Properties

Label 450.3.k.c.149.14
Level $450$
Weight $3$
Character 450.149
Analytic conductor $12.262$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,3,Mod(149,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.149");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 450.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2616118962\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 149.14
Character \(\chi\) \(=\) 450.149
Dual form 450.3.k.c.299.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(-2.99722 - 0.129213i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(-1.96110 - 3.76219i) q^{6} +(5.74345 - 3.31598i) q^{7} -2.82843 q^{8} +(8.96661 + 0.774559i) q^{9} +(-18.2172 + 10.5177i) q^{11} +(3.22102 - 5.06212i) q^{12} +(8.47187 + 4.89124i) q^{13} +(8.12247 + 4.68951i) q^{14} +(-2.00000 - 3.46410i) q^{16} +12.9017 q^{17} +(5.39171 + 11.5295i) q^{18} -16.1821 q^{19} +(-17.6428 + 9.19659i) q^{21} +(-25.7630 - 14.8743i) q^{22} +(-8.46823 + 14.6674i) q^{23} +(8.47741 + 0.365470i) q^{24} +13.8345i q^{26} +(-26.7748 - 3.48012i) q^{27} +13.2639i q^{28} +(-43.3525 + 25.0296i) q^{29} +(5.03212 - 8.71588i) q^{31} +(2.82843 - 4.89898i) q^{32} +(55.9600 - 29.1700i) q^{33} +(9.12285 + 15.8012i) q^{34} +(-10.3082 + 14.7561i) q^{36} -2.54425i q^{37} +(-11.4425 - 19.8190i) q^{38} +(-24.7600 - 15.7548i) q^{39} +(-46.5617 - 26.8824i) q^{41} +(-23.7388 - 15.1050i) q^{42} +(-64.8089 + 37.4175i) q^{43} -42.0709i q^{44} -23.9518 q^{46} +(-23.6001 - 40.8766i) q^{47} +(5.54682 + 10.6411i) q^{48} +(-2.50850 + 4.34485i) q^{49} +(-38.6691 - 1.66706i) q^{51} +(-16.9437 + 9.78248i) q^{52} -1.08813 q^{53} +(-14.6704 - 35.2531i) q^{54} +(-16.2449 + 9.37902i) q^{56} +(48.5013 + 2.09094i) q^{57} +(-61.3097 - 35.3972i) q^{58} +(-8.34807 - 4.81976i) q^{59} +(22.4573 + 38.8971i) q^{61} +14.2330 q^{62} +(54.0677 - 25.2845i) q^{63} +8.00000 q^{64} +(75.2955 + 47.9104i) q^{66} +(-2.89369 - 1.67067i) q^{67} +(-12.9017 + 22.3463i) q^{68} +(27.2763 - 42.8672i) q^{69} +38.4670i q^{71} +(-25.3614 - 2.19078i) q^{72} -88.9201i q^{73} +(3.11606 - 1.79906i) q^{74} +(16.1821 - 28.0283i) q^{76} +(-69.7532 + 120.816i) q^{77} +(1.78760 - 41.4650i) q^{78} +(58.8235 + 101.885i) q^{79} +(79.8001 + 13.8903i) q^{81} -76.0349i q^{82} +(73.5614 + 127.412i) q^{83} +(1.71387 - 39.7549i) q^{84} +(-91.6537 - 52.9163i) q^{86} +(133.171 - 69.4173i) q^{87} +(51.5261 - 29.7486i) q^{88} +145.331i q^{89} +64.8771 q^{91} +(-16.9365 - 29.3348i) q^{92} +(-16.2086 + 25.4732i) q^{93} +(33.3756 - 57.8083i) q^{94} +(-9.11042 + 14.3178i) q^{96} +(40.7494 - 23.5267i) q^{97} -7.09511 q^{98} +(-171.493 + 80.1980i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} + 32 q^{6} + 8 q^{9} + 72 q^{14} - 64 q^{16} - 160 q^{19} - 88 q^{21} + 16 q^{24} + 144 q^{29} - 32 q^{31} + 96 q^{34} + 64 q^{36} + 16 q^{39} + 216 q^{41} + 48 q^{46} + 168 q^{49} + 336 q^{51}+ \cdots - 1632 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.353553 + 0.612372i
\(3\) −2.99722 0.129213i −0.999072 0.0430710i
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) −1.96110 3.76219i −0.326850 0.627032i
\(7\) 5.74345 3.31598i 0.820493 0.473712i −0.0300933 0.999547i \(-0.509580\pi\)
0.850587 + 0.525835i \(0.176247\pi\)
\(8\) −2.82843 −0.353553
\(9\) 8.96661 + 0.774559i 0.996290 + 0.0860621i
\(10\) 0 0
\(11\) −18.2172 + 10.5177i −1.65611 + 0.956156i −0.681627 + 0.731699i \(0.738727\pi\)
−0.974484 + 0.224457i \(0.927939\pi\)
\(12\) 3.22102 5.06212i 0.268418 0.421843i
\(13\) 8.47187 + 4.89124i 0.651683 + 0.376249i 0.789101 0.614264i \(-0.210547\pi\)
−0.137418 + 0.990513i \(0.543880\pi\)
\(14\) 8.12247 + 4.68951i 0.580176 + 0.334965i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 12.9017 0.758921 0.379460 0.925208i \(-0.376110\pi\)
0.379460 + 0.925208i \(0.376110\pi\)
\(18\) 5.39171 + 11.5295i 0.299540 + 0.640528i
\(19\) −16.1821 −0.851691 −0.425845 0.904796i \(-0.640023\pi\)
−0.425845 + 0.904796i \(0.640023\pi\)
\(20\) 0 0
\(21\) −17.6428 + 9.19659i −0.840135 + 0.437933i
\(22\) −25.7630 14.8743i −1.17105 0.676105i
\(23\) −8.46823 + 14.6674i −0.368184 + 0.637713i −0.989282 0.146020i \(-0.953354\pi\)
0.621098 + 0.783733i \(0.286687\pi\)
\(24\) 8.47741 + 0.365470i 0.353225 + 0.0152279i
\(25\) 0 0
\(26\) 13.8345i 0.532097i
\(27\) −26.7748 3.48012i −0.991658 0.128893i
\(28\) 13.2639i 0.473712i
\(29\) −43.3525 + 25.0296i −1.49491 + 0.863089i −0.999983 0.00584415i \(-0.998140\pi\)
−0.494930 + 0.868933i \(0.664806\pi\)
\(30\) 0 0
\(31\) 5.03212 8.71588i 0.162326 0.281158i −0.773376 0.633947i \(-0.781434\pi\)
0.935703 + 0.352790i \(0.114767\pi\)
\(32\) 2.82843 4.89898i 0.0883883 0.153093i
\(33\) 55.9600 29.1700i 1.69576 0.883939i
\(34\) 9.12285 + 15.8012i 0.268319 + 0.464742i
\(35\) 0 0
\(36\) −10.3082 + 14.7561i −0.286338 + 0.409891i
\(37\) 2.54425i 0.0687635i −0.999409 0.0343817i \(-0.989054\pi\)
0.999409 0.0343817i \(-0.0109462\pi\)
\(38\) −11.4425 19.8190i −0.301118 0.521552i
\(39\) −24.7600 15.7548i −0.634872 0.403969i
\(40\) 0 0
\(41\) −46.5617 26.8824i −1.13565 0.655669i −0.190301 0.981726i \(-0.560946\pi\)
−0.945350 + 0.326057i \(0.894280\pi\)
\(42\) −23.7388 15.1050i −0.565211 0.359643i
\(43\) −64.8089 + 37.4175i −1.50718 + 0.870173i −0.507219 + 0.861817i \(0.669327\pi\)
−0.999965 + 0.00835640i \(0.997340\pi\)
\(44\) 42.0709i 0.956156i
\(45\) 0 0
\(46\) −23.9518 −0.520690
\(47\) −23.6001 40.8766i −0.502131 0.869716i −0.999997 0.00246200i \(-0.999216\pi\)
0.497866 0.867254i \(-0.334117\pi\)
\(48\) 5.54682 + 10.6411i 0.115559 + 0.221689i
\(49\) −2.50850 + 4.34485i −0.0511939 + 0.0886704i
\(50\) 0 0
\(51\) −38.6691 1.66706i −0.758217 0.0326875i
\(52\) −16.9437 + 9.78248i −0.325841 + 0.188125i
\(53\) −1.08813 −0.0205307 −0.0102654 0.999947i \(-0.503268\pi\)
−0.0102654 + 0.999947i \(0.503268\pi\)
\(54\) −14.6704 35.2531i −0.271673 0.652835i
\(55\) 0 0
\(56\) −16.2449 + 9.37902i −0.290088 + 0.167482i
\(57\) 48.5013 + 2.09094i 0.850900 + 0.0366832i
\(58\) −61.3097 35.3972i −1.05706 0.610296i
\(59\) −8.34807 4.81976i −0.141493 0.0816908i 0.427583 0.903976i \(-0.359365\pi\)
−0.569075 + 0.822285i \(0.692699\pi\)
\(60\) 0 0
\(61\) 22.4573 + 38.8971i 0.368152 + 0.637657i 0.989277 0.146054i \(-0.0466574\pi\)
−0.621125 + 0.783712i \(0.713324\pi\)
\(62\) 14.2330 0.229564
\(63\) 54.0677 25.2845i 0.858218 0.401341i
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) 75.2955 + 47.9104i 1.14084 + 0.725915i
\(67\) −2.89369 1.67067i −0.0431894 0.0249354i 0.478250 0.878224i \(-0.341271\pi\)
−0.521439 + 0.853288i \(0.674605\pi\)
\(68\) −12.9017 + 22.3463i −0.189730 + 0.328622i
\(69\) 27.2763 42.8672i 0.395309 0.621263i
\(70\) 0 0
\(71\) 38.4670i 0.541788i 0.962609 + 0.270894i \(0.0873193\pi\)
−0.962609 + 0.270894i \(0.912681\pi\)
