Properties

Label 720.3.bs.d.641.5
Level $720$
Weight $3$
Character 720.641
Analytic conductor $19.619$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,3,Mod(401,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.401");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 720.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.6185790339\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 138x^{12} - 1040x^{10} + 5541x^{8} - 26220x^{6} + 99328x^{4} - 202728x^{2} + 181476 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 641.5
Root \(-2.11536 - 0.410927i\) of defining polynomial
Character \(\chi\) \(=\) 720.641
Dual form 720.3.bs.d.401.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.129213 + 2.99722i) q^{3} +(1.93649 - 1.11803i) q^{5} +(-3.31598 + 5.74345i) q^{7} +(-8.96661 + 0.774559i) q^{9} +(18.2172 + 10.5177i) q^{11} +(4.89124 + 8.47187i) q^{13} +(3.60121 + 5.65962i) q^{15} -12.9017i q^{17} -16.1821 q^{19} +(-17.6428 - 9.19659i) q^{21} +(-14.6674 + 8.46823i) q^{23} +(2.50000 - 4.33013i) q^{25} +(-3.48012 - 26.7748i) q^{27} +(43.3525 + 25.0296i) q^{29} +(-5.03212 - 8.71588i) q^{31} +(-29.1700 + 55.9600i) q^{33} +14.8295i q^{35} +2.54425 q^{37} +(-24.7600 + 15.7548i) q^{39} +(-46.5617 + 26.8824i) q^{41} +(-37.4175 + 64.8089i) q^{43} +(-16.4978 + 11.5249i) q^{45} +(-40.8766 - 23.6001i) q^{47} +(2.50850 + 4.34485i) q^{49} +(38.6691 - 1.66706i) q^{51} -1.08813i q^{53} +47.0367 q^{55} +(-2.09094 - 48.5013i) q^{57} +(-8.34807 + 4.81976i) q^{59} +(22.4573 - 38.8971i) q^{61} +(25.2845 - 54.0677i) q^{63} +(18.9437 + 10.9371i) q^{65} +(-1.67067 - 2.89369i) q^{67} +(-27.2763 - 42.8672i) q^{69} +38.4670i q^{71} -88.9201 q^{73} +(13.3014 + 6.93353i) q^{75} +(-120.816 + 69.7532i) q^{77} +(58.8235 - 101.885i) q^{79} +(79.8001 - 13.8903i) q^{81} +(-127.412 - 73.5614i) q^{83} +(-14.4245 - 24.9840i) q^{85} +(-69.4173 + 133.171i) q^{87} +145.331i q^{89} -64.8771 q^{91} +(25.4732 - 16.2086i) q^{93} +(-31.3365 + 18.0922i) q^{95} +(23.5267 - 40.7494i) q^{97} +(-171.493 - 80.1980i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{3} + 4 q^{7} - 4 q^{9} + 20 q^{13} + 20 q^{15} - 80 q^{19} - 44 q^{21} - 108 q^{23} + 40 q^{25} + 124 q^{27} - 72 q^{29} + 16 q^{31} - 264 q^{33} - 88 q^{37} + 8 q^{39} + 108 q^{41} - 92 q^{43}+ \cdots - 816 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.129213 + 2.99722i 0.0430710 + 0.999072i
\(4\) 0 0
\(5\) 1.93649 1.11803i 0.387298 0.223607i
\(6\) 0 0
\(7\) −3.31598 + 5.74345i −0.473712 + 0.820493i −0.999547 0.0300933i \(-0.990420\pi\)
0.525835 + 0.850587i \(0.323753\pi\)
\(8\) 0 0
\(9\) −8.96661 + 0.774559i −0.996290 + 0.0860621i
\(10\) 0 0
\(11\) 18.2172 + 10.5177i 1.65611 + 0.956156i 0.974484 + 0.224457i \(0.0720608\pi\)
0.681627 + 0.731699i \(0.261273\pi\)
\(12\) 0 0
\(13\) 4.89124 + 8.47187i 0.376249 + 0.651683i 0.990513 0.137418i \(-0.0438803\pi\)
−0.614264 + 0.789101i \(0.710547\pi\)
\(14\) 0 0
\(15\) 3.60121 + 5.65962i 0.240081 + 0.377308i
\(16\) 0 0
\(17\) 12.9017i 0.758921i −0.925208 0.379460i \(-0.876110\pi\)
0.925208 0.379460i \(-0.123890\pi\)
\(18\) 0 0
\(19\) −16.1821 −0.851691 −0.425845 0.904796i \(-0.640023\pi\)
−0.425845 + 0.904796i \(0.640023\pi\)
\(20\) 0 0
\(21\) −17.6428 9.19659i −0.840135 0.437933i
\(22\) 0 0
\(23\) −14.6674 + 8.46823i −0.637713 + 0.368184i −0.783733 0.621098i \(-0.786687\pi\)
0.146020 + 0.989282i \(0.453354\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.100000 0.173205i
\(26\) 0 0
\(27\) −3.48012 26.7748i −0.128893 0.991658i
\(28\) 0 0
\(29\) 43.3525 + 25.0296i 1.49491 + 0.863089i 0.999983 0.00584415i \(-0.00186026\pi\)
0.494930 + 0.868933i \(0.335194\pi\)
\(30\) 0 0
\(31\) −5.03212 8.71588i −0.162326 0.281158i 0.773376 0.633947i \(-0.218566\pi\)
−0.935703 + 0.352790i \(0.885233\pi\)
\(32\) 0 0
\(33\) −29.1700 + 55.9600i −0.883939 + 1.69576i
\(34\) 0 0
\(35\) 14.8295i 0.423701i
\(36\) 0 0
\(37\) 2.54425 0.0687635 0.0343817 0.999409i \(-0.489054\pi\)
0.0343817 + 0.999409i \(0.489054\pi\)
\(38\) 0 0
\(39\) −24.7600 + 15.7548i −0.634872 + 0.403969i
\(40\) 0 0
\(41\) −46.5617 + 26.8824i −1.13565 + 0.655669i −0.945350 0.326057i \(-0.894280\pi\)
−0.190301 + 0.981726i \(0.560946\pi\)
\(42\) 0 0
\(43\) −37.4175 + 64.8089i −0.870173 + 1.50718i −0.00835640 + 0.999965i \(0.502660\pi\)
−0.861817 + 0.507219i \(0.830673\pi\)
\(44\) 0 0
\(45\) −16.4978 + 11.5249i −0.366617 + 0.256109i
\(46\) 0 0
\(47\) −40.8766 23.6001i −0.869716 0.502131i −0.00246200 0.999997i \(-0.500784\pi\)
−0.867254 + 0.497866i \(0.834117\pi\)
\(48\) 0 0
\(49\) 2.50850 + 4.34485i 0.0511939 + 0.0886704i
\(50\) 0 0
\(51\) 38.6691 1.66706i 0.758217 0.0326875i
\(52\) 0 0
\(53\) 1.08813i 0.0205307i −0.999947 0.0102654i \(-0.996732\pi\)
0.999947 0.0102654i \(-0.00326762\pi\)
\(54\) 0 0
\(55\) 47.0367 0.855212
\(56\) 0 0
\(57\) −2.09094 48.5013i −0.0366832 0.850900i
\(58\) 0 0
\(59\) −8.34807 + 4.81976i −0.141493 + 0.0816908i −0.569075 0.822285i \(-0.692699\pi\)
0.427583 + 0.903976i \(0.359365\pi\)
\(60\) 0 0
\(61\) 22.4573 38.8971i 0.368152 0.637657i −0.621125 0.783712i \(-0.713324\pi\)
0.989277 + 0.146054i \(0.0466574\pi\)
\(62\) 0 0
\(63\) 25.2845 54.0677i 0.401341 0.858218i
\(64\) 0 0
\(65\) 18.9437 + 10.9371i 0.291441 + 0.168264i
\(66\) 0 0
\(67\) −1.67067 2.89369i −0.0249354 0.0431894i 0.853288 0.521439i \(-0.174605\pi\)
−0.878224 + 0.478250i \(0.841271\pi\)
\(68\) 0 0
\(69\) −27.2763 42.8672i −0.395309 0.621263i
\(70\) 0 0
\(71\) 38.4670i 0.541788i 0.962609 + 0.270894i \(0.0873193\pi\)
