Properties

Label 725.2.a.b.1.2
Level $725$
Weight $2$
Character 725.1
Self dual yes
Analytic conductor $5.789$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(1,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 725.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41421 q^{2} -2.41421 q^{3} +3.82843 q^{4} -5.82843 q^{6} +2.82843 q^{7} +4.41421 q^{8} +2.82843 q^{9} -0.414214 q^{11} -9.24264 q^{12} +3.82843 q^{13} +6.82843 q^{14} +3.00000 q^{16} -0.828427 q^{17} +6.82843 q^{18} +6.00000 q^{19} -6.82843 q^{21} -1.00000 q^{22} -3.65685 q^{23} -10.6569 q^{24} +9.24264 q^{26} +0.414214 q^{27} +10.8284 q^{28} +1.00000 q^{29} +10.0711 q^{31} -1.58579 q^{32} +1.00000 q^{33} -2.00000 q^{34} +10.8284 q^{36} +4.00000 q^{37} +14.4853 q^{38} -9.24264 q^{39} -4.48528 q^{41} -16.4853 q^{42} -3.58579 q^{43} -1.58579 q^{44} -8.82843 q^{46} +3.24264 q^{47} -7.24264 q^{48} +1.00000 q^{49} +2.00000 q^{51} +14.6569 q^{52} -9.48528 q^{53} +1.00000 q^{54} +12.4853 q^{56} -14.4853 q^{57} +2.41421 q^{58} -3.65685 q^{59} -4.82843 q^{61} +24.3137 q^{62} +8.00000 q^{63} -9.82843 q^{64} +2.41421 q^{66} -5.65685 q^{67} -3.17157 q^{68} +8.82843 q^{69} -8.82843 q^{71} +12.4853 q^{72} -4.00000 q^{73} +9.65685 q^{74} +22.9706 q^{76} -1.17157 q^{77} -22.3137 q^{78} -2.41421 q^{79} -9.48528 q^{81} -10.8284 q^{82} -7.65685 q^{83} -26.1421 q^{84} -8.65685 q^{86} -2.41421 q^{87} -1.82843 q^{88} -12.4853 q^{89} +10.8284 q^{91} -14.0000 q^{92} -24.3137 q^{93} +7.82843 q^{94} +3.82843 q^{96} -4.48528 q^{97} +2.41421 q^{98} -1.17157 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 6 q^{6} + 6 q^{8} + 2 q^{11} - 10 q^{12} + 2 q^{13} + 8 q^{14} + 6 q^{16} + 4 q^{17} + 8 q^{18} + 12 q^{19} - 8 q^{21} - 2 q^{22} + 4 q^{23} - 10 q^{24} + 10 q^{26} - 2 q^{27}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.41421 1.70711 0.853553 0.521005i \(-0.174443\pi\)
0.853553 + 0.521005i \(0.174443\pi\)
\(3\) −2.41421 −1.39385 −0.696923 0.717146i \(-0.745448\pi\)
−0.696923 + 0.717146i \(0.745448\pi\)
\(4\) 3.82843 1.91421
\(5\) 0 0
\(6\) −5.82843 −2.37945
\(7\) 2.82843 1.06904 0.534522 0.845154i \(-0.320491\pi\)
0.534522 + 0.845154i \(0.320491\pi\)
\(8\) 4.41421 1.56066
\(9\) 2.82843 0.942809
\(10\) 0 0
\(11\) −0.414214 −0.124890 −0.0624450 0.998048i \(-0.519890\pi\)
−0.0624450 + 0.998048i \(0.519890\pi\)
\(12\) −9.24264 −2.66812
\(13\) 3.82843 1.06181 0.530907 0.847430i \(-0.321851\pi\)
0.530907 + 0.847430i \(0.321851\pi\)
\(14\) 6.82843 1.82497
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) −0.828427 −0.200923 −0.100462 0.994941i \(-0.532032\pi\)
−0.100462 + 0.994941i \(0.532032\pi\)
\(18\) 6.82843 1.60948
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) −6.82843 −1.49008
\(22\) −1.00000 −0.213201
\(23\) −3.65685 −0.762507 −0.381253 0.924471i \(-0.624507\pi\)
−0.381253 + 0.924471i \(0.624507\pi\)
\(24\) −10.6569 −2.17532
\(25\) 0 0
\(26\) 9.24264 1.81263
\(27\) 0.414214 0.0797154
\(28\) 10.8284 2.04638
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 10.0711 1.80882 0.904409 0.426667i \(-0.140313\pi\)
0.904409 + 0.426667i \(0.140313\pi\)
\(32\) −1.58579 −0.280330
\(33\) 1.00000 0.174078
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) 10.8284 1.80474
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 14.4853 2.34982
\(39\) −9.24264 −1.48001
\(40\) 0 0
\(41\) −4.48528 −0.700483 −0.350242 0.936659i \(-0.613901\pi\)
−0.350242 + 0.936659i \(0.613901\pi\)
\(42\) −16.4853 −2.54373
\(43\) −3.58579 −0.546827 −0.273414 0.961897i \(-0.588153\pi\)
−0.273414 + 0.961897i \(0.588153\pi\)
\(44\) −1.58579 −0.239066
\(45\) 0 0
\(46\) −8.82843 −1.30168
\(47\) 3.24264 0.472988 0.236494 0.971633i \(-0.424002\pi\)
0.236494 + 0.971633i \(0.424002\pi\)
\(48\) −7.24264 −1.04539
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 14.6569 2.03254
\(53\) −9.48528 −1.30290 −0.651452 0.758690i \(-0.725840\pi\)
−0.651452 + 0.758690i \(0.725840\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 12.4853 1.66842
\(57\) −14.4853 −1.91862
\(58\) 2.41421 0.317002
\(59\) −3.65685 −0.476082 −0.238041 0.971255i \(-0.576505\pi\)
−0.238041 + 0.971255i \(0.576505\pi\)
\(60\) 0 0
\(61\) −4.82843 −0.618217 −0.309108 0.951027i \(-0.600031\pi\)
−0.309108 + 0.951027i \(0.600031\pi\)
\(62\) 24.3137 3.08784
\(63\) 8.00000 1.00791
\(64\) −9.82843 −1.22855
\(65\) 0 0
\(66\) 2.41421 0.297169
\(67\) −5.65685 −0.691095 −0.345547 0.938401i \(-0.612307\pi\)
−0.345547 + 0.938401i \(0.612307\pi\)
\(68\) −3.17157 −0.384610
\(69\) 8.82843 1.06282
\(70\) 0 0
\(71\) −8.82843 −1.04774 −0.523871 0.851798i \(-0.675513\pi\)
−0.523871 + 0.851798i \(0.675513\pi\)
\(72\) 12.4853 1.47140
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 9.65685 1.12259
\(75\) 0 0
\(76\) 22.9706 2.63490
\(77\) −1.17157 −0.133513
\(78\) −22.3137 −2.52653
\(79\) −2.41421 −0.271620 −0.135810 0.990735i \(-0.543364\pi\)
−0.135810 + 0.990735i \(0.543364\pi\)
\(80\) 0 0
\(81\) −9.48528 −1.05392
\(82\) −10.8284 −1.19580