\(72\) −25.3614 2.19078i −0.352242 0.0304276i
\(73\) 88.9201i 1.21808i −0.793138 0.609042i \(-0.791554\pi\)
0.793138 0.609042i \(-0.208446\pi\)
\(74\) 3.11606 1.79906i 0.0421089 0.0243116i
\(75\) 0 0
\(76\) 16.1821 28.0283i 0.212923 0.368793i
\(77\) −69.7532 + 120.816i −0.905885 + 1.56904i
\(78\) 1.78760 41.4650i 0.0229180 0.531603i
\(79\) 58.8235 + 101.885i 0.744602 + 1.28969i 0.950381 + 0.311090i \(0.100694\pi\)
−0.205779 + 0.978599i \(0.565973\pi\)
\(80\) 0 0
\(81\) 79.8001 + 13.8903i 0.985187 + 0.171486i
\(82\) 76.0349i 0.927255i
\(83\) 73.5614 + 127.412i 0.886282 + 1.53509i 0.844237 + 0.535970i \(0.180054\pi\)
0.0420449 + 0.999116i \(0.486613\pi\)
\(84\) 1.71387 39.7549i 0.0204033 0.473272i
\(85\) 0 0
\(86\) −91.6537 52.9163i −1.06574 0.615305i
\(87\) 133.171 69.4173i 1.53070 0.797900i
\(88\) 51.5261 29.7486i 0.585524 0.338052i
\(89\) 145.331i 1.63293i 0.577396 + 0.816464i \(0.304069\pi\)
−0.577396 + 0.816464i \(0.695931\pi\)
\(90\) 0 0
\(91\) 64.8771 0.712935
\(92\) −16.9365 29.3348i −0.184092 0.318856i
\(93\) −16.2086 + 25.4732i −0.174285 + 0.273905i
\(94\) 33.3756 57.8083i 0.355060 0.614982i
\(95\) 0 0
\(96\) −9.11042 + 14.3178i −0.0949002 + 0.149144i
\(97\) 40.7494 23.5267i 0.420097 0.242543i −0.275022 0.961438i \(-0.588685\pi\)
0.695119 + 0.718895i \(0.255352\pi\)
\(98\) −7.09511 −0.0723991
\(99\) −171.493 + 80.1980i −1.73226 + 0.810080i
\(100\) 0 0
\(101\) −19.3600 + 11.1775i −0.191683 + 0.110668i −0.592770 0.805372i \(-0.701966\pi\)
0.401087 + 0.916040i \(0.368632\pi\)
\(102\) −25.3014 48.5385i −0.248053 0.475868i
\(103\) −107.300 61.9495i −1.04174 0.601452i −0.121418 0.992601i \(-0.538744\pi\)
−0.920327 + 0.391150i \(0.872077\pi\)
\(104\) −23.9621 13.8345i −0.230405 0.133024i
\(105\) 0 0
\(106\) −0.769422 1.33268i −0.00725870 0.0125724i
\(107\) 47.3690 0.442701 0.221351 0.975194i \(-0.428954\pi\)
0.221351 + 0.975194i \(0.428954\pi\)
\(108\) 32.8025 42.8952i 0.303727 0.397177i
\(109\) 26.8745 0.246555 0.123278 0.992372i \(-0.460659\pi\)
0.123278 + 0.992372i \(0.460659\pi\)
\(110\) 0 0
\(111\) −0.328750 + 7.62567i −0.00296171 + 0.0686997i
\(112\) −22.9738 13.2639i −0.205123 0.118428i
\(113\) 9.40495 16.2899i 0.0832297 0.144158i −0.821406 0.570344i \(-0.806810\pi\)
0.904635 + 0.426186i \(0.140143\pi\)
\(114\) 31.7347 + 60.8803i 0.278375 + 0.534037i
\(115\) 0 0
\(116\) 100.118i 0.863089i
\(117\) 72.1754 + 50.4198i 0.616884 + 0.430938i
\(118\) 13.6323i 0.115528i
\(119\) 74.1001 42.7817i 0.622690 0.359510i
\(120\) 0 0
\(121\) 160.745 278.418i 1.32847 2.30098i
\(122\) −31.7593 + 55.0088i −0.260323 + 0.450892i
\(123\) 136.082 + 86.5888i 1.10636 + 0.703974i
\(124\) 10.0642 + 17.4318i 0.0811632 + 0.140579i
\(125\) 0 0
\(126\) 69.1987 + 48.3403i 0.549196 + 0.383653i
\(127\) 128.820i 1.01433i 0.861849 + 0.507166i \(0.169307\pi\)
−0.861849 + 0.507166i \(0.830693\pi\)
\(128\) 5.65685 + 9.79796i 0.0441942 + 0.0765466i
\(129\) 199.081 103.774i 1.54327 0.804450i
\(130\) 0 0
\(131\) −26.6836 15.4058i −0.203692 0.117601i 0.394685 0.918817i \(-0.370854\pi\)
−0.598376 + 0.801215i \(0.704187\pi\)
\(132\) −5.43611 + 126.096i −0.0411826 + 0.955269i
\(133\) −92.9413 + 53.6597i −0.698806 + 0.403456i
\(134\) 4.72538i 0.0352640i
\(135\) 0 0
\(136\) −36.4914 −0.268319
\(137\) 53.2723 + 92.2703i 0.388849 + 0.673506i 0.992295 0.123898i \(-0.0395395\pi\)
−0.603446 + 0.797404i \(0.706206\pi\)
\(138\) 71.7886 + 3.09488i 0.520207 + 0.0224267i
\(139\) 57.1183 98.9317i 0.410923 0.711739i −0.584068 0.811705i \(-0.698540\pi\)
0.994991 + 0.0999656i \(0.0318733\pi\)
\(140\) 0 0
\(141\) 65.4529 + 125.566i 0.464205 + 0.890536i
\(142\) −47.1122 + 27.2002i −0.331776 + 0.191551i
\(143\) −205.779 −1.43901
\(144\) −15.2501 32.6104i −0.105903 0.226461i
\(145\) 0 0
\(146\) 108.904 62.8760i 0.745921 0.430658i
\(147\) 8.07993 12.6983i 0.0549655 0.0863832i
\(148\) 4.40677 + 2.54425i 0.0297755 + 0.0171909i
\(149\) −104.689 60.4419i −0.702607 0.405651i 0.105710 0.994397i \(-0.466288\pi\)
−0.808318 + 0.588746i \(0.799622\pi\)
\(150\) 0 0
\(151\) −63.4938 109.975i −0.420489 0.728308i 0.575498 0.817803i \(-0.304808\pi\)
−0.995987 + 0.0894947i \(0.971475\pi\)
\(152\) 45.7700 0.301118
\(153\) 115.684 + 9.99310i 0.756105 + 0.0653144i
\(154\) −197.292 −1.28112
\(155\) 0 0
\(156\) 52.0481 27.1308i 0.333642 0.173916i
\(157\) 90.2510 + 52.1064i 0.574847 + 0.331888i 0.759083 0.650994i \(-0.225648\pi\)
−0.184236 + 0.982882i \(0.558981\pi\)
\(158\) −83.1891 + 144.088i −0.526513 + 0.911947i
\(159\) 3.26135 + 0.140600i 0.0205117 + 0.000884279i
\(160\) 0 0
\(161\) 112.322i 0.697652i
\(162\) 39.4151 + 107.557i 0.243303 + 0.663930i
\(163\) 188.533i 1.15664i −0.815809 0.578321i \(-0.803708\pi\)
0.815809 0.578321i \(-0.196292\pi\)
\(164\) 93.1234 53.7648i 0.567826 0.327834i
\(165\) 0 0
\(166\) −104.032 + 180.188i −0.626696 + 1.08547i
\(167\) −33.9581 + 58.8172i −0.203342 + 0.352199i −0.949603 0.313454i \(-0.898514\pi\)
0.746261 + 0.665653i \(0.231847\pi\)
\(168\) 49.9015 26.0119i 0.297033 0.154833i
\(169\) −36.6516 63.4824i −0.216873 0.375635i
\(170\) 0 0
\(171\) −145.099 12.5340i −0.848531 0.0732983i
\(172\) 149.670i 0.870173i
\(173\) 61.1963 + 105.995i 0.353736 + 0.612689i 0.986901 0.161328i \(-0.0515778\pi\)
−0.633165 + 0.774017i \(0.718244\pi\)
\(174\) 179.185 + 114.015i 1.02980 + 0.655258i
\(175\) 0 0
\(176\) 72.8689 + 42.0709i 0.414028 + 0.239039i
\(177\) 24.3982 + 15.5245i 0.137843 + 0.0877093i
\(178\) −177.993 + 102.764i −0.999961 + 0.577328i
\(179\) 78.4259i 0.438134i −0.975710 0.219067i \(-0.929699\pi\)
0.975710 0.219067i \(-0.0703013\pi\)
\(180\) 0 0
\(181\) 219.562 1.21305 0.606525 0.795064i \(-0.292563\pi\)
0.606525 + 0.795064i \(0.292563\pi\)
\(182\) 45.8750 + 79.4579i 0.252061 + 0.436582i
\(183\) −62.2832 119.485i −0.340345 0.652922i
\(184\) 23.9518 41.4857i 0.130173 0.225466i
\(185\) 0 0
\(186\) −42.6593 1.83909i −0.229351 0.00988757i
\(187\) −235.032 + 135.696i −1.25686 + 0.725647i
\(188\) 94.4006 0.502131
\(189\) −165.320 + 68.7968i −0.874707 + 0.364004i
\(190\) 0 0
\(191\) −279.710 + 161.491i −1.46445 + 0.845501i −0.999212 0.0396836i \(-0.987365\pi\)
−0.465239 + 0.885185i \(0.654032\pi\)
\(192\) −23.9777 1.03370i −0.124884 0.00538388i
\(193\) 149.635 + 86.3918i 0.775311 + 0.447626i 0.834766 0.550605i \(-0.185603\pi\)
−0.0594550 + 0.998231i \(0.518936\pi\)
\(194\) 57.6284 + 33.2718i 0.297054 + 0.171504i
\(195\) 0 0
\(196\) −5.01700 8.68970i −0.0255970 0.0443352i
\(197\) −71.7321 −0.364123 −0.182061 0.983287i \(-0.558277\pi\)
−0.182061 + 0.983287i \(0.558277\pi\)
\(198\) −219.486 153.327i −1.10852 0.774379i
\(199\) −133.225 −0.669472 −0.334736 0.942312i \(-0.608647\pi\)
−0.334736 + 0.942312i \(0.608647\pi\)
\(200\) 0 0
\(201\) 8.45714 + 5.38127i 0.0420753 + 0.0267725i
