Properties

Label 1421.2.a.j.1.1
Level 14211421
Weight 22
Character 1421.1
Self dual yes
Analytic conductor 11.34711.347
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1421,2,Mod(1,1421)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1421, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1421.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1421=7229 1421 = 7^{2} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1421.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 11.346742127211.3467421272
Analytic rank: 11
Dimension: 22
Coefficient field: Q(ζ8)+\Q(\zeta_{8})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x22 x^{2} - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 29)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 1.41421-1.41421 of defining polynomial
Character χ\chi == 1421.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.41421q22.41421q3+3.82843q4+1.00000q5+5.82843q64.41421q8+2.82843q92.41421q100.414214q119.24264q12+3.82843q132.41421q15+3.00000q160.828427q176.82843q186.00000q19+3.82843q20+1.00000q22+3.65685q23+10.6569q244.00000q259.24264q26+0.414214q27+1.00000q29+5.82843q3010.0711q31+1.58579q32+1.00000q33+2.00000q34+10.8284q364.00000q37+14.4853q389.24264q394.41421q40+4.48528q41+3.58579q431.58579q44+2.82843q458.82843q46+3.24264q477.24264q48+9.65685q50+2.00000q51+14.6569q52+9.48528q531.00000q540.414214q55+14.4853q572.41421q58+3.65685q599.24264q60+4.82843q61+24.3137q629.82843q64+3.82843q652.41421q66+5.65685q673.17157q688.82843q698.82843q7112.4853q724.00000q73+9.65685q74+9.65685q7522.9706q76+22.3137q782.41421q79+3.00000q809.48528q8110.8284q827.65685q830.828427q858.65685q862.41421q87+1.82843q88+12.4853q896.82843q90+14.0000q92+24.3137q937.82843q946.00000q953.82843q964.48528q971.17157q99+O(q100)q-2.41421 q^{2} -2.41421 q^{3} +3.82843 q^{4} +1.00000 q^{5} +5.82843 q^{6} -4.41421 q^{8} +2.82843 q^{9} -2.41421 q^{10} -0.414214 q^{11} -9.24264 q^{12} +3.82843 q^{13} -2.41421 q^{15} +3.00000 q^{16} -0.828427 q^{17} -6.82843 q^{18} -6.00000 q^{19} +3.82843 q^{20} +1.00000 q^{22} +3.65685 q^{23} +10.6569 q^{24} -4.00000 q^{25} -9.24264 q^{26} +0.414214 q^{27} +1.00000 q^{29} +5.82843 q^{30} -10.0711 q^{31} +1.58579 q^{32} +1.00000 q^{33} +2.00000 q^{34} +10.8284 q^{36} -4.00000 q^{37} +14.4853 q^{38} -9.24264 q^{39} -4.41421 q^{40} +4.48528 q^{41} +3.58579 q^{43} -1.58579 q^{44} +2.82843 q^{45} -8.82843 q^{46} +3.24264 q^{47} -7.24264 q^{48} +9.65685 q^{50} +2.00000 q^{51} +14.6569 q^{52} +9.48528 q^{53} -1.00000 q^{54} -0.414214 q^{55} +14.4853 q^{57} -2.41421 q^{58} +3.65685 q^{59} -9.24264 q^{60} +4.82843 q^{61} +24.3137 q^{62} -9.82843 q^{64} +3.82843 q^{65} -2.41421 q^{66} +5.65685 q^{67} -3.17157 q^{68} -8.82843 q^{69} -8.82843 q^{71} -12.4853 q^{72} -4.00000 q^{73} +9.65685 q^{74} +9.65685 q^{75} -22.9706 q^{76} +22.3137 q^{78} -2.41421 q^{79} +3.00000 q^{80} -9.48528 q^{81} -10.8284 q^{82} -7.65685 q^{83} -0.828427 q^{85} -8.65685 q^{86} -2.41421 q^{87} +1.82843 q^{88} +12.4853 q^{89} -6.82843 q^{90} +14.0000 q^{92} +24.3137 q^{93} -7.82843 q^{94} -6.00000 q^{95} -3.82843 q^{96} -4.48528 q^{97} -1.17157 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q22q3+2q4+2q5+6q66q82q10+2q1110q12+2q132q15+6q16+4q178q1812q19+2q20+2q224q23+10q24+8q99+O(q100) 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{5} + 6 q^{6} - 6 q^{8} - 2 q^{10} + 2 q^{11} - 10 q^{12} + 2 q^{13} - 2 q^{15} + 6 q^{16} + 4 q^{17} - 8 q^{18} - 12 q^{19} + 2 q^{20} + 2 q^{22} - 4 q^{23} + 10 q^{24}+ \cdots - 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.41421 −1.70711 −0.853553 0.521005i 0.825557π-0.825557\pi
−0.853553 + 0.521005i 0.825557π0.825557\pi
33 −2.41421 −1.39385 −0.696923 0.717146i 0.745448π-0.745448\pi
−0.696923 + 0.717146i 0.745448π0.745448\pi
44 3.82843 1.91421
55 1.00000 0.447214 0.223607 0.974679i 0.428217π-0.428217\pi
0.223607 + 0.974679i 0.428217π0.428217\pi
66 5.82843 2.37945
77 0 0
88 −4.41421 −1.56066
99 2.82843 0.942809
1010 −2.41421 −0.763441
1111 −0.414214 −0.124890 −0.0624450 0.998048i 0.519890π-0.519890\pi
−0.0624450 + 0.998048i 0.519890π0.519890\pi
1212 −9.24264 −2.66812
1313 3.82843 1.06181 0.530907 0.847430i 0.321851π-0.321851\pi
0.530907 + 0.847430i 0.321851π0.321851\pi
1414 0 0
1515 −2.41421 −0.623347
1616 3.00000 0.750000
1717 −0.828427 −0.200923 −0.100462 0.994941i 0.532032π-0.532032\pi
−0.100462 + 0.994941i 0.532032π0.532032\pi
1818 −6.82843 −1.60948
1919 −6.00000 −1.37649 −0.688247 0.725476i 0.741620π-0.741620\pi
−0.688247 + 0.725476i 0.741620π0.741620\pi
2020 3.82843 0.856062
2121 0 0
2222 1.00000 0.213201
2323 3.65685 0.762507 0.381253 0.924471i 0.375493π-0.375493\pi
0.381253 + 0.924471i 0.375493π0.375493\pi
2424 10.6569 2.17532
2525 −4.00000 −0.800000
2626 −9.24264 −1.81263
2727 0.414214 0.0797154
2828 0 0
2929 1.00000 0.185695
3030 5.82843 1.06412
3131 −10.0711 −1.80882 −0.904409 0.426667i 0.859687π-0.859687\pi
−0.904409 + 0.426667i 0.859687π0.859687\pi
3232 1.58579 0.280330
3333 1.00000 0.174078
3434 2.00000 0.342997
3535 0 0
3636 10.8284 1.80474
3737 −4.00000 −0.657596 −0.328798 0.944400i 0.606644π-0.606644\pi
−0.328798 + 0.944400i 0.606644π0.606644\pi
3838 14.4853 2.34982
3939 −9.24264 −1.48001
4040 −4.41421 −0.697948
4141 4.48528 0.700483 0.350242 0.936659i 0.386099π-0.386099\pi
0.350242 + 0.936659i 0.386099π0.386099\pi
4242 0 0
4343 3.58579 0.546827 0.273414 0.961897i 0.411847π-0.411847\pi
