 0.133024i
\(417\) 0 0
\(418\) −481.396 −1.15166
\(419\) 65.0792i 0.155320i 0.996980 + 0.0776601i \(0.0247449\pi\)
−0.996980 + 0.0776601i \(0.975255\pi\)
\(420\) 0 0
\(421\) −230.088 −0.546527 −0.273263 0.961939i \(-0.588103\pi\)
−0.273263 + 0.961939i \(0.588103\pi\)
\(422\) 532.207i 1.26116i
\(423\) 0 0
\(424\) −3.07769 −0.00725870
\(425\) − 64.5083i − 0.151784i
\(426\) 0 0
\(427\) 297.872 0.697591
\(428\) − 94.7380i − 0.221351i
\(429\) 0 0
\(430\) 236.649 0.550346
\(431\) − 67.4877i − 0.156584i −0.996930 0.0782920i \(-0.975053\pi\)
0.996930 0.0782920i \(-0.0249467\pi\)
\(432\) 0 0
\(433\) 132.060 0.304989 0.152495 0.988304i \(-0.451269\pi\)
0.152495 + 0.988304i \(0.451269\pi\)
\(434\) − 94.3927i − 0.217495i
\(435\) 0 0
\(436\) 53.7491 0.123278
\(437\) − 274.068i − 0.627157i
\(438\) 0 0
\(439\) 689.023 1.56953 0.784764 0.619795i \(-0.212784\pi\)
0.784764 + 0.619795i \(0.212784\pi\)
\(440\) − 133.040i − 0.302363i
\(441\) 0 0
\(442\) −178.488 −0.403819
\(443\) 68.0825i 0.153685i 0.997043 + 0.0768426i \(0.0244839\pi\)
−0.997043 + 0.0768426i \(0.975516\pi\)
\(444\) 0 0
\(445\) −324.969 −0.730268
\(446\) − 83.6889i − 0.187643i
\(447\) 0 0
\(448\) 53.0557 0.118428
\(449\) 685.554i 1.52685i 0.645898 + 0.763423i \(0.276483\pi\)
−0.645898 + 0.763423i \(0.723517\pi\)
\(450\) 0 0
\(451\) 1130.97 2.50769
\(452\) − 37.6198i − 0.0832297i
\(453\) 0 0
\(454\) 211.904 0.466748
\(455\) − 145.070i − 0.318834i
\(456\) 0 0
\(457\) 519.396 1.13653 0.568266 0.822845i \(-0.307614\pi\)
0.568266 + 0.822845i \(0.307614\pi\)
\(458\) 241.638i 0.527593i
\(459\) 0 0
\(460\) 75.7421 0.164657
\(461\) 89.5330i 0.194215i 0.995274 + 0.0971074i \(0.0309590\pi\)
−0.995274 + 0.0971074i \(0.969041\pi\)
\(462\) 0 0
\(463\) −509.961 −1.10143 −0.550714 0.834694i \(-0.685645\pi\)
−0.550714 + 0.834694i \(0.685645\pi\)
\(464\) 200.237i 0.431544i
\(465\) 0 0
\(466\) −634.958 −1.36257
\(467\) 539.803i 1.15590i 0.816074 + 0.577948i \(0.196146\pi\)
−0.816074 + 0.577948i \(0.803854\pi\)
\(468\) 0 0
\(469\) 22.1597 0.0472488
\(470\) − 149.260i − 0.317575i
\(471\) 0 0
\(472\) 27.2647 0.0577641
\(473\) 1574.19i 3.32809i
\(474\) 0 0
\(475\) −80.9106 −0.170338
\(476\) 171.127i 0.359510i
\(477\) 0 0
\(478\) 327.979 0.686148
\(479\) 108.803i 0.227146i 0.993530 + 0.113573i \(0.0362296\pi\)
−0.993530 + 0.113573i \(0.963770\pi\)
\(480\) 0 0
\(481\) −24.8891 −0.0517444
\(482\) 561.925i 1.16582i
\(483\) 0 0
\(484\) 642.979 1.32847
\(485\) 105.215i 0.216937i
\(486\) 0 0
\(487\) 342.524 0.703334 0.351667 0.936125i \(-0.385615\pi\)
0.351667 + 0.936125i \(0.385615\pi\)
\(488\) − 127.037i − 0.260323i
\(489\) 0 0
\(490\) 15.8652 0.0323779