\(202\) −27.3792 15.8074i −0.135541 0.0782544i
\(203\) −165.995 + 287.512i −0.817711 + 1.41632i
\(204\) 41.5565 65.3097i 0.203708 0.320146i
\(205\) 0 0
\(206\) 175.220i 0.850581i
\(207\) −87.2920 + 124.958i −0.421701 + 0.603660i
\(208\) 39.1299i 0.188125i
\(209\) 294.793 170.199i 1.41049 0.814349i
\(210\) 0 0
\(211\) 188.164 325.909i 0.891771 1.54459i 0.0540209 0.998540i \(-0.482796\pi\)
0.837750 0.546053i \(-0.183870\pi\)
\(212\) 1.08813 1.88469i 0.00513268 0.00889006i
\(213\) 4.97043 115.294i 0.0233354 0.541285i
\(214\) 33.4949 + 58.0150i 0.156518 + 0.271098i
\(215\) 0 0
\(216\) 75.7305 + 9.84328i 0.350604 + 0.0455707i
\(217\) 66.7457i 0.307584i
\(218\) 19.0032 + 32.9144i 0.0871705 + 0.150984i
\(219\) −11.4896 + 266.513i −0.0524641 + 1.21695i
\(220\) 0 0
\(221\) 109.301 + 63.1051i 0.494576 + 0.285543i
\(222\) −9.57196 + 4.98952i −0.0431169 + 0.0224753i
\(223\) 51.2488 29.5885i 0.229815 0.132684i −0.380672 0.924710i \(-0.624307\pi\)
0.610487 + 0.792026i \(0.290974\pi\)
\(224\) 37.5161i 0.167482i
\(225\) 0 0
\(226\) 26.6012 0.117705
\(227\) −74.9193 129.764i −0.330041 0.571647i 0.652479 0.757807i \(-0.273729\pi\)
−0.982520 + 0.186160i \(0.940396\pi\)
\(228\) −52.1229 + 81.9158i −0.228609 + 0.359280i
\(229\) −85.4319 + 147.972i −0.373065 + 0.646167i −0.990035 0.140819i \(-0.955026\pi\)
0.616970 + 0.786986i \(0.288360\pi\)
\(230\) 0 0
\(231\) 224.676 353.099i 0.972625 1.52857i
\(232\) 122.619 70.7943i 0.528532 0.305148i
\(233\) 448.983 1.92697 0.963483 0.267770i \(-0.0862867\pi\)
0.963483 + 0.267770i \(0.0862867\pi\)
\(234\) −10.7156 + 124.049i −0.0457934 + 0.530122i
\(235\) 0 0
\(236\) 16.6961 9.63952i 0.0707463 0.0408454i
\(237\) −163.142 312.973i −0.688363 1.32056i
\(238\) 104.793 + 60.5024i 0.440308 + 0.254212i
\(239\) 200.845 + 115.958i 0.840356 + 0.485180i 0.857385 0.514675i \(-0.172087\pi\)
−0.0170289 + 0.999855i \(0.505421\pi\)
\(240\) 0 0
\(241\) 198.671 + 344.108i 0.824359 + 1.42783i 0.902408 + 0.430882i \(0.141798\pi\)
−0.0780488 + 0.996950i \(0.524869\pi\)
\(242\) 454.655 1.87874
\(243\) −237.383 51.9436i −0.976886 0.213759i
\(244\) −89.8290 −0.368152
\(245\) 0 0
\(246\) −9.82471 + 227.893i −0.0399378 + 0.926395i
\(247\) −137.093 79.1506i −0.555032 0.320448i
\(248\) −14.2330 + 24.6522i −0.0573910 + 0.0994042i
\(249\) −204.016 391.387i −0.819342 1.57183i
\(250\) 0 0
\(251\) 193.179i 0.769636i −0.922992 0.384818i \(-0.874264\pi\)
0.922992 0.384818i \(-0.125736\pi\)
\(252\) −10.2737 + 118.933i −0.0407687 + 0.471954i
\(253\) 356.266i 1.40816i
\(254\) −157.772 + 91.0895i −0.621148 + 0.358620i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 60.4331 104.673i 0.235148 0.407289i −0.724167 0.689624i \(-0.757776\pi\)
0.959316 + 0.282335i \(0.0911091\pi\)
\(258\) 267.868 + 170.444i 1.03825 + 0.660637i
\(259\) −8.43669 14.6128i −0.0325741 0.0564200i
\(260\) 0 0
\(261\) −408.112 + 190.851i −1.56365 + 0.731231i
\(262\) 43.5741i 0.166313i
\(263\) −150.518 260.705i −0.572312 0.991273i −0.996328 0.0856183i \(-0.972713\pi\)
0.424016 0.905655i \(-0.360620\pi\)
\(264\) −158.279 + 82.5051i −0.599541 + 0.312519i
\(265\) 0 0
\(266\) −131.439 75.8862i −0.494131 0.285287i
\(267\) 18.7786 435.587i 0.0703319 1.63141i
\(268\) 5.78738 3.34135i 0.0215947 0.0124677i
\(269\) 128.065i 0.476077i 0.971256 + 0.238038i \(0.0765044\pi\)
−0.971256 + 0.238038i \(0.923496\pi\)
\(270\) 0 0
\(271\) −512.831 −1.89236 −0.946182 0.323635i \(-0.895095\pi\)
−0.946182 + 0.323635i \(0.895095\pi\)
\(272\) −25.8033 44.6927i −0.0948651 0.164311i
\(273\) −194.451 8.38297i −0.712273 0.0307068i
\(274\) −75.3384 + 130.490i −0.274958 + 0.476240i
\(275\) 0 0
\(276\) 46.9718 + 90.1111i 0.170188 + 0.326490i
\(277\) 240.341 138.761i 0.867658 0.500942i 0.00108844 0.999999i \(-0.499654\pi\)
0.866569 + 0.499057i \(0.166320\pi\)
\(278\) 161.555 0.581133
\(279\) 51.8720 74.2542i 0.185921 0.266144i
\(280\) 0 0
\(281\) −89.3698 + 51.5977i −0.318042 + 0.183622i −0.650519 0.759490i \(-0.725449\pi\)
0.332478 + 0.943111i \(0.392115\pi\)
\(282\) −107.504 + 168.951i −0.381218 + 0.599118i
\(283\) 142.087 + 82.0340i 0.502075 + 0.289873i 0.729570 0.683906i \(-0.239720\pi\)
−0.227495 + 0.973779i \(0.573054\pi\)
\(284\) −66.6267 38.4670i −0.234601 0.135447i
\(285\) 0 0
\(286\) −145.508 252.026i −0.508768 0.881211i
\(287\) −356.567 −1.24239
\(288\) 29.1559 41.7364i 0.101236 0.144918i
\(289\) −122.547 −0.424039
\(290\) 0 0
\(291\) −125.175 + 65.2492i −0.430154 + 0.224224i
\(292\) 154.014 + 88.9201i 0.527446 + 0.304521i
\(293\) 146.494 253.735i 0.499979 0.865988i −0.500021 0.866013i \(-0.666675\pi\)
1.00000 2.47977e-5i \(7.89334e-6\pi\)
\(294\) 21.2656 + 0.916781i 0.0723319 + 0.00311830i
\(295\) 0 0
\(296\) 7.19622i 0.0243116i
\(297\) 524.365 218.211i 1.76554 0.734719i
\(298\) 170.956i 0.573677i
\(299\) −143.484 + 82.8402i −0.479878 + 0.277058i
\(300\) 0 0
\(301\) −248.151 + 429.811i −0.824423 + 1.42794i
\(302\) 89.7938 155.527i 0.297331 0.514992i
\(303\) 59.4704 30.9998i 0.196272 0.102310i
\(304\) 32.3642 + 56.0565i 0.106461 + 0.184396i
\(305\) 0 0
\(306\) 69.5620 + 148.750i 0.227327 + 0.486110i
\(307\) 467.606i 1.52315i 0.648079 + 0.761573i \(0.275573\pi\)
−0.648079 + 0.761573i \(0.724427\pi\)
\(308\) −139.506 241.632i −0.452943 0.784520i
\(309\) 313.596 + 199.541i 1.01487 + 0.645763i
\(310\) 0 0
\(311\) 465.753 + 268.902i 1.49760 + 0.864638i 0.999996 0.00276786i \(-0.000881040\pi\)
0.497601 + 0.867406i \(0.334214\pi\)
\(312\) 70.0319 + 44.5612i 0.224461 + 0.142824i
\(313\) −230.586 + 133.129i −0.736697 + 0.425332i −0.820867 0.571119i \(-0.806509\pi\)
0.0841703 + 0.996451i \(0.473176\pi\)
\(314\) 147.379i 0.469361i
\(315\) 0 0
\(316\) −235.294 −0.744602
\(317\) −238.437 412.986i −0.752168 1.30279i −0.946770 0.321911i \(-0.895675\pi\)
0.194602 0.980882i \(-0.437659\pi\)
\(318\) 2.13393 + 4.09375i 0.00671046 + 0.0128734i
\(319\) 526.508 911.939i 1.65050 2.85874i
\(320\) 0 0
\(321\) −141.975 6.12070i −0.442290 0.0190676i
\(322\) −137.566 + 79.4237i −0.427223 + 0.246657i
\(323\) −208.776 −0.646366
\(324\) −103.859 + 124.328i −0.320552 + 0.383727i
\(325\) 0 0
\(326\) 230.904 133.313i 0.708296 0.408935i
\(327\) −80.5488 3.47254i −0.246326 0.0106194i
\(328\) 131.696 + 76.0349i 0.401513 + 0.231814i
\(329\) −271.093 156.515i −0.823990 0.475731i
\(330\) 0 0
\(331\) −17.6720 30.6088i −0.0533898 0.0924738i 0.838095 0.545524i \(-0.183669\pi\)
−0.891485 + 0.453050i \(0.850336\pi\)
\(332\) −294.246 −0.886282
\(333\) 1.97067 22.8133i 0.00591793 0.0685084i
\(334\) −96.0482 −0.287569
\(335\) 0 0
\(336\) 67.1436 + 42.7234i 0.199832 + 0.127153i
\(337\) −215.201 124.246i −0.638579 0.368684i 0.145488 0.989360i \(-0.453525\pi\)
−0.784067 + 0.620676i \(0.786858\pi\)