0.273414 + 0.961897i 0.411847π0.411847\pi
4444 −1.58579 −0.239066
4545 2.82843 0.421637
4646 −8.82843 −1.30168
4747 3.24264 0.472988 0.236494 0.971633i 0.424002π-0.424002\pi
0.236494 + 0.971633i 0.424002π0.424002\pi
4848 −7.24264 −1.04539
4949 0 0
5050 9.65685 1.36569
5151 2.00000 0.280056
5252 14.6569 2.03254
5353 9.48528 1.30290 0.651452 0.758690i 0.274160π-0.274160\pi
0.651452 + 0.758690i 0.274160π0.274160\pi
5454 −1.00000 −0.136083
5555 −0.414214 −0.0558525
5656 0 0
5757 14.4853 1.91862
5858 −2.41421 −0.317002
5959 3.65685 0.476082 0.238041 0.971255i 0.423495π-0.423495\pi
0.238041 + 0.971255i 0.423495π0.423495\pi
6060 −9.24264 −1.19322
6161 4.82843 0.618217 0.309108 0.951027i 0.399969π-0.399969\pi
0.309108 + 0.951027i 0.399969π0.399969\pi
6262 24.3137 3.08784
6363 0 0
6464 −9.82843 −1.22855
6565 3.82843 0.474858
6666 −2.41421 −0.297169
6767 5.65685 0.691095 0.345547 0.938401i 0.387693π-0.387693\pi
0.345547 + 0.938401i 0.387693π0.387693\pi
6868 −3.17157 −0.384610
6969 −8.82843 −1.06282
7070 0 0
7171 −8.82843 −1.04774 −0.523871 0.851798i 0.675513π-0.675513\pi
−0.523871 + 0.851798i 0.675513π0.675513\pi
7272 −12.4853 −1.47140
7373 −4.00000 −0.468165 −0.234082 0.972217i 0.575209π-0.575209\pi
−0.234082 + 0.972217i 0.575209π0.575209\pi
7474 9.65685 1.12259
7575 9.65685 1.11508
7676 −22.9706 −2.63490
7777 0 0
7878 22.3137 2.52653
7979 −2.41421 −0.271620 −0.135810 0.990735i 0.543364π-0.543364\pi
−0.135810 + 0.990735i 0.543364π0.543364\pi
8080 3.00000 0.335410
8181 −9.48528 −1.05392
8282 −10.8284 −1.19580
8383 −7.65685 −0.840449 −0.420224 0.907420i 0.638049π-0.638049\pi
−0.420224 + 0.907420i 0.638049π0.638049\pi
8484 0 0
8585 −0.828427 −0.0898555
8686 −8.65685 −0.933493
8787 −2.41421 −0.258831
8888 1.82843 0.194911
8989 12.4853 1.32344 0.661719 0.749752i 0.269827π-0.269827\pi
0.661719 + 0.749752i 0.269827π0.269827\pi
9090 −6.82843 −0.719779
9191 0 0
9292 14.0000 1.45960
9393 24.3137 2.52121
9494 −7.82843 −0.807441
9595 −6.00000 −0.615587
9696 −3.82843 −0.390737
9797 −4.48528 −0.455411 −0.227706 0.973730i 0.573122π-0.573122\pi
−0.227706 + 0.973730i 0.573122π0.573122\pi
9898 0 0
9999 −1.17157 −0.117748
100100 −15.3137 −1.53137
101101 2.34315 0.233152 0.116576 0.993182i 0.462808π-0.462808\pi
0.116576 + 0.993182i 0.462808π0.462808\pi
102102 −4.82843 −0.478086
103103 4.82843 0.475759 0.237880 0.971295i 0.423548π-0.423548\pi
0.237880 + 0.971295i 0.423548π0.423548\pi
104104 −16.8995 −1.65713
105105 0 0
106106 −22.8995 −2.22420
107107 −14.8284 −1.43352 −0.716759 0.697321i 0.754375π-0.754375\pi
−0.716759 + 0.697321i 0.754375π0.754375\pi
108108 1.58579 0.152592
109109 12.6569 1.21231 0.606153 0.795348i 0.292712π-0.292712\pi
0.606153 + 0.795348i 0.292712π0.292712\pi
110110 1.00000 0.0953463
111111 9.65685 0.916588
112112 0 0
113113 −13.3137 −1.25245 −0.626224 0.779643i 0.715401π-0.715401\pi
−0.626224 + 0.779643i 0.715401π0.715401\pi
114114 −34.9706 −3.27529
115115 3.65685 0.341003
116116 3.82843 0.355461
117117 10.8284 1.00109
118118 −8.82843 −0.812723
119119 0 0
120120 10.6569 0.972833
121121 −10.8284 −0.984402
122122 −11.6569 −1.05536
123123 −10.8284 −0.976366
124124 −38.5563 −3.46246
125125 −9.00000 −0.804984
126126 0 0
127127 −4.34315 −0.385392 −0.192696 0.981259i 0.561723π-0.561723\pi
−0.192696 + 0.981259i 0.561723π0.561723\pi
128128 20.5563 1.81694
129129 −8.65685 −0.762194
130130 −9.24264 −0.810633
131131 −21.3137 −1.86219 −0.931094 0.364780i 0.881144π-0.881144\pi
−0.931094 + 0.364780i 0.881144π0.881144\pi
132132 3.82843 0.333222
133133 0 0
134134 −13.6569 −1.17977
135135 0.414214 0.0356498
136136 3.65685 0.313573
137137 12.0000 1.02523 0.512615 0.858619i 0.328677π-0.328677\pi
0.512615 + 0.858619i 0.328677π0.328677\pi
138138 21.3137 1.81434
139139 −14.0000 −1.18746 −0.593732 0.804663i 0.702346π-0.702346\pi
−0.593732 + 0.804663i 0.702346π0.702346\pi
140140 0 0
141141 −7.82843 −0.659272
142142 21.3137 1.78861
143143 −1.58579 −0.132610
144144 8.48528 0.707107
145145 1.00000 0.0830455
146146 9.65685 0.799207
147147 0 0
148148 −15.3137 −1.25878
149149 −7.82843 −0.641330 −0.320665 0.947193i 0.603906π-0.603906\pi
−0.320665 + 0.947193i 0.603906π0.603906\pi
150150 −23.3137 −1.90356
151151 −14.1421 −1.15087 −0.575435 0.817847i 0.695167π-0.695167\pi
−0.575435 + 0.817847i 0.695167π0.695167\pi
152152 26.4853 2.14824
153153 −2.34315 −0.189432
154154 0 0
155155 −10.0711 −0.808928
156156 −35.3848 −2.83305
157157 −8.48528 −0.677199 −0.338600 0.940931i 0.609953π-0.609953\pi
−0.338600 + 0.940931i 0.609953π0.609953\pi
158158 5.82843 0.463685
159159 −22.8995 −1.81605
160160 1.58579 0.125367
161161 0 0
162162 22.8995 1.79915
163163 3.92893 0.307738 0.153869 0.988091i 0.450827π-0.450827\pi
0.153869 + 0.988091i 0.450827π0.450827\pi
164164 17.1716 1.34087
165165 1.00000 0.0778499
166166 18.4853 1.43474
167167 3.17157 0.245424 0.122712 0.992442i 0.460841π-0.460841\pi
0.122712 + 0.992442i 0.460841π0.460841\pi
168168 0 0
169169 1.65685 0.127450
170170 2.00000 0.153393
171171 −16.9706 −1.29777
172172 13.7279 1.04674
173173 −12.3431 −0.938432 −0.469216 0.883083i 0.655463π-0.655463\pi
−0.469216 + 0.883083i 0.655463π0.655463\pi
174174 5.82843 0.441852
175175 0 0
176176 −1.24264 −0.0936676
177177 −8.82843 −0.663585
178178 −30.1421 −2.25925
179179 −6.48528 −0.484733 −0.242366 0.970185i 0.577924π-0.577924\pi
−0.242366 + 0.970185i 0.577924π0.577924\pi
180180 10.8284 0.807103