\(491\) − 497.280i − 1.01279i −0.862302 0.506395i \(-0.830978\pi\)
0.862302 0.506395i \(-0.169022\pi\)
\(492\) 0 0
\(493\) −645.846 −1.31003
\(494\) 223.872i 0.453182i
\(495\) 0 0
\(496\) −40.2569 −0.0811632
\(497\) − 255.112i − 0.513303i
\(498\) 0 0
\(499\) 155.033 0.310687 0.155343 0.987861i \(-0.450352\pi\)
0.155343 + 0.987861i \(0.450352\pi\)
\(500\) − 22.3607i − 0.0447214i
\(501\) 0 0
\(502\) −273.196 −0.544215
\(503\) 580.438i 1.15395i 0.816761 + 0.576976i \(0.195767\pi\)
−0.816761 + 0.576976i \(0.804233\pi\)
\(504\) 0 0
\(505\) −49.9873 −0.0989848
\(506\) 503.836i 0.995723i
\(507\) 0 0
\(508\) 257.640 0.507166
\(509\) − 182.684i − 0.358907i −0.983766 0.179454i \(-0.942567\pi\)
0.983766 0.179454i \(-0.0574330\pi\)
\(510\) 0 0
\(511\) 589.715 1.15404
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) −170.931 −0.332550
\(515\) − 277.047i − 0.537955i
\(516\) 0 0
\(517\) 992.879 1.92046
\(518\) 23.8626i 0.0460667i
\(519\) 0 0
\(520\) −61.8698 −0.118980
\(521\) 47.7611i 0.0916720i 0.998949 + 0.0458360i \(0.0145952\pi\)
−0.998949 + 0.0458360i \(0.985405\pi\)
\(522\) 0 0
\(523\) 266.851 0.510230 0.255115 0.966911i \(-0.417887\pi\)
0.255115 + 0.966911i \(0.417887\pi\)
\(524\) − 61.6231i − 0.117601i
\(525\) 0 0
\(526\) −425.729 −0.809371
\(527\) − 129.845i − 0.246386i
\(528\) 0 0
\(529\) 242.157 0.457763
\(530\) − 3.44096i − 0.00649238i
\(531\) 0 0
\(532\) 214.639 0.403456
\(533\) − 525.953i − 0.986779i
\(534\) 0 0
\(535\) 105.920 0.197982
\(536\) − 9.45076i − 0.0176320i
\(537\) 0 0
\(538\) −181.111 −0.336637
\(539\) 105.535i 0.195798i
\(540\) 0 0
\(541\) −707.266 −1.30733 −0.653666 0.756783i \(-0.726770\pi\)
−0.653666 + 0.756783i \(0.726770\pi\)
\(542\) 725.252i 1.33810i
\(543\) 0 0
\(544\) 72.9828 0.134160
\(545\) 60.0933i 0.110263i
\(546\) 0 0
\(547\) 206.328 0.377200 0.188600 0.982054i \(-0.439605\pi\)
0.188600 + 0.982054i \(0.439605\pi\)
\(548\) 213.089i 0.388849i
\(549\) 0 0
\(550\) 148.743 0.270442
\(551\) 810.063i 1.47017i
\(552\) 0 0
\(553\) −780.232 −1.41091
\(554\) 392.475i 0.708439i
\(555\) 0 0
\(556\) −228.473 −0.410923
\(557\) 643.753i 1.15575i 0.816125 + 0.577876i \(0.196118\pi\)
−0.816125 + 0.577876i \(0.803882\pi\)
\(558\) 0 0
\(559\) 732.071 1.30961
\(560\) 59.3181i 0.105925i
\(561\) 0 0
\(562\) −145.940 −0.259680
\(563\) 723.644i 1.28534i 0.766145 + 0.642668i \(0.222172\pi\)
−0.766145 + 0.642668i \(0.777828\pi\)
\(564\) 0 0
\(565\) 42.0602 0.0744429
\(566\) 232.027i 0.409942i
\(567\) 0 0
\(568\) −108.801 −0.191551
\(569\) 380.132i 0.668071i 0.942561 + 0.334035i \(0.108411\pi\)
−0.942561 + 0.334035i \(0.891589\pi\)
\(570\) 0 0
\(571\) 41.4584 0.0726066 0.0363033 0.999341i \(-0.488442\pi\)