\(338\) 51.8331 89.7776i 0.153352 0.265614i
\(339\) −30.2935 + 47.6090i −0.0893615 + 0.140439i
\(340\) 0 0
\(341\) 211.706i 0.620838i
\(342\) −87.2493 186.572i −0.255115 0.545532i
\(343\) 358.239i 1.04443i
\(344\) 183.307 105.833i 0.532870 0.307653i
\(345\) 0 0
\(346\) −86.5447 + 149.900i −0.250129 + 0.433237i
\(347\) −1.34645 + 2.33212i −0.00388026 + 0.00672082i −0.867959 0.496636i \(-0.834568\pi\)
0.864079 + 0.503357i \(0.167902\pi\)
\(348\) −12.9366 + 300.076i −0.0371741 + 0.862288i
\(349\) 196.192 + 339.815i 0.562156 + 0.973682i 0.997308 + 0.0733253i \(0.0233611\pi\)
−0.435152 + 0.900357i \(0.643306\pi\)
\(350\) 0 0
\(351\) −209.810 160.445i −0.597751 0.457108i
\(352\) 118.994i 0.338052i
\(353\) 9.89124 + 17.1321i 0.0280205 + 0.0485329i 0.879696 0.475537i \(-0.157746\pi\)
−0.851675 + 0.524070i \(0.824413\pi\)
\(354\) −1.76148 + 40.8591i −0.00497592 + 0.115421i
\(355\) 0 0
\(356\) −251.720 145.331i −0.707079 0.408232i
\(357\) −227.622 + 118.651i −0.637596 + 0.332356i
\(358\) 96.0517 55.4555i 0.268301 0.154904i
\(359\) 415.325i 1.15689i 0.815720 + 0.578447i \(0.196341\pi\)
−0.815720 + 0.578447i \(0.803659\pi\)
\(360\) 0 0
\(361\) −99.1389 −0.274623
\(362\) 155.254 + 268.908i 0.428878 + 0.742839i
\(363\) −517.762 + 813.709i −1.42634 + 2.24162i
\(364\) −64.8771 + 112.370i −0.178234 + 0.308710i
\(365\) 0 0
\(366\) 102.297 160.770i 0.279501 0.439261i
\(367\) 461.927 266.694i 1.25866 0.726685i 0.285843 0.958276i \(-0.407726\pi\)
0.972813 + 0.231591i \(0.0743931\pi\)
\(368\) 67.7458 0.184092
\(369\) −396.678 277.109i −1.07501 0.750972i
\(370\) 0 0
\(371\) −6.24961 + 3.60821i −0.0168453 + 0.00972564i
\(372\) −27.9123 53.5472i −0.0750330 0.143944i
\(373\) 186.697 + 107.790i 0.500529 + 0.288981i 0.728932 0.684586i \(-0.240017\pi\)
−0.228403 + 0.973567i \(0.573350\pi\)
\(374\) −332.386 191.903i −0.888733 0.513110i
\(375\) 0 0
\(376\) 66.7513 + 115.617i 0.177530 + 0.307491i
\(377\) −489.702 −1.29895
\(378\) −201.157 153.828i −0.532162 0.406952i
\(379\) −176.846 −0.466612 −0.233306 0.972403i \(-0.574954\pi\)
−0.233306 + 0.972403i \(0.574954\pi\)
\(380\) 0 0
\(381\) 16.6452 386.102i 0.0436883 1.01339i
\(382\) −395.570 228.382i −1.03552 0.597860i
\(383\) −8.60134 + 14.8980i −0.0224578 + 0.0388980i −0.877036 0.480425i \(-0.840482\pi\)
0.854578 + 0.519323i \(0.173816\pi\)
\(384\) −15.6888 30.0975i −0.0408562 0.0783790i
\(385\) 0 0
\(386\) 244.353i 0.633039i
\(387\) −610.098 + 285.309i −1.57648 + 0.737233i
\(388\) 94.1068i 0.242543i
\(389\) −298.375 + 172.267i −0.767030 + 0.442845i −0.831814 0.555055i \(-0.812697\pi\)
0.0647844 + 0.997899i \(0.479364\pi\)
\(390\) 0 0
\(391\) −109.254 + 189.234i −0.279422 + 0.483974i
\(392\) 7.09511 12.2891i 0.0180998 0.0313497i
\(393\) 77.9858 + 49.6223i 0.198437 + 0.126265i
\(394\) −50.7223 87.8536i −0.128737 0.222979i
\(395\) 0 0
\(396\) 32.5864 377.233i 0.0822888 0.952609i
\(397\) 68.9955i 0.173792i −0.996217 0.0868960i \(-0.972305\pi\)
0.996217 0.0868960i \(-0.0276948\pi\)
\(398\) −94.2042 163.167i −0.236694 0.409966i
\(399\) 285.499 148.820i 0.715535 0.372983i
\(400\) 0 0
\(401\) −154.315 89.0938i −0.384825 0.222179i 0.295090 0.955469i \(-0.404650\pi\)
−0.679916 + 0.733290i \(0.737984\pi\)
\(402\) −0.610581 + 14.1630i −0.00151886 + 0.0352313i
\(403\) 85.2629 49.2266i 0.211571 0.122150i
\(404\) 44.7100i 0.110668i
\(405\) 0 0
\(406\) −469.506 −1.15642
\(407\) 26.7597 + 46.3492i 0.0657487 + 0.113880i
\(408\) 109.373 + 4.71517i 0.268070 + 0.0115568i
\(409\) 5.64530 9.77795i 0.0138027 0.0239070i −0.859042 0.511906i \(-0.828940\pi\)
0.872844 + 0.487999i \(0.162273\pi\)
\(410\) 0 0
\(411\) −147.746 283.437i −0.359479 0.689629i
\(412\) 214.599 123.899i 0.520872 0.300726i
\(413\) −63.9290 −0.154792
\(414\) −214.766 18.5521i −0.518759 0.0448117i
\(415\) 0 0
\(416\) 47.9242 27.6690i 0.115202 0.0665121i
\(417\) −183.979 + 289.139i −0.441197 + 0.693380i
\(418\) 416.901 + 240.698i 0.997370 + 0.575832i
\(419\) 56.3602 + 32.5396i 0.134511 + 0.0776601i 0.565746 0.824580i \(-0.308588\pi\)
−0.431234 + 0.902240i \(0.641922\pi\)
\(420\) 0 0
\(421\) 115.044 + 199.262i 0.273263 + 0.473306i 0.969696 0.244317i \(-0.0785636\pi\)
−0.696432 + 0.717623i \(0.745230\pi\)
\(422\) 532.207 1.26116
\(423\) −179.952 384.805i −0.425418 0.909703i
\(424\) 3.07769 0.00725870
\(425\) 0 0
\(426\) 144.720 75.4375i 0.339719 0.177083i
\(427\) 257.964 + 148.936i 0.604132 + 0.348796i
\(428\) −47.3690 + 82.0455i −0.110675 + 0.191695i
\(429\) 616.763 + 26.5893i 1.43768 + 0.0619797i
\(430\) 0 0
\(431\) 67.4877i 0.156584i −0.996930 0.0782920i \(-0.975053\pi\)
0.996930 0.0782920i \(-0.0249467\pi\)
\(432\) 41.4941 + 99.7108i 0.0960510 + 0.230812i
\(433\) 132.060i 0.304989i 0.988304 + 0.152495i \(0.0487307\pi\)
−0.988304 + 0.152495i \(0.951269\pi\)
\(434\) 81.7464 47.1963i 0.188356 0.108747i
\(435\) 0 0
\(436\) −26.8745 + 46.5480i −0.0616388 + 0.106762i
\(437\) 137.034 237.350i 0.313579 0.543134i
\(438\) −334.535 + 174.381i −0.763778 + 0.398130i
\(439\) 344.511 + 596.711i 0.784764 + 1.35925i 0.929140 + 0.369728i \(0.120549\pi\)
−0.144376 + 0.989523i \(0.546118\pi\)
\(440\) 0 0
\(441\) −25.8581 + 37.0156i −0.0586351 + 0.0839356i
\(442\) 178.488i 0.403819i
\(443\) 34.0413 + 58.9612i 0.0768426 + 0.133095i 0.901886 0.431974i \(-0.142183\pi\)
−0.825043 + 0.565069i \(0.808849\pi\)
\(444\) −12.8793 8.19508i −0.0290074 0.0184574i
\(445\) 0 0
\(446\) 72.4767 + 41.8444i 0.162504 + 0.0938216i
\(447\) 305.964 + 194.685i 0.684484 + 0.435536i
\(448\) 45.9476 26.5279i 0.102562 0.0592140i
\(449\) 685.554i 1.52685i −0.645898 0.763423i \(-0.723517\pi\)
0.645898 0.763423i \(-0.276483\pi\)
\(450\) 0 0
\(451\) 1130.97 2.50769
\(452\) 18.8099 + 32.5797i 0.0416148 + 0.0720790i
\(453\) 176.095 + 337.822i 0.388730 + 0.745743i
\(454\) 105.952 183.514i 0.233374 0.404216i
\(455\) 0 0
\(456\) −137.182 5.91408i −0.300839 0.0129695i
\(457\) −449.810 + 259.698i −0.984266 + 0.568266i −0.903555 0.428471i \(-0.859052\pi\)
−0.0807109 + 0.996738i \(0.525719\pi\)
\(458\) −241.638 −0.527593
\(459\) −345.439 44.8994i −0.752590 0.0978200i
\(460\) 0 0
\(461\) 77.5379 44.7665i 0.168195 0.0971074i −0.413539 0.910486i \(-0.635708\pi\)
0.581734 + 0.813379i \(0.302374\pi\)
\(462\) 591.326 + 25.4927i 1.27993 + 0.0551790i
\(463\) 441.640 + 254.981i 0.953865 + 0.550714i 0.894279 0.447509i \(-0.147689\pi\)
0.0595857 + 0.998223i \(0.481022\pi\)
\(464\) 173.410 + 100.118i 0.373728 + 0.215772i
\(465\) 0 0
\(466\) 317.479 + 549.890i 0.681285 + 1.18002i
\(467\) 539.803 1.15590 0.577948 0.816074i \(-0.303854\pi\)
0.577948 + 0.816074i \(0.303854\pi\)
\(468\) −159.505 + 74.5917i −0.340823 + 0.159384i
\(469\) −22.1597 −0.0472488
\(470\) 0 0
\(471\) −263.769 167.836i −0.560019 0.356339i
\(472\) 23.6119 + 13.6323i 0.0500252 + 0.0288821i