181181 −8.31371 −0.617953 −0.308977 0.951070i 0.599986π-0.599986\pi
−0.308977 + 0.951070i 0.599986π0.599986\pi
182182 0 0
183183 −11.6569 −0.861699
184184 −16.1421 −1.19001
185185 −4.00000 −0.294086
186186 −58.6985 −4.30398
187187 0.343146 0.0250933
188188 12.4142 0.905400
189189 0 0
190190 14.4853 1.05087
191191 25.3137 1.83164 0.915818 0.401594i 0.131544π-0.131544\pi
0.915818 + 0.401594i 0.131544π0.131544\pi
192192 23.7279 1.71242
193193 −5.17157 −0.372258 −0.186129 0.982525i 0.559594π-0.559594\pi
−0.186129 + 0.982525i 0.559594π0.559594\pi
194194 10.8284 0.777436
195195 −9.24264 −0.661879
196196 0 0
197197 2.00000 0.142494 0.0712470 0.997459i 0.477302π-0.477302\pi
0.0712470 + 0.997459i 0.477302π0.477302\pi
198198 2.82843 0.201008
199199 0.485281 0.0344007 0.0172003 0.999852i 0.494525π-0.494525\pi
0.0172003 + 0.999852i 0.494525π0.494525\pi
200200 17.6569 1.24853
201201 −13.6569 −0.963280
202202 −5.65685 −0.398015
203203 0 0
204204 7.65685 0.536087
205205 4.48528 0.313266
206206 −11.6569 −0.812172
207207 10.3431 0.718898
208208 11.4853 0.796361
209209 2.48528 0.171911
210210 0 0
211211 −19.3848 −1.33450 −0.667252 0.744832i 0.732529π-0.732529\pi
−0.667252 + 0.744832i 0.732529π0.732529\pi
212212 36.3137 2.49404
213213 21.3137 1.46039
214214 35.7990 2.44717
215215 3.58579 0.244549
216216 −1.82843 −0.124409
217217 0 0
218218 −30.5563 −2.06954
219219 9.65685 0.652550
220220 −1.58579 −0.106914
221221 −3.17157 −0.213343
222222 −23.3137 −1.56471
223223 3.17157 0.212384 0.106192 0.994346i 0.466134π-0.466134\pi
0.106192 + 0.994346i 0.466134π0.466134\pi
224224 0 0
225225 −11.3137 −0.754247
226226 32.1421 2.13806
227227 8.14214 0.540413 0.270206 0.962802i 0.412908π-0.412908\pi
0.270206 + 0.962802i 0.412908π0.412908\pi
228228 55.4558 3.67265
229229 3.51472 0.232259 0.116130 0.993234i 0.462951π-0.462951\pi
0.116130 + 0.993234i 0.462951π0.462951\pi
230230 −8.82843 −0.582129
231231 0 0
232232 −4.41421 −0.289807
233233 18.3137 1.19977 0.599885 0.800086i 0.295213π-0.295213\pi
0.599885 + 0.800086i 0.295213π0.295213\pi
234234 −26.1421 −1.70896
235235 3.24264 0.211527
236236 14.0000 0.911322
237237 5.82843 0.378597
238238 0 0
239239 −19.6569 −1.27150 −0.635748 0.771897i 0.719308π-0.719308\pi
−0.635748 + 0.771897i 0.719308π0.719308\pi
240240 −7.24264 −0.467510
241241 18.3137 1.17969 0.589845 0.807517i 0.299189π-0.299189\pi
0.589845 + 0.807517i 0.299189π0.299189\pi
242242 26.1421 1.68048
243243 21.6569 1.38929
244244 18.4853 1.18340
245245 0 0
246246 26.1421 1.66676
247247 −22.9706 −1.46158
248248 44.4558 2.82295
249249 18.4853 1.17146
250250 21.7279 1.37419
251251 −20.0711 −1.26687 −0.633437 0.773794i 0.718357π-0.718357\pi
−0.633437 + 0.773794i 0.718357π0.718357\pi
252252 0 0
253253 −1.51472 −0.0952295
254254 10.4853 0.657905
255255 2.00000 0.125245
256256 −29.9706 −1.87316
257257 18.1716 1.13351 0.566756 0.823886i 0.308198π-0.308198\pi
0.566756 + 0.823886i 0.308198π0.308198\pi
258258 20.8995 1.30115
259259 0 0
260260 14.6569 0.908980
261261 2.82843 0.175075
262262 51.4558 3.17895
263263 2.75736 0.170026 0.0850130 0.996380i 0.472907π-0.472907\pi
0.0850130 + 0.996380i 0.472907π0.472907\pi
264264 −4.41421 −0.271676
265265 9.48528 0.582676
266266 0 0
267267 −30.1421 −1.84467
268268 21.6569 1.32290
269269 −31.4558 −1.91790 −0.958948 0.283581i 0.908478π-0.908478\pi
−0.958948 + 0.283581i 0.908478π0.908478\pi
270270 −1.00000 −0.0608581
271271 −16.5563 −1.00573 −0.502863 0.864366i 0.667720π-0.667720\pi
−0.502863 + 0.864366i 0.667720π0.667720\pi
272272 −2.48528 −0.150692
273273 0 0
274274 −28.9706 −1.75018
275275 1.65685 0.0999121
276276 −33.7990 −2.03446
277277 −17.3137 −1.04028 −0.520140 0.854081i 0.674120π-0.674120\pi
−0.520140 + 0.854081i 0.674120π0.674120\pi
278278 33.7990 2.02713
279279 −28.4853 −1.70537
280280 0 0
281281 31.9706 1.90720 0.953602 0.301070i 0.0973439π-0.0973439\pi
0.953602 + 0.301070i 0.0973439π0.0973439\pi
282282 18.8995 1.12545
283283 −11.6569 −0.692928 −0.346464 0.938063i 0.612618π-0.612618\pi
−0.346464 + 0.938063i 0.612618π0.612618\pi
284284 −33.7990 −2.00560
285285 14.4853 0.858034
286286 3.82843 0.226380
287287 0 0
288288 4.48528 0.264298
289289 −16.3137 −0.959630
290290 −2.41421 −0.141768
291291 10.8284 0.634774
292292 −15.3137 −0.896167
293293 −7.65685 −0.447318 −0.223659 0.974667i 0.571800π-0.571800\pi
−0.223659 + 0.974667i 0.571800π0.571800\pi
294294 0 0
295295 3.65685 0.212910
296296 17.6569 1.02628
297297 −0.171573 −0.00995567
298298 18.8995 1.09482
299299 14.0000 0.809641
300300 36.9706 2.13450
301301 0 0
302302 34.1421 1.96466
303303 −5.65685 −0.324978
304304 −18.0000 −1.03237
305305 4.82843 0.276475
306306 5.65685 0.323381
307307 −2.89949 −0.165483 −0.0827415 0.996571i 0.526368π-0.526368\pi
−0.0827415 + 0.996571i 0.526368π0.526368\pi
308308 0 0
309309 −11.6569 −0.663135
310310 24.3137 1.38093
311311 −2.68629 −0.152326 −0.0761628 0.997095i 0.524267π-0.524267\pi
−0.0761628 + 0.997095i 0.524267π0.524267\pi
312312 40.7990 2.30979
313313 −9.82843 −0.555536 −0.277768 0.960648i 0.589595π-0.589595\pi
−0.277768 + 0.960648i 0.589595π0.589595\pi
314314 20.4853 1.15605
315315 0 0
316316 −9.24264 −0.519939
317317 −31.4558 −1.76674 −0.883368 0.468680i 0.844730π-0.844730\pi
−0.883368 + 0.468680i 0.844730π0.844730\pi
318318 55.2843 3.10019
319319 −0.414214 −0.0231915
320320 −9.82843 −0.549426
321321 35.7990 1.99810
322322 0 0
323323 4.97056 0.276570
324324 −36.3137 −2.01743