0.0363033 + 0.999341i \(0.488442\pi\)
\(572\) − 411.557i − 0.719506i
\(573\) 0 0
\(574\) −504.261 −0.878504
\(575\) 84.6823i 0.147274i
\(576\) 0 0
\(577\) −601.252 −1.04203 −0.521016 0.853547i \(-0.674447\pi\)
−0.521016 + 0.853547i \(0.674447\pi\)
\(578\) − 173.308i − 0.299841i
\(579\) 0 0
\(580\) −223.871 −0.385985
\(581\) − 975.714i − 1.67937i
\(582\) 0 0
\(583\) 22.8892 0.0392611
\(584\) − 251.504i − 0.430658i
\(585\) 0 0
\(586\) 414.347 0.707076
\(587\) − 727.976i − 1.24016i −0.784537 0.620082i \(-0.787099\pi\)
0.784537 0.620082i \(-0.212901\pi\)
\(588\) 0 0
\(589\) −162.861 −0.276504
\(590\) 30.4828i 0.0516658i
\(591\) 0 0
\(592\) 10.1770 0.0171909
\(593\) 418.998i 0.706573i 0.935515 + 0.353286i \(0.114936\pi\)
−0.935515 + 0.353286i \(0.885064\pi\)
\(594\) 0 0
\(595\) −191.326 −0.321555
\(596\) 241.768i 0.405651i
\(597\) 0 0
\(598\) 234.308 0.391819
\(599\) 878.072i 1.46590i 0.680284 + 0.732948i \(0.261856\pi\)
−0.680284 + 0.732948i \(0.738144\pi\)
\(600\) 0 0
\(601\) −532.458 −0.885954 −0.442977 0.896533i \(-0.646078\pi\)
−0.442977 + 0.896533i \(0.646078\pi\)
\(602\) − 701.878i − 1.16591i
\(603\) 0 0
\(604\) −253.975 −0.420489
\(605\) 718.873i 1.18822i
\(606\) 0 0
\(607\) 94.5285 0.155731 0.0778653 0.996964i \(-0.475190\pi\)
0.0778653 + 0.996964i \(0.475190\pi\)
\(608\) − 91.5399i − 0.150559i
\(609\) 0 0
\(610\) 142.032 0.232840
\(611\) − 461.736i − 0.755705i
\(612\) 0 0
\(613\) −816.657 −1.33223 −0.666115 0.745849i \(-0.732044\pi\)
−0.666115 + 0.745849i \(0.732044\pi\)
\(614\) 661.294i 1.07703i
\(615\) 0 0
\(616\) −394.584 −0.640558
\(617\) − 189.639i − 0.307357i −0.988121 0.153678i \(-0.950888\pi\)
0.988121 0.153678i \(-0.0491119\pi\)
\(618\) 0 0
\(619\) −95.4624 −0.154220 −0.0771101 0.997023i \(-0.524569\pi\)
−0.0771101 + 0.997023i \(0.524569\pi\)
\(620\) − 45.0086i − 0.0725946i
\(621\) 0 0
\(622\) −760.571 −1.22278
\(623\) 963.828i 1.54708i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 376.546i 0.601510i
\(627\) 0 0
\(628\) −208.426 −0.331888
\(629\) 32.8250i 0.0521861i
\(630\) 0 0
\(631\) −192.912 −0.305724 −0.152862 0.988248i \(-0.548849\pi\)
−0.152862 + 0.988248i \(0.548849\pi\)
\(632\) 332.756i 0.526513i
\(633\) 0 0
\(634\) 674.403 1.06373
\(635\) 288.050i 0.453623i
\(636\) 0 0
\(637\) 49.0787 0.0770467
\(638\) − 1489.19i − 2.33415i
\(639\) 0 0
\(640\) 25.2982 0.0395285
\(641\) − 319.897i − 0.499060i −0.968367 0.249530i \(-0.919724\pi\)
0.968367 0.249530i \(-0.0802761\pi\)
\(642\) 0 0
\(643\) 152.348 0.236934 0.118467 0.992958i \(-0.462202\pi\)
0.118467 + 0.992958i \(0.462202\pi\)
\(644\) − 224.644i − 0.348826i
\(645\) 0 0
\(646\) 295.254 0.457050
