Properties

Label 1421.2.a.j.1.1
Level $1421$
Weight $2$
Character 1421.1
Self dual yes
Analytic conductor $11.347$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1421,2,Mod(1,1421)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1421, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1421.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1421 = 7^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1421.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.3467421272\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1421.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.41421 q^{2} -2.41421 q^{3} +3.82843 q^{4} +1.00000 q^{5} +5.82843 q^{6} -4.41421 q^{8} +2.82843 q^{9} -2.41421 q^{10} -0.414214 q^{11} -9.24264 q^{12} +3.82843 q^{13} -2.41421 q^{15} +3.00000 q^{16} -0.828427 q^{17} -6.82843 q^{18} -6.00000 q^{19} +3.82843 q^{20} +1.00000 q^{22} +3.65685 q^{23} +10.6569 q^{24} -4.00000 q^{25} -9.24264 q^{26} +0.414214 q^{27} +1.00000 q^{29} +5.82843 q^{30} -10.0711 q^{31} +1.58579 q^{32} +1.00000 q^{33} +2.00000 q^{34} +10.8284 q^{36} -4.00000 q^{37} +14.4853 q^{38} -9.24264 q^{39} -4.41421 q^{40} +4.48528 q^{41} +3.58579 q^{43} -1.58579 q^{44} +2.82843 q^{45} -8.82843 q^{46} +3.24264 q^{47} -7.24264 q^{48} +9.65685 q^{50} +2.00000 q^{51} +14.6569 q^{52} +9.48528 q^{53} -1.00000 q^{54} -0.414214 q^{55} +14.4853 q^{57} -2.41421 q^{58} +3.65685 q^{59} -9.24264 q^{60} +4.82843 q^{61} +24.3137 q^{62} -9.82843 q^{64} +3.82843 q^{65} -2.41421 q^{66} +5.65685 q^{67} -3.17157 q^{68} -8.82843 q^{69} -8.82843 q^{71} -12.4853 q^{72} -4.00000 q^{73} +9.65685 q^{74} +9.65685 q^{75} -22.9706 q^{76} +22.3137 q^{78} -2.41421 q^{79} +3.00000 q^{80} -9.48528 q^{81} -10.8284 q^{82} -7.65685 q^{83} -0.828427 q^{85} -8.65685 q^{86} -2.41421 q^{87} +1.82843 q^{88} +12.4853 q^{89} -6.82843 q^{90} +14.0000 q^{92} +24.3137 q^{93} -7.82843 q^{94} -6.00000 q^{95} -3.82843 q^{96} -4.48528 q^{97} -1.17157 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{5} + 6 q^{6} - 6 q^{8} - 2 q^{10} + 2 q^{11} - 10 q^{12} + 2 q^{13} - 2 q^{15} + 6 q^{16} + 4 q^{17} - 8 q^{18} - 12 q^{19} + 2 q^{20} + 2 q^{22} - 4 q^{23} + 10 q^{24}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.41421 −1.70711 −0.853553 0.521005i \(-0.825557\pi\)
−0.853553 + 0.521005i \(0.825557\pi\)
\(3\) −2.41421 −1.39385 −0.696923 0.717146i \(-0.745448\pi\)
−0.696923 + 0.717146i \(0.745448\pi\)
\(4\) 3.82843 1.91421
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 5.82843 2.37945
\(7\) 0 0
\(8\) −4.41421 −1.56066
\(9\) 2.82843 0.942809
\(10\) −2.41421 −0.763441
\(11\) −0.414214 −0.124890 −0.0624450 0.998048i \(-0.519890\pi\)
−0.0624450 + 0.998048i \(0.519890\pi\)
\(12\) −9.24264 −2.66812
\(13\) 3.82843 1.06181 0.530907 0.847430i \(-0.321851\pi\)
0.530907 + 0.847430i \(0.321851\pi\)
\(14\) 0 0
\(15\) −2.41421 −0.623347
\(16\) 3.00000 0.750000
\(17\) −0.828427 −0.200923 −0.100462 0.994941i \(-0.532032\pi\)
−0.100462 + 0.994941i \(0.532032\pi\)
\(18\) −6.82843 −1.60948
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 3.82843 0.856062
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 3.65685 0.762507 0.381253 0.924471i \(-0.375493\pi\)
0.381253 + 0.924471i \(0.375493\pi\)
\(24\) 10.6569 2.17532
\(25\) −4.00000 −0.800000
\(26\) −9.24264 −1.81263
\(27\) 0.414214 0.0797154
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 5.82843 1.06412
\(31\) −10.0711 −1.80882 −0.904409 0.426667i \(-0.859687\pi\)
−0.904409 + 0.426667i \(0.859687\pi\)
\(32\) 1.58579 0.280330
\(33\) 1.00000 0.174078
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 10.8284 1.80474
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 14.4853 2.34982
\(39\) −9.24264 −1.48001
\(40\) −4.41421 −0.697948
\(41\) 4.48528 0.700483 0.350242 0.936659i \(-0.386099\pi\)
0.350242 + 0.936659i \(0.386099\pi\)
\(42\) 0 0
\(43\) 3.58579 0.546827 0.273414 0.961897i \(-0.411847\pi\)
0.273414 + 0.961897i \(0.411847\pi\)
\(44\) −1.58579 −0.239066
\(45\) 2.82843 0.421637
\(46\) −8.82843 −1.30168
\(47\) 3.24264 0.472988 0.236494 0.971633i \(-0.424002\pi\)
0.236494 + 0.971633i \(0.424002\pi\)
\(48\) −7.24264 −1.04539
\(49\) 0 0
\(50\) 9.65685 1.36569
\(51\) 2.00000 0.280056
\(52\) 14.6569 2.03254
\(53\) 9.48528 1.30290 0.651452 0.758690i \(-0.274160\pi\)
0.651452 + 0.758690i \(0.274160\pi\)
\(54\) −1.00000 −0.136083
\(55\) −0.414214 −0.0558525
\(56\) 0 0
\(57\) 14.4853 1.91862
\(58\) −2.41421 −0.317002
\(59\) 3.65685 0.476082 0.238041 0.971255i \(-0.423495\pi\)
0.238041 + 0.971255i \(0.423495\pi\)
\(60\) −9.24264 −1.19322
\(61\) 4.82843 0.618217 0.309108 0.951027i \(-0.399969\pi\)
0.309108 + 0.951027i \(0.399969\pi\)
\(62\) 24.3137 3.08784
\(63\) 0 0
\(64\) −9.82843 −1.22855
\(65\) 3.82843 0.474858
\(66\) −2.41421 −0.297169
\(67\) 5.65685 0.691095 0.345547 0.938401i \(-0.387693\pi\)
0.345547 + 0.938401i \(0.387693\pi\)
\(68\) −3.17157 −0.384610
\(69\) −8.82843 −1.06282
\(70\) 0 0
\(71\) −8.82843 −1.04774 −0.523871 0.851798i \(-0.675513\pi\)
−0.523871 + 0.851798i \(0.675513\pi\)
\(72\) −12.4853 −1.47140
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 9.65685 1.12259