325325 −15.3137 −0.849452
326326 −9.48528 −0.525341
327327 −30.5563 −1.68977
328328 −19.7990 −1.09322
329329 0 0
330330 −2.41421 −0.132898
331331 −2.41421 −0.132697 −0.0663486 0.997797i 0.521135π-0.521135\pi
−0.0663486 + 0.997797i 0.521135π0.521135\pi
332332 −29.3137 −1.60880
333333 −11.3137 −0.619987
334334 −7.65685 −0.418964
335335 5.65685 0.309067
336336 0 0
337337 21.7990 1.18747 0.593733 0.804662i 0.297653π-0.297653\pi
0.593733 + 0.804662i 0.297653π0.297653\pi
338338 −4.00000 −0.217571
339339 32.1421 1.74572
340340 −3.17157 −0.172003
341341 4.17157 0.225903
342342 40.9706 2.21543
343343 0 0
344344 −15.8284 −0.853412
345345 −8.82843 −0.475307
346346 29.7990 1.60200
347347 2.48528 0.133417 0.0667084 0.997773i 0.478750π-0.478750\pi
0.0667084 + 0.997773i 0.478750π0.478750\pi
348348 −9.24264 −0.495458
349349 5.14214 0.275252 0.137626 0.990484i 0.456053π-0.456053\pi
0.137626 + 0.990484i 0.456053π0.456053\pi
350350 0 0
351351 1.58579 0.0846430
352352 −0.656854 −0.0350104
353353 −26.9706 −1.43550 −0.717749 0.696302i 0.754828π-0.754828\pi
−0.717749 + 0.696302i 0.754828π0.754828\pi
354354 21.3137 1.13281
355355 −8.82843 −0.468564
356356 47.7990 2.53334
357357 0 0
358358 15.6569 0.827490
359359 3.92893 0.207361 0.103681 0.994611i 0.466938π-0.466938\pi
0.103681 + 0.994611i 0.466938π0.466938\pi
360360 −12.4853 −0.658032
361361 17.0000 0.894737
362362 20.0711 1.05491
363363 26.1421 1.37211
364364 0 0
365365 −4.00000 −0.209370
366366 28.1421 1.47101
367367 −18.0000 −0.939592 −0.469796 0.882775i 0.655673π-0.655673\pi
−0.469796 + 0.882775i 0.655673π0.655673\pi
368368 10.9706 0.571880
369369 12.6863 0.660422
370370 9.65685 0.502036
371371 0 0
372372 93.0833 4.82614
373373 −26.3137 −1.36247 −0.681236 0.732064i 0.738557π-0.738557\pi
−0.681236 + 0.732064i 0.738557π0.738557\pi
374374 −0.828427 −0.0428369
375375 21.7279 1.12203
376376 −14.3137 −0.738173
377377 3.82843 0.197174
378378 0 0
379379 −6.97056 −0.358054 −0.179027 0.983844i 0.557295π-0.557295\pi
−0.179027 + 0.983844i 0.557295π0.557295\pi
380380 −22.9706 −1.17837
381381 10.4853 0.537177
382382 −61.1127 −3.12680
383383 3.51472 0.179594 0.0897969 0.995960i 0.471378π-0.471378\pi
0.0897969 + 0.995960i 0.471378π0.471378\pi
384384 −49.6274 −2.53254
385385 0 0
386386 12.4853 0.635484
387387 10.1421 0.515554
388388 −17.1716 −0.871755
389389 3.02944 0.153599 0.0767993 0.997047i 0.475530π-0.475530\pi
0.0767993 + 0.997047i 0.475530π0.475530\pi
390390 22.3137 1.12990
391391 −3.02944 −0.153205
392392 0 0
393393 51.4558 2.59560
394394 −4.82843 −0.243253
395395 −2.41421 −0.121472
396396 −4.48528 −0.225394
397397 −19.3431 −0.970805 −0.485402 0.874291i 0.661327π-0.661327\pi
−0.485402 + 0.874291i 0.661327π0.661327\pi
398398 −1.17157 −0.0587256
399399 0 0
400400 −12.0000 −0.600000
401401 −18.6569 −0.931679 −0.465839 0.884869i 0.654248π-0.654248\pi
−0.465839 + 0.884869i 0.654248π0.654248\pi
402402 32.9706 1.64442
403403 −38.5563 −1.92063
404404 8.97056 0.446302
405405 −9.48528 −0.471327
406406 0 0
407407 1.65685 0.0821272
408408 −8.82843 −0.437072
409409 18.9706 0.938034 0.469017 0.883189i 0.344608π-0.344608\pi
0.469017 + 0.883189i 0.344608π0.344608\pi
410410 −10.8284 −0.534778
411411 −28.9706 −1.42901
412412 18.4853 0.910704
413413 0 0
414414 −24.9706 −1.22724
415415 −7.65685 −0.375860
416416 6.07107 0.297659
417417 33.7990 1.65514
418418 −6.00000 −0.293470
419419 9.51472 0.464824 0.232412 0.972617i 0.425338π-0.425338\pi
0.232412 + 0.972617i 0.425338π0.425338\pi
420420 0 0
421421 37.1127 1.80876 0.904381 0.426726i 0.140333π-0.140333\pi
0.904381 + 0.426726i 0.140333π0.140333\pi
422422 46.7990 2.27814
423423 9.17157 0.445937
424424 −41.8701 −2.03339
425425 3.31371 0.160738
426426 −51.4558 −2.49304
427427 0 0
428428 −56.7696 −2.74406
429429 3.82843 0.184838
430430 −8.65685 −0.417471
431431 19.6569 0.946837 0.473419 0.880838i 0.343020π-0.343020\pi
0.473419 + 0.880838i 0.343020π0.343020\pi
432432 1.24264 0.0597866
433433 −30.6274 −1.47186 −0.735930 0.677058i 0.763255π-0.763255\pi
−0.735930 + 0.677058i 0.763255π0.763255\pi
434434 0 0
435435 −2.41421 −0.115753
436436 48.4558 2.32061
437437 −21.9411 −1.04959
438438 −23.3137 −1.11397
439439 0.343146 0.0163775 0.00818873 0.999966i 0.497393π-0.497393\pi
0.00818873 + 0.999966i 0.497393π0.497393\pi
440440 1.82843 0.0871668
441441 0 0
442442 7.65685 0.364199
443443 −24.3431 −1.15658 −0.578289 0.815832i 0.696279π-0.696279\pi
−0.578289 + 0.815832i 0.696279π0.696279\pi
444444 36.9706 1.75455
445445 12.4853 0.591859
446446 −7.65685 −0.362563
447447 18.8995 0.893915
448448 0 0
449449 −34.9706 −1.65036 −0.825181 0.564868i 0.808927π-0.808927\pi
−0.825181 + 0.564868i 0.808927π0.808927\pi
450450 27.3137 1.28758
451451 −1.85786 −0.0874834
452452 −50.9706 −2.39745
453453 34.1421 1.60414
454454 −19.6569 −0.922542
455455 0 0
456456 −63.9411 −2.99432
457457 1.02944 0.0481550 0.0240775 0.999710i 0.492335π-0.492335\pi
0.0240775 + 0.999710i 0.492335π0.492335\pi
458458 −8.48528 −0.396491
459459 −0.343146 −0.0160167
460460 14.0000 0.652753
461461 −14.0000 −0.652045 −0.326023 0.945362i 0.605709π-0.605709\pi
−0.326023 + 0.945362i 0.605709π0.605709\pi
462462 0 0
463463 −26.0000 −1.20832 −0.604161 0.796862i 0.706492π-0.706492\pi
−0.604161 + 0.796862i 0.706492π0.706492\pi
464464 3.00000 0.139272
465465 24.3137 1.12752
466466 −44.2132 −2.04814
467467 38.3553 1.77487 0.887437 0.460930i 0.152484π-0.152484\pi
