Properties

Label 725.2.a.b.1.2
Level 725725
Weight 22
Character 725.1
Self dual yes
Analytic conductor 5.7895.789
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(1,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 725=5229 725 = 5^{2} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 725.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 5.789154146545.78915414654
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ8)+\Q(\zeta_{8})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x22 x^{2} - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 29)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 1.414211.41421 of defining polynomial
Character χ\chi == 725.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.41421q22.41421q3+3.82843q45.82843q6+2.82843q7+4.41421q8+2.82843q90.414214q119.24264q12+3.82843q13+6.82843q14+3.00000q160.828427q17+6.82843q18+6.00000q196.82843q211.00000q223.65685q2310.6569q24+9.24264q26+0.414214q27+10.8284q28+1.00000q29+10.0711q311.58579q32+1.00000q332.00000q34+10.8284q36+4.00000q37+14.4853q389.24264q394.48528q4116.4853q423.58579q431.58579q448.82843q46+3.24264q477.24264q48+1.00000q49+2.00000q51+14.6569q529.48528q53+1.00000q54+12.4853q5614.4853q57+2.41421q583.65685q594.82843q61+24.3137q62+8.00000q639.82843q64+2.41421q665.65685q673.17157q68+8.82843q698.82843q71+12.4853q724.00000q73+9.65685q74+22.9706q761.17157q7722.3137q782.41421q799.48528q8110.8284q827.65685q8326.1421q848.65685q862.41421q871.82843q8812.4853q89+10.8284q9114.0000q9224.3137q93+7.82843q94+3.82843q964.48528q97+2.41421q981.17157q99+O(q100)q+2.41421 q^{2} -2.41421 q^{3} +3.82843 q^{4} -5.82843 q^{6} +2.82843 q^{7} +4.41421 q^{8} +2.82843 q^{9} -0.414214 q^{11} -9.24264 q^{12} +3.82843 q^{13} +6.82843 q^{14} +3.00000 q^{16} -0.828427 q^{17} +6.82843 q^{18} +6.00000 q^{19} -6.82843 q^{21} -1.00000 q^{22} -3.65685 q^{23} -10.6569 q^{24} +9.24264 q^{26} +0.414214 q^{27} +10.8284 q^{28} +1.00000 q^{29} +10.0711 q^{31} -1.58579 q^{32} +1.00000 q^{33} -2.00000 q^{34} +10.8284 q^{36} +4.00000 q^{37} +14.4853 q^{38} -9.24264 q^{39} -4.48528 q^{41} -16.4853 q^{42} -3.58579 q^{43} -1.58579 q^{44} -8.82843 q^{46} +3.24264 q^{47} -7.24264 q^{48} +1.00000 q^{49} +2.00000 q^{51} +14.6569 q^{52} -9.48528 q^{53} +1.00000 q^{54} +12.4853 q^{56} -14.4853 q^{57} +2.41421 q^{58} -3.65685 q^{59} -4.82843 q^{61} +24.3137 q^{62} +8.00000 q^{63} -9.82843 q^{64} +2.41421 q^{66} -5.65685 q^{67} -3.17157 q^{68} +8.82843 q^{69} -8.82843 q^{71} +12.4853 q^{72} -4.00000 q^{73} +9.65685 q^{74} +22.9706 q^{76} -1.17157 q^{77} -22.3137 q^{78} -2.41421 q^{79} -9.48528 q^{81} -10.8284 q^{82} -7.65685 q^{83} -26.1421 q^{84} -8.65685 q^{86} -2.41421 q^{87} -1.82843 q^{88} -12.4853 q^{89} +10.8284 q^{91} -14.0000 q^{92} -24.3137 q^{93} +7.82843 q^{94} +3.82843 q^{96} -4.48528 q^{97} +2.41421 q^{98} -1.17157 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q22q3+2q46q6+6q8+2q1110q12+2q13+8q14+6q16+4q17+8q18+12q198q212q22+4q2310q24+10q262q27+8q99+O(q100) 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 6 q^{6} + 6 q^{8} + 2 q^{11} - 10 q^{12} + 2 q^{13} + 8 q^{14} + 6 q^{16} + 4 q^{17} + 8 q^{18} + 12 q^{19} - 8 q^{21} - 2 q^{22} + 4 q^{23} - 10 q^{24} + 10 q^{26} - 2 q^{27}+ \cdots - 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.41421 1.70711 0.853553 0.521005i 0.174443π-0.174443\pi