\(647\) − 632.862i − 0.978148i −0.872242 0.489074i \(-0.837335\pi\)
0.872242 0.489074i \(-0.162665\pi\)
\(648\) 0 0
\(649\) −202.772 −0.312437
\(650\) − 69.1726i − 0.106419i
\(651\) 0 0
\(652\) 377.065 0.578321
\(653\) − 817.873i − 1.25249i −0.779628 0.626243i \(-0.784592\pi\)
0.779628 0.626243i \(-0.215408\pi\)
\(654\) 0 0
\(655\) 68.8967 0.105186
\(656\) 215.059i 0.327834i
\(657\) 0 0
\(658\) −442.692 −0.672785
\(659\) 425.477i 0.645640i 0.946460 + 0.322820i \(0.104631\pi\)
−0.946460 + 0.322820i \(0.895369\pi\)
\(660\) 0 0
\(661\) 285.972 0.432635 0.216318 0.976323i \(-0.430595\pi\)
0.216318 + 0.976323i \(0.430595\pi\)
\(662\) − 49.9840i − 0.0755046i
\(663\) 0 0
\(664\) −416.126 −0.626696
\(665\) 239.973i 0.360862i
\(666\) 0 0
\(667\) 847.824 1.27110
\(668\) − 135.833i − 0.203342i
\(669\) 0 0
\(670\) 10.5663 0.0157705
\(671\) 944.796i 1.40804i
\(672\) 0 0
\(673\) 1197.42 1.77922 0.889612 0.456718i \(-0.150975\pi\)
0.889612 + 0.456718i \(0.150975\pi\)
\(674\) 351.422i 0.521398i
\(675\) 0 0
\(676\) 146.606 0.216873
\(677\) − 905.553i − 1.33760i −0.743444 0.668799i \(-0.766809\pi\)
0.743444 0.668799i \(-0.233191\pi\)
\(678\) 0 0
\(679\) 312.056 0.459582
\(680\) 81.5972i 0.119996i
\(681\) 0 0
\(682\) 299.397 0.438998
\(683\) − 31.1970i − 0.0456764i −0.999739 0.0228382i \(-0.992730\pi\)
0.999739 0.0228382i \(-0.00727026\pi\)
\(684\) 0 0
\(685\) −238.241 −0.347797
\(686\) − 506.626i − 0.738523i
\(687\) 0 0
\(688\) −299.340 −0.435087
\(689\) − 10.6446i − 0.0154493i
\(690\) 0 0
\(691\) −203.064 −0.293869 −0.146935 0.989146i \(-0.546941\pi\)
−0.146935 + 0.989146i \(0.546941\pi\)
\(692\) − 244.785i − 0.353736i
\(693\) 0 0
\(694\) 3.80834 0.00548752
\(695\) − 255.441i − 0.367540i
\(696\) 0 0
\(697\) −693.655 −0.995201
\(698\) − 554.916i − 0.795008i
\(699\) 0 0
\(700\) −66.3197 −0.0947424
\(701\) − 633.699i − 0.903993i −0.892020 0.451997i \(-0.850712\pi\)
0.892020 0.451997i \(-0.149288\pi\)
\(702\) 0 0
\(703\) 41.1714 0.0585652
\(704\) 168.284i 0.239039i
\(705\) 0 0
\(706\) 27.9767 0.0396270
\(707\) 148.258i 0.209700i
\(708\) 0 0
\(709\) −149.380 −0.210691 −0.105346 0.994436i \(-0.533595\pi\)
−0.105346 + 0.994436i \(0.533595\pi\)
\(710\) − 121.643i − 0.171328i
\(711\) 0 0
\(712\) 411.057 0.577328
\(713\) 170.452i 0.239064i
\(714\) 0 0
\(715\) 460.135 0.643546
\(716\) − 156.852i − 0.219067i
\(717\) 0 0
\(718\) −587.359 −0.818048
\(719\) 257.590i 0.358262i 0.983825 + 0.179131i \(0.0573285\pi\)
−0.983825 + 0.179131i \(0.942671\pi\)
\(720\) 0 0
\(721\) −821.694 −1.13966
\(722\) 140.204i 0.194188i
\(723\) 0 0
\(724\) −439.124 −0.606525
\(725\) − 250.296i − 0.345235i
\(726\) 0 0
\(727\) 607.381 0.835463 0.417731 0.908571i \(-0.362825\pi\)