0.887437 + 0.460930i 0.152484π0.152484\pi
468468 41.4558 1.91630
469469 0 0
470470 −7.82843 −0.361098
471471 20.4853 0.943912
472472 −16.1421 −0.743002
473473 −1.48528 −0.0682933
474474 −14.0711 −0.646306
475475 24.0000 1.10120
476476 0 0
477477 26.8284 1.22839
478478 47.4558 2.17058
479479 −6.89949 −0.315246 −0.157623 0.987499i 0.550383π-0.550383\pi
−0.157623 + 0.987499i 0.550383π0.550383\pi
480480 −3.82843 −0.174743
481481 −15.3137 −0.698245
482482 −44.2132 −2.01386
483483 0 0
484484 −41.4558 −1.88436
485485 −4.48528 −0.203666
486486 −52.2843 −2.37166
487487 −11.5147 −0.521782 −0.260891 0.965368i 0.584016π-0.584016\pi
−0.260891 + 0.965368i 0.584016π0.584016\pi
488488 −21.3137 −0.964826
489489 −9.48528 −0.428939
490490 0 0
491491 −21.2426 −0.958667 −0.479333 0.877633i 0.659122π-0.659122\pi
−0.479333 + 0.877633i 0.659122π0.659122\pi
492492 −41.4558 −1.86897
493493 −0.828427 −0.0373105
494494 55.4558 2.49508
495495 −1.17157 −0.0526583
496496 −30.2132 −1.35661
497497 0 0
498498 −44.6274 −1.99980
499499 18.9706 0.849239 0.424620 0.905372i 0.360408π-0.360408\pi
0.424620 + 0.905372i 0.360408π0.360408\pi
500500 −34.4558 −1.54091
501501 −7.65685 −0.342083
502502 48.4558 2.16269
503503 −0.272078 −0.0121314 −0.00606568 0.999982i 0.501931π-0.501931\pi
−0.00606568 + 0.999982i 0.501931π0.501931\pi
504504 0 0
505505 2.34315 0.104269
506506 3.65685 0.162567
507507 −4.00000 −0.177646
508508 −16.6274 −0.737722
509509 10.5147 0.466057 0.233028 0.972470i 0.425137π-0.425137\pi
0.233028 + 0.972470i 0.425137π0.425137\pi
510510 −4.82843 −0.213806
511511 0 0
512512 31.2426 1.38074
513513 −2.48528 −0.109728
514514 −43.8701 −1.93503
515515 4.82843 0.212766
516516 −33.1421 −1.45900
517517 −1.34315 −0.0590715
518518 0 0
519519 29.7990 1.30803
520520 −16.8995 −0.741092
521521 29.1421 1.27674 0.638370 0.769730i 0.279609π-0.279609\pi
0.638370 + 0.769730i 0.279609π0.279609\pi
522522 −6.82843 −0.298872
523523 −4.68629 −0.204917 −0.102459 0.994737i 0.532671π-0.532671\pi
−0.102459 + 0.994737i 0.532671π0.532671\pi
524524 −81.5980 −3.56462
525525 0 0
526526 −6.65685 −0.290253
527527 8.34315 0.363433
528528 3.00000 0.130558
529529 −9.62742 −0.418583
530530 −22.8995 −0.994690
531531 10.3431 0.448854
532532 0 0
533533 17.1716 0.743783
534534 72.7696 3.14905
535535 −14.8284 −0.641089
536536 −24.9706 −1.07856
537537 15.6569 0.675643
538538 75.9411 3.27405
539539 0 0
540540 1.58579 0.0682414
541541 −10.3431 −0.444687 −0.222343 0.974968i 0.571371π-0.571371\pi
−0.222343 + 0.974968i 0.571371π0.571371\pi
542542 39.9706 1.71688
543543 20.0711 0.861332
544544 −1.31371 −0.0563248
545545 12.6569 0.542160
546546 0 0
547547 35.7990 1.53065 0.765327 0.643641i 0.222577π-0.222577\pi
0.765327 + 0.643641i 0.222577π0.222577\pi
548548 45.9411 1.96251
549549 13.6569 0.582860
550550 −4.00000 −0.170561
551551 −6.00000 −0.255609
552552 38.9706 1.65870
553553 0 0
554554 41.7990 1.77587
555555 9.65685 0.409911
556556 −53.5980 −2.27306
557557 −17.3137 −0.733605 −0.366803 0.930299i 0.619548π-0.619548\pi
−0.366803 + 0.930299i 0.619548π0.619548\pi
558558 68.7696 2.91125
559559 13.7279 0.580629
560560 0 0
561561 −0.828427 −0.0349762
562562 −77.1838 −3.25580
563563 0.757359 0.0319189 0.0159594 0.999873i 0.494920π-0.494920\pi
0.0159594 + 0.999873i 0.494920π0.494920\pi
564564 −29.9706 −1.26199
565565 −13.3137 −0.560112
566566 28.1421 1.18290
567567 0 0
568568 38.9706 1.63517
569569 −39.6569 −1.66250 −0.831251 0.555897i 0.812375π-0.812375\pi
−0.831251 + 0.555897i 0.812375π0.812375\pi
570570 −34.9706 −1.46476
571571 14.6274 0.612138 0.306069 0.952009i 0.400986π-0.400986\pi
0.306069 + 0.952009i 0.400986π0.400986\pi
572572 −6.07107 −0.253844
573573 −61.1127 −2.55302
574574 0 0
575575 −14.6274 −0.610005
576576 −27.7990 −1.15829
577577 29.7990 1.24055 0.620274 0.784385i 0.287021π-0.287021\pi
0.620274 + 0.784385i 0.287021π0.287021\pi
578578 39.3848 1.63819
579579 12.4853 0.518871
580580 3.82843 0.158967
581581 0 0
582582 −26.1421 −1.08363
583583 −3.92893 −0.162720
584584 17.6569 0.730646
585585 10.8284 0.447700
586586 18.4853 0.763620
587587 −7.65685 −0.316032 −0.158016 0.987437i 0.550510π-0.550510\pi
−0.158016 + 0.987437i 0.550510π0.550510\pi
588588 0 0
589589 60.4264 2.48983
590590 −8.82843 −0.363461
591591 −4.82843 −0.198615
592592 −12.0000 −0.493197
593593 19.4853 0.800165 0.400082 0.916479i 0.368982π-0.368982\pi
0.400082 + 0.916479i 0.368982π0.368982\pi
594594 0.414214 0.0169954
595595 0 0
596596 −29.9706 −1.22764
597597 −1.17157 −0.0479493
598598 −33.7990 −1.38214
599599 9.87006 0.403280 0.201640 0.979460i 0.435373π-0.435373\pi
0.201640 + 0.979460i 0.435373π0.435373\pi
600600 −42.6274 −1.74026
601601 17.1716 0.700443 0.350222 0.936667i 0.386106π-0.386106\pi
0.350222 + 0.936667i 0.386106π0.386106\pi
602602 0 0
603603 16.0000 0.651570
604604 −54.1421 −2.20301
605605 −10.8284 −0.440238
606606 13.6569 0.554772
607607 7.72792 0.313667 0.156833 0.987625i 0.449871π-0.449871\pi
0.156833 + 0.987625i 0.449871π0.449871\pi
608608 −9.51472 −0.385873
609609 0 0
610610 −11.6569 −0.471972
611611 12.4142 0.502225
612612 −8.97056 −0.362614
613613 −9.00000 −0.363507 −0.181753 0.983344i 0.558177π-0.558177\pi
−0.181753 + 0.983344i 0.558177π0.558177\pi
614614 7.00000 0.282497
615615 −10.8284 −0.436644
616616 0 0
617617 0.686292 0.0276291 0.0138145 0.999905i 0.495603π-0.495603\pi
0.0138145 + 0.999905i 0.495603π0.495603\pi
618618 28.1421 1.13204