0.853553 + 0.521005i 0.174443π0.174443\pi
33 −2.41421 −1.39385 −0.696923 0.717146i 0.745448π-0.745448\pi
−0.696923 + 0.717146i 0.745448π0.745448\pi
44 3.82843 1.91421
55 0 0
66 −5.82843 −2.37945
77 2.82843 1.06904 0.534522 0.845154i 0.320491π-0.320491\pi
0.534522 + 0.845154i 0.320491π0.320491\pi
88 4.41421 1.56066
99 2.82843 0.942809
1010 0 0
1111 −0.414214 −0.124890 −0.0624450 0.998048i 0.519890π-0.519890\pi
−0.0624450 + 0.998048i 0.519890π0.519890\pi
1212 −9.24264 −2.66812
1313 3.82843 1.06181 0.530907 0.847430i 0.321851π-0.321851\pi
0.530907 + 0.847430i 0.321851π0.321851\pi
1414 6.82843 1.82497
1515 0 0
1616 3.00000 0.750000
1717 −0.828427 −0.200923 −0.100462 0.994941i 0.532032π-0.532032\pi
−0.100462 + 0.994941i 0.532032π0.532032\pi
1818 6.82843 1.60948
1919 6.00000 1.37649 0.688247 0.725476i 0.258380π-0.258380\pi
0.688247 + 0.725476i 0.258380π0.258380\pi
2020 0 0
2121 −6.82843 −1.49008
2222 −1.00000 −0.213201
2323 −3.65685 −0.762507 −0.381253 0.924471i 0.624507π-0.624507\pi
−0.381253 + 0.924471i 0.624507π0.624507\pi
2424 −10.6569 −2.17532
2525 0 0
2626 9.24264 1.81263
2727 0.414214 0.0797154
2828 10.8284 2.04638
2929 1.00000 0.185695
3030 0 0
3131 10.0711 1.80882 0.904409 0.426667i 0.140313π-0.140313\pi
0.904409 + 0.426667i 0.140313π0.140313\pi
3232 −1.58579 −0.280330
3333 1.00000 0.174078
3434 −2.00000 −0.342997
3535 0 0
3636 10.8284 1.80474
3737 4.00000 0.657596 0.328798 0.944400i 0.393356π-0.393356\pi
0.328798 + 0.944400i 0.393356π0.393356\pi
3838 14.4853 2.34982
3939 −9.24264 −1.48001
4040 0 0
4141 −4.48528 −0.700483 −0.350242 0.936659i 0.613901π-0.613901\pi
−0.350242 + 0.936659i 0.613901π0.613901\pi
4242 −16.4853 −2.54373
4343 −3.58579 −0.546827 −0.273414 0.961897i 0.588153π-0.588153\pi
−0.273414 + 0.961897i 0.588153π0.588153\pi
4444 −1.58579 −0.239066
4545 0 0
4646 −8.82843 −1.30168
4747 3.24264 0.472988 0.236494 0.971633i 0.424002π-0.424002\pi
0.236494 + 0.971633i 0.424002π0.424002\pi
4848 −7.24264 −1.04539
4949 1.00000 0.142857
5050 0 0
5151 2.00000 0.280056
5252 14.6569 2.03254
5353 −9.48528 −1.30290 −0.651452 0.758690i 0.725840π-0.725840\pi
−0.651452 + 0.758690i 0.725840π0.725840\pi
5454 1.00000 0.136083
5555 0 0
5656 12.4853 1.66842
5757 −14.4853 −1.91862
5858 2.41421 0.317002
5959 −3.65685 −0.476082 −0.238041 0.971255i 0.576505π-0.576505\pi
−0.238041 + 0.971255i 0.576505π0.576505\pi
6060 0 0
6161 −4.82843 −0.618217 −0.309108 0.951027i 0.600031π-0.600031\pi
−0.309108 + 0.951027i 0.600031π0.600031\pi
6262 24.3137 3.08784
6363 8.00000 1.00791
6464 −9.82843 −1.22855
6565 0 0
6666 2.41421 0.297169
6767 −5.65685 −0.691095 −0.345547 0.938401i 0.612307π-0.612307\pi
−0.345547 + 0.938401i 0.612307π0.612307\pi
6868 −3.17157 −0.384610
6969 8.82843 1.06282
7070 0 0