−0.962609 + 0.270894i \(0.912681\pi\)
\(72\) 0 0
\(73\) −88.9201 −1.21808 −0.609042 0.793138i \(-0.708446\pi\)
−0.609042 + 0.793138i \(0.708446\pi\)
\(74\) 0 0
\(75\) 13.3014 + 6.93353i 0.177351 + 0.0924471i
\(76\) 0 0
\(77\) −120.816 + 69.7532i −1.56904 + 0.905885i
\(78\) 0 0
\(79\) 58.8235 101.885i 0.744602 1.28969i −0.205779 0.978599i \(-0.565973\pi\)
0.950381 0.311090i \(-0.100694\pi\)
\(80\) 0 0
\(81\) 79.8001 13.8903i 0.985187 0.171486i
\(82\) 0 0
\(83\) −127.412 73.5614i −1.53509 0.886282i −0.999116 0.0420449i \(-0.986613\pi\)
−0.535970 0.844237i \(-0.680054\pi\)
\(84\) 0 0
\(85\) −14.4245 24.9840i −0.169700 0.293929i
\(86\) 0 0
\(87\) −69.4173 + 133.171i −0.797900 + 1.53070i
\(88\) 0 0
\(89\) 145.331i 1.63293i 0.577396 + 0.816464i \(0.304069\pi\)
−0.577396 + 0.816464i \(0.695931\pi\)
\(90\) 0 0
\(91\) −64.8771 −0.712935
\(92\) 0 0
\(93\) 25.4732 16.2086i 0.273905 0.174285i
\(94\) 0 0
\(95\) −31.3365 + 18.0922i −0.329858 + 0.190444i
\(96\) 0 0
\(97\) 23.5267 40.7494i 0.242543 0.420097i −0.718895 0.695119i \(-0.755352\pi\)
0.961438 + 0.275022i \(0.0886851\pi\)
\(98\) 0 0
\(99\) −171.493 80.1980i −1.73226 0.810080i
\(100\) 0 0
\(101\) −19.3600 11.1775i −0.191683 0.110668i 0.401087 0.916040i \(-0.368632\pi\)
−0.592770 + 0.805372i \(0.701966\pi\)
\(102\) 0 0
\(103\) 61.9495 + 107.300i 0.601452 + 1.04174i 0.992601 + 0.121418i \(0.0387441\pi\)
−0.391150 + 0.920327i \(0.627923\pi\)
\(104\) 0 0
\(105\) −44.4473 + 1.91617i −0.423308 + 0.0182492i
\(106\) 0 0
\(107\) 47.3690i 0.442701i 0.975194 + 0.221351i \(0.0710465\pi\)
−0.975194 + 0.221351i \(0.928954\pi\)
\(108\) 0 0
\(109\) −26.8745 −0.246555 −0.123278 0.992372i \(-0.539341\pi\)
−0.123278 + 0.992372i \(0.539341\pi\)
\(110\) 0 0
\(111\) 0.328750 + 7.62567i 0.00296171 + 0.0686997i
\(112\) 0 0
\(113\) −16.2899 + 9.40495i −0.144158 + 0.0832297i −0.570344 0.821406i \(-0.693190\pi\)
0.426186 + 0.904635i \(0.359857\pi\)
\(114\) 0 0
\(115\) −18.9355 + 32.7973i −0.164657 + 0.285194i
\(116\) 0 0
\(117\) −50.4198 72.1754i −0.430938 0.616884i
\(118\) 0 0
\(119\) 74.1001 + 42.7817i 0.622690 + 0.359510i
\(120\) 0 0
\(121\) 160.745 + 278.418i 1.32847 + 2.30098i
\(122\) 0 0
\(123\) −86.5888 136.082i −0.703974 1.10636i
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 128.820 1.01433 0.507166 0.861849i \(-0.330693\pi\)
0.507166 + 0.861849i \(0.330693\pi\)
\(128\) 0 0
\(129\) −199.081 103.774i −1.54327 0.804450i
\(130\) 0 0
\(131\) 26.6836 15.4058i 0.203692 0.117601i −0.394685 0.918817i \(-0.629146\pi\)
0.598376 + 0.801215i \(0.295813\pi\)
\(132\) 0 0
\(133\) 53.6597 92.9413i 0.403456 0.698806i
\(134\) 0 0
\(135\) −36.6743 47.9582i −0.271662 0.355246i
\(136\) 0 0
\(137\) −92.2703 53.2723i −0.673506 0.388849i 0.123898 0.992295i \(-0.460460\pi\)
−0.797404 + 0.603446i \(0.793794\pi\)
\(138\) 0 0
\(139\) 57.1183 + 98.9317i 0.410923 + 0.711739i 0.994991 0.0999656i \(-0.0318733\pi\)
−0.584068 + 0.811705i \(0.698540\pi\)
\(140\) 0 0
\(141\) 65.4529 125.566i 0.464205 0.890536i
\(142\) 0 0
\(143\) 205.779i 1.43901i
\(144\) 0 0
\(145\) 111.936 0.771970
\(146\) 0 0
\(147\) −12.6983 + 8.07993i −0.0863832 + 0.0549655i
\(148\) 0 0
\(149\) 104.689 60.4419i 0.702607 0.405651i −0.105710 0.994397i \(-0.533712\pi\)
0.808318 + 0.588746i \(0.200378\pi\)
\(150\) 0 0
\(151\) 63.4938 109.975i 0.420489 0.728308i −0.575498 0.817803i \(-0.695192\pi\)
0.995987 + 0.0894947i \(0.0285252\pi\)
\(152\) 0 0
\(153\) 9.99310 + 115.684i 0.0653144 + 0.756105i
\(154\) 0 0
\(155\) −19.4893 11.2522i −0.125737 0.0725946i
\(156\) 0 0
\(157\) −52.1064 90.2510i −0.331888 0.574847i 0.650994 0.759083i \(-0.274352\pi\)
−0.982882 + 0.184236i \(0.941019\pi\)
\(158\) 0 0
\(159\) 3.26135 0.140600i 0.0205117 0.000884279i
\(160\) 0 0
\(161\) 112.322i 0.697652i
\(162\) 0 0
\(163\) 188.533 1.15664 0.578321 0.815809i \(-0.303708\pi\)
0.578321 + 0.815809i \(0.303708\pi\)
\(164\) 0 0
\(165\) 6.07775 + 140.979i 0.0368349 + 0.854419i
\(166\) 0 0
\(167\) 58.8172 33.9581i 0.352199 0.203342i −0.313454 0.949603i \(-0.601486\pi\)
0.665653 + 0.746261i \(0.268153\pi\)
\(168\) 0 0
\(169\) 36.6516 63.4824i 0.216873 0.375635i
\(170\) 0 0
\(171\) 145.099 12.5340i 0.848531 0.0732983i
\(172\) 0 0
\(173\) 105.995 + 61.1963i 0.612689 + 0.353736i 0.774017 0.633165i \(-0.218244\pi\)
−0.161328 + 0.986901i \(0.551578\pi\)
\(174\) 0 0
\(175\) 16.5799 + 28.7173i 0.0947424 + 0.164099i
\(176\) 0 0
\(177\) −15.5245 24.3982i −0.0877093 0.137843i
\(178\) 0 0
\(179\) 78.4259i 0.438134i 0.975710 + 0.219067i \(0.0703013\pi\)
−0.975710 + 0.219067i \(0.929699\pi\)
\(180\) 0 0
\(181\) 219.562 1.21305 0.606525 0.795064i \(-0.292563\pi\)
0.606525 + 0.795064i \(0.292563\pi\)
\(182\) 0 0
\(183\) 119.485 + 62.2832i 0.652922 + 0.340345i
\(184\) 0 0
\(185\) 4.92692 2.84456i 0.0266320 0.0153760i
\(186\) 0 0
\(187\) 135.696 235.032i 0.725647 1.25686i
\(188\) 0 0
\(189\) 165.320 + 68.7968i 0.874707 + 0.364004i
\(190\) 0 0
\(191\) 279.710 + 161.491i 1.46445 + 0.845501i 0.999212 0.0396836i \(-0.0126350\pi\)
0.465239 + 0.885185i \(0.345968\pi\)
\(192\) 0 0
\(193\) 86.3918 + 149.635i 0.447626 + 0.775311i 0.998231 0.0594550i \(-0.0189363\pi\)
−0.550605 + 0.834766i \(0.685603\pi\)
\(194\) 0 0
\(195\) −30.3332 + 58.1915i −0.155555 + 0.298418i
\(196\) 0 0
\(197\) 71.7321i 0.364123i 0.983287 + 0.182061i \(0.0582769\pi\)
−0.983287 + 0.182061i \(0.941723\pi\)
\(198\) 0 0
\(199\) −133.225 −0.669472 −0.334736 0.942312i \(-0.608647\pi\)