\(83\) −7.65685 −0.840449 −0.420224 0.907420i \(-0.638049\pi\)
−0.420224 + 0.907420i \(0.638049\pi\)
\(84\) −26.1421 −2.85234
\(85\) 0 0
\(86\) −8.65685 −0.933493
\(87\) −2.41421 −0.258831
\(88\) −1.82843 −0.194911
\(89\) −12.4853 −1.32344 −0.661719 0.749752i \(-0.730173\pi\)
−0.661719 + 0.749752i \(0.730173\pi\)
\(90\) 0 0
\(91\) 10.8284 1.13513
\(92\) −14.0000 −1.45960
\(93\) −24.3137 −2.52121
\(94\) 7.82843 0.807441
\(95\) 0 0
\(96\) 3.82843 0.390737
\(97\) −4.48528 −0.455411 −0.227706 0.973730i \(-0.573122\pi\)
−0.227706 + 0.973730i \(0.573122\pi\)
\(98\) 2.41421 0.243872
\(99\) −1.17157 −0.117748
\(100\) 0 0
\(101\) −2.34315 −0.233152 −0.116576 0.993182i \(-0.537192\pi\)
−0.116576 + 0.993182i \(0.537192\pi\)
\(102\) 4.82843 0.478086
\(103\) 4.82843 0.475759 0.237880 0.971295i \(-0.423548\pi\)
0.237880 + 0.971295i \(0.423548\pi\)
\(104\) 16.8995 1.65713
\(105\) 0 0
\(106\) −22.8995 −2.22420
\(107\) 14.8284 1.43352 0.716759 0.697321i \(-0.245625\pi\)
0.716759 + 0.697321i \(0.245625\pi\)
\(108\) 1.58579 0.152592
\(109\) 12.6569 1.21231 0.606153 0.795348i \(-0.292712\pi\)
0.606153 + 0.795348i \(0.292712\pi\)
\(110\) 0 0
\(111\) −9.65685 −0.916588
\(112\) 8.48528 0.801784
\(113\) 13.3137 1.25245 0.626224 0.779643i \(-0.284599\pi\)
0.626224 + 0.779643i \(0.284599\pi\)
\(114\) −34.9706 −3.27529
\(115\) 0 0
\(116\) 3.82843 0.355461
\(117\) 10.8284 1.00109
\(118\) −8.82843 −0.812723
\(119\) −2.34315 −0.214796
\(120\) 0 0
\(121\) −10.8284 −0.984402
\(122\) −11.6569 −1.05536
\(123\) 10.8284 0.976366
\(124\) 38.5563 3.46246
\(125\) 0 0
\(126\) 19.3137 1.72060
\(127\) 4.34315 0.385392 0.192696 0.981259i \(-0.438277\pi\)
0.192696 + 0.981259i \(0.438277\pi\)
\(128\) −20.5563 −1.81694
\(129\) 8.65685 0.762194
\(130\) 0 0
\(131\) 21.3137 1.86219 0.931094 0.364780i \(-0.118856\pi\)
0.931094 + 0.364780i \(0.118856\pi\)
\(132\) 3.82843 0.333222
\(133\) 16.9706 1.47153
\(134\) −13.6569 −1.17977
\(135\) 0 0
\(136\) −3.65685 −0.313573
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 21.3137 1.81434
\(139\) 14.0000 1.18746 0.593732 0.804663i \(-0.297654\pi\)
0.593732 + 0.804663i \(0.297654\pi\)
\(140\) 0 0
\(141\) −7.82843 −0.659272
\(142\) −21.3137 −1.78861
\(143\) −1.58579 −0.132610
\(144\) 8.48528 0.707107
\(145\) 0 0
\(146\) −9.65685 −0.799207
\(147\) −2.41421 −0.199121
\(148\) 15.3137 1.25878
\(149\) −7.82843 −0.641330 −0.320665 0.947193i \(-0.603906\pi\)
−0.320665 + 0.947193i \(0.603906\pi\)
\(150\) 0 0
\(151\) −14.1421 −1.15087 −0.575435 0.817847i \(-0.695167\pi\)
−0.575435 + 0.817847i \(0.695167\pi\)
\(152\) 26.4853 2.14824
\(153\) −2.34315 −0.189432
\(154\) −2.82843 −0.227921
\(155\) 0 0
\(156\) −35.3848 −2.83305
\(157\) −8.48528 −0.677199 −0.338600 0.940931i \(-0.609953\pi\)
−0.338600 + 0.940931i \(0.609953\pi\)
\(158\) −5.82843 −0.463685
\(159\) 22.8995 1.81605
\(160\) 0 0
\(161\) −10.3431 −0.815154
\(162\) −22.8995 −1.79915
\(163\) −3.92893 −0.307738 −0.153869 0.988091i \(-0.549173\pi\)
−0.153869 + 0.988091i \(0.549173\pi\)
\(164\) −17.1716 −1.34087
\(165\) 0 0
\(166\) −18.4853 −1.43474
\(167\) 3.17157 0.245424 0.122712 0.992442i \(-0.460841\pi\)
0.122712 + 0.992442i \(0.460841\pi\)
\(168\) −30.1421 −2.32552
\(169\) 1.65685 0.127450
\(170\) 0 0
\(171\) 16.9706 1.29777
\(172\) −13.7279 −1.04674
\(173\) −12.3431 −0.938432 −0.469216 0.883083i \(-0.655463\pi\)
−0.469216 + 0.883083i \(0.655463\pi\)
\(174\) −5.82843 −0.441852
\(175\) 0 0
\(176\) −1.24264 −0.0936676
\(177\) 8.82843 0.663585
\(178\) −30.1421 −2.25925
\(179\) −6.48528 −0.484733 −0.242366 0.970185i \(-0.577924\pi\)
−0.242366 + 0.970185i \(0.577924\pi\)
\(180\) 0 0
\(181\) 8.31371 0.617953 0.308977 0.951070i \(-0.400014\pi\)
0.308977 + 0.951070i \(0.400014\pi\)
\(182\) 26.1421 1.93778
\(183\) 11.6569 0.861699
\(184\) −16.1421 −1.19001
\(185\) 0 0
\(186\) −58.6985 −4.30398
\(187\) 0.343146 0.0250933
\(188\) 12.4142 0.905400
\(189\) 1.17157 0.0852194
\(190\) 0 0
\(191\) 25.3137 1.83164 0.915818 0.401594i \(-0.131544\pi\)
0.915818 + 0.401594i \(0.131544\pi\)
\(192\) 23.7279 1.71242
\(193\) 5.17157 0.372258 0.186129 0.982525i \(-0.440406\pi\)
0.186129 + 0.982525i \(0.440406\pi\)
\(194\) −10.8284 −0.777436
\(195\) 0 0
\(196\) 3.82843 0.273459
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) −2.82843 −0.201008
\(199\) −0.485281 −0.0344007 −0.0172003 0.999852i \(-0.505475\pi\)
−0.0172003 + 0.999852i \(0.505475\pi\)
\(200\) 0 0
\(201\) 13.6569 0.963280
\(202\) −5.65685 −0.398015
\(203\) 2.82843 0.198517
\(204\) 7.65685 0.536087
\(205\) 0 0
\(206\) 11.6569 0.812172
\(207\) −10.3431 −0.718898
\(208\) 11.4853 0.796361
\(209\) −2.48528 −0.171911
\(210\) 0 0
\(211\) −19.3848 −1.33450 −0.667252 0.744832i \(-0.732529\pi\)
−0.667252 + 0.744832i \(0.732529\pi\)
\(212\) −36.3137 −2.49404
\(213\) 21.3137 1.46039
\(214\) 35.7990 2.44717
\(215\) 0 0
\(216\) 1.82843 0.124409
\(217\) 28.4853 1.93371
\(218\) 30.5563 2.06954
\(219\) 9.65685 0.652550
\(220\) 0 0
\(221\) −3.17157 −0.213343