\(75\) 9.65685 1.11508
\(76\) −22.9706 −2.63490
\(77\) 0 0
\(78\) 22.3137 2.52653
\(79\) −2.41421 −0.271620 −0.135810 0.990735i \(-0.543364\pi\)
−0.135810 + 0.990735i \(0.543364\pi\)
\(80\) 3.00000 0.335410
\(81\) −9.48528 −1.05392
\(82\) −10.8284 −1.19580
\(83\) −7.65685 −0.840449 −0.420224 0.907420i \(-0.638049\pi\)
−0.420224 + 0.907420i \(0.638049\pi\)
\(84\) 0 0
\(85\) −0.828427 −0.0898555
\(86\) −8.65685 −0.933493
\(87\) −2.41421 −0.258831
\(88\) 1.82843 0.194911
\(89\) 12.4853 1.32344 0.661719 0.749752i \(-0.269827\pi\)
0.661719 + 0.749752i \(0.269827\pi\)
\(90\) −6.82843 −0.719779
\(91\) 0 0
\(92\) 14.0000 1.45960
\(93\) 24.3137 2.52121
\(94\) −7.82843 −0.807441
\(95\) −6.00000 −0.615587
\(96\) −3.82843 −0.390737
\(97\) −4.48528 −0.455411 −0.227706 0.973730i \(-0.573122\pi\)
−0.227706 + 0.973730i \(0.573122\pi\)
\(98\) 0 0
\(99\) −1.17157 −0.117748
\(100\) −15.3137 −1.53137
\(101\) 2.34315 0.233152 0.116576 0.993182i \(-0.462808\pi\)
0.116576 + 0.993182i \(0.462808\pi\)
\(102\) −4.82843 −0.478086
\(103\) 4.82843 0.475759 0.237880 0.971295i \(-0.423548\pi\)
0.237880 + 0.971295i \(0.423548\pi\)
\(104\) −16.8995 −1.65713
\(105\) 0 0
\(106\) −22.8995 −2.22420
\(107\) −14.8284 −1.43352 −0.716759 0.697321i \(-0.754375\pi\)
−0.716759 + 0.697321i \(0.754375\pi\)
\(108\) 1.58579 0.152592
\(109\) 12.6569 1.21231 0.606153 0.795348i \(-0.292712\pi\)
0.606153 + 0.795348i \(0.292712\pi\)
\(110\) 1.00000 0.0953463
\(111\) 9.65685 0.916588
\(112\) 0 0
\(113\) −13.3137 −1.25245 −0.626224 0.779643i \(-0.715401\pi\)
−0.626224 + 0.779643i \(0.715401\pi\)
\(114\) −34.9706 −3.27529
\(115\) 3.65685 0.341003
\(116\) 3.82843 0.355461
\(117\) 10.8284 1.00109
\(118\) −8.82843 −0.812723
\(119\) 0 0
\(120\) 10.6569 0.972833
\(121\) −10.8284 −0.984402
\(122\) −11.6569 −1.05536
\(123\) −10.8284 −0.976366
\(124\) −38.5563 −3.46246
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −4.34315 −0.385392 −0.192696 0.981259i \(-0.561723\pi\)
−0.192696 + 0.981259i \(0.561723\pi\)
\(128\) 20.5563 1.81694
\(129\) −8.65685 −0.762194
\(130\) −9.24264 −0.810633
\(131\) −21.3137 −1.86219 −0.931094 0.364780i \(-0.881144\pi\)
−0.931094 + 0.364780i \(0.881144\pi\)
\(132\) 3.82843 0.333222
\(133\) 0 0
\(134\) −13.6569 −1.17977
\(135\) 0.414214 0.0356498
\(136\) 3.65685 0.313573
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 21.3137 1.81434
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) −7.82843 −0.659272
\(142\) 21.3137 1.78861
\(143\) −1.58579 −0.132610
\(144\) 8.48528 0.707107
\(145\) 1.00000 0.0830455
\(146\) 9.65685 0.799207
\(147\) 0 0
\(148\) −15.3137 −1.25878
\(149\) −7.82843 −0.641330 −0.320665 0.947193i \(-0.603906\pi\)
−0.320665 + 0.947193i \(0.603906\pi\)
\(150\) −23.3137 −1.90356
\(151\) −14.1421 −1.15087 −0.575435 0.817847i \(-0.695167\pi\)
−0.575435 + 0.817847i \(0.695167\pi\)
\(152\) 26.4853 2.14824
\(153\) −2.34315 −0.189432
\(154\) 0 0
\(155\) −10.0711 −0.808928
\(156\) −35.3848 −2.83305
\(157\) −8.48528 −0.677199 −0.338600 0.940931i \(-0.609953\pi\)
−0.338600 + 0.940931i \(0.609953\pi\)
\(158\) 5.82843 0.463685
\(159\) −22.8995 −1.81605
\(160\) 1.58579 0.125367
\(161\) 0 0
\(162\) 22.8995 1.79915
\(163\) 3.92893 0.307738 0.153869 0.988091i \(-0.450827\pi\)
0.153869 + 0.988091i \(0.450827\pi\)
\(164\) 17.1716 1.34087
\(165\) 1.00000 0.0778499
\(166\) 18.4853 1.43474
\(167\) 3.17157 0.245424 0.122712 0.992442i \(-0.460841\pi\)
0.122712 + 0.992442i \(0.460841\pi\)
\(168\) 0 0
\(169\) 1.65685 0.127450
\(170\) 2.00000 0.153393
\(171\) −16.9706 −1.29777
\(172\) 13.7279 1.04674
\(173\) −12.3431 −0.938432 −0.469216 0.883083i \(-0.655463\pi\)
−0.469216 + 0.883083i \(0.655463\pi\)
\(174\) 5.82843 0.441852
\(175\) 0 0
\(176\) −1.24264 −0.0936676
\(177\) −8.82843 −0.663585
\(178\) −30.1421 −2.25925
\(179\) −6.48528 −0.484733 −0.242366 0.970185i \(-0.577924\pi\)
−0.242366 + 0.970185i \(0.577924\pi\)
\(180\) 10.8284 0.807103
\(181\) −8.31371 −0.617953 −0.308977 0.951070i \(-0.599986\pi\)
−0.308977 + 0.951070i \(0.599986\pi\)
\(182\) 0 0
\(183\) −11.6569 −0.861699
\(184\) −16.1421 −1.19001
\(185\) −4.00000 −0.294086
\(186\) −58.6985 −4.30398
\(187\) 0.343146 0.0250933
\(188\) 12.4142 0.905400
\(189\) 0 0
\(190\) 14.4853 1.05087
\(191\) 25.3137 1.83164 0.915818 0.401594i \(-0.131544\pi\)
0.915818 + 0.401594i \(0.131544\pi\)
\(192\) 23.7279 1.71242
\(193\) −5.17157 −0.372258 −0.186129 0.982525i \(-0.559594\pi\)
−0.186129 + 0.982525i \(0.559594\pi\)
\(194\) 10.8284 0.777436
\(195\) −9.24264 −0.661879
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 2.82843 0.201008
\(199\) 0.485281 0.0344007 0.0172003 0.999852i \(-0.494525\pi\)
0.0172003 + 0.999852i \(0.494525\pi\)
\(200\) 17.6569 1.24853
\(201\) −13.6569 −0.963280
\(202\) −5.65685 −0.398015
\(203\) 0 0
\(204\) 7.65685 0.536087
\(205\) 4.48528 0.313266
\(206\) −11.6569 −0.812172
\(207\) 10.3431 0.718898
\(208\) 11.4853 0.796361
\(209\) 2.48528 0.171911
\(210\) 0 0
\(211\) −19.3848 −1.33450 −0.667252 0.744832i \(-0.732529\pi\)
−0.667252 + 0.744832i \(0.732529\pi\)
\(212\) 36.3137 2.49404
\(213\) 21.3137 1.46039