−0.334736 + 0.942312i \(0.608647\pi\)
\(200\) 0 0
\(201\) 8.45714 5.38127i 0.0420753 0.0267725i
\(202\) 0 0
\(203\) −287.512 + 165.995i −1.41632 + 0.817711i
\(204\) 0 0
\(205\) −60.1109 + 104.115i −0.293224 + 0.507879i
\(206\) 0 0
\(207\) 124.958 87.2920i 0.603660 0.421701i
\(208\) 0 0
\(209\) −294.793 170.199i −1.41049 0.814349i
\(210\) 0 0
\(211\) −188.164 325.909i −0.891771 1.54459i −0.837750 0.546053i \(-0.816130\pi\)
−0.0540209 0.998540i \(-0.517204\pi\)
\(212\) 0 0
\(213\) −115.294 + 4.97043i −0.541285 + 0.0233354i
\(214\) 0 0
\(215\) 167.336i 0.778307i
\(216\) 0 0
\(217\) 66.7457 0.307584
\(218\) 0 0
\(219\) −11.4896 266.513i −0.0524641 1.21695i
\(220\) 0 0
\(221\) 109.301 63.1051i 0.494576 0.285543i
\(222\) 0 0
\(223\) 29.5885 51.2488i 0.132684 0.229815i −0.792026 0.610487i \(-0.790974\pi\)
0.924710 + 0.380672i \(0.124307\pi\)
\(224\) 0 0
\(225\) −19.0626 + 40.7629i −0.0847226 + 0.181169i
\(226\) 0 0
\(227\) −129.764 74.9193i −0.571647 0.330041i 0.186160 0.982520i \(-0.440396\pi\)
−0.757807 + 0.652479i \(0.773729\pi\)
\(228\) 0 0
\(229\) 85.4319 + 147.972i 0.373065 + 0.646167i 0.990035 0.140819i \(-0.0449736\pi\)
−0.616970 + 0.786986i \(0.711640\pi\)
\(230\) 0 0
\(231\) −224.676 353.099i −0.972625 1.52857i
\(232\) 0 0
\(233\) 448.983i 1.92697i 0.267770 + 0.963483i \(0.413713\pi\)
−0.267770 + 0.963483i \(0.586287\pi\)
\(234\) 0 0
\(235\) −105.543 −0.449119
\(236\) 0 0
\(237\) 312.973 + 163.142i 1.32056 + 0.688363i
\(238\) 0 0
\(239\) 200.845 115.958i 0.840356 0.485180i −0.0170289 0.999855i \(-0.505421\pi\)
0.857385 + 0.514675i \(0.172087\pi\)
\(240\) 0 0
\(241\) 198.671 344.108i 0.824359 1.42783i −0.0780488 0.996950i \(-0.524869\pi\)
0.902408 0.430882i \(-0.141798\pi\)
\(242\) 0 0
\(243\) 51.9436 + 237.383i 0.213759 + 0.976886i
\(244\) 0 0
\(245\) 9.71538 + 5.60918i 0.0396546 + 0.0228946i
\(246\) 0 0
\(247\) −79.1506 137.093i −0.320448 0.555032i
\(248\) 0 0
\(249\) 204.016 391.387i 0.819342 1.57183i
\(250\) 0 0
\(251\) 193.179i 0.769636i −0.922992 0.384818i \(-0.874264\pi\)
0.922992 0.384818i \(-0.125736\pi\)
\(252\) 0 0
\(253\) −356.266 −1.40816
\(254\) 0 0
\(255\) 73.0185 46.4616i 0.286347 0.182202i
\(256\) 0 0
\(257\) 104.673 60.4331i 0.407289 0.235148i −0.282335 0.959316i \(-0.591109\pi\)
0.689624 + 0.724167i \(0.257776\pi\)
\(258\) 0 0
\(259\) −8.43669 + 14.6128i −0.0325741 + 0.0564200i
\(260\) 0 0
\(261\) −408.112 190.851i −1.56365 0.731231i
\(262\) 0 0
\(263\) 260.705 + 150.518i 0.991273 + 0.572312i 0.905655 0.424016i \(-0.139380\pi\)
0.0856183 + 0.996328i \(0.472713\pi\)
\(264\) 0 0
\(265\) −1.21656 2.10715i −0.00459081 0.00795151i
\(266\) 0 0
\(267\) −435.587 + 18.7786i −1.63141 + 0.0703319i
\(268\) 0 0
\(269\) 128.065i 0.476077i 0.971256 + 0.238038i \(0.0765044\pi\)
−0.971256 + 0.238038i \(0.923496\pi\)
\(270\) 0 0
\(271\) 512.831 1.89236 0.946182 0.323635i \(-0.104905\pi\)
0.946182 + 0.323635i \(0.104905\pi\)
\(272\) 0 0
\(273\) −8.38297 194.451i −0.0307068 0.712273i
\(274\) 0 0
\(275\) 91.0861 52.5886i 0.331222 0.191231i
\(276\) 0 0
\(277\) 138.761 240.341i 0.500942 0.867658i −0.499057 0.866569i \(-0.666320\pi\)
0.999999 0.00108844i \(-0.000346460\pi\)
\(278\) 0 0
\(279\) 51.8720 + 74.2542i 0.185921 + 0.266144i
\(280\) 0 0
\(281\) −89.3698 51.5977i −0.318042 0.183622i 0.332478 0.943111i \(-0.392115\pi\)
−0.650519 + 0.759490i \(0.725449\pi\)
\(282\) 0 0
\(283\) −82.0340 142.087i −0.289873 0.502075i 0.683906 0.729570i \(-0.260280\pi\)
−0.973779 + 0.227495i \(0.926946\pi\)
\(284\) 0 0
\(285\) −58.2752 91.5846i −0.204474 0.321350i
\(286\) 0 0
\(287\) 356.567i 1.24239i
\(288\) 0 0
\(289\) 122.547 0.424039
\(290\) 0 0
\(291\) 125.175 + 65.2492i 0.430154 + 0.224224i
\(292\) 0 0
\(293\) −253.735 + 146.494i −0.865988 + 0.499979i −0.866013 0.500021i \(-0.833325\pi\)
2.47977e−5 1.00000i \(0.499992\pi\)
\(294\) 0 0
\(295\) −10.7773 + 18.6668i −0.0365333 + 0.0632774i
\(296\) 0 0
\(297\) 218.211 524.365i 0.734719 1.76554i
\(298\) 0 0
\(299\) −143.484 82.8402i −0.479878 0.277058i
\(300\) 0 0
\(301\) −248.151 429.811i −0.824423 1.42794i
\(302\) 0 0
\(303\) 30.9998 59.4704i 0.102310 0.196272i
\(304\) 0 0
\(305\) 100.432i 0.329285i
\(306\) 0 0
\(307\) 467.606 1.52315 0.761573 0.648079i \(-0.224427\pi\)
0.761573 + 0.648079i \(0.224427\pi\)
\(308\) 0 0
\(309\) −313.596 + 199.541i −1.01487 + 0.645763i
\(310\) 0 0
\(311\) −465.753 + 268.902i −1.49760 + 0.864638i −0.999996 0.00276786i \(-0.999119\pi\)
−0.497601 + 0.867406i \(0.665786\pi\)
\(312\) 0 0
\(313\) 133.129 230.586i 0.425332 0.736697i −0.571119 0.820867i \(-0.693491\pi\)
0.996451 + 0.0841703i \(0.0268240\pi\)
\(314\) 0 0
\(315\) −11.4863 132.971i −0.0364646 0.422129i
\(316\) 0 0
\(317\) 412.986 + 238.437i 1.30279 + 0.752168i 0.980882 0.194602i \(-0.0623414\pi\)
0.321911 + 0.946770i \(0.395675\pi\)
\(318\) 0 0
\(319\) 526.508 + 911.939i 1.65050 + 2.85874i
\(320\) 0 0
\(321\) −141.975 + 6.12070i −0.442290 + 0.0190676i
\(322\) 0 0
\(323\) 208.776i 0.646366i
\(324\) 0 0
\(325\) 48.9124 0.150500
\(326\) 0 0
\(327\) −3.47254 80.5488i −0.0106194 0.246326i
\(328\) 0 0
\(329\) 271.093 156.515i 0.823990 0.475731i
\(330\) 0 0
\(331\) 17.6720 30.6088i 0.0533898 0.0924738i −0.838095 0.545524i \(-0.816331\pi\)
0.891485 + 0.453050i \(0.149664\pi\)
\(332\) 0 0
\(333\) −22.8133 + 1.97067i −0.0685084 + 0.00591793i
\(334\) 0 0
\(335\) −6.47049 3.73574i −0.0193149 0.0111515i
\(336\) 0 0
\(337\) 124.246 + 215.201i 0.368684 + 0.638579i 0.989360 0.145488i \(-0.0464752\pi\)