7171 −8.82843 −1.04774 −0.523871 0.851798i 0.675513π-0.675513\pi
−0.523871 + 0.851798i 0.675513π0.675513\pi
7272 12.4853 1.47140
7373 −4.00000 −0.468165 −0.234082 0.972217i 0.575209π-0.575209\pi
−0.234082 + 0.972217i 0.575209π0.575209\pi
7474 9.65685 1.12259
7575 0 0
7676 22.9706 2.63490
7777 −1.17157 −0.133513
7878 −22.3137 −2.52653
7979 −2.41421 −0.271620 −0.135810 0.990735i 0.543364π-0.543364\pi
−0.135810 + 0.990735i 0.543364π0.543364\pi
8080 0 0
8181 −9.48528 −1.05392
8282 −10.8284 −1.19580
8383 −7.65685 −0.840449 −0.420224 0.907420i 0.638049π-0.638049\pi
−0.420224 + 0.907420i 0.638049π0.638049\pi
8484 −26.1421 −2.85234
8585 0 0
8686 −8.65685 −0.933493
8787 −2.41421 −0.258831
8888 −1.82843 −0.194911
8989 −12.4853 −1.32344 −0.661719 0.749752i 0.730173π-0.730173\pi
−0.661719 + 0.749752i 0.730173π0.730173\pi
9090 0 0
9191 10.8284 1.13513
9292 −14.0000 −1.45960
9393 −24.3137 −2.52121
9494 7.82843 0.807441
9595 0 0
9696 3.82843 0.390737
9797 −4.48528 −0.455411 −0.227706 0.973730i 0.573122π-0.573122\pi
−0.227706 + 0.973730i 0.573122π0.573122\pi
9898 2.41421 0.243872
9999 −1.17157 −0.117748
100100 0 0
101101 −2.34315 −0.233152 −0.116576 0.993182i 0.537192π-0.537192\pi
−0.116576 + 0.993182i 0.537192π0.537192\pi
102102 4.82843 0.478086
103103 4.82843 0.475759 0.237880 0.971295i 0.423548π-0.423548\pi
0.237880 + 0.971295i 0.423548π0.423548\pi
104104 16.8995 1.65713
105105 0 0
106106 −22.8995 −2.22420
107107 14.8284 1.43352 0.716759 0.697321i 0.245625π-0.245625\pi
0.716759 + 0.697321i 0.245625π0.245625\pi
108108 1.58579 0.152592
109109 12.6569 1.21231 0.606153 0.795348i 0.292712π-0.292712\pi
0.606153 + 0.795348i 0.292712π0.292712\pi
110110 0 0
111111 −9.65685 −0.916588
112112 8.48528 0.801784
113113 13.3137 1.25245 0.626224 0.779643i 0.284599π-0.284599\pi
0.626224 + 0.779643i 0.284599π0.284599\pi
114114 −34.9706 −3.27529
115115 0 0
116116 3.82843 0.355461
117117 10.8284 1.00109
118118 −8.82843 −0.812723
119119 −2.34315 −0.214796
120120 0 0
121121 −10.8284 −0.984402
122122 −11.6569 −1.05536
123123 10.8284 0.976366
124124 38.5563 3.46246
125125 0 0
126126 19.3137 1.72060
127127 4.34315 0.385392 0.192696 0.981259i 0.438277π-0.438277\pi
0.192696 + 0.981259i 0.438277π0.438277\pi
128128 −20.5563 −1.81694
129129 8.65685 0.762194
130130 0 0
131131 21.3137 1.86219 0.931094 0.364780i 0.118856π-0.118856\pi
0.931094 + 0.364780i 0.118856π0.118856\pi
132132 3.82843 0.333222
133133 16.9706 1.47153
134134 −13.6569 −1.17977
135135 0 0
136136 −3.65685 −0.313573
137137 −12.0000 −1.02523 −0.512615 0.858619i 0.671323π-0.671323\pi
−0.512615 + 0.858619i 0.671323π0.671323\pi
138138 21.3137 1.81434
139139 14.0000 1.18746 0.593732 0.804663i 0.297654π-0.297654\pi
0.593732 + 0.804663i 0.297654π0.297654\pi
140140 0 0
141141 −7.82843 −0.659272
142142 −21.3137 −1.78861
143143 −1.58579 −0.132610
144144 8.48528 0.707107
145145 0 0
146146 −9.65685 −0.799207
147147 −2.41421 −0.199121
148148 15.3137 1.25878
149149 −7.82843 −0.641330 −0.320665 0.947193i 0.603906π-0.603906\pi
−0.320665 + 0.947193i 0.603906π0.603906\pi
150150 0 0