\(214\) 35.7990 2.44717
\(215\) 3.58579 0.244549
\(216\) −1.82843 −0.124409
\(217\) 0 0
\(218\) −30.5563 −2.06954
\(219\) 9.65685 0.652550
\(220\) −1.58579 −0.106914
\(221\) −3.17157 −0.213343
\(222\) −23.3137 −1.56471
\(223\) 3.17157 0.212384 0.106192 0.994346i \(-0.466134\pi\)
0.106192 + 0.994346i \(0.466134\pi\)
\(224\) 0 0
\(225\) −11.3137 −0.754247
\(226\) 32.1421 2.13806
\(227\) 8.14214 0.540413 0.270206 0.962802i \(-0.412908\pi\)
0.270206 + 0.962802i \(0.412908\pi\)
\(228\) 55.4558 3.67265
\(229\) 3.51472 0.232259 0.116130 0.993234i \(-0.462951\pi\)
0.116130 + 0.993234i \(0.462951\pi\)
\(230\) −8.82843 −0.582129
\(231\) 0 0
\(232\) −4.41421 −0.289807
\(233\) 18.3137 1.19977 0.599885 0.800086i \(-0.295213\pi\)
0.599885 + 0.800086i \(0.295213\pi\)
\(234\) −26.1421 −1.70896
\(235\) 3.24264 0.211527
\(236\) 14.0000 0.911322
\(237\) 5.82843 0.378597
\(238\) 0 0
\(239\) −19.6569 −1.27150 −0.635748 0.771897i \(-0.719308\pi\)
−0.635748 + 0.771897i \(0.719308\pi\)
\(240\) −7.24264 −0.467510
\(241\) 18.3137 1.17969 0.589845 0.807517i \(-0.299189\pi\)
0.589845 + 0.807517i \(0.299189\pi\)
\(242\) 26.1421 1.68048
\(243\) 21.6569 1.38929
\(244\) 18.4853 1.18340
\(245\) 0 0
\(246\) 26.1421 1.66676
\(247\) −22.9706 −1.46158
\(248\) 44.4558 2.82295
\(249\) 18.4853 1.17146
\(250\) 21.7279 1.37419
\(251\) −20.0711 −1.26687 −0.633437 0.773794i \(-0.718357\pi\)
−0.633437 + 0.773794i \(0.718357\pi\)
\(252\) 0 0
\(253\) −1.51472 −0.0952295
\(254\) 10.4853 0.657905
\(255\) 2.00000 0.125245
\(256\) −29.9706 −1.87316
\(257\) 18.1716 1.13351 0.566756 0.823886i \(-0.308198\pi\)
0.566756 + 0.823886i \(0.308198\pi\)
\(258\) 20.8995 1.30115
\(259\) 0 0
\(260\) 14.6569 0.908980
\(261\) 2.82843 0.175075
\(262\) 51.4558 3.17895
\(263\) 2.75736 0.170026 0.0850130 0.996380i \(-0.472907\pi\)
0.0850130 + 0.996380i \(0.472907\pi\)
\(264\) −4.41421 −0.271676
\(265\) 9.48528 0.582676
\(266\) 0 0
\(267\) −30.1421 −1.84467
\(268\) 21.6569 1.32290
\(269\) −31.4558 −1.91790 −0.958948 0.283581i \(-0.908478\pi\)
−0.958948 + 0.283581i \(0.908478\pi\)
\(270\) −1.00000 −0.0608581
\(271\) −16.5563 −1.00573 −0.502863 0.864366i \(-0.667720\pi\)
−0.502863 + 0.864366i \(0.667720\pi\)
\(272\) −2.48528 −0.150692
\(273\) 0 0
\(274\) −28.9706 −1.75018
\(275\) 1.65685 0.0999121
\(276\) −33.7990 −2.03446
\(277\) −17.3137 −1.04028 −0.520140 0.854081i \(-0.674120\pi\)
−0.520140 + 0.854081i \(0.674120\pi\)
\(278\) 33.7990 2.02713
\(279\) −28.4853 −1.70537
\(280\) 0 0
\(281\) 31.9706 1.90720 0.953602 0.301070i \(-0.0973439\pi\)
0.953602 + 0.301070i \(0.0973439\pi\)
\(282\) 18.8995 1.12545
\(283\) −11.6569 −0.692928 −0.346464 0.938063i \(-0.612618\pi\)
−0.346464 + 0.938063i \(0.612618\pi\)
\(284\) −33.7990 −2.00560
\(285\) 14.4853 0.858034
\(286\) 3.82843 0.226380
\(287\) 0 0
\(288\) 4.48528 0.264298
\(289\) −16.3137 −0.959630
\(290\) −2.41421 −0.141768
\(291\) 10.8284 0.634774
\(292\) −15.3137 −0.896167
\(293\) −7.65685 −0.447318 −0.223659 0.974667i \(-0.571800\pi\)
−0.223659 + 0.974667i \(0.571800\pi\)
\(294\) 0 0
\(295\) 3.65685 0.212910
\(296\) 17.6569 1.02628
\(297\) −0.171573 −0.00995567
\(298\) 18.8995 1.09482
\(299\) 14.0000 0.809641
\(300\) 36.9706 2.13450
\(301\) 0 0
\(302\) 34.1421 1.96466
\(303\) −5.65685 −0.324978
\(304\) −18.0000 −1.03237
\(305\) 4.82843 0.276475
\(306\) 5.65685 0.323381
\(307\) −2.89949 −0.165483 −0.0827415 0.996571i \(-0.526368\pi\)
−0.0827415 + 0.996571i \(0.526368\pi\)
\(308\) 0 0
\(309\) −11.6569 −0.663135
\(310\) 24.3137 1.38093
\(311\) −2.68629 −0.152326 −0.0761628 0.997095i \(-0.524267\pi\)
−0.0761628 + 0.997095i \(0.524267\pi\)
\(312\) 40.7990 2.30979
\(313\) −9.82843 −0.555536 −0.277768 0.960648i \(-0.589595\pi\)
−0.277768 + 0.960648i \(0.589595\pi\)
\(314\) 20.4853 1.15605
\(315\) 0 0
\(316\) −9.24264 −0.519939
\(317\) −31.4558 −1.76674 −0.883368 0.468680i \(-0.844730\pi\)
−0.883368 + 0.468680i \(0.844730\pi\)
\(318\) 55.2843 3.10019
\(319\) −0.414214 −0.0231915
\(320\) −9.82843 −0.549426
\(321\) 35.7990 1.99810
\(322\) 0 0
\(323\) 4.97056 0.276570
\(324\) −36.3137 −2.01743
\(325\) −15.3137 −0.849452
\(326\) −9.48528 −0.525341
\(327\) −30.5563 −1.68977
\(328\) −19.7990 −1.09322
\(329\) 0 0
\(330\) −2.41421 −0.132898
\(331\) −2.41421 −0.132697 −0.0663486 0.997797i \(-0.521135\pi\)
−0.0663486 + 0.997797i \(0.521135\pi\)
\(332\) −29.3137 −1.60880
\(333\) −11.3137 −0.619987
\(334\) −7.65685 −0.418964
\(335\) 5.65685 0.309067
\(336\) 0 0
\(337\) 21.7990 1.18747 0.593733 0.804662i \(-0.297653\pi\)
0.593733 + 0.804662i \(0.297653\pi\)
\(338\) −4.00000 −0.217571
\(339\) 32.1421 1.74572
\(340\) −3.17157 −0.172003
\(341\) 4.17157 0.225903
\(342\) 40.9706 2.21543
\(343\) 0 0
\(344\) −15.8284 −0.853412
\(345\) −8.82843 −0.475307
\(346\) 29.7990 1.60200
\(347\) 2.48528 0.133417 0.0667084 0.997773i \(-0.478750\pi\)
0.0667084 + 0.997773i \(0.478750\pi\)
\(348\) −9.24264 −0.495458
\(349\) 5.14214 0.275252 0.137626 0.990484i \(-0.456053\pi\)
0.137626 + 0.990484i \(0.456053\pi\)
\(350\) 0 0
\(351\) 1.58579 0.0846430
\(352\) −0.656854 −0.0350104
\(353\) −26.9706 −1.43550 −0.717749 0.696302i \(-0.754828\pi\)