\(473\) 787.093 1363.28i 1.66404 2.88221i
\(474\) 267.954 421.113i 0.565303 0.888424i
\(475\) 0 0
\(476\) 171.127i 0.359510i
\(477\) −9.75681 0.842819i −0.0204545 0.00176692i
\(478\) 327.979i 0.686148i
\(479\) −94.2261 + 54.4015i −0.196714 + 0.113573i −0.595122 0.803635i \(-0.702896\pi\)
0.398408 + 0.917208i \(0.369563\pi\)
\(480\) 0 0
\(481\) 12.4445 21.5546i 0.0258722 0.0448120i
\(482\) −280.963 + 486.642i −0.582910 + 1.00963i
\(483\) 14.5135 336.653i 0.0300486 0.697005i
\(484\) 321.490 + 556.837i 0.664235 + 1.15049i
\(485\) 0 0
\(486\) −104.238 327.464i −0.214481 0.673794i
\(487\) 342.524i 0.703334i −0.936125 0.351667i \(-0.885615\pi\)
0.936125 0.351667i \(-0.114385\pi\)
\(488\) −63.5187 110.018i −0.130161 0.225446i
\(489\) −24.3609 + 565.073i −0.0498178 + 1.15557i
\(490\) 0 0
\(491\) 430.657 + 248.640i 0.877102 + 0.506395i 0.869702 0.493577i \(-0.164311\pi\)
0.00740027 + 0.999973i \(0.497644\pi\)
\(492\) −286.058 + 149.112i −0.581419 + 0.303073i
\(493\) −559.319 + 322.923i −1.13452 + 0.655016i
\(494\) 223.872i 0.453182i
\(495\) 0 0
\(496\) −40.2569 −0.0811632
\(497\) 127.556 + 220.933i 0.256652 + 0.444533i
\(498\) 335.088 526.620i 0.672867 1.05747i
\(499\) 77.5164 134.262i 0.155343 0.269063i −0.777841 0.628462i \(-0.783685\pi\)
0.933184 + 0.359399i \(0.117018\pi\)
\(500\) 0 0
\(501\) 109.380 171.900i 0.218323 0.343114i
\(502\) 236.595 136.598i 0.471304 0.272107i
\(503\) −580.438 −1.15395 −0.576976 0.816761i \(-0.695767\pi\)
−0.576976 + 0.816761i \(0.695767\pi\)
\(504\) −152.927 + 71.5153i −0.303426 + 0.141895i
\(505\) 0 0
\(506\) 436.335 251.918i 0.862321 0.497862i
\(507\) 101.650 + 195.006i 0.200493 + 0.384628i
\(508\) −223.123 128.820i −0.439218 0.253583i
\(509\) −158.209 91.3419i −0.310823 0.179454i 0.336472 0.941694i \(-0.390766\pi\)
−0.647295 + 0.762240i \(0.724100\pi\)
\(510\) 0 0
\(511\) −294.858 510.709i −0.577021 0.999430i
\(512\) −22.6274 −0.0441942
\(513\) 433.273 + 56.3158i 0.844586 + 0.109777i
\(514\) 170.931 0.332550
\(515\) 0 0
\(516\) −19.3393 + 448.593i −0.0374793 + 0.869366i
\(517\) 859.858 + 496.439i 1.66317 + 0.960231i
\(518\) 11.9313 20.6656i 0.0230334 0.0398950i
\(519\) −169.723 325.598i −0.327019 0.627356i
\(520\) 0 0
\(521\) 47.7611i 0.0916720i 0.998949 + 0.0458360i \(0.0145952\pi\)
−0.998949 + 0.0458360i \(0.985405\pi\)
\(522\) −522.323 364.880i −1.00062 0.699005i
\(523\) 266.851i 0.510230i 0.966911 + 0.255115i \(0.0821134\pi\)
−0.966911 + 0.255115i \(0.917887\pi\)
\(524\) 53.3672 30.8116i 0.101846 0.0588007i
\(525\) 0 0
\(526\) 212.865 368.692i 0.404685 0.700936i
\(527\) 64.9227 112.449i 0.123193 0.213376i
\(528\) −212.968 135.511i −0.403348 0.256650i
\(529\) 121.078 + 209.714i 0.228881 + 0.396434i
\(530\) 0 0
\(531\) −71.1207 49.6830i −0.133937 0.0935649i
\(532\) 214.639i 0.403456i
\(533\) −262.977 455.489i −0.493389 0.854576i
\(534\) 546.762 285.008i 1.02390 0.533722i
\(535\) 0 0
\(536\) 8.18459 + 4.72538i 0.0152698 + 0.00881600i
\(537\) −10.1337 + 235.059i −0.0188709 + 0.437727i
\(538\) −156.847 + 90.5554i −0.291536 + 0.168319i
\(539\) 105.535i 0.195798i
\(540\) 0 0
\(541\) −707.266 −1.30733 −0.653666 0.756783i \(-0.726770\pi\)
−0.653666 + 0.756783i \(0.726770\pi\)
\(542\) −362.626 628.087i −0.669052 1.15883i
\(543\) −658.075 28.3703i −1.21193 0.0522474i
\(544\) 36.4914 63.2050i 0.0670798 0.116186i
\(545\) 0 0
\(546\) −127.230 244.080i −0.233023 0.447033i
\(547\) −178.686 + 103.164i −0.326665 + 0.188600i −0.654359 0.756184i \(-0.727062\pi\)
0.327695 + 0.944784i \(0.393728\pi\)
\(548\) −213.089 −0.388849
\(549\) 171.237 + 366.170i 0.311908 + 0.666975i
\(550\) 0 0
\(551\) 701.535 405.032i 1.27320 0.735084i
\(552\) −77.1491 + 121.247i −0.139763 + 0.219650i
\(553\) 675.700 + 390.116i 1.22188 + 0.705454i
\(554\) 339.894 + 196.238i 0.613527 + 0.354220i
\(555\) 0 0
\(556\) 114.237 + 197.863i 0.205461 + 0.355870i
\(557\) 643.753 1.15575 0.577876 0.816125i \(-0.303882\pi\)
0.577876 + 0.816125i \(0.303882\pi\)
\(558\) 127.622 + 11.0243i 0.228712 + 0.0197568i
\(559\) −732.071 −1.30961
\(560\) 0 0
\(561\) 721.977 376.341i 1.28695 0.670840i
\(562\) −126.388 72.9701i −0.224890 0.129840i
\(563\) 361.822 626.694i 0.642668 1.11313i −0.342167 0.939639i \(-0.611161\pi\)
0.984835 0.173494i \(-0.0555058\pi\)
\(564\) −282.939 12.1978i −0.501665 0.0216273i
\(565\) 0 0
\(566\) 232.027i 0.409942i
\(567\) 504.388 184.837i 0.889574 0.325992i
\(568\) 108.801i 0.191551i
\(569\) −329.204 + 190.066i −0.578566 + 0.334035i −0.760563 0.649264i \(-0.775077\pi\)
0.181997 + 0.983299i \(0.441744\pi\)
\(570\) 0 0
\(571\) −20.7292 + 35.9040i −0.0363033 + 0.0628791i −0.883606 0.468231i \(-0.844892\pi\)
0.847303 + 0.531110i \(0.178225\pi\)
\(572\) 205.779 356.419i 0.359753 0.623110i
\(573\) 859.219 447.881i 1.49951 0.781641i
\(574\) −252.131 436.703i −0.439252 0.760807i
\(575\) 0 0
\(576\) 71.7329 + 6.19647i 0.124536 + 0.0107578i
\(577\) 601.252i 1.04203i 0.853547 + 0.521016i \(0.174447\pi\)
−0.853547 + 0.521016i \(0.825553\pi\)
\(578\) −86.6540 150.089i −0.149920 0.259670i
\(579\) −437.325 278.270i −0.755312 0.480604i
\(580\) 0 0
\(581\) 844.993 + 487.857i 1.45438 + 0.839685i
\(582\) −168.426 107.169i −0.289391 0.184139i
\(583\) 19.8227 11.4446i 0.0340011 0.0196306i
\(584\) 251.504i 0.430658i
\(585\) 0 0
\(586\) 414.347 0.707076
\(587\) 363.988 + 630.446i 0.620082 + 1.07401i 0.989470 + 0.144738i \(0.0462340\pi\)
−0.369388 + 0.929275i \(0.620433\pi\)
\(588\) 13.9142 + 26.6932i 0.0236636 + 0.0453966i
\(589\) −81.4303 + 141.041i −0.138252 + 0.239459i
\(590\) 0 0
\(591\) 214.997 + 9.26873i 0.363785 + 0.0156831i
\(592\) −8.81354 + 5.08850i −0.0148877 + 0.00859544i
\(593\) −418.998 −0.706573 −0.353286 0.935515i \(-0.614936\pi\)
−0.353286 + 0.935515i \(0.614936\pi\)
\(594\) 638.035 + 487.915i 1.07413 + 0.821405i
\(595\) 0 0
\(596\) 209.377 120.884i 0.351304 0.202825i
\(597\) 399.304 + 17.2144i 0.668851 + 0.0288348i
\(598\) −202.916 117.154i −0.339325 0.195909i
\(599\) 760.433 + 439.036i 1.26950 + 0.732948i 0.974894 0.222669i \(-0.0714771\pi\)
0.294610 + 0.955618i \(0.404810\pi\)
\(600\) 0 0
\(601\) 266.229 + 461.122i 0.442977 + 0.767259i 0.997909 0.0646372i \(-0.0205890\pi\)
−0.554932 + 0.831896i \(0.687256\pi\)
\(602\) −701.878 −1.16591
\(603\) −24.6526 17.2216i −0.0408832 0.0285599i
\(604\) 253.975 0.420489
\(605\) 0 0
\(606\) 80.0188 + 50.9159i 0.132044 + 0.0840196i
\(607\) 81.8641 + 47.2643i 0.134867 + 0.0778653i 0.565915 0.824463i \(-0.308523\pi\)
−0.431049 + 0.902329i \(0.641856\pi\)
\(608\) −45.7700 + 79.2759i −0.0752795 + 0.130388i
\(609\) 534.674 840.288i 0.877954 1.37978i
\(610\) 0 0
\(611\) 461.736i 0.755705i
\(612\) −132.993 + 190.378i −0.217308 + 0.311075i
\(613\) 816.657i 1.33223i −0.745849 0.666115i \(-0.767956\pi\)