−0.620676 + 0.784067i \(0.713142\pi\)
\(338\) 0 0
\(339\) −30.2935 47.6090i −0.0893615 0.140439i
\(340\) 0 0
\(341\) 211.706i 0.620838i
\(342\) 0 0
\(343\) −358.239 −1.04443
\(344\) 0 0
\(345\) −100.747 52.5160i −0.292021 0.152220i
\(346\) 0 0
\(347\) 2.33212 1.34645i 0.00672082 0.00388026i −0.496636 0.867959i \(-0.665432\pi\)
0.503357 + 0.864079i \(0.332098\pi\)
\(348\) 0 0
\(349\) −196.192 + 339.815i −0.562156 + 0.973682i 0.435152 + 0.900357i \(0.356694\pi\)
−0.997308 + 0.0733253i \(0.976639\pi\)
\(350\) 0 0
\(351\) 209.810 160.445i 0.597751 0.457108i
\(352\) 0 0
\(353\) 17.1321 + 9.89124i 0.0485329 + 0.0280205i 0.524070 0.851675i \(-0.324413\pi\)
−0.475537 + 0.879696i \(0.657746\pi\)
\(354\) 0 0
\(355\) 43.0074 + 74.4909i 0.121148 + 0.209834i
\(356\) 0 0
\(357\) −118.651 + 227.622i −0.332356 + 0.637596i
\(358\) 0 0
\(359\) 415.325i 1.15689i −0.815720 0.578447i \(-0.803659\pi\)
0.815720 0.578447i \(-0.196341\pi\)
\(360\) 0 0
\(361\) −99.1389 −0.274623
\(362\) 0 0
\(363\) −813.709 + 517.762i −2.24162 + 1.42634i
\(364\) 0 0
\(365\) −172.193 + 99.4157i −0.471762 + 0.272372i
\(366\) 0 0
\(367\) −266.694 + 461.927i −0.726685 + 1.25866i 0.231591 + 0.972813i \(0.425607\pi\)
−0.958276 + 0.285843i \(0.907726\pi\)
\(368\) 0 0
\(369\) 396.678 277.109i 1.07501 0.750972i
\(370\) 0 0
\(371\) 6.24961 + 3.60821i 0.0168453 + 0.00972564i
\(372\) 0 0
\(373\) 107.790 + 186.697i 0.288981 + 0.500529i 0.973567 0.228403i \(-0.0733503\pi\)
−0.684586 + 0.728932i \(0.740017\pi\)
\(374\) 0 0
\(375\) 33.5099 1.44465i 0.0893597 0.00385239i
\(376\) 0 0
\(377\) 489.702i 1.29895i
\(378\) 0 0
\(379\) −176.846 −0.466612 −0.233306 0.972403i \(-0.574954\pi\)
−0.233306 + 0.972403i \(0.574954\pi\)
\(380\) 0 0
\(381\) 16.6452 + 386.102i 0.0436883 + 1.01339i
\(382\) 0 0
\(383\) −14.8980 + 8.60134i −0.0388980 + 0.0224578i −0.519323 0.854578i \(-0.673816\pi\)
0.480425 + 0.877036i \(0.340482\pi\)
\(384\) 0 0
\(385\) −155.973 + 270.153i −0.405124 + 0.701696i
\(386\) 0 0
\(387\) 285.309 610.098i 0.737233 1.57648i
\(388\) 0 0
\(389\) 298.375 + 172.267i 0.767030 + 0.442845i 0.831814 0.555055i \(-0.187303\pi\)
−0.0647844 + 0.997899i \(0.520636\pi\)
\(390\) 0 0
\(391\) 109.254 + 189.234i 0.279422 + 0.483974i
\(392\) 0 0
\(393\) 49.6223 + 77.9858i 0.126265 + 0.198437i
\(394\) 0 0
\(395\) 263.067i 0.665992i
\(396\) 0 0
\(397\) 68.9955 0.173792 0.0868960 0.996217i \(-0.472305\pi\)
0.0868960 + 0.996217i \(0.472305\pi\)
\(398\) 0 0
\(399\) 285.499 + 148.820i 0.715535 + 0.372983i
\(400\) 0 0
\(401\) −154.315 + 89.0938i −0.384825 + 0.222179i −0.679916 0.733290i \(-0.737984\pi\)
0.295090 + 0.955469i \(0.404650\pi\)
\(402\) 0 0
\(403\) 49.2266 85.2629i 0.122150 0.211571i
\(404\) 0 0
\(405\) 139.002 116.118i 0.343216 0.286711i
\(406\) 0 0
\(407\) 46.3492 + 26.7597i 0.113880 + 0.0657487i
\(408\) 0 0
\(409\) −5.64530 9.77795i −0.0138027 0.0239070i 0.859042 0.511906i \(-0.171060\pi\)
−0.872844 + 0.487999i \(0.837727\pi\)
\(410\) 0 0
\(411\) 147.746 283.437i 0.359479 0.689629i
\(412\) 0 0
\(413\) 63.9290i 0.154792i
\(414\) 0 0
\(415\) −328.977 −0.792715
\(416\) 0 0
\(417\) −289.139 + 183.979i −0.693380 + 0.441197i
\(418\) 0 0
\(419\) 56.3602 32.5396i 0.134511 0.0776601i −0.431234 0.902240i \(-0.641922\pi\)
0.565746 + 0.824580i \(0.308588\pi\)
\(420\) 0 0
\(421\) 115.044 199.262i 0.273263 0.473306i −0.696432 0.717623i \(-0.745230\pi\)
0.969696 + 0.244317i \(0.0785636\pi\)
\(422\) 0 0
\(423\) 384.805 + 179.952i 0.909703 + 0.425418i
\(424\) 0 0
\(425\) −55.8658 32.2541i −0.131449 0.0758921i
\(426\) 0 0
\(427\) 148.936 + 257.964i 0.348796 + 0.604132i
\(428\) 0 0
\(429\) −616.763 + 26.5893i −1.43768 + 0.0619797i
\(430\) 0 0
\(431\) 67.4877i 0.156584i −0.996930 0.0782920i \(-0.975053\pi\)
0.996930 0.0782920i \(-0.0249467\pi\)
\(432\) 0 0
\(433\) 132.060 0.304989 0.152495 0.988304i \(-0.451269\pi\)
0.152495 + 0.988304i \(0.451269\pi\)
\(434\) 0 0
\(435\) 14.4635 + 335.495i 0.0332495 + 0.771253i
\(436\) 0 0
\(437\) 237.350 137.034i 0.543134 0.313579i
\(438\) 0 0
\(439\) 344.511 596.711i 0.784764 1.35925i −0.144376 0.989523i \(-0.546118\pi\)
0.929140 0.369728i \(-0.120549\pi\)
\(440\) 0 0
\(441\) −25.8581 37.0156i −0.0586351 0.0839356i
\(442\) 0 0
\(443\) −58.9612 34.0413i −0.133095 0.0768426i 0.431974 0.901886i \(-0.357817\pi\)
−0.565069 + 0.825043i \(0.691151\pi\)
\(444\) 0 0
\(445\) 162.485 + 281.432i 0.365134 + 0.632431i
\(446\) 0 0
\(447\) 194.685 + 305.964i 0.435536 + 0.684484i
\(448\) 0 0
\(449\) 685.554i 1.52685i −0.645898 0.763423i \(-0.723517\pi\)
0.645898 0.763423i \(-0.276483\pi\)
\(450\) 0 0
\(451\) −1130.97 −2.50769
\(452\) 0 0
\(453\) 337.822 + 176.095i 0.745743 + 0.388730i
\(454\) 0 0
\(455\) −125.634 + 72.5348i −0.276119 + 0.159417i
\(456\) 0 0
\(457\) −259.698 + 449.810i −0.568266 + 0.984266i 0.428471 + 0.903555i \(0.359052\pi\)
−0.996738 + 0.0807109i \(0.974281\pi\)
\(458\) 0 0
\(459\) −345.439 + 44.8994i −0.752590 + 0.0978200i
\(460\) 0 0
\(461\) 77.5379 + 44.7665i 0.168195 + 0.0971074i 0.581734 0.813379i \(-0.302374\pi\)
−0.413539 + 0.910486i \(0.635708\pi\)
\(462\) 0 0
\(463\) −254.981 441.640i −0.550714 0.953865i −0.998223 0.0595857i \(-0.981022\pi\)
0.447509 0.894279i \(-0.352311\pi\)
\(464\) 0 0
\(465\) 31.2069 59.8676i 0.0671116 0.128748i
\(466\) 0 0
\(467\) 539.803i 1.15590i 0.816074 + 0.577948i \(0.196146\pi\)
−0.816074 + 0.577948i \(0.803854\pi\)
\(468\) 0 0
\(469\) 22.1597 0.0472488
\(470\) 0 0
\(471\) 263.769 167.836i 0.560019 0.356339i
\(472\) 0 0