0.417731 + 0.908571i \(0.362825\pi\)
\(728\) 183.500i 0.252061i
\(729\) 0 0
\(730\) 281.190 0.385192
\(731\) − 965.494i − 1.32079i
\(732\) 0 0
\(733\) 887.285 1.21048 0.605242 0.796041i \(-0.293076\pi\)
0.605242 + 0.796041i \(0.293076\pi\)
\(734\) 754.323i 1.02769i
\(735\) 0 0
\(736\) −95.8070 −0.130173
\(737\) 70.2867i 0.0953686i
\(738\) 0 0
\(739\) −30.1955 −0.0408599 −0.0204300 0.999791i \(-0.506504\pi\)
−0.0204300 + 0.999791i \(0.506504\pi\)
\(740\) 11.3782i 0.0153760i
\(741\) 0 0
\(742\) −10.2056 −0.0137541
\(743\) − 570.016i − 0.767181i −0.923503 0.383591i \(-0.874687\pi\)
0.923503 0.383591i \(-0.125313\pi\)
\(744\) 0 0
\(745\) −270.305 −0.362825
\(746\) 304.876i 0.408680i
\(747\) 0 0
\(748\) −542.784 −0.725647
\(749\) − 314.150i − 0.419426i
\(750\) 0 0
\(751\) 427.494 0.569233 0.284617 0.958641i \(-0.408134\pi\)
0.284617 + 0.958641i \(0.408134\pi\)
\(752\) 188.801i 0.251065i
\(753\) 0 0
\(754\) −692.544 −0.918493
\(755\) − 283.953i − 0.376097i
\(756\) 0 0
\(757\) −587.791 −0.776474 −0.388237 0.921560i \(-0.626916\pi\)
−0.388237 + 0.921560i \(0.626916\pi\)
\(758\) − 250.098i − 0.329945i
\(759\) 0 0
\(760\) 102.345 0.134664
\(761\) 1311.43i 1.72330i 0.507502 + 0.861651i \(0.330569\pi\)
−0.507502 + 0.861651i \(0.669431\pi\)
\(762\) 0 0
\(763\) 178.231 0.233592
\(764\) 645.963i 0.845501i
\(765\) 0 0
\(766\) −24.3283 −0.0317601
\(767\) 94.2984i 0.122944i
\(768\) 0 0
\(769\) −1191.52 −1.54945 −0.774724 0.632300i \(-0.782111\pi\)
−0.774724 + 0.632300i \(0.782111\pi\)
\(770\) − 441.158i − 0.572932i
\(771\) 0 0
\(772\) 345.567 0.447626
\(773\) 204.848i 0.265003i 0.991183 + 0.132502i \(0.0423010\pi\)
−0.991183 + 0.132502i \(0.957699\pi\)
\(774\) 0 0
\(775\) 50.3212 0.0649306
\(776\) − 133.087i − 0.171504i
\(777\) 0 0
\(778\) 487.244 0.626277
\(779\) 870.029i 1.11685i
\(780\) 0 0
\(781\) 809.169 1.03607
\(782\) − 309.017i − 0.395163i
\(783\) 0 0
\(784\) −20.0680 −0.0255970
\(785\) − 233.027i − 0.296850i
\(786\) 0 0
\(787\) 133.227 0.169285 0.0846426 0.996411i \(-0.473025\pi\)
0.0846426 + 0.996411i \(0.473025\pi\)
\(788\) 143.464i 0.182061i
\(789\) 0 0
\(790\) −372.033 −0.470928
\(791\) − 124.747i − 0.157708i
\(792\) 0 0
\(793\) 439.375 0.554067
\(794\) − 97.5743i − 0.122890i
\(795\) 0 0
\(796\) −266.450 −0.334736
\(797\) − 608.921i − 0.764016i −0.924159 0.382008i \(-0.875233\pi\)
0.924159 0.382008i \(-0.124767\pi\)
\(798\) 0 0
\(799\) −608.962 −0.762155
\(800\) 28.2843i 0.0353553i
\(801\) 0 0
\(802\) 251.995 0.314208
\(803\) 1870.47i 2.32936i
\(804\) 0 0
\(805\) 251.160 0.312000
\(806\) − 139.234i − 0.172747i
\(807\) 0 0
\(808\) 63.2295 0.0782544
\(809\) − 164.342i − 0.203142i −0.994828 0.101571i \(-0.967613\pi\)