−0.717749 + 0.696302i \(0.754828\pi\)
\(354\) 21.3137 1.13281
\(355\) −8.82843 −0.468564
\(356\) 47.7990 2.53334
\(357\) 0 0
\(358\) 15.6569 0.827490
\(359\) 3.92893 0.207361 0.103681 0.994611i \(-0.466938\pi\)
0.103681 + 0.994611i \(0.466938\pi\)
\(360\) −12.4853 −0.658032
\(361\) 17.0000 0.894737
\(362\) 20.0711 1.05491
\(363\) 26.1421 1.37211
\(364\) 0 0
\(365\) −4.00000 −0.209370
\(366\) 28.1421 1.47101
\(367\) −18.0000 −0.939592 −0.469796 0.882775i \(-0.655673\pi\)
−0.469796 + 0.882775i \(0.655673\pi\)
\(368\) 10.9706 0.571880
\(369\) 12.6863 0.660422
\(370\) 9.65685 0.502036
\(371\) 0 0
\(372\) 93.0833 4.82614
\(373\) −26.3137 −1.36247 −0.681236 0.732064i \(-0.738557\pi\)
−0.681236 + 0.732064i \(0.738557\pi\)
\(374\) −0.828427 −0.0428369
\(375\) 21.7279 1.12203
\(376\) −14.3137 −0.738173
\(377\) 3.82843 0.197174
\(378\) 0 0
\(379\) −6.97056 −0.358054 −0.179027 0.983844i \(-0.557295\pi\)
−0.179027 + 0.983844i \(0.557295\pi\)
\(380\) −22.9706 −1.17837
\(381\) 10.4853 0.537177
\(382\) −61.1127 −3.12680
\(383\) 3.51472 0.179594 0.0897969 0.995960i \(-0.471378\pi\)
0.0897969 + 0.995960i \(0.471378\pi\)
\(384\) −49.6274 −2.53254
\(385\) 0 0
\(386\) 12.4853 0.635484
\(387\) 10.1421 0.515554
\(388\) −17.1716 −0.871755
\(389\) 3.02944 0.153599 0.0767993 0.997047i \(-0.475530\pi\)
0.0767993 + 0.997047i \(0.475530\pi\)
\(390\) 22.3137 1.12990
\(391\) −3.02944 −0.153205
\(392\) 0 0
\(393\) 51.4558 2.59560
\(394\) −4.82843 −0.243253
\(395\) −2.41421 −0.121472
\(396\) −4.48528 −0.225394
\(397\) −19.3431 −0.970805 −0.485402 0.874291i \(-0.661327\pi\)
−0.485402 + 0.874291i \(0.661327\pi\)
\(398\) −1.17157 −0.0587256
\(399\) 0 0
\(400\) −12.0000 −0.600000
\(401\) −18.6569 −0.931679 −0.465839 0.884869i \(-0.654248\pi\)
−0.465839 + 0.884869i \(0.654248\pi\)
\(402\) 32.9706 1.64442
\(403\) −38.5563 −1.92063
\(404\) 8.97056 0.446302
\(405\) −9.48528 −0.471327
\(406\) 0 0
\(407\) 1.65685 0.0821272
\(408\) −8.82843 −0.437072
\(409\) 18.9706 0.938034 0.469017 0.883189i \(-0.344608\pi\)
0.469017 + 0.883189i \(0.344608\pi\)
\(410\) −10.8284 −0.534778
\(411\) −28.9706 −1.42901
\(412\) 18.4853 0.910704
\(413\) 0 0
\(414\) −24.9706 −1.22724
\(415\) −7.65685 −0.375860
\(416\) 6.07107 0.297659
\(417\) 33.7990 1.65514
\(418\) −6.00000 −0.293470
\(419\) 9.51472 0.464824 0.232412 0.972617i \(-0.425338\pi\)
0.232412 + 0.972617i \(0.425338\pi\)
\(420\) 0 0
\(421\) 37.1127 1.80876 0.904381 0.426726i \(-0.140333\pi\)
0.904381 + 0.426726i \(0.140333\pi\)
\(422\) 46.7990 2.27814
\(423\) 9.17157 0.445937
\(424\) −41.8701 −2.03339
\(425\) 3.31371 0.160738
\(426\) −51.4558 −2.49304
\(427\) 0 0
\(428\) −56.7696 −2.74406
\(429\) 3.82843 0.184838
\(430\) −8.65685 −0.417471
\(431\) 19.6569 0.946837 0.473419 0.880838i \(-0.343020\pi\)
0.473419 + 0.880838i \(0.343020\pi\)
\(432\) 1.24264 0.0597866
\(433\) −30.6274 −1.47186 −0.735930 0.677058i \(-0.763255\pi\)
−0.735930 + 0.677058i \(0.763255\pi\)
\(434\) 0 0
\(435\) −2.41421 −0.115753
\(436\) 48.4558 2.32061
\(437\) −21.9411 −1.04959
\(438\) −23.3137 −1.11397
\(439\) 0.343146 0.0163775 0.00818873 0.999966i \(-0.497393\pi\)
0.00818873 + 0.999966i \(0.497393\pi\)
\(440\) 1.82843 0.0871668
\(441\) 0 0
\(442\) 7.65685 0.364199
\(443\) −24.3431 −1.15658 −0.578289 0.815832i \(-0.696279\pi\)
−0.578289 + 0.815832i \(0.696279\pi\)
\(444\) 36.9706 1.75455
\(445\) 12.4853 0.591859
\(446\) −7.65685 −0.362563
\(447\) 18.8995 0.893915
\(448\) 0 0
\(449\) −34.9706 −1.65036 −0.825181 0.564868i \(-0.808927\pi\)
−0.825181 + 0.564868i \(0.808927\pi\)
\(450\) 27.3137 1.28758
\(451\) −1.85786 −0.0874834
\(452\) −50.9706 −2.39745
\(453\) 34.1421 1.60414
\(454\) −19.6569 −0.922542
\(455\) 0 0
\(456\) −63.9411 −2.99432
\(457\) 1.02944 0.0481550 0.0240775 0.999710i \(-0.492335\pi\)
0.0240775 + 0.999710i \(0.492335\pi\)
\(458\) −8.48528 −0.396491
\(459\) −0.343146 −0.0160167
\(460\) 14.0000 0.652753
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) −26.0000 −1.20832 −0.604161 0.796862i \(-0.706492\pi\)
−0.604161 + 0.796862i \(0.706492\pi\)
\(464\) 3.00000 0.139272
\(465\) 24.3137 1.12752
\(466\) −44.2132 −2.04814
\(467\) 38.3553 1.77487 0.887437 0.460930i \(-0.152484\pi\)
0.887437 + 0.460930i \(0.152484\pi\)
\(468\) 41.4558 1.91630
\(469\) 0 0
\(470\) −7.82843 −0.361098
\(471\) 20.4853 0.943912
\(472\) −16.1421 −0.743002
\(473\) −1.48528 −0.0682933
\(474\) −14.0711 −0.646306
\(475\) 24.0000 1.10120
\(476\) 0 0
\(477\) 26.8284 1.22839
\(478\) 47.4558 2.17058
\(479\) −6.89949 −0.315246 −0.157623 0.987499i \(-0.550383\pi\)
−0.157623 + 0.987499i \(0.550383\pi\)
\(480\) −3.82843 −0.174743
\(481\) −15.3137 −0.698245
\(482\) −44.2132 −2.01386
\(483\) 0 0
\(484\) −41.4558 −1.88436
\(485\) −4.48528 −0.203666
\(486\) −52.2843 −2.37166
\(487\) −11.5147 −0.521782 −0.260891 0.965368i \(-0.584016\pi\)
−0.260891 + 0.965368i \(0.584016\pi\)
\(488\) −21.3137 −0.964826
\(489\) −9.48528 −0.428939
\(490\) 0 0
\(491\) −21.2426 −0.958667 −0.479333 0.877633i \(-0.659122\pi\)
−0.479333 + 0.877633i \(0.659122\pi\)
\(492\) −41.4558 −1.86897
\(493\) −0.828427 −0.0373105
\(494\) 55.4558 2.49508
\(495\) −1.17157 −0.0526583