\(222\) −23.3137 −1.56471
\(223\) 3.17157 0.212384 0.106192 0.994346i \(-0.466134\pi\)
0.106192 + 0.994346i \(0.466134\pi\)
\(224\) −4.48528 −0.299685
\(225\) 0 0
\(226\) 32.1421 2.13806
\(227\) 8.14214 0.540413 0.270206 0.962802i \(-0.412908\pi\)
0.270206 + 0.962802i \(0.412908\pi\)
\(228\) −55.4558 −3.67265
\(229\) −3.51472 −0.232259 −0.116130 0.993234i \(-0.537049\pi\)
−0.116130 + 0.993234i \(0.537049\pi\)
\(230\) 0 0
\(231\) 2.82843 0.186097
\(232\) 4.41421 0.289807
\(233\) −18.3137 −1.19977 −0.599885 0.800086i \(-0.704787\pi\)
−0.599885 + 0.800086i \(0.704787\pi\)
\(234\) 26.1421 1.70896
\(235\) 0 0
\(236\) −14.0000 −0.911322
\(237\) 5.82843 0.378597
\(238\) −5.65685 −0.366679
\(239\) −19.6569 −1.27150 −0.635748 0.771897i \(-0.719308\pi\)
−0.635748 + 0.771897i \(0.719308\pi\)
\(240\) 0 0
\(241\) −18.3137 −1.17969 −0.589845 0.807517i \(-0.700811\pi\)
−0.589845 + 0.807517i \(0.700811\pi\)
\(242\) −26.1421 −1.68048
\(243\) 21.6569 1.38929
\(244\) −18.4853 −1.18340
\(245\) 0 0
\(246\) 26.1421 1.66676
\(247\) 22.9706 1.46158
\(248\) 44.4558 2.82295
\(249\) 18.4853 1.17146
\(250\) 0 0
\(251\) 20.0711 1.26687 0.633437 0.773794i \(-0.281643\pi\)
0.633437 + 0.773794i \(0.281643\pi\)
\(252\) 30.6274 1.92935
\(253\) 1.51472 0.0952295
\(254\) 10.4853 0.657905
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) 18.1716 1.13351 0.566756 0.823886i \(-0.308198\pi\)
0.566756 + 0.823886i \(0.308198\pi\)
\(258\) 20.8995 1.30115
\(259\) 11.3137 0.703000
\(260\) 0 0
\(261\) 2.82843 0.175075
\(262\) 51.4558 3.17895
\(263\) −2.75736 −0.170026 −0.0850130 0.996380i \(-0.527093\pi\)
−0.0850130 + 0.996380i \(0.527093\pi\)
\(264\) 4.41421 0.271676
\(265\) 0 0
\(266\) 40.9706 2.51207
\(267\) 30.1421 1.84467
\(268\) −21.6569 −1.32290
\(269\) 31.4558 1.91790 0.958948 0.283581i \(-0.0915224\pi\)
0.958948 + 0.283581i \(0.0915224\pi\)
\(270\) 0 0
\(271\) 16.5563 1.00573 0.502863 0.864366i \(-0.332280\pi\)
0.502863 + 0.864366i \(0.332280\pi\)
\(272\) −2.48528 −0.150692
\(273\) −26.1421 −1.58219
\(274\) −28.9706 −1.75018
\(275\) 0 0
\(276\) 33.7990 2.03446
\(277\) 17.3137 1.04028 0.520140 0.854081i \(-0.325880\pi\)
0.520140 + 0.854081i \(0.325880\pi\)
\(278\) 33.7990 2.02713
\(279\) 28.4853 1.70537
\(280\) 0 0
\(281\) 31.9706 1.90720 0.953602 0.301070i \(-0.0973439\pi\)
0.953602 + 0.301070i \(0.0973439\pi\)
\(282\) −18.8995 −1.12545
\(283\) −11.6569 −0.692928 −0.346464 0.938063i \(-0.612618\pi\)
−0.346464 + 0.938063i \(0.612618\pi\)
\(284\) −33.7990 −2.00560
\(285\) 0 0
\(286\) −3.82843 −0.226380
\(287\) −12.6863 −0.748848
\(288\) −4.48528 −0.264298
\(289\) −16.3137 −0.959630
\(290\) 0 0
\(291\) 10.8284 0.634774
\(292\) −15.3137 −0.896167
\(293\) −7.65685 −0.447318 −0.223659 0.974667i \(-0.571800\pi\)
−0.223659 + 0.974667i \(0.571800\pi\)
\(294\) −5.82843 −0.339921
\(295\) 0 0
\(296\) 17.6569 1.02628
\(297\) −0.171573 −0.00995567
\(298\) −18.8995 −1.09482
\(299\) −14.0000 −0.809641
\(300\) 0 0
\(301\) −10.1421 −0.584583
\(302\) −34.1421 −1.96466
\(303\) 5.65685 0.324978
\(304\) 18.0000 1.03237
\(305\) 0 0
\(306\) −5.65685 −0.323381
\(307\) −2.89949 −0.165483 −0.0827415 0.996571i \(-0.526368\pi\)
−0.0827415 + 0.996571i \(0.526368\pi\)
\(308\) −4.48528 −0.255573
\(309\) −11.6569 −0.663135
\(310\) 0 0
\(311\) 2.68629 0.152326 0.0761628 0.997095i \(-0.475733\pi\)
0.0761628 + 0.997095i \(0.475733\pi\)
\(312\) −40.7990 −2.30979
\(313\) −9.82843 −0.555536 −0.277768 0.960648i \(-0.589595\pi\)
−0.277768 + 0.960648i \(0.589595\pi\)
\(314\) −20.4853 −1.15605
\(315\) 0 0
\(316\) −9.24264 −0.519939
\(317\) 31.4558 1.76674 0.883368 0.468680i \(-0.155270\pi\)
0.883368 + 0.468680i \(0.155270\pi\)
\(318\) 55.2843 3.10019
\(319\) −0.414214 −0.0231915
\(320\) 0 0
\(321\) −35.7990 −1.99810
\(322\) −24.9706 −1.39156
\(323\) −4.97056 −0.276570
\(324\) −36.3137 −2.01743
\(325\) 0 0
\(326\) −9.48528 −0.525341
\(327\) −30.5563 −1.68977
\(328\) −19.7990 −1.09322
\(329\) 9.17157 0.505645
\(330\) 0 0
\(331\) −2.41421 −0.132697 −0.0663486 0.997797i \(-0.521135\pi\)
−0.0663486 + 0.997797i \(0.521135\pi\)
\(332\) −29.3137 −1.60880
\(333\) 11.3137 0.619987
\(334\) 7.65685 0.418964
\(335\) 0 0
\(336\) −20.4853 −1.11756
\(337\) −21.7990 −1.18747 −0.593733 0.804662i \(-0.702347\pi\)
−0.593733 + 0.804662i \(0.702347\pi\)
\(338\) 4.00000 0.217571
\(339\) −32.1421 −1.74572
\(340\) 0 0
\(341\) −4.17157 −0.225903
\(342\) 40.9706 2.21543
\(343\) −16.9706 −0.916324
\(344\) −15.8284 −0.853412
\(345\) 0 0
\(346\) −29.7990 −1.60200
\(347\) −2.48528 −0.133417 −0.0667084 0.997773i \(-0.521250\pi\)
−0.0667084 + 0.997773i \(0.521250\pi\)
\(348\) −9.24264 −0.495458
\(349\) −5.14214 −0.275252 −0.137626 0.990484i \(-0.543947\pi\)
−0.137626 + 0.990484i \(0.543947\pi\)
\(350\) 0 0
\(351\) 1.58579 0.0846430
\(352\) 0.656854 0.0350104
\(353\) −26.9706 −1.43550 −0.717749 0.696302i \(-0.754828\pi\)
−0.717749 + 0.696302i \(0.754828\pi\)
\(354\) 21.3137 1.13281
\(355\) 0 0
\(356\) −47.7990 −2.53334
\(357\) 5.65685 0.299392