0.994828 0.101571i \(-0.0323869\pi\)
\(810\) 0 0
\(811\) −1026.77 −1.26606 −0.633028 0.774129i \(-0.718188\pi\)
−0.633028 + 0.774129i \(0.718188\pi\)
\(812\) 663.981i 0.817711i
\(813\) 0 0
\(814\) −75.6879 −0.0929826
\(815\) 421.572i 0.517266i
\(816\) 0 0
\(817\) −1210.99 −1.48224
\(818\) − 15.9673i − 0.0195200i
\(819\) 0 0
\(820\) −240.444 −0.293224
\(821\) 302.693i 0.368688i 0.982862 + 0.184344i \(0.0590161\pi\)
−0.982862 + 0.184344i \(0.940984\pi\)
\(822\) 0 0
\(823\) −697.119 −0.847046 −0.423523 0.905885i \(-0.639207\pi\)
−0.423523 + 0.905885i \(0.639207\pi\)
\(824\) 350.439i 0.425291i
\(825\) 0 0
\(826\) 90.4092 0.109454
\(827\) − 454.516i − 0.549596i −0.961502 0.274798i \(-0.911389\pi\)
0.961502 0.274798i \(-0.0886110\pi\)
\(828\) 0 0
\(829\) 591.488 0.713496 0.356748 0.934201i \(-0.383885\pi\)
0.356748 + 0.934201i \(0.383885\pi\)
\(830\) − 465.243i − 0.560534i
\(831\) 0 0
\(832\) 78.2598 0.0940623
\(833\) − 64.7276i − 0.0777043i
\(834\) 0 0
\(835\) 151.865 0.181875
\(836\) 680.796i 0.814349i
\(837\) 0 0
\(838\) 92.0359 0.109828
\(839\) − 1549.73i − 1.84712i −0.383457 0.923559i \(-0.625267\pi\)
0.383457 0.923559i \(-0.374733\pi\)
\(840\) 0 0
\(841\) −1664.92 −1.97969
\(842\) 325.393i 0.386453i
\(843\) 0 0
\(844\) 752.655 0.891771
\(845\) 163.911i 0.193977i
\(846\) 0 0
\(847\) 2132.11 2.51725
\(848\) 4.35251i 0.00513268i
\(849\) 0 0
\(850\) −91.2285 −0.107328
\(851\) − 43.0906i − 0.0506352i
\(852\) 0 0
\(853\) −1641.55 −1.92444 −0.962219 0.272276i \(-0.912224\pi\)
−0.962219 + 0.272276i \(0.912224\pi\)
\(854\) − 421.254i − 0.493272i
\(855\) 0 0
\(856\) −133.980 −0.156518
\(857\) 318.643i 0.371812i 0.982568 + 0.185906i \(0.0595219\pi\)
−0.982568 + 0.185906i \(0.940478\pi\)
\(858\) 0 0
\(859\) −628.332 −0.731470 −0.365735 0.930719i \(-0.619182\pi\)
−0.365735 + 0.930719i \(0.619182\pi\)
\(860\) − 334.672i − 0.389153i
\(861\) 0 0
\(862\) −95.4421 −0.110722
\(863\) 183.620i 0.212770i 0.994325 + 0.106385i \(0.0339276\pi\)
−0.994325 + 0.106385i \(0.966072\pi\)
\(864\) 0 0
\(865\) 273.678 0.316391
\(866\) − 186.761i − 0.215660i
\(867\) 0 0
\(868\) −133.491 −0.153792
\(869\) − 2474.76i − 2.84782i
\(870\) 0 0
\(871\) 32.6866 0.0375277
\(872\) − 76.0126i − 0.0871705i
\(873\) 0 0
\(874\) −387.590 −0.443467
\(875\) − 74.1477i − 0.0847402i
\(876\) 0 0
\(877\) −1445.29 −1.64800 −0.823999 0.566592i \(-0.808262\pi\)
−0.823999 + 0.566592i \(0.808262\pi\)
\(878\) − 974.425i − 1.10982i
\(879\) 0 0
\(880\) −188.147 −0.213803
\(881\) − 608.977i − 0.691234i −0.938376 0.345617i \(-0.887670\pi\)
0.938376 0.345617i \(-0.112330\pi\)
\(882\) 0 0
\(883\) −120.519 −0.136488 −0.0682440 0.997669i \(-0.521740\pi\)