\(496\) −30.2132 −1.35661
\(497\) 0 0
\(498\) −44.6274 −1.99980
\(499\) 18.9706 0.849239 0.424620 0.905372i \(-0.360408\pi\)
0.424620 + 0.905372i \(0.360408\pi\)
\(500\) −34.4558 −1.54091
\(501\) −7.65685 −0.342083
\(502\) 48.4558 2.16269
\(503\) −0.272078 −0.0121314 −0.00606568 0.999982i \(-0.501931\pi\)
−0.00606568 + 0.999982i \(0.501931\pi\)
\(504\) 0 0
\(505\) 2.34315 0.104269
\(506\) 3.65685 0.162567
\(507\) −4.00000 −0.177646
\(508\) −16.6274 −0.737722
\(509\) 10.5147 0.466057 0.233028 0.972470i \(-0.425137\pi\)
0.233028 + 0.972470i \(0.425137\pi\)
\(510\) −4.82843 −0.213806
\(511\) 0 0
\(512\) 31.2426 1.38074
\(513\) −2.48528 −0.109728
\(514\) −43.8701 −1.93503
\(515\) 4.82843 0.212766
\(516\) −33.1421 −1.45900
\(517\) −1.34315 −0.0590715
\(518\) 0 0
\(519\) 29.7990 1.30803
\(520\) −16.8995 −0.741092
\(521\) 29.1421 1.27674 0.638370 0.769730i \(-0.279609\pi\)
0.638370 + 0.769730i \(0.279609\pi\)
\(522\) −6.82843 −0.298872
\(523\) −4.68629 −0.204917 −0.102459 0.994737i \(-0.532671\pi\)
−0.102459 + 0.994737i \(0.532671\pi\)
\(524\) −81.5980 −3.56462
\(525\) 0 0
\(526\) −6.65685 −0.290253
\(527\) 8.34315 0.363433
\(528\) 3.00000 0.130558
\(529\) −9.62742 −0.418583
\(530\) −22.8995 −0.994690
\(531\) 10.3431 0.448854
\(532\) 0 0
\(533\) 17.1716 0.743783
\(534\) 72.7696 3.14905
\(535\) −14.8284 −0.641089
\(536\) −24.9706 −1.07856
\(537\) 15.6569 0.675643
\(538\) 75.9411 3.27405
\(539\) 0 0
\(540\) 1.58579 0.0682414
\(541\) −10.3431 −0.444687 −0.222343 0.974968i \(-0.571371\pi\)
−0.222343 + 0.974968i \(0.571371\pi\)
\(542\) 39.9706 1.71688
\(543\) 20.0711 0.861332
\(544\) −1.31371 −0.0563248
\(545\) 12.6569 0.542160
\(546\) 0 0
\(547\) 35.7990 1.53065 0.765327 0.643641i \(-0.222577\pi\)
0.765327 + 0.643641i \(0.222577\pi\)
\(548\) 45.9411 1.96251
\(549\) 13.6569 0.582860
\(550\) −4.00000 −0.170561
\(551\) −6.00000 −0.255609
\(552\) 38.9706 1.65870
\(553\) 0 0
\(554\) 41.7990 1.77587
\(555\) 9.65685 0.409911
\(556\) −53.5980 −2.27306
\(557\) −17.3137 −0.733605 −0.366803 0.930299i \(-0.619548\pi\)
−0.366803 + 0.930299i \(0.619548\pi\)
\(558\) 68.7696 2.91125
\(559\) 13.7279 0.580629
\(560\) 0 0
\(561\) −0.828427 −0.0349762
\(562\) −77.1838 −3.25580
\(563\) 0.757359 0.0319189 0.0159594 0.999873i \(-0.494920\pi\)
0.0159594 + 0.999873i \(0.494920\pi\)
\(564\) −29.9706 −1.26199
\(565\) −13.3137 −0.560112
\(566\) 28.1421 1.18290
\(567\) 0 0
\(568\) 38.9706 1.63517
\(569\) −39.6569 −1.66250 −0.831251 0.555897i \(-0.812375\pi\)
−0.831251 + 0.555897i \(0.812375\pi\)
\(570\) −34.9706 −1.46476
\(571\) 14.6274 0.612138 0.306069 0.952009i \(-0.400986\pi\)
0.306069 + 0.952009i \(0.400986\pi\)
\(572\) −6.07107 −0.253844
\(573\) −61.1127 −2.55302
\(574\) 0 0
\(575\) −14.6274 −0.610005
\(576\) −27.7990 −1.15829
\(577\) 29.7990 1.24055 0.620274 0.784385i \(-0.287021\pi\)
0.620274 + 0.784385i \(0.287021\pi\)
\(578\) 39.3848 1.63819
\(579\) 12.4853 0.518871
\(580\) 3.82843 0.158967
\(581\) 0 0
\(582\) −26.1421 −1.08363
\(583\) −3.92893 −0.162720
\(584\) 17.6569 0.730646
\(585\) 10.8284 0.447700
\(586\) 18.4853 0.763620
\(587\) −7.65685 −0.316032 −0.158016 0.987437i \(-0.550510\pi\)
−0.158016 + 0.987437i \(0.550510\pi\)
\(588\) 0 0
\(589\) 60.4264 2.48983
\(590\) −8.82843 −0.363461
\(591\) −4.82843 −0.198615
\(592\) −12.0000 −0.493197
\(593\) 19.4853 0.800165 0.400082 0.916479i \(-0.368982\pi\)
0.400082 + 0.916479i \(0.368982\pi\)
\(594\) 0.414214 0.0169954
\(595\) 0 0
\(596\) −29.9706 −1.22764
\(597\) −1.17157 −0.0479493
\(598\) −33.7990 −1.38214
\(599\) 9.87006 0.403280 0.201640 0.979460i \(-0.435373\pi\)
0.201640 + 0.979460i \(0.435373\pi\)
\(600\) −42.6274 −1.74026
\(601\) 17.1716 0.700443 0.350222 0.936667i \(-0.386106\pi\)
0.350222 + 0.936667i \(0.386106\pi\)
\(602\) 0 0
\(603\) 16.0000 0.651570
\(604\) −54.1421 −2.20301
\(605\) −10.8284 −0.440238
\(606\) 13.6569 0.554772
\(607\) 7.72792 0.313667 0.156833 0.987625i \(-0.449871\pi\)
0.156833 + 0.987625i \(0.449871\pi\)
\(608\) −9.51472 −0.385873
\(609\) 0 0
\(610\) −11.6569 −0.471972
\(611\) 12.4142 0.502225
\(612\) −8.97056 −0.362614
\(613\) −9.00000 −0.363507 −0.181753 0.983344i \(-0.558177\pi\)
−0.181753 + 0.983344i \(0.558177\pi\)
\(614\) 7.00000 0.282497
\(615\) −10.8284 −0.436644
\(616\) 0 0
\(617\) 0.686292 0.0276291 0.0138145 0.999905i \(-0.495603\pi\)
0.0138145 + 0.999905i \(0.495603\pi\)
\(618\) 28.1421 1.13204
\(619\) −33.5858 −1.34993 −0.674963 0.737851i \(-0.735841\pi\)
−0.674963 + 0.737851i \(0.735841\pi\)
\(620\) −38.5563 −1.54846
\(621\) 1.51472 0.0607836
\(622\) 6.48528 0.260036
\(623\) 0 0
\(624\) −27.7279 −1.11001
\(625\) 11.0000 0.440000
\(626\) 23.7279 0.948358
\(627\) −6.00000 −0.239617
\(628\) −32.4853 −1.29630
\(629\) 3.31371 0.132126
\(630\) 0 0
\(631\) −36.8284 −1.46612 −0.733058 0.680166i \(-0.761908\pi\)
−0.733058 + 0.680166i \(0.761908\pi\)
\(632\) 10.6569 0.423907
\(633\) 46.7990 1.86009
\(634\) 75.9411 3.01601
\(635\) −4.34315 −0.172352
\(636\) −87.6690 −3.47630
\(637\) 0 0
\(638\) 1.00000 0.0395904
\(639\) −24.9706 −0.987820
\(640\) 20.5563 0.812561
\(641\) 17.7990 0.703018 0.351509 0.936185i \(-0.385669\pi\)