\(358\) −15.6569 −0.827490
\(359\) 3.92893 0.207361 0.103681 0.994611i \(-0.466938\pi\)
0.103681 + 0.994611i \(0.466938\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 20.0711 1.05491
\(363\) 26.1421 1.37211
\(364\) 41.4558 2.17288
\(365\) 0 0
\(366\) 28.1421 1.47101
\(367\) −18.0000 −0.939592 −0.469796 0.882775i \(-0.655673\pi\)
−0.469796 + 0.882775i \(0.655673\pi\)
\(368\) −10.9706 −0.571880
\(369\) −12.6863 −0.660422
\(370\) 0 0
\(371\) −26.8284 −1.39286
\(372\) −93.0833 −4.82614
\(373\) 26.3137 1.36247 0.681236 0.732064i \(-0.261443\pi\)
0.681236 + 0.732064i \(0.261443\pi\)
\(374\) 0.828427 0.0428369
\(375\) 0 0
\(376\) 14.3137 0.738173
\(377\) 3.82843 0.197174
\(378\) 2.82843 0.145479
\(379\) −6.97056 −0.358054 −0.179027 0.983844i \(-0.557295\pi\)
−0.179027 + 0.983844i \(0.557295\pi\)
\(380\) 0 0
\(381\) −10.4853 −0.537177
\(382\) 61.1127 3.12680
\(383\) 3.51472 0.179594 0.0897969 0.995960i \(-0.471378\pi\)
0.0897969 + 0.995960i \(0.471378\pi\)
\(384\) 49.6274 2.53254
\(385\) 0 0
\(386\) 12.4853 0.635484
\(387\) −10.1421 −0.515554
\(388\) −17.1716 −0.871755
\(389\) 3.02944 0.153599 0.0767993 0.997047i \(-0.475530\pi\)
0.0767993 + 0.997047i \(0.475530\pi\)
\(390\) 0 0
\(391\) 3.02944 0.153205
\(392\) 4.41421 0.222951
\(393\) −51.4558 −2.59560
\(394\) −4.82843 −0.243253
\(395\) 0 0
\(396\) −4.48528 −0.225394
\(397\) −19.3431 −0.970805 −0.485402 0.874291i \(-0.661327\pi\)
−0.485402 + 0.874291i \(0.661327\pi\)
\(398\) −1.17157 −0.0587256
\(399\) −40.9706 −2.05109
\(400\) 0 0
\(401\) −18.6569 −0.931679 −0.465839 0.884869i \(-0.654248\pi\)
−0.465839 + 0.884869i \(0.654248\pi\)
\(402\) 32.9706 1.64442
\(403\) 38.5563 1.92063
\(404\) −8.97056 −0.446302
\(405\) 0 0
\(406\) 6.82843 0.338889
\(407\) −1.65685 −0.0821272
\(408\) 8.82843 0.437072
\(409\) −18.9706 −0.938034 −0.469017 0.883189i \(-0.655392\pi\)
−0.469017 + 0.883189i \(0.655392\pi\)
\(410\) 0 0
\(411\) 28.9706 1.42901
\(412\) 18.4853 0.910704
\(413\) −10.3431 −0.508953
\(414\) −24.9706 −1.22724
\(415\) 0 0
\(416\) −6.07107 −0.297659
\(417\) −33.7990 −1.65514
\(418\) −6.00000 −0.293470
\(419\) −9.51472 −0.464824 −0.232412 0.972617i \(-0.574662\pi\)
−0.232412 + 0.972617i \(0.574662\pi\)
\(420\) 0 0
\(421\) 37.1127 1.80876 0.904381 0.426726i \(-0.140333\pi\)
0.904381 + 0.426726i \(0.140333\pi\)
\(422\) −46.7990 −2.27814
\(423\) 9.17157 0.445937
\(424\) −41.8701 −2.03339
\(425\) 0 0
\(426\) 51.4558 2.49304
\(427\) −13.6569 −0.660901
\(428\) 56.7696 2.74406
\(429\) 3.82843 0.184838
\(430\) 0 0
\(431\) 19.6569 0.946837 0.473419 0.880838i \(-0.343020\pi\)
0.473419 + 0.880838i \(0.343020\pi\)
\(432\) 1.24264 0.0597866
\(433\) −30.6274 −1.47186 −0.735930 0.677058i \(-0.763255\pi\)
−0.735930 + 0.677058i \(0.763255\pi\)
\(434\) 68.7696 3.30104
\(435\) 0 0
\(436\) 48.4558 2.32061
\(437\) −21.9411 −1.04959
\(438\) 23.3137 1.11397
\(439\) −0.343146 −0.0163775 −0.00818873 0.999966i \(-0.502607\pi\)
−0.00818873 + 0.999966i \(0.502607\pi\)
\(440\) 0 0
\(441\) 2.82843 0.134687
\(442\) −7.65685 −0.364199
\(443\) 24.3431 1.15658 0.578289 0.815832i \(-0.303721\pi\)
0.578289 + 0.815832i \(0.303721\pi\)
\(444\) −36.9706 −1.75455
\(445\) 0 0
\(446\) 7.65685 0.362563
\(447\) 18.8995 0.893915
\(448\) −27.7990 −1.31338
\(449\) −34.9706 −1.65036 −0.825181 0.564868i \(-0.808927\pi\)
−0.825181 + 0.564868i \(0.808927\pi\)
\(450\) 0 0
\(451\) 1.85786 0.0874834
\(452\) 50.9706 2.39745
\(453\) 34.1421 1.60414
\(454\) 19.6569 0.922542
\(455\) 0 0
\(456\) −63.9411 −2.99432
\(457\) −1.02944 −0.0481550 −0.0240775 0.999710i \(-0.507665\pi\)
−0.0240775 + 0.999710i \(0.507665\pi\)
\(458\) −8.48528 −0.396491
\(459\) −0.343146 −0.0160167
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 6.82843 0.317687
\(463\) 26.0000 1.20832 0.604161 0.796862i \(-0.293508\pi\)
0.604161 + 0.796862i \(0.293508\pi\)
\(464\) 3.00000 0.139272
\(465\) 0 0
\(466\) −44.2132 −2.04814
\(467\) 38.3553 1.77487 0.887437 0.460930i \(-0.152484\pi\)
0.887437 + 0.460930i \(0.152484\pi\)
\(468\) 41.4558 1.91630
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 20.4853 0.943912
\(472\) −16.1421 −0.743002
\(473\) 1.48528 0.0682933
\(474\) 14.0711 0.646306
\(475\) 0 0
\(476\) −8.97056 −0.411165
\(477\) −26.8284 −1.22839
\(478\) −47.4558 −2.17058
\(479\) 6.89949 0.315246 0.157623 0.987499i \(-0.449617\pi\)
0.157623 + 0.987499i \(0.449617\pi\)
\(480\) 0 0
\(481\) 15.3137 0.698245
\(482\) −44.2132 −2.01386
\(483\) 24.9706 1.13620
\(484\) −41.4558 −1.88436
\(485\) 0 0
\(486\) 52.2843 2.37166
\(487\) 11.5147 0.521782 0.260891 0.965368i \(-0.415984\pi\)
0.260891 + 0.965368i \(0.415984\pi\)
\(488\) −21.3137 −0.964826
\(489\) 9.48528 0.428939
\(490\) 0 0
\(491\) −21.2426 −0.958667 −0.479333 0.877633i \(-0.659122\pi\)
−0.479333 + 0.877633i \(0.659122\pi\)
\(492\) 41.4558 1.86897
\(493\) −0.828427 −0.0373105
\(494\) 55.4558 2.49508
\(495\) 0 0
\(496\) 30.2132 1.35661
\(497\) −24.9706 −1.12008
\(498\) 44.6274 1.99980