\(473\) −1363.28 + 787.093i −2.88221 + 1.66404i
\(474\) 0 0
\(475\) −40.4553 + 70.0706i −0.0851691 + 0.147517i
\(476\) 0 0
\(477\) 0.842819 + 9.75681i 0.00176692 + 0.0204545i
\(478\) 0 0
\(479\) −94.2261 54.4015i −0.196714 0.113573i 0.398408 0.917208i \(-0.369563\pi\)
−0.595122 + 0.803635i \(0.702896\pi\)
\(480\) 0 0
\(481\) 12.4445 + 21.5546i 0.0258722 + 0.0448120i
\(482\) 0 0
\(483\) 336.653 14.5135i 0.697005 0.0300486i
\(484\) 0 0
\(485\) 105.215i 0.216937i
\(486\) 0 0
\(487\) −342.524 −0.703334 −0.351667 0.936125i \(-0.614385\pi\)
−0.351667 + 0.936125i \(0.614385\pi\)
\(488\) 0 0
\(489\) 24.3609 + 565.073i 0.0498178 + 1.15557i
\(490\) 0 0
\(491\) −430.657 + 248.640i −0.877102 + 0.506395i −0.869702 0.493577i \(-0.835689\pi\)
−0.00740027 + 0.999973i \(0.502356\pi\)
\(492\) 0 0
\(493\) 322.923 559.319i 0.655016 1.13452i
\(494\) 0 0
\(495\) −421.759 + 36.4327i −0.852039 + 0.0736014i
\(496\) 0 0
\(497\) −220.933 127.556i −0.444533 0.256652i
\(498\) 0 0
\(499\) 77.5164 + 134.262i 0.155343 + 0.269063i 0.933184 0.359399i \(-0.117018\pi\)
−0.777841 + 0.628462i \(0.783685\pi\)
\(500\) 0 0
\(501\) 109.380 + 171.900i 0.218323 + 0.343114i
\(502\) 0 0
\(503\) 580.438i 1.15395i 0.816761 + 0.576976i \(0.195767\pi\)
−0.816761 + 0.576976i \(0.804233\pi\)
\(504\) 0 0
\(505\) −49.9873 −0.0989848
\(506\) 0 0
\(507\) 195.006 + 101.650i 0.384628 + 0.200493i
\(508\) 0 0
\(509\) 158.209 91.3419i 0.310823 0.179454i −0.336472 0.941694i \(-0.609234\pi\)
0.647295 + 0.762240i \(0.275900\pi\)
\(510\) 0 0
\(511\) 294.858 510.709i 0.577021 0.999430i
\(512\) 0 0
\(513\) 56.3158 + 433.273i 0.109777 + 0.844586i
\(514\) 0 0
\(515\) 239.929 + 138.523i 0.465882 + 0.268977i
\(516\) 0 0
\(517\) −496.439 859.858i −0.960231 1.66317i
\(518\) 0 0
\(519\) −169.723 + 325.598i −0.327019 + 0.627356i
\(520\) 0 0
\(521\) 47.7611i 0.0916720i −0.998949 0.0458360i \(-0.985405\pi\)
0.998949 0.0458360i \(-0.0145952\pi\)
\(522\) 0 0
\(523\) −266.851 −0.510230 −0.255115 0.966911i \(-0.582113\pi\)
−0.255115 + 0.966911i \(0.582113\pi\)
\(524\) 0 0
\(525\) −83.9295 + 53.4042i −0.159866 + 0.101722i
\(526\) 0 0
\(527\) −112.449 + 64.9227i −0.213376 + 0.123193i
\(528\) 0 0
\(529\) −121.078 + 209.714i −0.228881 + 0.396434i
\(530\) 0 0
\(531\) 71.1207 49.6830i 0.133937 0.0935649i
\(532\) 0 0
\(533\) −455.489 262.977i −0.854576 0.493389i
\(534\) 0 0
\(535\) 52.9602 + 91.7297i 0.0989910 + 0.171457i
\(536\) 0 0
\(537\) −235.059 + 10.1337i −0.437727 + 0.0188709i
\(538\) 0 0
\(539\) 105.535i 0.195798i
\(540\) 0 0
\(541\) −707.266 −1.30733 −0.653666 0.756783i \(-0.726770\pi\)
−0.653666 + 0.756783i \(0.726770\pi\)
\(542\) 0 0
\(543\) 28.3703 + 658.075i 0.0522474 + 1.21193i
\(544\) 0 0
\(545\) −52.0423 + 30.0466i −0.0954904 + 0.0551314i
\(546\) 0 0
\(547\) 103.164 178.686i 0.188600 0.326665i −0.756184 0.654359i \(-0.772938\pi\)
0.944784 + 0.327695i \(0.106272\pi\)
\(548\) 0 0
\(549\) −171.237 + 366.170i −0.311908 + 0.666975i
\(550\) 0 0
\(551\) −701.535 405.032i −1.27320 0.735084i
\(552\) 0 0
\(553\) 390.116 + 675.700i 0.705454 + 1.22188i
\(554\) 0 0
\(555\) 9.16238 + 14.3995i 0.0165088 + 0.0259450i
\(556\) 0 0
\(557\) 643.753i 1.15575i −0.816125 0.577876i \(-0.803882\pi\)
0.816125 0.577876i \(-0.196118\pi\)
\(558\) 0 0
\(559\) −732.071 −1.30961
\(560\) 0 0
\(561\) 721.977 + 376.341i 1.28695 + 0.670840i
\(562\) 0 0
\(563\) 626.694 361.822i 1.11313 0.642668i 0.173494 0.984835i \(-0.444494\pi\)
0.939639 + 0.342167i \(0.111161\pi\)
\(564\) 0 0
\(565\) −21.0301 + 36.4252i −0.0372214 + 0.0644694i
\(566\) 0 0
\(567\) −184.837 + 504.388i −0.325992 + 0.889574i
\(568\) 0 0
\(569\) 329.204 + 190.066i 0.578566 + 0.334035i 0.760563 0.649264i \(-0.224923\pi\)
−0.181997 + 0.983299i \(0.558256\pi\)
\(570\) 0 0
\(571\) 20.7292 + 35.9040i 0.0363033 + 0.0628791i 0.883606 0.468231i \(-0.155108\pi\)
−0.847303 + 0.531110i \(0.821775\pi\)
\(572\) 0 0
\(573\) −447.881 + 859.219i −0.781641 + 1.49951i
\(574\) 0 0
\(575\) 84.6823i 0.147274i
\(576\) 0 0
\(577\) −601.252 −1.04203 −0.521016 0.853547i \(-0.674447\pi\)
−0.521016 + 0.853547i \(0.674447\pi\)
\(578\) 0 0
\(579\) −437.325 + 278.270i −0.755312 + 0.480604i
\(580\) 0 0
\(581\) 844.993 487.857i 1.45438 0.839685i
\(582\) 0 0
\(583\) 11.4446 19.8227i 0.0196306 0.0340011i
\(584\) 0 0
\(585\) −178.332 83.3961i −0.304841 0.142557i
\(586\) 0 0
\(587\) 630.446 + 363.988i 1.07401 + 0.620082i 0.929275 0.369388i \(-0.120433\pi\)
0.144738 + 0.989470i \(0.453766\pi\)
\(588\) 0 0
\(589\) 81.4303 + 141.041i 0.138252 + 0.239459i
\(590\) 0 0
\(591\) −214.997 + 9.26873i −0.363785 + 0.0156831i
\(592\) 0 0
\(593\) 418.998i 0.706573i −0.935515 0.353286i \(-0.885064\pi\)
0.935515 0.353286i \(-0.114936\pi\)
\(594\) 0 0
\(595\) 191.326 0.321555
\(596\) 0 0
\(597\) −17.2144 399.304i −0.0288348 0.668851i
\(598\) 0 0
\(599\) 760.433 439.036i 1.26950 0.732948i 0.294610 0.955618i \(-0.404810\pi\)
0.974894 + 0.222669i \(0.0714771\pi\)
\(600\) 0 0
\(601\) 266.229 461.122i 0.442977 0.767259i −0.554932 0.831896i \(-0.687256\pi\)
0.997909 + 0.0646372i \(0.0205890\pi\)
\(602\) 0 0
\(603\) 17.2216 + 24.6526i 0.0285599 + 0.0408832i
\(604\) 0 0
\(605\) 622.562 + 359.436i 1.02903 + 0.594110i
\(606\) 0 0
\(607\) 47.2643 + 81.8641i 0.0778653 + 0.134867i 0.902329 0.431049i \(-0.141856\pi\)
−0.824463 + 0.565915i \(0.808523\pi\)
\(608\) 0 0
\(609\) −534.674 840.288i −0.877954 1.37978i
\(610\) 0 0
\(611\) 461.736i 0.755705i
\(612\) 0 0
\(613\) −816.657 −1.33223 −0.666115 0.745849i \(-0.732044\pi\)