−0.0682440 + 0.997669i \(0.521740\pi\)
\(884\) 252.420i 0.285543i
\(885\) 0 0
\(886\) 96.2832 0.108672
\(887\) − 1607.42i − 1.81220i −0.423064 0.906100i \(-0.639046\pi\)
0.423064 0.906100i \(-0.360954\pi\)
\(888\) 0 0
\(889\) 854.330 0.961002
\(890\) 459.576i 0.516377i
\(891\) 0 0
\(892\) −118.354 −0.132684
\(893\) 763.801i 0.855320i
\(894\) 0 0
\(895\) 175.366 0.195939
\(896\) − 75.0322i − 0.0837412i
\(897\) 0 0
\(898\) 969.520 1.07964
\(899\) − 503.807i − 0.560408i
\(900\) 0 0
\(901\) −14.0386 −0.0155812
\(902\) − 1599.43i − 1.77320i
\(903\) 0 0
\(904\) −53.2025 −0.0588523
\(905\) − 490.956i − 0.542493i
\(906\) 0 0
\(907\) 647.989 0.714431 0.357215 0.934022i \(-0.383726\pi\)
0.357215 + 0.934022i \(0.383726\pi\)
\(908\) − 299.677i − 0.330041i
\(909\) 0 0
\(910\) −205.159 −0.225450
\(911\) − 200.538i − 0.220130i −0.993924 0.110065i \(-0.964894\pi\)
0.993924 0.110065i \(-0.0351059\pi\)
\(912\) 0 0
\(913\) 3094.79 3.38970
\(914\) − 734.536i − 0.803650i
\(915\) 0 0
\(916\) 341.727 0.373065
\(917\) − 204.341i − 0.222837i
\(918\) 0 0
\(919\) −619.581 −0.674191 −0.337095 0.941471i \(-0.609444\pi\)
−0.337095 + 0.941471i \(0.609444\pi\)
\(920\) − 107.116i − 0.116430i
\(921\) 0 0
\(922\) 126.619 0.137331
\(923\) − 376.302i − 0.407695i
\(924\) 0 0
\(925\) −12.7212 −0.0137527
\(926\) 721.194i 0.778828i
\(927\) 0 0
\(928\) 283.177 0.305148
\(929\) − 710.823i − 0.765149i −0.923925 0.382574i \(-0.875038\pi\)
0.923925 0.382574i \(-0.124962\pi\)
\(930\) 0 0
\(931\) −81.1857 −0.0872027
\(932\) 897.966i 0.963483i
\(933\) 0 0
\(934\) 763.397 0.817342
\(935\) − 606.851i − 0.649039i
\(936\) 0 0
\(937\) 435.674 0.464967 0.232483 0.972600i \(-0.425315\pi\)
0.232483 + 0.972600i \(0.425315\pi\)
\(938\) − 31.3386i − 0.0334100i
\(939\) 0 0
\(940\) −211.086 −0.224560
\(941\) − 126.099i − 0.134005i −0.997753 0.0670027i \(-0.978656\pi\)
0.997753 0.0670027i \(-0.0213436\pi\)
\(942\) 0 0
\(943\) 910.585 0.965626
\(944\) − 38.5581i − 0.0408454i
\(945\) 0 0
\(946\) 2226.23 2.35331
\(947\) − 567.372i − 0.599126i −0.954077 0.299563i \(-0.903159\pi\)
0.954077 0.299563i \(-0.0968408\pi\)
\(948\) 0 0
\(949\) 869.859 0.916606
\(950\) 114.425i 0.120447i
\(951\) 0 0
\(952\) 242.010 0.254212
\(953\) 873.128i 0.916189i 0.888903 + 0.458095i \(0.151468\pi\)
−0.888903 + 0.458095i \(0.848532\pi\)
\(954\) 0 0
\(955\) −722.209 −0.756239
\(956\) − 463.832i − 0.485180i
\(957\) 0 0
\(958\) 153.871 0.160616
\(959\) 706.600i 0.736809i
\(960\) 0 0
\(961\) −859.711 −0.894601
\(962\) 35.1985i 0.0365888i
\(963\) 0 0
\(964\) 794.682 0.824359
\(965\) 386.356i 0.400369i
\(966\) 0 0
\(967\) −840.748 −0.869439 −0.434720 0.900566i \(-0.643153\pi\)