619619 −33.5858 −1.34993 −0.674963 0.737851i 0.735841π-0.735841\pi
−0.674963 + 0.737851i 0.735841π0.735841\pi
620620 −38.5563 −1.54846
621621 1.51472 0.0607836
622622 6.48528 0.260036
623623 0 0
624624 −27.7279 −1.11001
625625 11.0000 0.440000
626626 23.7279 0.948358
627627 −6.00000 −0.239617
628628 −32.4853 −1.29630
629629 3.31371 0.132126
630630 0 0
631631 −36.8284 −1.46612 −0.733058 0.680166i 0.761908π-0.761908\pi
−0.733058 + 0.680166i 0.761908π0.761908\pi
632632 10.6569 0.423907
633633 46.7990 1.86009
634634 75.9411 3.01601
635635 −4.34315 −0.172352
636636 −87.6690 −3.47630
637637 0 0
638638 1.00000 0.0395904
639639 −24.9706 −0.987820
640640 20.5563 0.812561
641641 17.7990 0.703018 0.351509 0.936185i 0.385669π-0.385669\pi
0.351509 + 0.936185i 0.385669π0.385669\pi
642642 −86.4264 −3.41098
643643 −32.4853 −1.28109 −0.640547 0.767919i 0.721292π-0.721292\pi
−0.640547 + 0.767919i 0.721292π0.721292\pi
644644 0 0
645645 −8.65685 −0.340863
646646 −12.0000 −0.472134
647647 −39.6569 −1.55907 −0.779536 0.626358i 0.784545π-0.784545\pi
−0.779536 + 0.626358i 0.784545π0.784545\pi
648648 41.8701 1.64481
649649 −1.51472 −0.0594579
650650 36.9706 1.45010
651651 0 0
652652 15.0416 0.589076
653653 −30.1421 −1.17955 −0.589776 0.807567i 0.700784π-0.700784\pi
−0.589776 + 0.807567i 0.700784π0.700784\pi
654654 73.7696 2.88462
655655 −21.3137 −0.832796
656656 13.4558 0.525362
657657 −11.3137 −0.441390
658658 0 0
659659 14.4142 0.561498 0.280749 0.959781i 0.409417π-0.409417\pi
0.280749 + 0.959781i 0.409417π0.409417\pi
660660 3.82843 0.149021
661661 −33.3137 −1.29575 −0.647877 0.761745i 0.724343π-0.724343\pi
−0.647877 + 0.761745i 0.724343π0.724343\pi
662662 5.82843 0.226528
663663 7.65685 0.297368
664664 33.7990 1.31166
665665 0 0
666666 27.3137 1.05838
667667 3.65685 0.141594
668668 12.1421 0.469793
669669 −7.65685 −0.296031
670670 −13.6569 −0.527610
671671 −2.00000 −0.0772091
672672 0 0
673673 −21.6274 −0.833676 −0.416838 0.908981i 0.636862π-0.636862\pi
−0.416838 + 0.908981i 0.636862π0.636862\pi
674674 −52.6274 −2.02713
675675 −1.65685 −0.0637723
676676 6.34315 0.243967
677677 22.0000 0.845529 0.422764 0.906240i 0.361060π-0.361060\pi
0.422764 + 0.906240i 0.361060π0.361060\pi
678678 −77.5980 −2.98013
679679 0 0
680680 3.65685 0.140234
681681 −19.6569 −0.753252
682682 −10.0711 −0.385641
683683 20.9706 0.802416 0.401208 0.915987i 0.368590π-0.368590\pi
0.401208 + 0.915987i 0.368590π0.368590\pi
684684 −64.9706 −2.48421
685685 12.0000 0.458496
686686 0 0
687687 −8.48528 −0.323734
688688 10.7574 0.410120
689689 36.3137 1.38344
690690 21.3137 0.811399
691691 −48.0000 −1.82601 −0.913003 0.407953i 0.866243π-0.866243\pi
−0.913003 + 0.407953i 0.866243π0.866243\pi
692692 −47.2548 −1.79636
693693 0 0
694694 −6.00000 −0.227757
695695 −14.0000 −0.531050
696696 10.6569 0.403947
697697 −3.71573 −0.140743
698698 −12.4142 −0.469885
699699 −44.2132 −1.67230
700700 0 0
701701 −40.1127 −1.51504 −0.757518 0.652814i 0.773588π-0.773588\pi
−0.757518 + 0.652814i 0.773588π0.773588\pi
702702 −3.82843 −0.144495
703703 24.0000 0.905177
704704 4.07107 0.153434
705705 −7.82843 −0.294836
706706 65.1127 2.45055
707707 0 0
708708 −33.7990 −1.27024
709709 29.1421 1.09446 0.547228 0.836984i 0.315683π-0.315683\pi
0.547228 + 0.836984i 0.315683π0.315683\pi
710710 21.3137 0.799889
711711 −6.82843 −0.256086
712712 −55.1127 −2.06544
713713 −36.8284 −1.37924
714714 0 0
715715 −1.58579 −0.0593051
716716 −24.8284 −0.927882
717717 47.4558 1.77227
718718 −9.48528 −0.353988
719719 20.1421 0.751175 0.375587 0.926787i 0.377441π-0.377441\pi
0.375587 + 0.926787i 0.377441π0.377441\pi
720720 8.48528 0.316228
721721 0 0
722722 −41.0416 −1.52741
723723 −44.2132 −1.64431
724724 −31.8284 −1.18289
725725 −4.00000 −0.148556
726726 −63.1127 −2.34233
727727 −1.31371 −0.0487228 −0.0243614 0.999703i 0.507755π-0.507755\pi
−0.0243614 + 0.999703i 0.507755π0.507755\pi
728728 0 0
729729 −23.8284 −0.882534
730730 9.65685 0.357416
731731 −2.97056 −0.109870
732732 −44.6274 −1.64948
733733 41.2548 1.52378 0.761891 0.647705i 0.224271π-0.224271\pi
0.761891 + 0.647705i 0.224271π0.224271\pi
734734 43.4558 1.60398
735735 0 0
736736 5.79899 0.213754
737737 −2.34315 −0.0863109
738738 −30.6274 −1.12741
739739 4.07107 0.149757 0.0748783 0.997193i 0.476143π-0.476143\pi
0.0748783 + 0.997193i 0.476143π0.476143\pi
740740 −15.3137 −0.562943
741741 55.4558 2.03722
742742 0 0
743743 23.6569 0.867886 0.433943 0.900940i 0.357122π-0.357122\pi
0.433943 + 0.900940i 0.357122π0.357122\pi
744744 −107.326 −3.93476
745745 −7.82843 −0.286811
746746 63.5269 2.32589
747747 −21.6569 −0.792383
748748 1.31371 0.0480339
749749 0 0
750750 −52.4558 −1.91542
751751 25.3137 0.923710 0.461855 0.886955i 0.347184π-0.347184\pi
0.461855 + 0.886955i 0.347184π0.347184\pi
752752 9.72792 0.354741
753753 48.4558 1.76583
754754 −9.24264 −0.336597
755755 −14.1421 −0.514685
756756 0 0
757757 25.5147 0.927348 0.463674 0.886006i 0.346531π-0.346531\pi
0.463674 + 0.886006i 0.346531π0.346531\pi
758758 16.8284 0.611236
759759 3.65685 0.132735
760760 26.4853 0.960722
761761 −45.5980 −1.65293 −0.826463 0.562991i 0.809650π-0.809650\pi
−0.826463 + 0.562991i 0.809650π0.809650\pi
762762 −25.3137 −0.917019
763763 0 0
764764 96.9117 3.50614
765765 −2.34315 −0.0847166
766766 −8.48528 −0.306586
767767 14.0000 0.505511
768768 72.3553 2.61090
769769 49.1127 1.77105 0.885525 0.464592i 0.153799π-0.153799\pi
0.885525 + 0.464592i 0.153799π0.153799\pi