0.351509 + 0.936185i \(0.385669\pi\)
\(642\) −86.4264 −3.41098
\(643\) −32.4853 −1.28109 −0.640547 0.767919i \(-0.721292\pi\)
−0.640547 + 0.767919i \(0.721292\pi\)
\(644\) 0 0
\(645\) −8.65685 −0.340863
\(646\) −12.0000 −0.472134
\(647\) −39.6569 −1.55907 −0.779536 0.626358i \(-0.784545\pi\)
−0.779536 + 0.626358i \(0.784545\pi\)
\(648\) 41.8701 1.64481
\(649\) −1.51472 −0.0594579
\(650\) 36.9706 1.45010
\(651\) 0 0
\(652\) 15.0416 0.589076
\(653\) −30.1421 −1.17955 −0.589776 0.807567i \(-0.700784\pi\)
−0.589776 + 0.807567i \(0.700784\pi\)
\(654\) 73.7696 2.88462
\(655\) −21.3137 −0.832796
\(656\) 13.4558 0.525362
\(657\) −11.3137 −0.441390
\(658\) 0 0
\(659\) 14.4142 0.561498 0.280749 0.959781i \(-0.409417\pi\)
0.280749 + 0.959781i \(0.409417\pi\)
\(660\) 3.82843 0.149021
\(661\) −33.3137 −1.29575 −0.647877 0.761745i \(-0.724343\pi\)
−0.647877 + 0.761745i \(0.724343\pi\)
\(662\) 5.82843 0.226528
\(663\) 7.65685 0.297368
\(664\) 33.7990 1.31166
\(665\) 0 0
\(666\) 27.3137 1.05838
\(667\) 3.65685 0.141594
\(668\) 12.1421 0.469793
\(669\) −7.65685 −0.296031
\(670\) −13.6569 −0.527610
\(671\) −2.00000 −0.0772091
\(672\) 0 0
\(673\) −21.6274 −0.833676 −0.416838 0.908981i \(-0.636862\pi\)
−0.416838 + 0.908981i \(0.636862\pi\)
\(674\) −52.6274 −2.02713
\(675\) −1.65685 −0.0637723
\(676\) 6.34315 0.243967
\(677\) 22.0000 0.845529 0.422764 0.906240i \(-0.361060\pi\)
0.422764 + 0.906240i \(0.361060\pi\)
\(678\) −77.5980 −2.98013
\(679\) 0 0
\(680\) 3.65685 0.140234
\(681\) −19.6569 −0.753252
\(682\) −10.0711 −0.385641
\(683\) 20.9706 0.802416 0.401208 0.915987i \(-0.368590\pi\)
0.401208 + 0.915987i \(0.368590\pi\)
\(684\) −64.9706 −2.48421
\(685\) 12.0000 0.458496
\(686\) 0 0
\(687\) −8.48528 −0.323734
\(688\) 10.7574 0.410120
\(689\) 36.3137 1.38344
\(690\) 21.3137 0.811399
\(691\) −48.0000 −1.82601 −0.913003 0.407953i \(-0.866243\pi\)
−0.913003 + 0.407953i \(0.866243\pi\)
\(692\) −47.2548 −1.79636
\(693\) 0 0
\(694\) −6.00000 −0.227757
\(695\) −14.0000 −0.531050
\(696\) 10.6569 0.403947
\(697\) −3.71573 −0.140743
\(698\) −12.4142 −0.469885
\(699\) −44.2132 −1.67230
\(700\) 0 0
\(701\) −40.1127 −1.51504 −0.757518 0.652814i \(-0.773588\pi\)
−0.757518 + 0.652814i \(0.773588\pi\)
\(702\) −3.82843 −0.144495
\(703\) 24.0000 0.905177
\(704\) 4.07107 0.153434
\(705\) −7.82843 −0.294836
\(706\) 65.1127 2.45055
\(707\) 0 0
\(708\) −33.7990 −1.27024
\(709\) 29.1421 1.09446 0.547228 0.836984i \(-0.315683\pi\)
0.547228 + 0.836984i \(0.315683\pi\)
\(710\) 21.3137 0.799889
\(711\) −6.82843 −0.256086
\(712\) −55.1127 −2.06544
\(713\) −36.8284 −1.37924
\(714\) 0 0
\(715\) −1.58579 −0.0593051
\(716\) −24.8284 −0.927882
\(717\) 47.4558 1.77227
\(718\) −9.48528 −0.353988
\(719\) 20.1421 0.751175 0.375587 0.926787i \(-0.377441\pi\)
0.375587 + 0.926787i \(0.377441\pi\)
\(720\) 8.48528 0.316228
\(721\) 0 0
\(722\) −41.0416 −1.52741
\(723\) −44.2132 −1.64431
\(724\) −31.8284 −1.18289
\(725\) −4.00000 −0.148556
\(726\) −63.1127 −2.34233
\(727\) −1.31371 −0.0487228 −0.0243614 0.999703i \(-0.507755\pi\)
−0.0243614 + 0.999703i \(0.507755\pi\)
\(728\) 0 0
\(729\) −23.8284 −0.882534
\(730\) 9.65685 0.357416
\(731\) −2.97056 −0.109870
\(732\) −44.6274 −1.64948
\(733\) 41.2548 1.52378 0.761891 0.647705i \(-0.224271\pi\)
0.761891 + 0.647705i \(0.224271\pi\)
\(734\) 43.4558 1.60398
\(735\) 0 0
\(736\) 5.79899 0.213754
\(737\) −2.34315 −0.0863109
\(738\) −30.6274 −1.12741
\(739\) 4.07107 0.149757 0.0748783 0.997193i \(-0.476143\pi\)
0.0748783 + 0.997193i \(0.476143\pi\)
\(740\) −15.3137 −0.562943
\(741\) 55.4558 2.03722
\(742\) 0 0
\(743\) 23.6569 0.867886 0.433943 0.900940i \(-0.357122\pi\)
0.433943 + 0.900940i \(0.357122\pi\)
\(744\) −107.326 −3.93476
\(745\) −7.82843 −0.286811
\(746\) 63.5269 2.32589
\(747\) −21.6569 −0.792383
\(748\) 1.31371 0.0480339
\(749\) 0 0
\(750\) −52.4558 −1.91542
\(751\) 25.3137 0.923710 0.461855 0.886955i \(-0.347184\pi\)
0.461855 + 0.886955i \(0.347184\pi\)
\(752\) 9.72792 0.354741
\(753\) 48.4558 1.76583
\(754\) −9.24264 −0.336597
\(755\) −14.1421 −0.514685
\(756\) 0 0
\(757\) 25.5147 0.927348 0.463674 0.886006i \(-0.346531\pi\)
0.463674 + 0.886006i \(0.346531\pi\)
\(758\) 16.8284 0.611236
\(759\) 3.65685 0.132735
\(760\) 26.4853 0.960722
\(761\) −45.5980 −1.65293 −0.826463 0.562991i \(-0.809650\pi\)
−0.826463 + 0.562991i \(0.809650\pi\)
\(762\) −25.3137 −0.917019
\(763\) 0 0
\(764\) 96.9117 3.50614
\(765\) −2.34315 −0.0847166
\(766\) −8.48528 −0.306586
\(767\) 14.0000 0.505511
\(768\) 72.3553 2.61090
\(769\) 49.1127 1.77105 0.885525 0.464592i \(-0.153799\pi\)
0.885525 + 0.464592i \(0.153799\pi\)
\(770\) 0 0
\(771\) −43.8701 −1.57994
\(772\) −19.7990 −0.712581
\(773\) 19.5147 0.701896 0.350948 0.936395i \(-0.385859\pi\)
0.350948 + 0.936395i \(0.385859\pi\)
\(774\) −24.4853 −0.880105
\(775\) 40.2843 1.44705
\(776\) 19.7990 0.710742
\(777\) 0 0
\(778\) −7.31371 −0.262209
\(779\) −26.9117 −0.964211
\(780\) −35.3848 −1.26698
\(781\) 3.65685 0.130853
\(782\) 7.31371 0.261538
\(783\) 0.414214 0.0148028
\(784\) 0 0
\(785\) −8.48528 −0.302853
\(786\) −124.225 −4.43097