−0.666115 + 0.745849i \(0.732044\pi\)
\(614\) 0 0
\(615\) −319.823 166.712i −0.520037 0.271077i
\(616\) 0 0
\(617\) 164.232 94.8195i 0.266179 0.153678i −0.360971 0.932577i \(-0.617555\pi\)
0.627150 + 0.778899i \(0.284221\pi\)
\(618\) 0 0
\(619\) −47.7312 + 82.6728i −0.0771101 + 0.133559i −0.902002 0.431732i \(-0.857903\pi\)
0.824892 + 0.565291i \(0.191236\pi\)
\(620\) 0 0
\(621\) 277.779 + 363.246i 0.447310 + 0.584937i
\(622\) 0 0
\(623\) −834.700 481.914i −1.33981 0.773538i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 472.032 905.551i 0.752842 1.44426i
\(628\) 0 0
\(629\) 32.8250i 0.0521861i
\(630\) 0 0
\(631\) 192.912 0.305724 0.152862 0.988248i \(-0.451151\pi\)
0.152862 + 0.988248i \(0.451151\pi\)
\(632\) 0 0
\(633\) 952.507 606.079i 1.50475 0.957471i
\(634\) 0 0
\(635\) 249.459 144.025i 0.392849 0.226811i
\(636\) 0 0
\(637\) −24.5394 + 42.5034i −0.0385233 + 0.0667244i
\(638\) 0 0
\(639\) −29.7949 344.918i −0.0466274 0.539778i
\(640\) 0 0
\(641\) −277.039 159.949i −0.432198 0.249530i 0.268084 0.963395i \(-0.413609\pi\)
−0.700283 + 0.713866i \(0.746943\pi\)
\(642\) 0 0
\(643\) 76.1741 + 131.937i 0.118467 + 0.205190i 0.919160 0.393884i \(-0.128869\pi\)
−0.800693 + 0.599074i \(0.795535\pi\)
\(644\) 0 0
\(645\) −501.542 + 21.6220i −0.777584 + 0.0335225i
\(646\) 0 0
\(647\) 632.862i 0.978148i −0.872242 0.489074i \(-0.837335\pi\)
0.872242 0.489074i \(-0.162665\pi\)
\(648\) 0 0
\(649\) −202.772 −0.312437
\(650\) 0 0
\(651\) 8.62442 + 200.051i 0.0132480 + 0.307298i
\(652\) 0 0
\(653\) 708.299 408.937i 1.08468 0.626243i 0.152529 0.988299i \(-0.451258\pi\)
0.932156 + 0.362056i \(0.117925\pi\)
\(654\) 0 0
\(655\) 34.4484 59.6663i 0.0525929 0.0910936i
\(656\) 0 0
\(657\) 797.312 68.8739i 1.21356 0.104831i
\(658\) 0 0
\(659\) −368.474 212.738i −0.559141 0.322820i 0.193660 0.981069i \(-0.437964\pi\)
−0.752800 + 0.658249i \(0.771297\pi\)
\(660\) 0 0
\(661\) −142.986 247.659i −0.216318 0.374673i 0.737362 0.675498i \(-0.236071\pi\)
−0.953679 + 0.300825i \(0.902738\pi\)
\(662\) 0 0
\(663\) 203.263 + 319.445i 0.306580 + 0.481818i
\(664\) 0 0
\(665\) 239.973i 0.360862i
\(666\) 0 0
\(667\) −847.824 −1.27110
\(668\) 0 0
\(669\) 157.427 + 82.0611i 0.235317 + 0.122662i
\(670\) 0 0
\(671\) 818.218 472.398i 1.21940 0.704021i
\(672\) 0 0
\(673\) −598.709 + 1036.99i −0.889612 + 1.54085i −0.0492769 + 0.998785i \(0.515692\pi\)
−0.840335 + 0.542068i \(0.817642\pi\)
\(674\) 0 0
\(675\) −124.638 51.8676i −0.184650 0.0768408i
\(676\) 0 0
\(677\) −784.232 452.777i −1.15839 0.668799i −0.207475 0.978240i \(-0.566525\pi\)
−0.950918 + 0.309442i \(0.899858\pi\)
\(678\) 0 0
\(679\) 156.028 + 270.249i 0.229791 + 0.398010i
\(680\) 0 0
\(681\) 207.782 398.611i 0.305113 0.585332i
\(682\) 0 0
\(683\) 31.1970i 0.0456764i −0.999739 0.0228382i \(-0.992730\pi\)
0.999739 0.0228382i \(-0.00727026\pi\)
\(684\) 0 0
\(685\) −238.241 −0.347797
\(686\) 0 0
\(687\) −432.466 + 275.178i −0.629499 + 0.400550i
\(688\) 0 0
\(689\) 9.21848 5.32229i 0.0133795 0.00772466i
\(690\) 0 0
\(691\) −101.532 + 175.858i −0.146935 + 0.254498i −0.930093 0.367324i \(-0.880274\pi\)
0.783158 + 0.621822i \(0.213607\pi\)
\(692\) 0 0
\(693\) 1029.28 719.029i 1.48526 1.03756i
\(694\) 0 0
\(695\) 221.218 + 127.720i 0.318299 + 0.183770i
\(696\) 0 0
\(697\) 346.828 + 600.723i 0.497601 + 0.861870i
\(698\) 0 0
\(699\) −1345.70 + 58.0145i −1.92518 + 0.0829964i
\(700\) 0 0
\(701\) 633.699i 0.903993i 0.892020 + 0.451997i \(0.149288\pi\)
−0.892020 + 0.451997i \(0.850712\pi\)
\(702\) 0 0
\(703\) −41.1714 −0.0585652
\(704\) 0 0
\(705\) −13.6375 316.335i −0.0193440 0.448703i
\(706\) 0 0
\(707\) 128.395 74.1289i 0.181605 0.104850i
\(708\) 0 0
\(709\) 74.6901 129.367i 0.105346 0.182464i −0.808534 0.588450i \(-0.799738\pi\)
0.913879 + 0.405986i \(0.133072\pi\)
\(710\) 0 0
\(711\) −448.531 + 959.128i −0.630846 + 1.34899i
\(712\) 0 0
\(713\) 147.616 + 85.2262i 0.207035 + 0.119532i
\(714\) 0 0
\(715\) 230.068 + 398.489i 0.321773 + 0.557327i
\(716\) 0 0
\(717\) 373.503 + 586.993i 0.520925 + 0.818679i
\(718\) 0 0
\(719\) 257.590i 0.358262i 0.983825 + 0.179131i \(0.0573285\pi\)
−0.983825 + 0.179131i \(0.942671\pi\)
\(720\) 0 0
\(721\) −821.694 −1.13966
\(722\) 0 0
\(723\) 1057.04 + 550.995i 1.46201 + 0.762096i
\(724\) 0 0
\(725\) 216.762 125.148i 0.298983 0.172618i
\(726\) 0 0
\(727\) 303.691 526.008i 0.417731 0.723532i −0.577980 0.816051i \(-0.696159\pi\)
0.995711 + 0.0925193i \(0.0294920\pi\)
\(728\) 0 0
\(729\) −704.777 + 186.359i −0.966773 + 0.255637i
\(730\) 0 0
\(731\) 836.143 + 482.747i 1.14383 + 0.660393i
\(732\) 0 0
\(733\) −443.643 768.411i −0.605242 1.04831i −0.992013 0.126134i \(-0.959743\pi\)
0.386771 0.922176i \(-0.373590\pi\)
\(734\) 0 0
\(735\) −15.5566 + 29.8439i −0.0211654 + 0.0406039i
\(736\) 0 0
\(737\) 70.2867i 0.0953686i
\(738\) 0 0
\(739\) 30.1955 0.0408599 0.0204300 0.999791i \(-0.493496\pi\)
0.0204300 + 0.999791i \(0.493496\pi\)
\(740\) 0 0
\(741\) 400.670 254.946i 0.540715 0.344056i
\(742\) 0 0
\(743\) −493.648 + 285.008i −0.664399 + 0.383591i −0.793951 0.607982i \(-0.791979\pi\)
0.129552 + 0.991573i \(0.458646\pi\)
\(744\) 0 0
\(745\) 135.152 234.091i 0.181412 0.314216i
\(746\) 0 0
\(747\) 1199.43 + 560.908i 1.60567 + 0.750881i
\(748\) 0 0
\(749\) −272.062 157.075i −0.363233 0.209713i
\(750\) 0 0
\(751\) 213.747 + 370.221i 0.284617 + 0.492970i 0.972516 0.232836i \(-0.0748004\pi\)
−0.687900 + 0.725806i \(0.741467\pi\)
\(752\) 0 0
\(753\) 578.998 24.9612i 0.768922 0.0331490i