0.745849 0.666115i \(-0.232044\pi\)
\(614\) −572.698 + 330.647i −0.932733 + 0.538513i
\(615\) 0 0
\(616\) 197.292 341.719i 0.320279 0.554739i
\(617\) 94.8195 164.232i 0.153678 0.266179i −0.778899 0.627150i \(-0.784221\pi\)
0.932577 + 0.360971i \(0.117555\pi\)
\(618\) −22.6407 + 525.171i −0.0366354 + 0.849792i
\(619\) −47.7312 82.6728i −0.0771101 0.133559i 0.824892 0.565291i \(-0.191236\pi\)
−0.902002 + 0.431732i \(0.857903\pi\)
\(620\) 0 0
\(621\) 277.779 363.246i 0.447310 0.584937i
\(622\) 760.571i 1.22278i
\(623\) 481.914 + 834.700i 0.773538 + 1.33981i
\(624\) −5.05610 + 117.281i −0.00810272 + 0.187950i
\(625\) 0 0
\(626\) −326.098 188.273i −0.520923 0.300755i
\(627\) −905.551 + 472.032i −1.44426 + 0.752842i
\(628\) −180.502 + 104.213i −0.287423 + 0.165944i
\(629\) 32.8250i 0.0521861i
\(630\) 0 0
\(631\) −192.912 −0.305724 −0.152862 0.988248i \(-0.548849\pi\)
−0.152862 + 0.988248i \(0.548849\pi\)
\(632\) −166.378 288.175i −0.263257 0.455974i
\(633\) −606.079 + 952.507i −0.957471 + 1.50475i
\(634\) 337.201 584.050i 0.531863 0.921214i
\(635\) 0 0
\(636\) −3.50488 + 5.50823i −0.00551082 + 0.00866074i
\(637\) −42.5034 + 24.5394i −0.0667244 + 0.0385233i
\(638\) 1489.19 2.33415
\(639\) −29.7949 + 344.918i −0.0466274 + 0.539778i
\(640\) 0 0
\(641\) −277.039 + 159.949i −0.432198 + 0.249530i −0.700283 0.713866i \(-0.746943\pi\)
0.268084 + 0.963395i \(0.413609\pi\)
\(642\) −92.8953 178.211i −0.144697 0.277588i
\(643\) −131.937 76.1741i −0.205190 0.118467i 0.393884 0.919160i \(-0.371131\pi\)
−0.599074 + 0.800693i \(0.704465\pi\)
\(644\) −194.547 112.322i −0.302092 0.174413i
\(645\) 0 0
\(646\) −147.627 255.698i −0.228525 0.395817i
\(647\) −632.862 −0.978148 −0.489074 0.872242i \(-0.662665\pi\)
−0.489074 + 0.872242i \(0.662665\pi\)
\(648\) −225.709 39.2878i −0.348316 0.0606293i
\(649\) 202.772 0.312437
\(650\) 0 0
\(651\) −8.62442 + 200.051i −0.0132480 + 0.307298i
\(652\) 326.548 + 188.533i 0.500841 + 0.289160i
\(653\) −408.937 + 708.299i −0.626243 + 1.08468i 0.362056 + 0.932156i \(0.382075\pi\)
−0.988299 + 0.152529i \(0.951258\pi\)
\(654\) −52.7036 101.107i −0.0805865 0.154598i
\(655\) 0 0
\(656\) 215.059i 0.327834i
\(657\) 68.8739 797.312i 0.104831 1.21356i
\(658\) 442.692i 0.672785i
\(659\) −368.474 + 212.738i −0.559141 + 0.322820i −0.752800 0.658249i \(-0.771297\pi\)
0.193660 + 0.981069i \(0.437964\pi\)
\(660\) 0 0
\(661\) −142.986 + 247.659i −0.216318 + 0.374673i −0.953679 0.300825i \(-0.902738\pi\)
0.737362 + 0.675498i \(0.236071\pi\)
\(662\) 24.9920 43.2874i 0.0377523 0.0653889i
\(663\) −319.445 203.263i −0.481818 0.306580i
\(664\) −208.063 360.376i −0.313348 0.542735i
\(665\) 0 0
\(666\) 29.3339 13.7179i 0.0440449 0.0205974i
\(667\) 847.824i 1.27110i
\(668\) −67.9163 117.634i −0.101671 0.176100i
\(669\) −157.427 + 82.0611i −0.235317 + 0.122662i
\(670\) 0 0
\(671\) −818.218 472.398i −1.21940 0.704021i
\(672\) −4.84757 + 112.444i −0.00721364 + 0.167327i
\(673\) 1036.99 598.709i 1.54085 0.889612i 0.542068 0.840335i \(-0.317642\pi\)
0.998785 0.0492769i \(-0.0156917\pi\)
\(674\) 351.422i 0.521398i
\(675\) 0 0
\(676\) 146.606 0.216873
\(677\) 452.777 + 784.232i 0.668799 + 1.15839i 0.978240 + 0.207475i \(0.0665245\pi\)
−0.309442 + 0.950918i \(0.600142\pi\)
\(678\) −79.7296 3.43723i −0.117595 0.00506966i
\(679\) 156.028 270.249i 0.229791 0.398010i
\(680\) 0 0
\(681\) 207.782 + 398.611i 0.305113 + 0.585332i
\(682\) −259.285 + 149.698i −0.380184 + 0.219499i
\(683\) 31.1970 0.0456764 0.0228382 0.999739i \(-0.492730\pi\)
0.0228382 + 0.999739i \(0.492730\pi\)
\(684\) 166.808 238.784i 0.243872 0.349100i
\(685\) 0 0
\(686\) −438.751 + 253.313i −0.639579 + 0.369261i
\(687\) 275.178 432.466i 0.400550 0.629499i
\(688\) 259.236 + 149.670i 0.376796 + 0.217543i
\(689\) −9.21848 5.32229i −0.0133795 0.00772466i
\(690\) 0 0
\(691\) 101.532 + 175.858i 0.146935 + 0.254498i 0.930093 0.367324i \(-0.119726\pi\)
−0.783158 + 0.621822i \(0.786393\pi\)
\(692\) −244.785 −0.353736
\(693\) −719.029 + 1029.28i −1.03756 + 1.48526i
\(694\) −3.80834 −0.00548752
\(695\) 0 0
\(696\) −376.664 + 196.342i −0.541184 + 0.282100i
\(697\) −600.723 346.828i −0.861870 0.497601i
\(698\) −277.458 + 480.571i −0.397504 + 0.688497i
\(699\) −1345.70 58.0145i −1.92518 0.0829964i
\(700\) 0 0
\(701\) 633.699i 0.903993i −0.892020 0.451997i \(-0.850712\pi\)
0.892020 0.451997i \(-0.149288\pi\)
\(702\) 48.1458 370.416i 0.0685838 0.527658i
\(703\) 41.1714i 0.0585652i
\(704\) −145.738 + 84.1418i −0.207014 + 0.119520i
\(705\) 0 0
\(706\) −13.9883 + 24.2285i −0.0198135 + 0.0343180i
\(707\) −74.1289 + 128.395i −0.104850 + 0.181605i
\(708\) −51.2875 + 26.7344i −0.0724399 + 0.0377604i
\(709\) −74.6901 129.367i −0.105346 0.182464i 0.808534 0.588450i \(-0.200262\pi\)
−0.913879 + 0.405986i \(0.866928\pi\)
\(710\) 0 0
\(711\) 448.531 + 959.128i 0.630846 + 1.34899i
\(712\) 411.057i 0.577328i
\(713\) 85.2262 + 147.616i 0.119532 + 0.207035i
\(714\) −306.270 194.880i −0.428950 0.272941i
\(715\) 0 0
\(716\) 135.838 + 78.4259i 0.189717 + 0.109533i
\(717\) −586.993 373.503i −0.818679 0.520925i
\(718\) −508.667 + 293.679i −0.708451 + 0.409024i
\(719\) 257.590i 0.358262i −0.983825 0.179131i \(-0.942671\pi\)
0.983825 0.179131i \(-0.0573285\pi\)
\(720\) 0 0
\(721\) −821.694 −1.13966
\(722\) −70.1018 121.420i −0.0970939 0.168172i
\(723\) −550.995 1057.04i −0.762096 1.46201i
\(724\) −219.562 + 380.293i −0.303263 + 0.525266i
\(725\) 0 0
\(726\) −1362.70 58.7474i −1.87700 0.0809193i
\(727\) −526.008 + 303.691i −0.723532 + 0.417731i −0.816051 0.577980i \(-0.803841\pi\)
0.0925193 + 0.995711i \(0.470508\pi\)
\(728\) −183.500 −0.252061
\(729\) 704.777 + 186.359i 0.966773 + 0.255637i
\(730\) 0 0
\(731\) −836.143 + 482.747i −1.14383 + 0.660393i
\(732\) 269.237 + 11.6071i 0.367810 + 0.0158567i
\(733\) −768.411 443.643i −1.04831 0.605242i −0.126134 0.992013i \(-0.540257\pi\)
−0.922176 + 0.386771i \(0.873590\pi\)
\(734\) 653.263 + 377.162i 0.890004 + 0.513844i
\(735\) 0 0
\(736\) 47.9035 + 82.9713i 0.0650863 + 0.112733i
\(737\) 70.2867 0.0953686
\(738\) 58.8936 681.775i 0.0798016 0.923815i
\(739\) 30.1955 0.0408599 0.0204300 0.999791i \(-0.493496\pi\)
0.0204300 + 0.999791i \(0.493496\pi\)
\(740\) 0 0
\(741\) 400.670 + 254.946i 0.540715 + 0.344056i
\(742\) −8.83828 5.10278i −0.0119114 0.00687707i
\(743\) −285.008 + 493.648i −0.383591 + 0.664399i −0.991573 0.129552i \(-0.958646\pi\)
0.607982 + 0.793951i \(0.291979\pi\)
\(744\) 45.8447 72.0490i 0.0616192 0.0968401i
\(745\) 0 0
\(746\) 304.876i 0.408680i
\(747\) 560.908 + 1199.43i 0.750881 + 1.60567i
\(748\) 542.784i 0.725647i
\(749\) 272.062 157.075i 0.363233 0.209713i
\(750\) 0 0
\(751\) −213.747 + 370.221i −0.284617 + 0.492970i −0.972516 0.232836i \(-0.925200\pi\)