\(787\) 54.0833 1.92786 0.963930 0.266156i \(-0.0857536\pi\)
0.963930 + 0.266156i \(0.0857536\pi\)
\(788\) 7.65685 0.272764
\(789\) −6.65685 −0.236990
\(790\) 5.82843 0.207366
\(791\) 0 0
\(792\) 5.17157 0.183764
\(793\) 18.4853 0.656432
\(794\) 46.6985 1.65727
\(795\) −22.8995 −0.812161
\(796\) 1.85786 0.0658503
\(797\) −51.7401 −1.83273 −0.916364 0.400345i \(-0.868890\pi\)
−0.916364 + 0.400345i \(0.868890\pi\)
\(798\) 0 0
\(799\) −2.68629 −0.0950342
\(800\) −6.34315 −0.224264
\(801\) 35.3137 1.24775
\(802\) 45.0416 1.59048
\(803\) 1.65685 0.0584691
\(804\) −52.2843 −1.84392
\(805\) 0 0
\(806\) 93.0833 3.27872
\(807\) 75.9411 2.67325
\(808\) −10.3431 −0.363871
\(809\) 36.2843 1.27569 0.637844 0.770166i \(-0.279827\pi\)
0.637844 + 0.770166i \(0.279827\pi\)
\(810\) 22.8995 0.804606
\(811\) −10.8284 −0.380238 −0.190119 0.981761i \(-0.560887\pi\)
−0.190119 + 0.981761i \(0.560887\pi\)
\(812\) 0 0
\(813\) 39.9706 1.40183
\(814\) −4.00000 −0.140200
\(815\) 3.92893 0.137624
\(816\) 6.00000 0.210042
\(817\) −21.5147 −0.752705
\(818\) −45.7990 −1.60132
\(819\) 0 0
\(820\) 17.1716 0.599657
\(821\) −1.48528 −0.0518367 −0.0259183 0.999664i \(-0.508251\pi\)
−0.0259183 + 0.999664i \(0.508251\pi\)
\(822\) 69.9411 2.43948
\(823\) −54.2843 −1.89223 −0.946115 0.323830i \(-0.895029\pi\)
−0.946115 + 0.323830i \(0.895029\pi\)
\(824\) −21.3137 −0.742498
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) 32.8995 1.14403 0.572014 0.820244i \(-0.306162\pi\)
0.572014 + 0.820244i \(0.306162\pi\)
\(828\) 39.5980 1.37612
\(829\) 29.7990 1.03496 0.517481 0.855695i \(-0.326870\pi\)
0.517481 + 0.855695i \(0.326870\pi\)
\(830\) 18.4853 0.641633
\(831\) 41.7990 1.44999
\(832\) −37.6274 −1.30450
\(833\) 0 0
\(834\) −81.5980 −2.82551
\(835\) 3.17157 0.109757
\(836\) 9.51472 0.329073
\(837\) −4.17157 −0.144191
\(838\) −22.9706 −0.793505
\(839\) 7.92893 0.273737 0.136869 0.990589i \(-0.456296\pi\)
0.136869 + 0.990589i \(0.456296\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −89.5980 −3.08775
\(843\) −77.1838 −2.65835
\(844\) −74.2132 −2.55452
\(845\) 1.65685 0.0569975
\(846\) −22.1421 −0.761262
\(847\) 0 0
\(848\) 28.4558 0.977178
\(849\) 28.1421 0.965836
\(850\) −8.00000 −0.274398
\(851\) −14.6274 −0.501421
\(852\) 81.5980 2.79550
\(853\) 22.9706 0.786497 0.393249 0.919432i \(-0.371351\pi\)
0.393249 + 0.919432i \(0.371351\pi\)
\(854\) 0 0
\(855\) −16.9706 −0.580381
\(856\) 65.4558 2.23723
\(857\) 6.17157 0.210817 0.105408 0.994429i \(-0.466385\pi\)
0.105408 + 0.994429i \(0.466385\pi\)
\(858\) −9.24264 −0.315539
\(859\) −19.7279 −0.673108 −0.336554 0.941664i \(-0.609261\pi\)
−0.336554 + 0.941664i \(0.609261\pi\)
\(860\) 13.7279 0.468118
\(861\) 0 0
\(862\) −47.4558 −1.61635
\(863\) 17.1127 0.582523 0.291262 0.956643i \(-0.405925\pi\)
0.291262 + 0.956643i \(0.405925\pi\)
\(864\) 0.656854 0.0223466
\(865\) −12.3431 −0.419680
\(866\) 73.9411 2.51262
\(867\) 39.3848 1.33758
\(868\) 0 0
\(869\) 1.00000 0.0339227
\(870\) 5.82843 0.197602
\(871\) 21.6569 0.733815
\(872\) −55.8701 −1.89200
\(873\) −12.6863 −0.429366
\(874\) 52.9706 1.79176
\(875\) 0 0
\(876\) 36.9706 1.24912
\(877\) −37.1421 −1.25420 −0.627100 0.778938i \(-0.715758\pi\)
−0.627100 + 0.778938i \(0.715758\pi\)
\(878\) −0.828427 −0.0279581
\(879\) 18.4853 0.623493
\(880\) −1.24264 −0.0418894
\(881\) −14.0000 −0.471672 −0.235836 0.971793i \(-0.575783\pi\)
−0.235836 + 0.971793i \(0.575783\pi\)
\(882\) 0 0
\(883\) 38.4264 1.29315 0.646576 0.762850i \(-0.276200\pi\)
0.646576 + 0.762850i \(0.276200\pi\)
\(884\) −12.1421 −0.408384
\(885\) −8.82843 −0.296764
\(886\) 58.7696 1.97440
\(887\) −17.1005 −0.574179 −0.287089 0.957904i \(-0.592688\pi\)
−0.287089 + 0.957904i \(0.592688\pi\)
\(888\) −42.6274 −1.43048
\(889\) 0 0
\(890\) −30.1421 −1.01037
\(891\) 3.92893 0.131624
\(892\) 12.1421 0.406549
\(893\) −19.4558 −0.651065
\(894\) −45.6274 −1.52601
\(895\) −6.48528 −0.216779
\(896\) 0 0
\(897\) −33.7990 −1.12852
\(898\) 84.4264 2.81735
\(899\) −10.0711 −0.335889
\(900\) −43.3137 −1.44379
\(901\) −7.85786 −0.261783
\(902\) 4.48528 0.149344
\(903\) 0 0
\(904\) 58.7696 1.95465
\(905\) −8.31371 −0.276357
\(906\) −82.4264 −2.73843
\(907\) 22.2843 0.739937 0.369969 0.929044i \(-0.379368\pi\)
0.369969 + 0.929044i \(0.379368\pi\)
\(908\) 31.1716 1.03446
\(909\) 6.62742 0.219818
\(910\) 0 0
\(911\) −15.4437 −0.511671 −0.255835 0.966720i \(-0.582351\pi\)
−0.255835 + 0.966720i \(0.582351\pi\)
\(912\) 43.4558 1.43897
\(913\) 3.17157 0.104964
\(914\) −2.48528 −0.0822058
\(915\) −11.6569 −0.385364
\(916\) 13.4558 0.444594
\(917\) 0 0
\(918\) 0.828427 0.0273422
\(919\) 8.14214 0.268584 0.134292 0.990942i \(-0.457124\pi\)
0.134292 + 0.990942i \(0.457124\pi\)
\(920\) −16.1421 −0.532190
\(921\) 7.00000 0.230658
\(922\) 33.7990 1.11311
\(923\) −33.7990 −1.11251
\(924\) 0 0
\(925\) 16.0000 0.526077
\(926\) 62.7696 2.06274
\(927\) 13.6569 0.448550
\(928\) 1.58579 0.0520560
\(929\) −18.6863 −0.613077 −0.306539 0.951858i \(-0.599171\pi\)
−0.306539 + 0.951858i \(0.599171\pi\)
\(930\) −58.6985 −1.92480
\(931\) 0 0
\(932\) 70.1127 2.29662
\(933\) 6.48528 0.212319
\(934\) −92.5980 −3.02990