\(754\) 0 0
\(755\) 283.953i 0.376097i
\(756\) 0 0
\(757\) −587.791 −0.776474 −0.388237 0.921560i \(-0.626916\pi\)
−0.388237 + 0.921560i \(0.626916\pi\)
\(758\) 0 0
\(759\) −46.0342 1067.81i −0.0606511 1.40686i
\(760\) 0 0
\(761\) −1135.73 + 655.716i −1.49242 + 0.861651i −0.999962 0.00868376i \(-0.997236\pi\)
−0.492461 + 0.870335i \(0.663903\pi\)
\(762\) 0 0
\(763\) 89.1155 154.353i 0.116796 0.202297i
\(764\) 0 0
\(765\) 148.690 + 212.849i 0.194366 + 0.278234i
\(766\) 0 0
\(767\) −81.6648 47.1492i −0.106473 0.0614722i
\(768\) 0 0
\(769\) 595.762 + 1031.89i 0.774724 + 1.34186i 0.934950 + 0.354780i \(0.115444\pi\)
−0.160226 + 0.987080i \(0.551222\pi\)
\(770\) 0 0
\(771\) 194.656 + 305.920i 0.252473 + 0.396783i
\(772\) 0 0
\(773\) 204.848i 0.265003i −0.991183 0.132502i \(-0.957699\pi\)
0.991183 0.132502i \(-0.0423010\pi\)
\(774\) 0 0
\(775\) −50.3212 −0.0649306
\(776\) 0 0
\(777\) −44.8878 23.3984i −0.0577706 0.0301138i
\(778\) 0 0
\(779\) 753.467 435.014i 0.967223 0.558427i
\(780\) 0 0
\(781\) −404.585 + 700.761i −0.518034 + 0.897261i
\(782\) 0 0
\(783\) 519.289 1247.86i 0.663204 1.59369i
\(784\) 0 0
\(785\) −201.807 116.514i −0.257079 0.148425i
\(786\) 0 0
\(787\) 66.6137 + 115.378i 0.0846426 + 0.146605i 0.905239 0.424903i \(-0.139692\pi\)
−0.820596 + 0.571508i \(0.806358\pi\)
\(788\) 0 0
\(789\) −417.448 + 800.837i −0.529085 + 1.01500i
\(790\) 0 0
\(791\) 124.747i 0.157708i
\(792\) 0 0
\(793\) 439.375 0.554067
\(794\) 0 0
\(795\) 6.15839 3.91858i 0.00774640 0.00492903i
\(796\) 0 0
\(797\) 527.341 304.460i 0.661657 0.382008i −0.131251 0.991349i \(-0.541899\pi\)
0.792908 + 0.609341i \(0.208566\pi\)
\(798\) 0 0
\(799\) −304.481 + 527.376i −0.381077 + 0.660046i
\(800\) 0 0
\(801\) −112.567 1303.12i −0.140533 1.62687i
\(802\) 0 0
\(803\) −1619.88 935.237i −2.01728 1.16468i
\(804\) 0 0
\(805\) −125.580 217.511i −0.156000 0.270200i
\(806\) 0 0
\(807\) −383.838 + 16.5476i −0.475635 + 0.0205051i
\(808\) 0 0
\(809\) 164.342i 0.203142i 0.994828 + 0.101571i \(0.0323869\pi\)
−0.994828 + 0.101571i \(0.967613\pi\)
\(810\) 0 0
\(811\) 1026.77 1.26606 0.633028 0.774129i \(-0.281812\pi\)
0.633028 + 0.774129i \(0.281812\pi\)
\(812\) 0 0
\(813\) 66.2644 + 1537.06i 0.0815061 + 1.89061i
\(814\) 0 0
\(815\) 365.092 210.786i 0.447965 0.258633i
\(816\) 0 0
\(817\) 605.494 1048.75i 0.741118 1.28365i
\(818\) 0 0
\(819\) 581.727 50.2511i 0.710290 0.0613567i
\(820\) 0 0
\(821\) 262.140 + 151.347i 0.319293 + 0.184344i 0.651078 0.759011i \(-0.274317\pi\)
−0.331784 + 0.943355i \(0.607651\pi\)
\(822\) 0 0
\(823\) −348.559 603.723i −0.423523 0.733563i 0.572758 0.819724i \(-0.305873\pi\)
−0.996281 + 0.0861609i \(0.972540\pi\)
\(824\) 0 0
\(825\) 169.389 + 266.210i 0.205320 + 0.322678i
\(826\) 0 0
\(827\) 454.516i 0.549596i −0.961502 0.274798i \(-0.911389\pi\)
0.961502 0.274798i \(-0.0886110\pi\)
\(828\) 0 0
\(829\) 591.488 0.713496 0.356748 0.934201i \(-0.383885\pi\)
0.356748 + 0.934201i \(0.383885\pi\)
\(830\) 0 0
\(831\) 738.284 + 384.842i 0.888428 + 0.463107i
\(832\) 0 0
\(833\) 56.0558 32.3638i 0.0672939 0.0388521i
\(834\) 0 0
\(835\) 75.9327 131.519i 0.0909374 0.157508i
\(836\) 0 0
\(837\) −215.853 + 165.066i −0.257889 + 0.197212i
\(838\) 0 0
\(839\) 1342.11 + 774.866i 1.59965 + 0.923559i 0.991554 + 0.129696i \(0.0414001\pi\)
0.608097 + 0.793863i \(0.291933\pi\)
\(840\) 0 0
\(841\) 832.459 + 1441.86i 0.989844 + 1.71446i
\(842\) 0 0
\(843\) 143.102 274.528i 0.169753 0.325655i
\(844\) 0 0
\(845\) 163.911i 0.193977i
\(846\) 0 0
\(847\) −2132.11 −2.51725
\(848\) 0 0
\(849\) 415.266 264.233i 0.489124 0.311229i
\(850\) 0 0
\(851\) −37.3175 + 21.5453i −0.0438514 + 0.0253176i
\(852\) 0 0
\(853\) 820.773 1421.62i 0.962219 1.66661i 0.245312 0.969444i \(-0.421110\pi\)
0.716907 0.697169i \(-0.245557\pi\)
\(854\) 0 0
\(855\) 266.969 186.497i 0.312245 0.218126i
\(856\) 0 0
\(857\) 275.953 + 159.321i 0.321998 + 0.185906i 0.652283 0.757976i \(-0.273811\pi\)
−0.330285 + 0.943881i \(0.607145\pi\)
\(858\) 0 0
\(859\) −314.166 544.152i −0.365735 0.633471i 0.623159 0.782095i \(-0.285849\pi\)
−0.988894 + 0.148624i \(0.952516\pi\)
\(860\) 0 0
\(861\) 1068.71 46.0731i 1.24124 0.0535111i
\(862\) 0 0
\(863\) 183.620i 0.212770i 0.994325 + 0.106385i \(0.0339276\pi\)
−0.994325 + 0.106385i \(0.966072\pi\)
\(864\) 0 0
\(865\) 273.678 0.316391
\(866\) 0 0
\(867\) 15.8347 + 367.301i 0.0182638 + 0.423645i
\(868\) 0 0
\(869\) 2143.20 1237.38i 2.46629 1.42391i
\(870\) 0 0
\(871\) 16.3433 28.3075i 0.0187639 0.0325000i
\(872\) 0 0
\(873\) −179.392 + 383.607i −0.205489 + 0.439412i
\(874\) 0 0
\(875\) 64.2138 + 37.0738i 0.0733871 + 0.0423701i
\(876\) 0 0
\(877\) 722.647 + 1251.66i 0.823999 + 1.42721i 0.902682 + 0.430308i \(0.141595\pi\)
−0.0786834 + 0.996900i \(0.525072\pi\)
\(878\) 0 0
\(879\) −471.859 741.568i −0.536814 0.843650i
\(880\) 0 0
\(881\) 608.977i 0.691234i 0.938376 + 0.345617i \(0.112330\pi\)
−0.938376 + 0.345617i \(0.887670\pi\)
\(882\) 0 0
\(883\) 120.519 0.136488 0.0682440 0.997669i \(-0.478260\pi\)
0.0682440 + 0.997669i \(0.478260\pi\)
\(884\) 0 0
\(885\) −57.3411 29.8899i −0.0647923 0.0337739i
\(886\) 0 0
\(887\) −1392.07 + 803.710i −1.56941 + 0.906100i −0.573173 + 0.819434i \(0.694288\pi\)
−0.996237 + 0.0866653i \(0.972379\pi\)
\(888\) 0 0
\(889\) −427.165 + 739.872i −0.480501 + 0.832252i
\(890\) 0 0
\(891\) 1599.83 + 586.272i 1.79555 + 0.657993i
\(892\) 0 0
\(893\) 661.471 + 381.900i 0.740729 + 0.427660i
\(894\) 0 0
\(895\) 87.6828 + 151.871i 0.0979697 + 0.169688i