−0.434720 + 0.900566i \(0.643153\pi\)
\(968\) − 909.310i − 0.939370i
\(969\) 0 0
\(970\) 148.796 0.153398
\(971\) 258.099i 0.265807i 0.991129 + 0.132903i \(0.0424300\pi\)
−0.991129 + 0.132903i \(0.957570\pi\)
\(972\) 0 0
\(973\) −757.613 −0.778636
\(974\) − 484.402i − 0.497333i
\(975\) 0 0
\(976\) −179.658 −0.184076
\(977\) 1151.99i 1.17911i 0.807728 + 0.589555i \(0.200697\pi\)
−0.807728 + 0.589555i \(0.799303\pi\)
\(978\) 0 0
\(979\) −3057.09 −3.12267
\(980\) − 22.4367i − 0.0228946i
\(981\) 0 0
\(982\) −703.260 −0.716151
\(983\) − 639.379i − 0.650436i −0.945639 0.325218i \(-0.894562\pi\)
0.945639 0.325218i \(-0.105438\pi\)
\(984\) 0 0
\(985\) −160.398 −0.162841
\(986\) 913.364i 0.926333i
\(987\) 0 0
\(988\) 316.602 0.320448
\(989\) 1267.44i 1.28153i
\(990\) 0 0
\(991\) 1875.09 1.89212 0.946060 0.323992i \(-0.105025\pi\)
0.946060 + 0.323992i \(0.105025\pi\)
\(992\) 56.9319i 0.0573910i
\(993\) 0 0
\(994\) −360.782 −0.362960
\(995\) − 297.900i − 0.299397i
\(996\) 0 0
\(997\) −945.395 −0.948239 −0.474120 0.880460i \(-0.657234\pi\)
−0.474120 + 0.880460i \(0.657234\pi\)
\(998\) − 219.249i − 0.219689i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.3.d.c.161.1 16
3.2 odd 2 inner 810.3.d.c.161.13 16
9.2 odd 6 270.3.h.a.71.6 16
9.4 even 3 270.3.h.a.251.6 16
9.5 odd 6 90.3.h.a.11.3 16
9.7 even 3 90.3.h.a.41.3 yes 16
36.7 odd 6 720.3.bs.d.401.5 16
36.11 even 6 2160.3.bs.d.881.1 16
36.23 even 6 720.3.bs.d.641.5 16
36.31 odd 6 2160.3.bs.d.1601.1 16
45.2 even 12 1350.3.k.b.449.14 32
45.4 even 6 1350.3.i.g.251.2 16
45.7 odd 12 450.3.k.c.149.3 32
45.13 odd 12 1350.3.k.b.899.14 32
45.14 odd 6 450.3.i.g.101.6 16
45.22 odd 12 1350.3.k.b.899.3 32
45.23 even 12 450.3.k.c.299.3 32
45.29 odd 6 1350.3.i.g.1151.2 16
45.32 even 12 450.3.k.c.299.14 32
45.34 even 6 450.3.i.g.401.6 16
45.38 even 12 1350.3.k.b.449.3 32
45.43 odd 12 450.3.k.c.149.14 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.3.h.a.11.3 16 9.5 odd 6
90.3.h.a.41.3 yes 16 9.7 even 3
270.3.h.a.71.6 16 9.2 odd 6
270.3.h.a.251.6 16 9.4 even 3
450.3.i.g.101.6 16 45.14 odd 6
450.3.i.g.401.6 16 45.34 even 6
450.3.k.c.149.3 32 45.7 odd 12
450.3.k.c.149.14 32 45.43 odd 12
450.3.k.c.299.3 32 45.23 even 12
450.3.k.c.299.14 32 45.32 even 12
720.3.bs.d.401.5 16 36.7 odd 6
720.3.bs.d.641.5 16 36.23 even 6
810.3.d.c.161.1 16 1.1 even 1 trivial
810.3.d.c.161.13 16 3.2 odd 2 inner
1350.3.i.g.251.2 16 45.4 even 6
1350.3.i.g.1151.2 16 45.29 odd 6
1350.3.k.b.449.3 32 45.38 even 12
1350.3.k.b.449.14 32 45.2 even 12
1350.3.k.b.899.3 32 45.22 odd 12
1350.3.k.b.899.14 32 45.13 odd 12
2160.3.bs.d.881.1 16 36.11 even 6
2160.3.bs.d.1601.1 16 36.31 odd 6