770770 0 0
771771 −43.8701 −1.57994
772772 −19.7990 −0.712581
773773 19.5147 0.701896 0.350948 0.936395i 0.385859π-0.385859\pi
0.350948 + 0.936395i 0.385859π0.385859\pi
774774 −24.4853 −0.880105
775775 40.2843 1.44705
776776 19.7990 0.710742
777777 0 0
778778 −7.31371 −0.262209
779779 −26.9117 −0.964211
780780 −35.3848 −1.26698
781781 3.65685 0.130853
782782 7.31371 0.261538
783783 0.414214 0.0148028
784784 0 0
785785 −8.48528 −0.302853
786786 −124.225 −4.43097
787787 54.0833 1.92786 0.963930 0.266156i 0.0857536π-0.0857536\pi
0.963930 + 0.266156i 0.0857536π0.0857536\pi
788788 7.65685 0.272764
789789 −6.65685 −0.236990
790790 5.82843 0.207366
791791 0 0
792792 5.17157 0.183764
793793 18.4853 0.656432
794794 46.6985 1.65727
795795 −22.8995 −0.812161
796796 1.85786 0.0658503
797797 −51.7401 −1.83273 −0.916364 0.400345i 0.868890π-0.868890\pi
−0.916364 + 0.400345i 0.868890π0.868890\pi
798798 0 0
799799 −2.68629 −0.0950342
800800 −6.34315 −0.224264
801801 35.3137 1.24775
802802 45.0416 1.59048
803803 1.65685 0.0584691
804804 −52.2843 −1.84392
805805 0 0
806806 93.0833 3.27872
807807 75.9411 2.67325
808808 −10.3431 −0.363871
809809 36.2843 1.27569 0.637844 0.770166i 0.279827π-0.279827\pi
0.637844 + 0.770166i 0.279827π0.279827\pi
810810 22.8995 0.804606
811811 −10.8284 −0.380238 −0.190119 0.981761i 0.560887π-0.560887\pi
−0.190119 + 0.981761i 0.560887π0.560887\pi
812812 0 0
813813 39.9706 1.40183
814814 −4.00000 −0.140200
815815 3.92893 0.137624
816816 6.00000 0.210042
817817 −21.5147 −0.752705
818818 −45.7990 −1.60132
819819 0 0
820820 17.1716 0.599657
821821 −1.48528 −0.0518367 −0.0259183 0.999664i 0.508251π-0.508251\pi
−0.0259183 + 0.999664i 0.508251π0.508251\pi
822822 69.9411 2.43948
823823 −54.2843 −1.89223 −0.946115 0.323830i 0.895029π-0.895029\pi
−0.946115 + 0.323830i 0.895029π0.895029\pi
824824 −21.3137 −0.742498
825825 −4.00000 −0.139262
826826 0 0
827827 32.8995 1.14403 0.572014 0.820244i 0.306162π-0.306162\pi
0.572014 + 0.820244i 0.306162π0.306162\pi
828828 39.5980 1.37612
829829 29.7990 1.03496 0.517481 0.855695i 0.326870π-0.326870\pi
0.517481 + 0.855695i 0.326870π0.326870\pi
830830 18.4853 0.641633
831831 41.7990 1.44999
832832 −37.6274 −1.30450
833833 0 0
834834 −81.5980 −2.82551
835835 3.17157 0.109757
836836 9.51472 0.329073
837837 −4.17157 −0.144191
838838 −22.9706 −0.793505
839839 7.92893 0.273737 0.136869 0.990589i 0.456296π-0.456296\pi
0.136869 + 0.990589i 0.456296π0.456296\pi
840840 0 0
841841 1.00000 0.0344828
842842 −89.5980 −3.08775
843843 −77.1838 −2.65835
844844 −74.2132 −2.55452
845845 1.65685 0.0569975
846846 −22.1421 −0.761262
847847 0 0
848848 28.4558 0.977178
849849 28.1421 0.965836
850850 −8.00000 −0.274398
851851 −14.6274 −0.501421
852852 81.5980 2.79550
853853 22.9706 0.786497 0.393249 0.919432i 0.371351π-0.371351\pi
0.393249 + 0.919432i 0.371351π0.371351\pi
854854 0 0
855855 −16.9706 −0.580381
856856 65.4558 2.23723
857857 6.17157 0.210817 0.105408 0.994429i 0.466385π-0.466385\pi
0.105408 + 0.994429i 0.466385π0.466385\pi
858858 −9.24264 −0.315539
859859 −19.7279 −0.673108 −0.336554 0.941664i 0.609261π-0.609261\pi
−0.336554 + 0.941664i 0.609261π0.609261\pi
860860 13.7279 0.468118
861861 0 0
862862 −47.4558 −1.61635
863863 17.1127 0.582523 0.291262 0.956643i 0.405925π-0.405925\pi
0.291262 + 0.956643i 0.405925π0.405925\pi
864864 0.656854 0.0223466
865865 −12.3431 −0.419680
866866 73.9411 2.51262
867867 39.3848 1.33758
868868 0 0
869869 1.00000 0.0339227
870870 5.82843 0.197602
871871 21.6569 0.733815
872872 −55.8701 −1.89200
873873 −12.6863 −0.429366
874874 52.9706 1.79176
875875 0 0
876876 36.9706 1.24912
877877 −37.1421 −1.25420 −0.627100 0.778938i 0.715758π-0.715758\pi
−0.627100 + 0.778938i 0.715758π0.715758\pi
878878 −0.828427 −0.0279581
879879 18.4853 0.623493
880880 −1.24264 −0.0418894
881881 −14.0000 −0.471672 −0.235836 0.971793i 0.575783π-0.575783\pi
−0.235836 + 0.971793i 0.575783π0.575783\pi
882882 0 0
883883 38.4264 1.29315 0.646576 0.762850i 0.276200π-0.276200\pi
0.646576 + 0.762850i 0.276200π0.276200\pi
884884 −12.1421 −0.408384
885885 −8.82843 −0.296764
886886 58.7696 1.97440
887887 −17.1005 −0.574179 −0.287089 0.957904i 0.592688π-0.592688\pi
−0.287089 + 0.957904i 0.592688π0.592688\pi
888888 −42.6274 −1.43048
889889 0 0
890890 −30.1421 −1.01037
891891 3.92893 0.131624
892892 12.1421 0.406549
893893 −19.4558 −0.651065
894894 −45.6274 −1.52601
895895 −6.48528 −0.216779
896896 0 0
897897 −33.7990 −1.12852
898898 84.4264 2.81735
899899 −10.0711 −0.335889
900900 −43.3137 −1.44379
901901 −7.85786 −0.261783
902902 4.48528 0.149344
903903 0 0
904904 58.7696 1.95465
905905 −8.31371 −0.276357
906906 −82.4264 −2.73843
907907 22.2843 0.739937 0.369969 0.929044i 0.379368π-0.379368\pi
0.369969 + 0.929044i 0.379368π0.379368\pi
908908 31.1716 1.03446
909909 6.62742 0.219818
910910 0 0
911911 −15.4437 −0.511671 −0.255835 0.966720i 0.582351π-0.582351\pi
−0.255835 + 0.966720i 0.582351π0.582351\pi
912912 43.4558 1.43897
913913 3.17157 0.104964
914914 −2.48528 −0.0822058
915915 −11.6569 −0.385364
916916 13.4558 0.444594
917917 0 0
918918 0.828427 0.0273422
919919 8.14214 0.268584 0.134292 0.990942i 0.457124π-0.457124\pi
0.134292 + 0.990942i 0.457124π0.457124\pi
920920 −16.1421 −0.532190
921921 7.00000 0.230658
922922 33.7990 1.11311
923923 −33.7990 −1.11251
924924 0 0
925925 16.0000 0.526077
926926 62.7696 2.06274