0.687900 + 0.725806i \(0.258533\pi\)
\(752\) −94.4006 + 163.507i −0.125533 + 0.217429i
\(753\) −24.9612 + 578.998i −0.0331490 + 0.768922i
\(754\) −346.272 599.760i −0.459247 0.795438i
\(755\) 0 0
\(756\) 46.1601 355.139i 0.0610584 0.469760i
\(757\) 587.791i 0.776474i 0.921560 + 0.388237i \(0.126916\pi\)
−0.921560 + 0.388237i \(0.873084\pi\)
\(758\) −125.049 216.591i −0.164972 0.285740i
\(759\) −46.0342 + 1067.81i −0.0606511 + 1.40686i
\(760\) 0 0
\(761\) −1135.73 655.716i −1.49242 0.861651i −0.492461 0.870335i \(-0.663903\pi\)
−0.999962 + 0.00868376i \(0.997236\pi\)
\(762\) 484.646 252.629i 0.636018 0.331534i
\(763\) 154.353 89.1155i 0.202297 0.116796i
\(764\) 645.963i 0.845501i
\(765\) 0 0
\(766\) −24.3283 −0.0317601
\(767\) −47.1492 81.6648i −0.0614722 0.106473i
\(768\) 25.7682 40.4969i 0.0335523 0.0527304i
\(769\) −595.762 + 1031.89i −0.774724 + 1.34186i 0.160226 + 0.987080i \(0.448778\pi\)
−0.934950 + 0.354780i \(0.884556\pi\)
\(770\) 0 0
\(771\) −194.656 + 305.920i −0.252473 + 0.396783i
\(772\) −299.270 + 172.784i −0.387655 + 0.223813i
\(773\) −204.848 −0.265003 −0.132502 0.991183i \(-0.542301\pi\)
−0.132502 + 0.991183i \(0.542301\pi\)
\(774\) −780.836 545.471i −1.00883 0.704742i
\(775\) 0 0
\(776\) −115.257 + 66.5435i −0.148527 + 0.0857520i
\(777\) 23.3984 + 44.8878i 0.0301138 + 0.0577706i
\(778\) −421.965 243.622i −0.542372 0.313139i
\(779\) 753.467 + 435.014i 0.967223 + 0.558427i
\(780\) 0 0
\(781\) −404.585 700.761i −0.518034 0.897261i
\(782\) −309.017 −0.395163
\(783\) 1247.86 519.289i 1.59369 0.663204i
\(784\) 20.0680 0.0255970
\(785\) 0 0
\(786\) −5.63035 + 130.601i −0.00716329 + 0.166159i
\(787\) 115.378 + 66.6137i 0.146605 + 0.0846426i 0.571508 0.820596i \(-0.306358\pi\)
−0.424903 + 0.905239i \(0.639692\pi\)
\(788\) 71.7321 124.244i 0.0910306 0.157670i
\(789\) 417.448 + 800.837i 0.529085 + 1.01500i
\(790\) 0 0
\(791\) 124.747i 0.157708i
\(792\) 485.056 226.834i 0.612445 0.286407i
\(793\) 439.375i 0.554067i
\(794\) 84.5018 48.7872i 0.106425 0.0614448i
\(795\) 0 0
\(796\) 133.225 230.752i 0.167368 0.289890i
\(797\) 304.460 527.341i 0.382008 0.661657i −0.609341 0.792908i \(-0.708566\pi\)
0.991349 + 0.131251i \(0.0418993\pi\)
\(798\) 384.145 + 244.431i 0.481385 + 0.306304i
\(799\) −304.481 527.376i −0.381077 0.660046i
\(800\) 0 0
\(801\) −112.567 + 1303.12i −0.140533 + 1.62687i
\(802\) 251.995i 0.314208i
\(803\) 935.237 + 1619.88i 1.16468 + 2.01728i
\(804\) −17.7778 + 9.26693i −0.0221117 + 0.0115260i
\(805\) 0 0
\(806\) 120.580 + 69.6169i 0.149603 + 0.0863733i
\(807\) 16.5476 383.838i 0.0205051 0.475635i
\(808\) 54.7584 31.6148i 0.0677703 0.0391272i
\(809\) 164.342i 0.203142i 0.994828 + 0.101571i \(0.0323869\pi\)
−0.994828 + 0.101571i \(0.967613\pi\)
\(810\) 0 0
\(811\) −1026.77 −1.26606 −0.633028 0.774129i \(-0.718188\pi\)
−0.633028 + 0.774129i \(0.718188\pi\)
\(812\) −331.991 575.025i −0.408855 0.708158i
\(813\) 1537.06 + 66.2644i 1.89061 + 0.0815061i
\(814\) −37.8439 + 65.5476i −0.0464913 + 0.0805253i
\(815\) 0 0
\(816\) 71.5632 + 137.288i 0.0877000 + 0.168245i
\(817\) 1048.75 605.494i 1.28365 0.741118i
\(818\) 15.9673 0.0195200
\(819\) 581.727 + 50.2511i 0.710290 + 0.0613567i
\(820\) 0 0
\(821\) 262.140 151.347i 0.319293 0.184344i −0.331784 0.943355i \(-0.607651\pi\)
0.651078 + 0.759011i \(0.274317\pi\)
\(822\) 242.666 381.372i 0.295215 0.463956i
\(823\) 603.723 + 348.559i 0.733563 + 0.423523i 0.819724 0.572758i \(-0.194127\pi\)
−0.0861609 + 0.996281i \(0.527460\pi\)
\(824\) 303.489 + 175.220i 0.368312 + 0.212645i
\(825\) 0 0
\(826\) −45.2046 78.2967i −0.0547271 0.0947902i
\(827\) −454.516 −0.549596 −0.274798 0.961502i \(-0.588611\pi\)
−0.274798 + 0.961502i \(0.588611\pi\)
\(828\) −129.141 276.152i −0.155967 0.333517i
\(829\) −591.488 −0.713496 −0.356748 0.934201i \(-0.616115\pi\)
−0.356748 + 0.934201i \(0.616115\pi\)
\(830\) 0 0
\(831\) −738.284 + 384.842i −0.888428 + 0.463107i
\(832\) 67.7750 + 39.1299i 0.0814603 + 0.0470311i
\(833\) −32.3638 + 56.0558i −0.0388521 + 0.0672939i
\(834\) −484.215 20.8750i −0.580593 0.0250300i
\(835\) 0 0
\(836\) 680.796i 0.814349i
\(837\) −165.066 + 215.853i −0.197212 + 0.257889i
\(838\) 92.0359i 0.109828i
\(839\) 1342.11 774.866i 1.59965 0.923559i 0.608097 0.793863i \(-0.291933\pi\)
0.991554 0.129696i \(-0.0414001\pi\)
\(840\) 0 0
\(841\) 832.459 1441.86i 0.989844 1.71446i
\(842\) −162.697 + 281.799i −0.193226 + 0.334678i
\(843\) 274.528 143.102i 0.325655 0.169753i
\(844\) 376.327 + 651.818i 0.445886 + 0.772297i
\(845\) 0 0
\(846\) 344.042 492.493i 0.406669 0.582143i
\(847\) 2132.11i 2.51725i
\(848\) 2.17626 + 3.76938i 0.00256634 + 0.00444503i
\(849\) −415.266 264.233i −0.489124 0.311229i
\(850\) 0 0
\(851\) 37.3175 + 21.5453i 0.0438514 + 0.0253176i
\(852\) 194.724 + 123.903i 0.228550 + 0.145426i
\(853\) −1421.62 + 820.773i −1.66661 + 0.962219i −0.697169 + 0.716907i \(0.745557\pi\)
−0.969444 + 0.245312i \(0.921110\pi\)
\(854\) 421.254i 0.493272i
\(855\) 0 0
\(856\) −133.980 −0.156518
\(857\) −159.321 275.953i −0.185906 0.321998i 0.757976 0.652283i \(-0.226189\pi\)
−0.943881 + 0.330285i \(0.892855\pi\)
\(858\) 403.552 + 774.179i 0.470341 + 0.902307i
\(859\) −314.166 + 544.152i −0.365735 + 0.633471i −0.988894 0.148624i \(-0.952516\pi\)
0.623159 + 0.782095i \(0.285849\pi\)
\(860\) 0 0
\(861\) 1068.71 + 46.0731i 1.24124 + 0.0535111i
\(862\) 82.6552 47.7210i 0.0958878 0.0553608i
\(863\) −183.620 −0.212770 −0.106385 0.994325i \(-0.533928\pi\)
−0.106385 + 0.994325i \(0.533928\pi\)
\(864\) −92.7796 + 121.326i −0.107384 + 0.140423i
\(865\) 0 0
\(866\) −161.740 + 93.3807i −0.186767 + 0.107830i
\(867\) 367.301 + 15.8347i 0.423645 + 0.0182638i
\(868\) 115.607 + 66.7457i 0.133188 + 0.0768960i
\(869\) −2143.20 1237.38i −2.46629 1.42391i
\(870\) 0 0
\(871\) −16.3433 28.3075i −0.0187639 0.0325000i
\(872\) −76.0126 −0.0871705
\(873\) 383.607 179.392i 0.439412 0.205489i
\(874\) 387.590 0.443467
\(875\) 0 0
\(876\) −450.124 286.413i −0.513840 0.326956i
\(877\) −1251.66 722.647i −1.42721 0.823999i −0.430308 0.902682i \(-0.641595\pi\)
−0.996900 + 0.0786834i \(0.974928\pi\)
\(878\) −487.213 + 843.877i −0.554912 + 0.961136i
\(879\) −471.859 + 741.568i −0.536814 + 0.843650i
\(880\) 0 0
\(881\) 608.977i 0.691234i −0.938376 0.345617i \(-0.887670\pi\)
0.938376 0.345617i \(-0.112330\pi\)
\(882\) −63.6191 5.49558i −0.0721305 0.00623082i
\(883\) 120.519i 0.136488i −0.997669 0.0682440i \(-0.978260\pi\)
0.997669 0.0682440i \(-0.0217396\pi\)
\(884\) −218.602 + 126.210i −0.247288 + 0.142772i
\(885\) 0 0
\(886\) −48.1416 + 83.3837i −0.0543359 + 0.0941126i
\(887\) 803.710 1392.07i 0.906100 1.56941i 0.0866653 0.996237i \(-0.472379\pi\)
0.819434 0.573173i \(-0.194288\pi\)
\(888\) 0.929846 21.5686i 0.00104712 0.0242890i