151151 −14.1421 −1.15087 −0.575435 0.817847i 0.695167π-0.695167\pi
−0.575435 + 0.817847i 0.695167π0.695167\pi
152152 26.4853 2.14824
153153 −2.34315 −0.189432
154154 −2.82843 −0.227921
155155 0 0
156156 −35.3848 −2.83305
157157 −8.48528 −0.677199 −0.338600 0.940931i 0.609953π-0.609953\pi
−0.338600 + 0.940931i 0.609953π0.609953\pi
158158 −5.82843 −0.463685
159159 22.8995 1.81605
160160 0 0
161161 −10.3431 −0.815154
162162 −22.8995 −1.79915
163163 −3.92893 −0.307738 −0.153869 0.988091i 0.549173π-0.549173\pi
−0.153869 + 0.988091i 0.549173π0.549173\pi
164164 −17.1716 −1.34087
165165 0 0
166166 −18.4853 −1.43474
167167 3.17157 0.245424 0.122712 0.992442i 0.460841π-0.460841\pi
0.122712 + 0.992442i 0.460841π0.460841\pi
168168 −30.1421 −2.32552
169169 1.65685 0.127450
170170 0 0
171171 16.9706 1.29777
172172 −13.7279 −1.04674
173173 −12.3431 −0.938432 −0.469216 0.883083i 0.655463π-0.655463\pi
−0.469216 + 0.883083i 0.655463π0.655463\pi
174174 −5.82843 −0.441852
175175 0 0
176176 −1.24264 −0.0936676
177177 8.82843 0.663585
178178 −30.1421 −2.25925
179179 −6.48528 −0.484733 −0.242366 0.970185i 0.577924π-0.577924\pi
−0.242366 + 0.970185i 0.577924π0.577924\pi
180180 0 0
181181 8.31371 0.617953 0.308977 0.951070i 0.400014π-0.400014\pi
0.308977 + 0.951070i 0.400014π0.400014\pi
182182 26.1421 1.93778
183183 11.6569 0.861699
184184 −16.1421 −1.19001
185185 0 0
186186 −58.6985 −4.30398
187187 0.343146 0.0250933
188188 12.4142 0.905400
189189 1.17157 0.0852194
190190 0 0
191191 25.3137 1.83164 0.915818 0.401594i 0.131544π-0.131544\pi
0.915818 + 0.401594i 0.131544π0.131544\pi
192192 23.7279 1.71242
193193 5.17157 0.372258 0.186129 0.982525i 0.440406π-0.440406\pi
0.186129 + 0.982525i 0.440406π0.440406\pi
194194 −10.8284 −0.777436
195195 0 0
196196 3.82843 0.273459
197197 −2.00000 −0.142494 −0.0712470 0.997459i 0.522698π-0.522698\pi
−0.0712470 + 0.997459i 0.522698π0.522698\pi
198198 −2.82843 −0.201008
199199 −0.485281 −0.0344007 −0.0172003 0.999852i 0.505475π-0.505475\pi
−0.0172003 + 0.999852i 0.505475π0.505475\pi
200200 0 0
201201 13.6569 0.963280
202202 −5.65685 −0.398015
203203 2.82843 0.198517
204204 7.65685 0.536087
205205 0 0
206206 11.6569 0.812172
207207 −10.3431 −0.718898
208208 11.4853 0.796361
209209 −2.48528 −0.171911
210210 0 0
211211 −19.3848 −1.33450 −0.667252 0.744832i 0.732529π-0.732529\pi
−0.667252 + 0.744832i 0.732529π0.732529\pi
212212 −36.3137 −2.49404
213213 21.3137 1.46039
214214 35.7990 2.44717
215215 0 0
216216 1.82843 0.124409
217217 28.4853 1.93371
218218 30.5563 2.06954
219219 9.65685 0.652550
220220 0 0
221221 −3.17157 −0.213343
222222 −23.3137 −1.56471
223223 3.17157 0.212384 0.106192 0.994346i 0.466134π-0.466134\pi
0.106192 + 0.994346i 0.466134π0.466134\pi
224224 −4.48528 −0.299685
225225 0 0
226226 32.1421 2.13806
227227 8.14214 0.540413 0.270206 0.962802i 0.412908π-0.412908\pi
0.270206 + 0.962802i 0.412908π0.412908\pi
228228 −55.4558 −3.67265
229229 −3.51472 −0.232259 −0.116130 0.993234i 0.537049π-0.537049\pi
−0.116130 + 0.993234i 0.537049π0.537049\pi
230230 0 0
231231 2.82843 0.186097