927927 13.6569 0.448550
928928 1.58579 0.0520560
929929 −18.6863 −0.613077 −0.306539 0.951858i 0.599171π-0.599171\pi
−0.306539 + 0.951858i 0.599171π0.599171\pi
930930 −58.6985 −1.92480
931931 0 0
932932 70.1127 2.29662
933933 6.48528 0.212319
934934 −92.5980 −3.02990
935935 0.343146 0.0112221
936936 −47.7990 −1.56236
937937 16.6274 0.543194 0.271597 0.962411i 0.412448π-0.412448\pi
0.271597 + 0.962411i 0.412448π0.412448\pi
938938 0 0
939939 23.7279 0.774331
940940 12.4142 0.404907
941941 56.5980 1.84504 0.922521 0.385948i 0.126125π-0.126125\pi
0.922521 + 0.385948i 0.126125π0.126125\pi
942942 −49.4558 −1.61136
943943 16.4020 0.534123
944944 10.9706 0.357061
945945 0 0
946946 3.58579 0.116584
947947 2.61522 0.0849834 0.0424917 0.999097i 0.486470π-0.486470\pi
0.0424917 + 0.999097i 0.486470π0.486470\pi
948948 22.3137 0.724716
949949 −15.3137 −0.497104
950950 −57.9411 −1.87986
951951 75.9411 2.46256
952952 0 0
953953 −35.6274 −1.15409 −0.577043 0.816714i 0.695793π-0.695793\pi
−0.577043 + 0.816714i 0.695793π0.695793\pi
954954 −64.7696 −2.09699
955955 25.3137 0.819132
956956 −75.2548 −2.43392
957957 1.00000 0.0323254
958958 16.6569 0.538159
959959 0 0
960960 23.7279 0.765815
961961 70.4264 2.27182
962962 36.9706 1.19198
963963 −41.9411 −1.35153
964964 70.1127 2.25818
965965 −5.17157 −0.166479
966966 0 0
967967 −35.2426 −1.13333 −0.566663 0.823949i 0.691766π-0.691766\pi
−0.566663 + 0.823949i 0.691766π0.691766\pi
968968 47.7990 1.53632
969969 −12.0000 −0.385496
970970 10.8284 0.347680
971971 15.6569 0.502452 0.251226 0.967928i 0.419166π-0.419166\pi
0.251226 + 0.967928i 0.419166π0.419166\pi
972972 82.9117 2.65939
973973 0 0
974974 27.7990 0.890737
975975 36.9706 1.18401
976976 14.4853 0.463663
977977 36.1716 1.15723 0.578616 0.815600i 0.303593π-0.303593\pi
0.578616 + 0.815600i 0.303593π0.303593\pi
978978 22.8995 0.732245
979979 −5.17157 −0.165284
980980 0 0
981981 35.7990 1.14297
982982 51.2843 1.63655
983983 21.8701 0.697547 0.348773 0.937207i 0.386598π-0.386598\pi
0.348773 + 0.937207i 0.386598π0.386598\pi
984984 47.7990 1.52378
985985 2.00000 0.0637253
986986 2.00000 0.0636930
987987 0 0
988988 −87.9411 −2.79778
989989 13.1127 0.416960
990990 2.82843 0.0898933
991991 −12.8284 −0.407508 −0.203754 0.979022i 0.565314π-0.565314\pi
−0.203754 + 0.979022i 0.565314π0.565314\pi
992992 −15.9706 −0.507066
993993 5.82843 0.184960
994994 0 0
995995 0.485281 0.0153845
996996 70.7696 2.24242
997997 −28.2843 −0.895772 −0.447886 0.894091i 0.647823π-0.647823\pi
−0.447886 + 0.894091i 0.647823π0.647823\pi
998998 −45.7990 −1.44974
999999 −1.65685 −0.0524205
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1421.2.a.j.1.1 2
7.6 odd 2 29.2.a.a.1.1 2
21.20 even 2 261.2.a.d.1.2 2
28.27 even 2 464.2.a.h.1.1 2
35.13 even 4 725.2.b.b.349.4 4
35.27 even 4 725.2.b.b.349.1 4
35.34 odd 2 725.2.a.b.1.2 2
56.13 odd 2 1856.2.a.r.1.1 2
56.27 even 2 1856.2.a.w.1.2 2
77.76 even 2 3509.2.a.j.1.2 2
84.83 odd 2 4176.2.a.bq.1.2 2
91.90 odd 2 4901.2.a.g.1.2 2
105.104 even 2 6525.2.a.o.1.1 2
119.118 odd 2 8381.2.a.e.1.1 2
203.6 odd 14 841.2.d.f.645.1 12
203.13 odd 14 841.2.d.f.778.2 12
203.20 odd 14 841.2.d.j.574.1 12
203.27 even 28 841.2.e.k.236.4 24
203.34 odd 14 841.2.d.f.605.1 12
203.41 even 4 841.2.b.a.840.1 4
203.48 even 28 841.2.e.k.651.4 24
203.55 even 28 841.2.e.k.270.4 24
203.62 odd 14 841.2.d.f.190.1 12
203.69 even 28 841.2.e.k.63.1 24
203.76 even 28 841.2.e.k.63.4 24
203.83 odd 14 841.2.d.j.190.2 12
203.90 even 28 841.2.e.k.270.1 24
203.97 even 28 841.2.e.k.651.1 24
203.104 even 4 841.2.b.a.840.4 4
203.111 odd 14 841.2.d.j.605.2 12
203.118 even 28 841.2.e.k.236.1 24
203.125 odd 14 841.2.d.f.574.2 12
203.132 odd 14 841.2.d.j.778.1 12
203.139 odd 14 841.2.d.j.645.2 12
203.153 even 28 841.2.e.k.267.1 24
203.160 even 28 841.2.e.k.196.1 24
203.167 odd 14 841.2.d.f.571.1 12
203.181 odd 14 841.2.d.j.571.2 12
203.188 even 28 841.2.e.k.196.4 24
203.195 even 28 841.2.e.k.267.4 24
203.202 odd 2 841.2.a.d.1.2 2
609.608 even 2 7569.2.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.a.a.1.1 2 7.6 odd 2
261.2.a.d.1.2 2 21.20 even 2
464.2.a.h.1.1 2 28.27 even 2
725.2.a.b.1.2 2 35.34 odd 2
725.2.b.b.349.1 4 35.27 even 4
725.2.b.b.349.4 4 35.13 even 4
841.2.a.d.1.2 2 203.202 odd 2
841.2.b.a.840.1 4 203.41 even 4
841.2.b.a.840.4 4 203.104 even 4
841.2.d.f.190.1 12 203.62 odd 14
841.2.d.f.571.1 12 203.167 odd 14
841.2.d.f.574.2 12 203.125 odd 14
841.2.d.f.605.1 12 203.34 odd 14
841.2.d.f.645.1 12 203.6 odd 14
841.2.d.f.778.2 12 203.13 odd 14
841.2.d.j.190.2 12 203.83 odd 14
841.2.d.j.571.2 12 203.181 odd 14
841.2.d.j.574.1 12 203.20 odd 14
841.2.d.j.605.2 12 203.111 odd 14
841.2.d.j.645.2 12 203.139 odd 14
841.2.d.j.778.1 12 203.132 odd 14
841.2.e.k.63.1 24 203.69 even 28
841.2.e.k.63.4 24 203.76 even 28
841.2.e.k.196.1 24 203.160 even 28
841.2.e.k.196.4 24 203.188 even 28
841.2.e.k.236.1 24 203.118 even 28
841.2.e.k.236.4 24 203.27 even 28
841.2.e.k.267.1 24 203.153 even 28
841.2.e.k.267.4 24 203.195 even 28
841.2.e.k.270.1 24 203.90 even 28
841.2.e.k.270.4 24 203.55 even 28
841.2.e.k.651.1 24 203.97 even 28
841.2.e.k.651.4 24 203.48 even 28
1421.2.a.j.1.1 2 1.1 even 1 trivial
1856.2.a.r.1.1 2 56.13 odd 2
1856.2.a.w.1.2 2 56.27 even 2
3509.2.a.j.1.2 2 77.76 even 2
4176.2.a.bq.1.2 2 84.83 odd 2
4901.2.a.g.1.2 2 91.90 odd 2
6525.2.a.o.1.1 2 105.104 even 2
7569.2.a.c.1.1 2 609.608 even 2
8381.2.a.e.1.1 2 119.118 odd 2