\(499\) 18.9706 0.849239 0.424620 0.905372i \(-0.360408\pi\)
0.424620 + 0.905372i \(0.360408\pi\)
\(500\) 0 0
\(501\) −7.65685 −0.342083
\(502\) 48.4558 2.16269
\(503\) −0.272078 −0.0121314 −0.00606568 0.999982i \(-0.501931\pi\)
−0.00606568 + 0.999982i \(0.501931\pi\)
\(504\) 35.3137 1.57300
\(505\) 0 0
\(506\) 3.65685 0.162567
\(507\) −4.00000 −0.177646
\(508\) 16.6274 0.737722
\(509\) −10.5147 −0.466057 −0.233028 0.972470i \(-0.574863\pi\)
−0.233028 + 0.972470i \(0.574863\pi\)
\(510\) 0 0
\(511\) −11.3137 −0.500489
\(512\) −31.2426 −1.38074
\(513\) 2.48528 0.109728
\(514\) 43.8701 1.93503
\(515\) 0 0
\(516\) 33.1421 1.45900
\(517\) −1.34315 −0.0590715
\(518\) 27.3137 1.20010
\(519\) 29.7990 1.30803
\(520\) 0 0
\(521\) −29.1421 −1.27674 −0.638370 0.769730i \(-0.720391\pi\)
−0.638370 + 0.769730i \(0.720391\pi\)
\(522\) 6.82843 0.298872
\(523\) −4.68629 −0.204917 −0.102459 0.994737i \(-0.532671\pi\)
−0.102459 + 0.994737i \(0.532671\pi\)
\(524\) 81.5980 3.56462
\(525\) 0 0
\(526\) −6.65685 −0.290253
\(527\) −8.34315 −0.363433
\(528\) 3.00000 0.130558
\(529\) −9.62742 −0.418583
\(530\) 0 0
\(531\) −10.3431 −0.448854
\(532\) 64.9706 2.81683
\(533\) −17.1716 −0.743783
\(534\) 72.7696 3.14905
\(535\) 0 0
\(536\) −24.9706 −1.07856
\(537\) 15.6569 0.675643
\(538\) 75.9411 3.27405
\(539\) −0.414214 −0.0178414
\(540\) 0 0
\(541\) −10.3431 −0.444687 −0.222343 0.974968i \(-0.571371\pi\)
−0.222343 + 0.974968i \(0.571371\pi\)
\(542\) 39.9706 1.71688
\(543\) −20.0711 −0.861332
\(544\) 1.31371 0.0563248
\(545\) 0 0
\(546\) −63.1127 −2.70097
\(547\) −35.7990 −1.53065 −0.765327 0.643641i \(-0.777423\pi\)
−0.765327 + 0.643641i \(0.777423\pi\)
\(548\) −45.9411 −1.96251
\(549\) −13.6569 −0.582860
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 38.9706 1.65870
\(553\) −6.82843 −0.290374
\(554\) 41.7990 1.77587
\(555\) 0 0
\(556\) 53.5980 2.27306
\(557\) 17.3137 0.733605 0.366803 0.930299i \(-0.380452\pi\)
0.366803 + 0.930299i \(0.380452\pi\)
\(558\) 68.7696 2.91125
\(559\) −13.7279 −0.580629
\(560\) 0 0
\(561\) −0.828427 −0.0349762
\(562\) 77.1838 3.25580
\(563\) 0.757359 0.0319189 0.0159594 0.999873i \(-0.494920\pi\)
0.0159594 + 0.999873i \(0.494920\pi\)
\(564\) −29.9706 −1.26199
\(565\) 0 0
\(566\) −28.1421 −1.18290
\(567\) −26.8284 −1.12669
\(568\) −38.9706 −1.63517
\(569\) −39.6569 −1.66250 −0.831251 0.555897i \(-0.812375\pi\)
−0.831251 + 0.555897i \(0.812375\pi\)
\(570\) 0 0
\(571\) 14.6274 0.612138 0.306069 0.952009i \(-0.400986\pi\)
0.306069 + 0.952009i \(0.400986\pi\)
\(572\) −6.07107 −0.253844
\(573\) −61.1127 −2.55302
\(574\) −30.6274 −1.27836
\(575\) 0 0
\(576\) −27.7990 −1.15829
\(577\) 29.7990 1.24055 0.620274 0.784385i \(-0.287021\pi\)
0.620274 + 0.784385i \(0.287021\pi\)
\(578\) −39.3848 −1.63819
\(579\) −12.4853 −0.518871
\(580\) 0 0
\(581\) −21.6569 −0.898478
\(582\) 26.1421 1.08363
\(583\) 3.92893 0.162720
\(584\) −17.6569 −0.730646
\(585\) 0 0
\(586\) −18.4853 −0.763620
\(587\) −7.65685 −0.316032 −0.158016 0.987437i \(-0.550510\pi\)
−0.158016 + 0.987437i \(0.550510\pi\)
\(588\) −9.24264 −0.381160
\(589\) 60.4264 2.48983
\(590\) 0 0
\(591\) 4.82843 0.198615
\(592\) 12.0000 0.493197
\(593\) 19.4853 0.800165 0.400082 0.916479i \(-0.368982\pi\)
0.400082 + 0.916479i \(0.368982\pi\)
\(594\) −0.414214 −0.0169954
\(595\) 0 0
\(596\) −29.9706 −1.22764
\(597\) 1.17157 0.0479493
\(598\) −33.7990 −1.38214
\(599\) 9.87006 0.403280 0.201640 0.979460i \(-0.435373\pi\)
0.201640 + 0.979460i \(0.435373\pi\)
\(600\) 0 0
\(601\) −17.1716 −0.700443 −0.350222 0.936667i \(-0.613894\pi\)
−0.350222 + 0.936667i \(0.613894\pi\)
\(602\) −24.4853 −0.997946
\(603\) −16.0000 −0.651570
\(604\) −54.1421 −2.20301
\(605\) 0 0
\(606\) 13.6569 0.554772
\(607\) 7.72792 0.313667 0.156833 0.987625i \(-0.449871\pi\)
0.156833 + 0.987625i \(0.449871\pi\)
\(608\) −9.51472 −0.385873
\(609\) −6.82843 −0.276702
\(610\) 0 0
\(611\) 12.4142 0.502225
\(612\) −8.97056 −0.362614
\(613\) 9.00000 0.363507 0.181753 0.983344i \(-0.441823\pi\)
0.181753 + 0.983344i \(0.441823\pi\)
\(614\) −7.00000 −0.282497
\(615\) 0 0
\(616\) −5.17157 −0.208369
\(617\) −0.686292 −0.0276291 −0.0138145 0.999905i \(-0.504397\pi\)
−0.0138145 + 0.999905i \(0.504397\pi\)
\(618\) −28.1421 −1.13204
\(619\) 33.5858 1.34993 0.674963 0.737851i \(-0.264159\pi\)
0.674963 + 0.737851i \(0.264159\pi\)
\(620\) 0 0
\(621\) −1.51472 −0.0607836
\(622\) 6.48528 0.260036
\(623\) −35.3137 −1.41481
\(624\) −27.7279 −1.11001
\(625\) 0 0
\(626\) −23.7279 −0.948358
\(627\) 6.00000 0.239617
\(628\) −32.4853 −1.29630
\(629\) −3.31371 −0.132126
\(630\) 0 0
\(631\) −36.8284 −1.46612 −0.733058 0.680166i \(-0.761908\pi\)
−0.733058 + 0.680166i \(0.761908\pi\)
\(632\) −10.6569 −0.423907
\(633\) 46.7990 1.86009
\(634\) 75.9411 3.01601
\(635\) 0 0
\(636\) 87.6690 3.47630
\(637\) 3.82843 0.151688
\(638\) −1.00000 −0.0395904
\(639\) −24.9706 −0.987820
\(640\) 0 0
\(641\) 17.7990 0.703018 0.351509 0.936185i \(-0.385669\pi\)
0.351509 + 0.936185i \(0.385669\pi\)