\(896\) 0 0
\(897\) 229.750 440.755i 0.256132 0.491366i
\(898\) 0 0
\(899\) 503.807i 0.560408i
\(900\) 0 0
\(901\) −14.0386 −0.0155812
\(902\) 0 0
\(903\) 1256.17 799.300i 1.39111 0.885161i
\(904\) 0 0
\(905\) 425.180 245.478i 0.469813 0.271246i
\(906\) 0 0
\(907\) 323.994 561.175i 0.357215 0.618715i −0.630279 0.776369i \(-0.717060\pi\)
0.987495 + 0.157653i \(0.0503929\pi\)
\(908\) 0 0
\(909\) 182.251 + 85.2289i 0.200496 + 0.0937611i
\(910\) 0 0
\(911\) 173.671 + 100.269i 0.190638 + 0.110065i 0.592281 0.805731i \(-0.298227\pi\)
−0.401643 + 0.915796i \(0.631561\pi\)
\(912\) 0 0
\(913\) −1547.40 2680.17i −1.69485 2.93556i
\(914\) 0 0
\(915\) 301.016 12.9771i 0.328979 0.0141826i
\(916\) 0 0
\(917\) 204.341i 0.222837i
\(918\) 0 0
\(919\) 619.581 0.674191 0.337095 0.941471i \(-0.390556\pi\)
0.337095 + 0.941471i \(0.390556\pi\)
\(920\) 0 0
\(921\) 60.4208 + 1401.52i 0.0656035 + 1.52173i
\(922\) 0 0
\(923\) −325.887 + 188.151i −0.353074 + 0.203847i
\(924\) 0 0
\(925\) 6.36062 11.0169i 0.00687635 0.0119102i
\(926\) 0 0
\(927\) −638.587 914.131i −0.688875 0.986117i
\(928\) 0 0
\(929\) −615.591 355.411i −0.662638 0.382574i 0.130643 0.991429i \(-0.458296\pi\)
−0.793281 + 0.608855i \(0.791629\pi\)
\(930\) 0 0
\(931\) −40.5929 70.3089i −0.0436014 0.0755198i
\(932\) 0 0
\(933\) −866.140 1361.22i −0.928339 1.45897i
\(934\) 0 0
\(935\) 606.851i 0.649039i
\(936\) 0 0
\(937\) 435.674 0.464967 0.232483 0.972600i \(-0.425315\pi\)
0.232483 + 0.972600i \(0.425315\pi\)
\(938\) 0 0
\(939\) 708.318 + 369.221i 0.754333 + 0.393207i
\(940\) 0 0
\(941\) 109.205 63.0496i 0.116052 0.0670027i −0.440850 0.897581i \(-0.645323\pi\)
0.556902 + 0.830578i \(0.311990\pi\)
\(942\) 0 0
\(943\) 455.293 788.590i 0.482813 0.836257i
\(944\) 0 0
\(945\) 397.057 51.6086i 0.420167 0.0546123i
\(946\) 0 0
\(947\) 491.359 + 283.686i 0.518858 + 0.299563i 0.736467 0.676473i \(-0.236493\pi\)
−0.217609 + 0.976036i \(0.569826\pi\)
\(948\) 0 0
\(949\) −434.930 753.320i −0.458303 0.793804i
\(950\) 0 0
\(951\) −661.285 + 1268.62i −0.695358 + 1.33398i
\(952\) 0 0
\(953\) 873.128i 0.916189i −0.888903 0.458095i \(-0.848532\pi\)
0.888903 0.458095i \(-0.151468\pi\)
\(954\) 0 0
\(955\) 722.209 0.756239
\(956\) 0 0
\(957\) −2665.25 + 1695.89i −2.78500 + 1.77209i
\(958\) 0 0
\(959\) 611.934 353.300i 0.638095 0.368405i
\(960\) 0 0
\(961\) 429.856 744.532i 0.447300 0.774747i
\(962\) 0 0
\(963\) −36.6901 424.739i −0.0380998 0.441059i
\(964\) 0 0
\(965\) 334.594 + 193.178i 0.346730 + 0.200184i
\(966\) 0 0
\(967\) −420.374 728.109i −0.434720 0.752957i 0.562553 0.826761i \(-0.309819\pi\)
−0.997273 + 0.0738046i \(0.976486\pi\)
\(968\) 0 0
\(969\) −625.747 + 26.9766i −0.645766 + 0.0278396i
\(970\) 0 0
\(971\) 258.099i 0.265807i 0.991129 + 0.132903i \(0.0424300\pi\)
−0.991129 + 0.132903i \(0.957570\pi\)
\(972\) 0 0
\(973\) −757.613 −0.778636
\(974\) 0 0
\(975\) 6.32012 + 146.601i 0.00648218 + 0.150360i
\(976\) 0 0
\(977\) −997.653 + 575.995i −1.02114 + 0.589555i −0.914434 0.404736i \(-0.867364\pi\)
−0.106706 + 0.994291i \(0.534030\pi\)
\(978\) 0 0
\(979\) −1528.55 + 2647.52i −1.56134 + 2.70431i
\(980\) 0 0
\(981\) 240.973 20.8159i 0.245641 0.0212191i
\(982\) 0 0
\(983\) 553.718 + 319.689i 0.563294 + 0.325218i 0.754467 0.656338i \(-0.227896\pi\)
−0.191172 + 0.981556i \(0.561229\pi\)
\(984\) 0 0
\(985\) 80.1990 + 138.909i 0.0814203 + 0.141024i
\(986\) 0 0
\(987\) 504.139 + 792.299i 0.510779 + 0.802735i
\(988\) 0 0
\(989\) 1267.44i 1.28153i
\(990\) 0 0
\(991\) −1875.09 −1.89212 −0.946060 0.323992i \(-0.894975\pi\)
−0.946060 + 0.323992i \(0.894975\pi\)
\(992\) 0 0
\(993\) 94.0248 + 49.0118i 0.0946876 + 0.0493573i
\(994\) 0 0
\(995\) −257.989 + 148.950i −0.259285 + 0.149698i
\(996\) 0 0
\(997\) 472.697 818.736i 0.474120 0.821199i −0.525441 0.850830i \(-0.676100\pi\)
0.999561 + 0.0296306i \(0.00943309\pi\)
\(998\) 0 0
\(999\) −8.85430 68.1217i −0.00886317 0.0681899i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.3.bs.d.641.5 16
3.2 odd 2 2160.3.bs.d.1601.1 16
4.3 odd 2 90.3.h.a.11.3 16
9.4 even 3 2160.3.bs.d.881.1 16
9.5 odd 6 inner 720.3.bs.d.401.5 16
12.11 even 2 270.3.h.a.251.6 16
20.3 even 4 450.3.k.c.299.3 32
20.7 even 4 450.3.k.c.299.14 32
20.19 odd 2 450.3.i.g.101.6 16
36.7 odd 6 810.3.d.c.161.13 16
36.11 even 6 810.3.d.c.161.1 16
36.23 even 6 90.3.h.a.41.3 yes 16
36.31 odd 6 270.3.h.a.71.6 16
60.23 odd 4 1350.3.k.b.899.14 32
60.47 odd 4 1350.3.k.b.899.3 32
60.59 even 2 1350.3.i.g.251.2 16
180.23 odd 12 450.3.k.c.149.14 32
180.59 even 6 450.3.i.g.401.6 16
180.67 even 12 1350.3.k.b.449.14 32
180.103 even 12 1350.3.k.b.449.3 32
180.139 odd 6 1350.3.i.g.1151.2 16
180.167 odd 12 450.3.k.c.149.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.3.h.a.11.3 16 4.3 odd 2
90.3.h.a.41.3 yes 16 36.23 even 6
270.3.h.a.71.6 16 36.31 odd 6
270.3.h.a.251.6 16 12.11 even 2
450.3.i.g.101.6 16 20.19 odd 2
450.3.i.g.401.6 16 180.59 even 6
450.3.k.c.149.3 32 180.167 odd 12
450.3.k.c.149.14 32 180.23 odd 12
450.3.k.c.299.3 32 20.3 even 4
450.3.k.c.299.14 32 20.7 even 4
720.3.bs.d.401.5 16 9.5 odd 6 inner
720.3.bs.d.641.5 16 1.1 even 1 trivial
810.3.d.c.161.1 16 36.11 even 6
810.3.d.c.161.13 16 36.7 odd 6
1350.3.i.g.251.2 16 60.59 even 2
1350.3.i.g.1151.2 16 180.139 odd 6
1350.3.k.b.449.3 32 180.103 even 12
1350.3.k.b.449.14 32 180.67 even 12
1350.3.k.b.899.3 32 60.47 odd 4
1350.3.k.b.899.14 32 60.23 odd 4
2160.3.bs.d.881.1 16 9.4 even 3
2160.3.bs.d.1601.1 16 3.2 odd 2