\(889\) 427.165 + 739.872i 0.480501 + 0.832252i
\(890\) 0 0
\(891\) −1599.83 + 586.272i −1.79555 + 0.657993i
\(892\) 118.354i 0.132684i
\(893\) 381.900 + 661.471i 0.427660 + 0.740729i
\(894\) −22.0897 + 512.391i −0.0247088 + 0.573144i
\(895\) 0 0
\(896\) 64.9797 + 37.5161i 0.0725220 + 0.0418706i
\(897\) 440.755 229.750i 0.491366 0.256132i
\(898\) 839.629 484.760i 0.934999 0.539822i
\(899\) 503.807i 0.560408i
\(900\) 0 0
\(901\) −14.0386 −0.0155812
\(902\) 799.714 + 1385.15i 0.886601 + 1.53564i
\(903\) 799.300 1256.17i 0.885161 1.39111i
\(904\) −26.6012 + 46.0747i −0.0294261 + 0.0509676i
\(905\) 0 0
\(906\) −289.228 + 454.547i −0.319236 + 0.501707i
\(907\) −561.175 + 323.994i −0.618715 + 0.357215i −0.776369 0.630279i \(-0.782940\pi\)
0.157653 + 0.987495i \(0.449607\pi\)
\(908\) 299.677 0.330041
\(909\) −182.251 + 85.2289i −0.200496 + 0.0937611i
\(910\) 0 0
\(911\) −173.671 + 100.269i −0.190638 + 0.110065i −0.592281 0.805731i \(-0.701773\pi\)
0.401643 + 0.915796i \(0.368439\pi\)
\(912\) −89.7594 172.195i −0.0984204 0.188811i
\(913\) −2680.17 1547.40i −2.93556 1.69485i
\(914\) −636.127 367.268i −0.695981 0.401825i
\(915\) 0 0
\(916\) −170.864 295.945i −0.186532 0.323084i
\(917\) −204.341 −0.222837
\(918\) −189.272 454.823i −0.206179 0.495450i
\(919\) 619.581 0.674191 0.337095 0.941471i \(-0.390556\pi\)
0.337095 + 0.941471i \(0.390556\pi\)
\(920\) 0 0
\(921\) 60.4208 1401.52i 0.0656035 1.52173i
\(922\) 109.655 + 63.3094i 0.118932 + 0.0686653i
\(923\) −188.151 + 325.887i −0.203847 + 0.353074i
\(924\) 386.909 + 742.250i 0.418732 + 0.803301i
\(925\) 0 0
\(926\) 721.194i 0.778828i
\(927\) −914.131 638.587i −0.986117 0.688875i
\(928\) 283.177i 0.305148i
\(929\) 615.591 355.411i 0.662638 0.382574i −0.130643 0.991429i \(-0.541704\pi\)
0.793281 + 0.608855i \(0.208371\pi\)
\(930\) 0 0
\(931\) 40.5929 70.3089i 0.0436014 0.0755198i
\(932\) −448.983 + 777.661i −0.481741 + 0.834401i
\(933\) −1361.22 866.140i −1.45897 0.928339i
\(934\) 381.699 + 661.122i 0.408671 + 0.707839i
\(935\) 0 0
\(936\) −204.143 142.609i −0.218101 0.152360i
\(937\) 435.674i 0.464967i −0.972600 0.232483i \(-0.925315\pi\)
0.972600 0.232483i \(-0.0746851\pi\)
\(938\) −15.6693 27.1400i −0.0167050 0.0289339i
\(939\) 708.318 369.221i 0.754333 0.393207i
\(940\) 0 0
\(941\) 109.205 + 63.0496i 0.116052 + 0.0670027i 0.556902 0.830578i \(-0.311990\pi\)
−0.440850 + 0.897581i \(0.645323\pi\)
\(942\) 19.0433 441.727i 0.0202158 0.468925i
\(943\) 788.590 455.293i 0.836257 0.482813i
\(944\) 38.5581i 0.0408454i
\(945\) 0 0
\(946\) 2226.23 2.35331
\(947\) 283.686 + 491.359i 0.299563 + 0.518858i 0.976036 0.217609i \(-0.0698258\pi\)
−0.676473 + 0.736467i \(0.736493\pi\)
\(948\) 705.227 + 30.4031i 0.743911 + 0.0320708i
\(949\) 434.930 753.320i 0.458303 0.793804i
\(950\) 0 0
\(951\) 661.285 + 1268.62i 0.695358 + 1.33398i
\(952\) −209.587 + 121.005i −0.220154 + 0.127106i
\(953\) −873.128 −0.916189 −0.458095 0.888903i \(-0.651468\pi\)
−0.458095 + 0.888903i \(0.651468\pi\)
\(954\) −5.86687 12.5456i −0.00614976 0.0131505i
\(955\) 0 0
\(956\) −401.690 + 231.916i −0.420178 + 0.242590i
\(957\) −1695.89 + 2665.25i −1.77209 + 2.78500i
\(958\) −133.256 76.9353i −0.139098 0.0803082i
\(959\) 611.934 + 353.300i 0.638095 + 0.368405i
\(960\) 0 0
\(961\) 429.856 + 744.532i 0.447300 + 0.774747i
\(962\) 35.1985 0.0365888
\(963\) 424.739 + 36.6901i 0.441059 + 0.0380998i
\(964\) −794.682 −0.824359
\(965\) 0 0
\(966\) 422.577 220.275i 0.437450 0.228027i
\(967\) −728.109 420.374i −0.752957 0.434720i 0.0738046 0.997273i \(-0.476486\pi\)
−0.826761 + 0.562553i \(0.809819\pi\)
\(968\) −454.655 + 787.486i −0.469685 + 0.813518i
\(969\) 625.747 + 26.9766i 0.645766 + 0.0278396i
\(970\) 0 0
\(971\) 258.099i 0.265807i 0.991129 + 0.132903i \(0.0424300\pi\)
−0.991129 + 0.132903i \(0.957570\pi\)
\(972\) 327.352 359.217i 0.336782 0.369564i
\(973\) 757.613i 0.778636i
\(974\) 419.504 242.201i 0.430703 0.248666i
\(975\) 0 0
\(976\) 89.8290 155.588i 0.0920379 0.159414i
\(977\) −575.995 + 997.653i −0.589555 + 1.02114i 0.404736 + 0.914434i \(0.367364\pi\)
−0.994291 + 0.106706i \(0.965970\pi\)
\(978\) −709.296 + 369.731i −0.725251 + 0.378048i
\(979\) −1528.55 2647.52i −1.56134 2.70431i
\(980\) 0 0
\(981\) 240.973 + 20.8159i 0.245641 + 0.0212191i
\(982\) 703.260i 0.716151i
\(983\) −319.689 553.718i −0.325218 0.563294i 0.656338 0.754467i \(-0.272104\pi\)
−0.981556 + 0.191172i \(0.938771\pi\)
\(984\) −384.898 244.910i −0.391156 0.248892i
\(985\) 0 0
\(986\) −790.996 456.682i −0.802228 0.463166i
\(987\) 792.299 + 504.139i 0.802735 + 0.510779i
\(988\) 274.186 158.301i 0.277516 0.160224i
\(989\) 1267.44i 1.28153i
\(990\) 0 0
\(991\) 1875.09 1.89212 0.946060 0.323992i \(-0.105025\pi\)
0.946060 + 0.323992i \(0.105025\pi\)
\(992\) −28.4660 49.3045i −0.0286955 0.0497021i
\(993\) 49.0118 + 94.0248i 0.0493573 + 0.0946876i
\(994\) −180.391 + 312.447i −0.181480 + 0.314333i
\(995\) 0 0
\(996\) 881.918 + 38.0204i 0.885460 + 0.0381731i
\(997\) 818.736 472.697i 0.821199 0.474120i −0.0296306 0.999561i \(-0.509433\pi\)
0.850830 + 0.525441i \(0.176100\pi\)
\(998\) 219.249 0.219689
\(999\) −8.85430 + 68.1217i −0.00886317 + 0.0681899i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.3.k.c.149.14 32
3.2 odd 2 1350.3.k.b.449.3 32
5.2 odd 4 90.3.h.a.41.3 yes 16
5.3 odd 4 450.3.i.g.401.6 16
5.4 even 2 inner 450.3.k.c.149.3 32
9.2 odd 6 inner 450.3.k.c.299.3 32
9.7 even 3 1350.3.k.b.899.14 32
15.2 even 4 270.3.h.a.71.6 16
15.8 even 4 1350.3.i.g.1151.2 16
15.14 odd 2 1350.3.k.b.449.14 32
20.7 even 4 720.3.bs.d.401.5 16
45.2 even 12 90.3.h.a.11.3 16
45.7 odd 12 270.3.h.a.251.6 16
45.22 odd 12 810.3.d.c.161.1 16
45.29 odd 6 inner 450.3.k.c.299.14 32
45.32 even 12 810.3.d.c.161.13 16
45.34 even 6 1350.3.k.b.899.3 32
45.38 even 12 450.3.i.g.101.6 16
45.43 odd 12 1350.3.i.g.251.2 16
60.47 odd 4 2160.3.bs.d.881.1 16
180.7 even 12 2160.3.bs.d.1601.1 16
180.47 odd 12 720.3.bs.d.641.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.3.h.a.11.3 16 45.2 even 12
90.3.h.a.41.3 yes 16 5.2 odd 4
270.3.h.a.71.6 16 15.2 even 4
270.3.h.a.251.6 16 45.7 odd 12
450.3.i.g.101.6 16 45.38 even 12
450.3.i.g.401.6 16 5.3 odd 4
450.3.k.c.149.3 32 5.4 even 2 inner
450.3.k.c.149.14 32 1.1 even 1 trivial
450.3.k.c.299.3 32 9.2 odd 6 inner
450.3.k.c.299.14 32 45.29 odd 6 inner
720.3.bs.d.401.5 16 20.7 even 4
720.3.bs.d.641.5 16 180.47 odd 12
810.3.d.c.161.1 16 45.22 odd 12
810.3.d.c.161.13 16 45.32 even 12
1350.3.i.g.251.2 16 45.43 odd 12
1350.3.i.g.1151.2 16 15.8 even 4
1350.3.k.b.449.3 32 3.2 odd 2
1350.3.k.b.449.14 32 15.14 odd 2
1350.3.k.b.899.3 32 45.34 even 6
1350.3.k.b.899.14 32 9.7 even 3
2160.3.bs.d.881.1 16 60.47 odd 4
2160.3.bs.d.1601.1 16 180.7 even 12