\(642\) −86.4264 −3.41098
\(643\) −32.4853 −1.28109 −0.640547 0.767919i \(-0.721292\pi\)
−0.640547 + 0.767919i \(0.721292\pi\)
\(644\) −39.5980 −1.56038
\(645\) 0 0
\(646\) −12.0000 −0.472134
\(647\) −39.6569 −1.55907 −0.779536 0.626358i \(-0.784545\pi\)
−0.779536 + 0.626358i \(0.784545\pi\)
\(648\) −41.8701 −1.64481
\(649\) 1.51472 0.0594579
\(650\) 0 0
\(651\) −68.7696 −2.69529
\(652\) −15.0416 −0.589076
\(653\) 30.1421 1.17955 0.589776 0.807567i \(-0.299216\pi\)
0.589776 + 0.807567i \(0.299216\pi\)
\(654\) −73.7696 −2.88462
\(655\) 0 0
\(656\) −13.4558 −0.525362
\(657\) −11.3137 −0.441390
\(658\) 22.1421 0.863190
\(659\) 14.4142 0.561498 0.280749 0.959781i \(-0.409417\pi\)
0.280749 + 0.959781i \(0.409417\pi\)
\(660\) 0 0
\(661\) 33.3137 1.29575 0.647877 0.761745i \(-0.275657\pi\)
0.647877 + 0.761745i \(0.275657\pi\)
\(662\) −5.82843 −0.226528
\(663\) 7.65685 0.297368
\(664\) −33.7990 −1.31166
\(665\) 0 0
\(666\) 27.3137 1.05838
\(667\) −3.65685 −0.141594
\(668\) 12.1421 0.469793
\(669\) −7.65685 −0.296031
\(670\) 0 0
\(671\) 2.00000 0.0772091
\(672\) 10.8284 0.417716
\(673\) 21.6274 0.833676 0.416838 0.908981i \(-0.363138\pi\)
0.416838 + 0.908981i \(0.363138\pi\)
\(674\) −52.6274 −2.02713
\(675\) 0 0
\(676\) 6.34315 0.243967
\(677\) 22.0000 0.845529 0.422764 0.906240i \(-0.361060\pi\)
0.422764 + 0.906240i \(0.361060\pi\)
\(678\) −77.5980 −2.98013
\(679\) −12.6863 −0.486855
\(680\) 0 0
\(681\) −19.6569 −0.753252
\(682\) −10.0711 −0.385641
\(683\) −20.9706 −0.802416 −0.401208 0.915987i \(-0.631410\pi\)
−0.401208 + 0.915987i \(0.631410\pi\)
\(684\) 64.9706 2.48421
\(685\) 0 0
\(686\) −40.9706 −1.56426
\(687\) 8.48528 0.323734
\(688\) −10.7574 −0.410120
\(689\) −36.3137 −1.38344
\(690\) 0 0
\(691\) 48.0000 1.82601 0.913003 0.407953i \(-0.133757\pi\)
0.913003 + 0.407953i \(0.133757\pi\)
\(692\) −47.2548 −1.79636
\(693\) −3.31371 −0.125877
\(694\) −6.00000 −0.227757
\(695\) 0 0
\(696\) −10.6569 −0.403947
\(697\) 3.71573 0.140743
\(698\) −12.4142 −0.469885
\(699\) 44.2132 1.67230
\(700\) 0 0
\(701\) −40.1127 −1.51504 −0.757518 0.652814i \(-0.773588\pi\)
−0.757518 + 0.652814i \(0.773588\pi\)
\(702\) 3.82843 0.144495
\(703\) 24.0000 0.905177
\(704\) 4.07107 0.153434
\(705\) 0 0
\(706\) −65.1127 −2.45055
\(707\) −6.62742 −0.249250
\(708\) 33.7990 1.27024
\(709\) 29.1421 1.09446 0.547228 0.836984i \(-0.315683\pi\)
0.547228 + 0.836984i \(0.315683\pi\)
\(710\) 0 0
\(711\) −6.82843 −0.256086
\(712\) −55.1127 −2.06544
\(713\) −36.8284 −1.37924
\(714\) 13.6569 0.511095
\(715\) 0 0
\(716\) −24.8284 −0.927882
\(717\) 47.4558 1.77227
\(718\) 9.48528 0.353988
\(719\) −20.1421 −0.751175 −0.375587 0.926787i \(-0.622559\pi\)
−0.375587 + 0.926787i \(0.622559\pi\)
\(720\) 0 0
\(721\) 13.6569 0.508608
\(722\) 41.0416 1.52741
\(723\) 44.2132 1.64431
\(724\) 31.8284 1.18289
\(725\) 0 0
\(726\) 63.1127 2.34233
\(727\) −1.31371 −0.0487228 −0.0243614 0.999703i \(-0.507755\pi\)
−0.0243614 + 0.999703i \(0.507755\pi\)
\(728\) 47.7990 1.77155
\(729\) −23.8284 −0.882534
\(730\) 0 0
\(731\) 2.97056 0.109870
\(732\) 44.6274 1.64948
\(733\) 41.2548 1.52378 0.761891 0.647705i \(-0.224271\pi\)
0.761891 + 0.647705i \(0.224271\pi\)
\(734\) −43.4558 −1.60398
\(735\) 0 0
\(736\) 5.79899 0.213754
\(737\) 2.34315 0.0863109
\(738\) −30.6274 −1.12741
\(739\) 4.07107 0.149757 0.0748783 0.997193i \(-0.476143\pi\)
0.0748783 + 0.997193i \(0.476143\pi\)
\(740\) 0 0
\(741\) −55.4558 −2.03722
\(742\) −64.7696 −2.37777
\(743\) −23.6569 −0.867886 −0.433943 0.900940i \(-0.642878\pi\)
−0.433943 + 0.900940i \(0.642878\pi\)
\(744\) −107.326 −3.93476
\(745\) 0 0
\(746\) 63.5269 2.32589
\(747\) −21.6569 −0.792383
\(748\) 1.31371 0.0480339
\(749\) 41.9411 1.53250
\(750\) 0 0
\(751\) 25.3137 0.923710 0.461855 0.886955i \(-0.347184\pi\)
0.461855 + 0.886955i \(0.347184\pi\)
\(752\) 9.72792 0.354741
\(753\) −48.4558 −1.76583
\(754\) 9.24264 0.336597
\(755\) 0 0
\(756\) 4.48528 0.163128
\(757\) −25.5147 −0.927348 −0.463674 0.886006i \(-0.653469\pi\)
−0.463674 + 0.886006i \(0.653469\pi\)
\(758\) −16.8284 −0.611236
\(759\) −3.65685 −0.132735
\(760\) 0 0
\(761\) 45.5980 1.65293 0.826463 0.562991i \(-0.190350\pi\)
0.826463 + 0.562991i \(0.190350\pi\)
\(762\) −25.3137 −0.917019
\(763\) 35.7990 1.29601
\(764\) 96.9117 3.50614
\(765\) 0 0
\(766\) 8.48528 0.306586
\(767\) −14.0000 −0.505511
\(768\) 72.3553 2.61090
\(769\) −49.1127 −1.77105 −0.885525 0.464592i \(-0.846201\pi\)
−0.885525 + 0.464592i \(0.846201\pi\)
\(770\) 0 0
\(771\) −43.8701 −1.57994
\(772\) 19.7990 0.712581
\(773\) 19.5147 0.701896 0.350948 0.936395i \(-0.385859\pi\)
0.350948 + 0.936395i \(0.385859\pi\)
\(774\) −24.4853 −0.880105
\(775\) 0 0
\(776\) −19.7990 −0.710742
\(777\) −27.3137 −0.979874
\(778\) 7.31371 0.262209
\(779\) −26.9117 −0.964211
\(780\) 0 0
\(781\) 3.65685 0.130853
\(782\) 7.31371 0.261538
\(783\) 0.414214 0.0148028
\(784\) 3.00000 0.107143
\(785\) 0 0
\(786\) −124.225 −4.43097
\(787\) 54.0833 1.92786 0.963930 0.266156i \(-0.0857536\pi\)