\(935\) 0.343146 0.0112221
\(936\) −47.7990 −1.56236
\(937\) 16.6274 0.543194 0.271597 0.962411i \(-0.412448\pi\)
0.271597 + 0.962411i \(0.412448\pi\)
\(938\) 0 0
\(939\) 23.7279 0.774331
\(940\) 12.4142 0.404907
\(941\) 56.5980 1.84504 0.922521 0.385948i \(-0.126125\pi\)
0.922521 + 0.385948i \(0.126125\pi\)
\(942\) −49.4558 −1.61136
\(943\) 16.4020 0.534123
\(944\) 10.9706 0.357061
\(945\) 0 0
\(946\) 3.58579 0.116584
\(947\) 2.61522 0.0849834 0.0424917 0.999097i \(-0.486470\pi\)
0.0424917 + 0.999097i \(0.486470\pi\)
\(948\) 22.3137 0.724716
\(949\) −15.3137 −0.497104
\(950\) −57.9411 −1.87986
\(951\) 75.9411 2.46256
\(952\) 0 0
\(953\) −35.6274 −1.15409 −0.577043 0.816714i \(-0.695793\pi\)
−0.577043 + 0.816714i \(0.695793\pi\)
\(954\) −64.7696 −2.09699
\(955\) 25.3137 0.819132
\(956\) −75.2548 −2.43392
\(957\) 1.00000 0.0323254
\(958\) 16.6569 0.538159
\(959\) 0 0
\(960\) 23.7279 0.765815
\(961\) 70.4264 2.27182
\(962\) 36.9706 1.19198
\(963\) −41.9411 −1.35153
\(964\) 70.1127 2.25818
\(965\) −5.17157 −0.166479
\(966\) 0 0
\(967\) −35.2426 −1.13333 −0.566663 0.823949i \(-0.691766\pi\)
−0.566663 + 0.823949i \(0.691766\pi\)
\(968\) 47.7990 1.53632
\(969\) −12.0000 −0.385496
\(970\) 10.8284 0.347680
\(971\) 15.6569 0.502452 0.251226 0.967928i \(-0.419166\pi\)
0.251226 + 0.967928i \(0.419166\pi\)
\(972\) 82.9117 2.65939
\(973\) 0 0
\(974\) 27.7990 0.890737
\(975\) 36.9706 1.18401
\(976\) 14.4853 0.463663
\(977\) 36.1716 1.15723 0.578616 0.815600i \(-0.303593\pi\)
0.578616 + 0.815600i \(0.303593\pi\)
\(978\) 22.8995 0.732245
\(979\) −5.17157 −0.165284
\(980\) 0 0
\(981\) 35.7990 1.14297
\(982\) 51.2843 1.63655
\(983\) 21.8701 0.697547 0.348773 0.937207i \(-0.386598\pi\)
0.348773 + 0.937207i \(0.386598\pi\)
\(984\) 47.7990 1.52378
\(985\) 2.00000 0.0637253
\(986\) 2.00000 0.0636930
\(987\) 0 0
\(988\) −87.9411 −2.79778
\(989\) 13.1127 0.416960
\(990\) 2.82843 0.0898933
\(991\) −12.8284 −0.407508 −0.203754 0.979022i \(-0.565314\pi\)
−0.203754 + 0.979022i \(0.565314\pi\)
\(992\) −15.9706 −0.507066
\(993\) 5.82843 0.184960
\(994\) 0 0
\(995\) 0.485281 0.0153845
\(996\) 70.7696 2.24242
\(997\) −28.2843 −0.895772 −0.447886 0.894091i \(-0.647823\pi\)
−0.447886 + 0.894091i \(0.647823\pi\)
\(998\) −45.7990 −1.44974
\(999\) −1.65685 −0.0524205
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1421.2.a.j.1.1 2
7.6 odd 2 29.2.a.a.1.1 2
21.20 even 2 261.2.a.d.1.2 2
28.27 even 2 464.2.a.h.1.1 2
35.13 even 4 725.2.b.b.349.4 4
35.27 even 4 725.2.b.b.349.1 4
35.34 odd 2 725.2.a.b.1.2 2
56.13 odd 2 1856.2.a.r.1.1 2
56.27 even 2 1856.2.a.w.1.2 2
77.76 even 2 3509.2.a.j.1.2 2
84.83 odd 2 4176.2.a.bq.1.2 2
91.90 odd 2 4901.2.a.g.1.2 2
105.104 even 2 6525.2.a.o.1.1 2
119.118 odd 2 8381.2.a.e.1.1 2
203.6 odd 14 841.2.d.f.645.1 12
203.13 odd 14 841.2.d.f.778.2 12
203.20 odd 14 841.2.d.j.574.1 12
203.27 even 28 841.2.e.k.236.4 24
203.34 odd 14 841.2.d.f.605.1 12
203.41 even 4 841.2.b.a.840.1 4
203.48 even 28 841.2.e.k.651.4 24
203.55 even 28 841.2.e.k.270.4 24
203.62 odd 14 841.2.d.f.190.1 12
203.69 even 28 841.2.e.k.63.1 24
203.76 even 28 841.2.e.k.63.4 24
203.83 odd 14 841.2.d.j.190.2 12
203.90 even 28 841.2.e.k.270.1 24
203.97 even 28 841.2.e.k.651.1 24
203.104 even 4 841.2.b.a.840.4 4
203.111 odd 14 841.2.d.j.605.2 12
203.118 even 28 841.2.e.k.236.1 24
203.125 odd 14 841.2.d.f.574.2 12
203.132 odd 14 841.2.d.j.778.1 12
203.139 odd 14 841.2.d.j.645.2 12
203.153 even 28 841.2.e.k.267.1 24
203.160 even 28 841.2.e.k.196.1 24
203.167 odd 14 841.2.d.f.571.1 12
203.181 odd 14 841.2.d.j.571.2 12
203.188 even 28 841.2.e.k.196.4 24
203.195 even 28 841.2.e.k.267.4 24
203.202 odd 2 841.2.a.d.1.2 2
609.608 even 2 7569.2.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.a.a.1.1 2 7.6 odd 2
261.2.a.d.1.2 2 21.20 even 2
464.2.a.h.1.1 2 28.27 even 2
725.2.a.b.1.2 2 35.34 odd 2
725.2.b.b.349.1 4 35.27 even 4
725.2.b.b.349.4 4 35.13 even 4
841.2.a.d.1.2 2 203.202 odd 2
841.2.b.a.840.1 4 203.41 even 4
841.2.b.a.840.4 4 203.104 even 4
841.2.d.f.190.1 12 203.62 odd 14
841.2.d.f.571.1 12 203.167 odd 14
841.2.d.f.574.2 12 203.125 odd 14
841.2.d.f.605.1 12 203.34 odd 14
841.2.d.f.645.1 12 203.6 odd 14
841.2.d.f.778.2 12 203.13 odd 14
841.2.d.j.190.2 12 203.83 odd 14
841.2.d.j.571.2 12 203.181 odd 14
841.2.d.j.574.1 12 203.20 odd 14
841.2.d.j.605.2 12 203.111 odd 14
841.2.d.j.645.2 12 203.139 odd 14
841.2.d.j.778.1 12 203.132 odd 14
841.2.e.k.63.1 24 203.69 even 28
841.2.e.k.63.4 24 203.76 even 28
841.2.e.k.196.1 24 203.160 even 28
841.2.e.k.196.4 24 203.188 even 28
841.2.e.k.236.1 24 203.118 even 28
841.2.e.k.236.4 24 203.27 even 28
841.2.e.k.267.1 24 203.153 even 28
841.2.e.k.267.4 24 203.195 even 28
841.2.e.k.270.1 24 203.90 even 28
841.2.e.k.270.4 24 203.55 even 28
841.2.e.k.651.1 24 203.97 even 28
841.2.e.k.651.4 24 203.48 even 28
1421.2.a.j.1.1 2 1.1 even 1 trivial
1856.2.a.r.1.1 2 56.13 odd 2
1856.2.a.w.1.2 2 56.27 even 2
3509.2.a.j.1.2 2 77.76 even 2
4176.2.a.bq.1.2 2 84.83 odd 2
4901.2.a.g.1.2 2 91.90 odd 2
6525.2.a.o.1.1 2 105.104 even 2
7569.2.a.c.1.1 2 609.608 even 2
8381.2.a.e.1.1 2 119.118 odd 2