0.963930 + 0.266156i \(0.0857536\pi\)
\(788\) −7.65685 −0.272764
\(789\) 6.65685 0.236990
\(790\) 0 0
\(791\) 37.6569 1.33892
\(792\) −5.17157 −0.183764
\(793\) −18.4853 −0.656432
\(794\) −46.6985 −1.65727
\(795\) 0 0
\(796\) −1.85786 −0.0658503
\(797\) −51.7401 −1.83273 −0.916364 0.400345i \(-0.868890\pi\)
−0.916364 + 0.400345i \(0.868890\pi\)
\(798\) −98.9117 −3.50144
\(799\) −2.68629 −0.0950342
\(800\) 0 0
\(801\) −35.3137 −1.24775
\(802\) −45.0416 −1.59048
\(803\) 1.65685 0.0584691
\(804\) 52.2843 1.84392
\(805\) 0 0
\(806\) 93.0833 3.27872
\(807\) −75.9411 −2.67325
\(808\) −10.3431 −0.363871
\(809\) 36.2843 1.27569 0.637844 0.770166i \(-0.279827\pi\)
0.637844 + 0.770166i \(0.279827\pi\)
\(810\) 0 0
\(811\) 10.8284 0.380238 0.190119 0.981761i \(-0.439113\pi\)
0.190119 + 0.981761i \(0.439113\pi\)
\(812\) 10.8284 0.380003
\(813\) −39.9706 −1.40183
\(814\) −4.00000 −0.140200
\(815\) 0 0
\(816\) 6.00000 0.210042
\(817\) −21.5147 −0.752705
\(818\) −45.7990 −1.60132
\(819\) 30.6274 1.07021
\(820\) 0 0
\(821\) −1.48528 −0.0518367 −0.0259183 0.999664i \(-0.508251\pi\)
−0.0259183 + 0.999664i \(0.508251\pi\)
\(822\) 69.9411 2.43948
\(823\) 54.2843 1.89223 0.946115 0.323830i \(-0.104971\pi\)
0.946115 + 0.323830i \(0.104971\pi\)
\(824\) 21.3137 0.742498
\(825\) 0 0
\(826\) −24.9706 −0.868837
\(827\) −32.8995 −1.14403 −0.572014 0.820244i \(-0.693838\pi\)
−0.572014 + 0.820244i \(0.693838\pi\)
\(828\) −39.5980 −1.37612
\(829\) −29.7990 −1.03496 −0.517481 0.855695i \(-0.673130\pi\)
−0.517481 + 0.855695i \(0.673130\pi\)
\(830\) 0 0
\(831\) −41.7990 −1.44999
\(832\) −37.6274 −1.30450
\(833\) −0.828427 −0.0287033
\(834\) −81.5980 −2.82551
\(835\) 0 0
\(836\) −9.51472 −0.329073
\(837\) 4.17157 0.144191
\(838\) −22.9706 −0.793505
\(839\) −7.92893 −0.273737 −0.136869 0.990589i \(-0.543704\pi\)
−0.136869 + 0.990589i \(0.543704\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 89.5980 3.08775
\(843\) −77.1838 −2.65835
\(844\) −74.2132 −2.55452
\(845\) 0 0
\(846\) 22.1421 0.761262
\(847\) −30.6274 −1.05237
\(848\) −28.4558 −0.977178
\(849\) 28.1421 0.965836
\(850\) 0 0
\(851\) −14.6274 −0.501421
\(852\) 81.5980 2.79550
\(853\) 22.9706 0.786497 0.393249 0.919432i \(-0.371351\pi\)
0.393249 + 0.919432i \(0.371351\pi\)
\(854\) −32.9706 −1.12823
\(855\) 0 0
\(856\) 65.4558 2.23723
\(857\) 6.17157 0.210817 0.105408 0.994429i \(-0.466385\pi\)
0.105408 + 0.994429i \(0.466385\pi\)
\(858\) 9.24264 0.315539
\(859\) 19.7279 0.673108 0.336554 0.941664i \(-0.390739\pi\)
0.336554 + 0.941664i \(0.390739\pi\)
\(860\) 0 0
\(861\) 30.6274 1.04378
\(862\) 47.4558 1.61635
\(863\) −17.1127 −0.582523 −0.291262 0.956643i \(-0.594075\pi\)
−0.291262 + 0.956643i \(0.594075\pi\)
\(864\) −0.656854 −0.0223466
\(865\) 0 0
\(866\) −73.9411 −2.51262
\(867\) 39.3848 1.33758
\(868\) 109.054 3.70153
\(869\) 1.00000 0.0339227
\(870\) 0 0
\(871\) −21.6569 −0.733815
\(872\) 55.8701 1.89200
\(873\) −12.6863 −0.429366
\(874\) −52.9706 −1.79176
\(875\) 0 0
\(876\) 36.9706 1.24912
\(877\) 37.1421 1.25420 0.627100 0.778938i \(-0.284242\pi\)
0.627100 + 0.778938i \(0.284242\pi\)
\(878\) −0.828427 −0.0279581
\(879\) 18.4853 0.623493
\(880\) 0 0
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 6.82843 0.229925
\(883\) −38.4264 −1.29315 −0.646576 0.762850i \(-0.723800\pi\)
−0.646576 + 0.762850i \(0.723800\pi\)
\(884\) −12.1421 −0.408384
\(885\) 0 0
\(886\) 58.7696 1.97440
\(887\) −17.1005 −0.574179 −0.287089 0.957904i \(-0.592688\pi\)
−0.287089 + 0.957904i \(0.592688\pi\)
\(888\) −42.6274 −1.43048
\(889\) 12.2843 0.412001
\(890\) 0 0
\(891\) 3.92893 0.131624
\(892\) 12.1421 0.406549
\(893\) 19.4558 0.651065
\(894\) 45.6274 1.52601
\(895\) 0 0
\(896\) −58.1421 −1.94239
\(897\) 33.7990 1.12852
\(898\) −84.4264 −2.81735
\(899\) 10.0711 0.335889
\(900\) 0 0
\(901\) 7.85786 0.261783
\(902\) 4.48528 0.149344
\(903\) 24.4853 0.814819
\(904\) 58.7696 1.95465
\(905\) 0 0
\(906\) 82.4264 2.73843
\(907\) −22.2843 −0.739937 −0.369969 0.929044i \(-0.620632\pi\)
−0.369969 + 0.929044i \(0.620632\pi\)
\(908\) 31.1716 1.03446
\(909\) −6.62742 −0.219818
\(910\) 0 0
\(911\) −15.4437 −0.511671 −0.255835 0.966720i \(-0.582351\pi\)
−0.255835 + 0.966720i \(0.582351\pi\)
\(912\) −43.4558 −1.43897
\(913\) 3.17157 0.104964
\(914\) −2.48528 −0.0822058
\(915\) 0 0
\(916\) −13.4558 −0.444594
\(917\) 60.2843 1.99076
\(918\) −0.828427 −0.0273422
\(919\) 8.14214 0.268584 0.134292 0.990942i \(-0.457124\pi\)
0.134292 + 0.990942i \(0.457124\pi\)
\(920\) 0 0
\(921\) 7.00000 0.230658
\(922\) 33.7990 1.11311
\(923\) −33.7990 −1.11251
\(924\) 10.8284 0.356229
\(925\) 0 0
\(926\) 62.7696 2.06274
\(927\) 13.6569 0.448550
\(928\) −1.58579 −0.0520560
\(929\) 18.6863 0.613077 0.306539 0.951858i \(-0.400829\pi\)
0.306539 + 0.951858i \(0.400829\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) −70.1127 −2.29662
\(933\) −6.48528 −0.212319
\(934\) 92.5980 3.02990
\(935\) 0 0
\(936\) 47.7990 1.56236
\(937\) 16.6274 0.543194 0.271597 0.962411i \(-0.412448\pi\)
0.271597 + 0.962411i \(0.412448\pi\)
\(938\) −38.6274 −1.26123
\(939\) 23.7279 0.774331
\(940\) 0 0
\(941\) −56.5980 −1.84504 −0.922521 0.385948i \(-0.873875\pi\)
−0.922521 + 0.385948i \(0.873875\pi\)
\(942\) 49.4558 1.61136
\(943\) 16.4020 0.534123
\(944\) −10.9706 −0.357061
\(945\) 0 0
\(946\) 3.58579 0.116584
\(947\) −2.61522 −0.0849834 −0.0424917 0.999097i \(-0.513530\pi\)
−0.0424917 + 0.999097i \(0.513530\pi\)
\(948\) 22.3137 0.724716
\(949\) −15.3137 −0.497104
\(950\) 0 0
\(951\) −75.9411 −2.46256
\(952\) −10.3431 −0.335223
\(953\) 35.6274 1.15409 0.577043 0.816714i \(-0.304207\pi\)
0.577043 + 0.816714i \(0.304207\pi\)
\(954\) −64.7696 −2.09699
\(955\) 0 0
\(956\) −75.2548 −2.43392
\(957\) 1.00000 0.0323254
\(958\) 16.6569 0.538159
\(959\) −33.9411 −1.09602
\(960\) 0 0
\(961\) 70.4264 2.27182
\(962\) 36.9706 1.19198
\(963\) 41.9411 1.35153
\(964\) −70.1127 −2.25818
\(965\) 0 0
\(966\) 60.2843 1.93961
\(967\) 35.2426 1.13333 0.566663 0.823949i \(-0.308234\pi\)
0.566663 + 0.823949i \(0.308234\pi\)
\(968\) −47.7990 −1.53632
\(969\) 12.0000 0.385496
\(970\) 0 0
\(971\) −15.6569 −0.502452 −0.251226 0.967928i \(-0.580834\pi\)
−0.251226 + 0.967928i \(0.580834\pi\)
\(972\) 82.9117 2.65939
\(973\) 39.5980 1.26945
\(974\) 27.7990 0.890737
\(975\) 0 0
\(976\) −14.4853 −0.463663
\(977\) −36.1716 −1.15723 −0.578616 0.815600i \(-0.696407\pi\)
−0.578616 + 0.815600i \(0.696407\pi\)
\(978\) 22.8995 0.732245
\(979\) 5.17157 0.165284
\(980\) 0 0
\(981\) 35.7990 1.14297
\(982\) −51.2843 −1.63655
\(983\) 21.8701 0.697547 0.348773 0.937207i \(-0.386598\pi\)
0.348773 + 0.937207i \(0.386598\pi\)
\(984\) 47.7990 1.52378
\(985\) 0 0
\(986\) −2.00000 −0.0636930
\(987\) −22.1421 −0.704792
\(988\) 87.9411 2.79778
\(989\) 13.1127 0.416960
\(990\) 0 0
\(991\) −12.8284 −0.407508 −0.203754 0.979022i \(-0.565314\pi\)
−0.203754 + 0.979022i \(0.565314\pi\)
\(992\) −15.9706 −0.507066
\(993\) 5.82843 0.184960
\(994\) −60.2843 −1.91210
\(995\) 0 0
\(996\) 70.7696 2.24242
\(997\) −28.2843 −0.895772 −0.447886 0.894091i \(-0.647823\pi\)
−0.447886 + 0.894091i \(0.647823\pi\)
\(998\) 45.7990 1.44974
\(999\) 1.65685 0.0524205
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.a.b.1.2 2
3.2 odd 2 6525.2.a.o.1.1 2
5.2 odd 4 725.2.b.b.349.4 4
5.3 odd 4 725.2.b.b.349.1 4
5.4 even 2 29.2.a.a.1.1 2
15.14 odd 2 261.2.a.d.1.2 2
20.19 odd 2 464.2.a.h.1.1 2
35.34 odd 2 1421.2.a.j.1.1 2
40.19 odd 2 1856.2.a.w.1.2 2
40.29 even 2 1856.2.a.r.1.1 2
55.54 odd 2 3509.2.a.j.1.2 2
60.59 even 2 4176.2.a.bq.1.2 2
65.64 even 2 4901.2.a.g.1.2 2
85.84 even 2 8381.2.a.e.1.1 2
145.4 even 14 841.2.d.f.190.1 12
145.9 even 14 841.2.d.f.574.2 12
145.14 odd 28 841.2.e.k.196.4 24
145.19 odd 28 841.2.e.k.651.4 24
145.24 even 14 841.2.d.j.605.2 12
145.34 even 14 841.2.d.f.605.1 12
145.39 odd 28 841.2.e.k.651.1 24
145.44 odd 28 841.2.e.k.196.1 24
145.49 even 14 841.2.d.j.574.1 12
145.54 even 14 841.2.d.j.190.2 12
145.64 even 14 841.2.d.f.645.1 12
145.69 odd 28 841.2.e.k.63.1 24
145.74 even 14 841.2.d.j.778.1 12
145.79 odd 28 841.2.e.k.267.4 24
145.84 odd 28 841.2.e.k.270.4 24
145.89 odd 28 841.2.e.k.236.1 24
145.94 even 14 841.2.d.j.571.2 12
145.99 odd 4 841.2.b.a.840.1 4
145.104 odd 4 841.2.b.a.840.4 4
145.109 even 14 841.2.d.f.571.1 12
145.114 odd 28 841.2.e.k.236.4 24
145.119 odd 28 841.2.e.k.270.1 24
145.124 odd 28 841.2.e.k.267.1 24
145.129 even 14 841.2.d.f.778.2 12
145.134 odd 28 841.2.e.k.63.4 24
145.139 even 14 841.2.d.j.645.2 12
145.144 even 2 841.2.a.d.1.2 2
435.434 odd 2 7569.2.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.a.a.1.1 2 5.4 even 2
261.2.a.d.1.2 2 15.14 odd 2
464.2.a.h.1.1 2 20.19 odd 2
725.2.a.b.1.2 2 1.1 even 1 trivial
725.2.b.b.349.1 4 5.3 odd 4
725.2.b.b.349.4 4 5.2 odd 4
841.2.a.d.1.2 2 145.144 even 2
841.2.b.a.840.1 4 145.99 odd 4
841.2.b.a.840.4 4 145.104 odd 4
841.2.d.f.190.1 12 145.4 even 14
841.2.d.f.571.1 12 145.109 even 14
841.2.d.f.574.2 12 145.9 even 14
841.2.d.f.605.1 12 145.34 even 14
841.2.d.f.645.1 12 145.64 even 14
841.2.d.f.778.2 12 145.129 even 14
841.2.d.j.190.2 12 145.54 even 14
841.2.d.j.571.2 12 145.94 even 14
841.2.d.j.574.1 12 145.49 even 14
841.2.d.j.605.2 12 145.24 even 14
841.2.d.j.645.2 12 145.139 even 14
841.2.d.j.778.1 12 145.74 even 14
841.2.e.k.63.1 24 145.69 odd 28
841.2.e.k.63.4 24 145.134 odd 28
841.2.e.k.196.1 24 145.44 odd 28
841.2.e.k.196.4 24 145.14 odd 28
841.2.e.k.236.1 24 145.89 odd 28
841.2.e.k.236.4 24 145.114 odd 28
841.2.e.k.267.1 24 145.124 odd 28
841.2.e.k.267.4 24 145.79 odd 28
841.2.e.k.270.1 24 145.119 odd 28
841.2.e.k.270.4 24 145.84 odd 28
841.2.e.k.651.1 24 145.39 odd 28
841.2.e.k.651.4 24 145.19 odd 28
1421.2.a.j.1.1 2 35.34 odd 2
1856.2.a.r.1.1 2 40.29 even 2
1856.2.a.w.1.2 2 40.19 odd 2
3509.2.a.j.1.2 2 55.54 odd 2
4176.2.a.bq.1.2 2 60.59 even 2
4901.2.a.g.1.2 2 65.64 even 2
6525.2.a.o.1.1 2 3.2 odd 2
7569.2.a.c.1.1 2 435.434 odd 2
8381.2.a.e.1.1 2 85.84 even 2