232232 4.41421 0.289807
233233 −18.3137 −1.19977 −0.599885 0.800086i 0.704787π-0.704787\pi
−0.599885 + 0.800086i 0.704787π0.704787\pi
234234 26.1421 1.70896
235235 0 0
236236 −14.0000 −0.911322
237237 5.82843 0.378597
238238 −5.65685 −0.366679
239239 −19.6569 −1.27150 −0.635748 0.771897i 0.719308π-0.719308\pi
−0.635748 + 0.771897i 0.719308π0.719308\pi
240240 0 0
241241 −18.3137 −1.17969 −0.589845 0.807517i 0.700811π-0.700811\pi
−0.589845 + 0.807517i 0.700811π0.700811\pi
242242 −26.1421 −1.68048
243243 21.6569 1.38929
244244 −18.4853 −1.18340
245245 0 0
246246 26.1421 1.66676
247247 22.9706 1.46158
248248 44.4558 2.82295
249249 18.4853 1.17146
250250 0 0
251251 20.0711 1.26687 0.633437 0.773794i 0.281643π-0.281643\pi
0.633437 + 0.773794i 0.281643π0.281643\pi
252252 30.6274 1.92935
253253 1.51472 0.0952295
254254 10.4853 0.657905
255255 0 0
256256 −29.9706 −1.87316
257257 18.1716 1.13351 0.566756 0.823886i 0.308198π-0.308198\pi
0.566756 + 0.823886i 0.308198π0.308198\pi
258258 20.8995 1.30115
259259 11.3137 0.703000
260260 0 0
261261 2.82843 0.175075
262262 51.4558 3.17895
263263 −2.75736 −0.170026 −0.0850130 0.996380i 0.527093π-0.527093\pi
−0.0850130 + 0.996380i 0.527093π0.527093\pi
264264 4.41421 0.271676
265265 0 0
266266 40.9706 2.51207
267267 30.1421 1.84467
268268 −21.6569 −1.32290
269269 31.4558 1.91790 0.958948 0.283581i 0.0915224π-0.0915224\pi
0.958948 + 0.283581i 0.0915224π0.0915224\pi
270270 0 0
271271 16.5563 1.00573 0.502863 0.864366i 0.332280π-0.332280\pi
0.502863 + 0.864366i 0.332280π0.332280\pi
272272 −2.48528 −0.150692
273273 −26.1421 −1.58219
274274 −28.9706 −1.75018
275275 0 0
276276 33.7990 2.03446
277277 17.3137 1.04028 0.520140 0.854081i 0.325880π-0.325880\pi
0.520140 + 0.854081i 0.325880π0.325880\pi
278278 33.7990 2.02713
279279 28.4853 1.70537
280280 0 0
281281 31.9706 1.90720 0.953602 0.301070i 0.0973439π-0.0973439\pi
0.953602 + 0.301070i 0.0973439π0.0973439\pi
282282 −18.8995 −1.12545
283283 −11.6569 −0.692928 −0.346464 0.938063i 0.612618π-0.612618\pi
−0.346464 + 0.938063i 0.612618π0.612618\pi
284284 −33.7990 −2.00560
285285 0 0
286286 −3.82843 −0.226380
287287 −12.6863 −0.748848
288288 −4.48528 −0.264298
289289 −16.3137 −0.959630
290290 0 0
291291 10.8284 0.634774
292292 −15.3137 −0.896167
293293 −7.65685 −0.447318 −0.223659 0.974667i 0.571800π-0.571800\pi
−0.223659 + 0.974667i 0.571800π0.571800\pi
294294 −5.82843 −0.339921
295295 0 0
296296 17.6569 1.02628
297297 −0.171573 −0.00995567
298298 −18.8995 −1.09482
299299 −14.0000 −0.809641
300300 0 0
301301 −10.1421 −0.584583
302302 −34.1421 −1.96466
303303 5.65685 0.324978
304304 18.0000 1.03237
305305 0 0
306306 −5.65685 −0.323381
307307 −2.89949 −0.165483 −0.0827415 0.996571i 0.526368π-0.526368\pi
−0.0827415 + 0.996571i 0.526368π0.526368\pi
308308 −4.48528 −0.255573
309309 −11.6569 −0.663135
310310 0 0
311311 2.68629 0.152326 0.0761628 0.997095i 0.475733π-0.475733\pi
0.0761628 + 0.997095i 0.475733π0.475733\pi
312312 −40.7990 −2.30979
313313 −9.82843 −0.555536 −0.277768 0.960648i 0.589595π-0.589595\pi
−0.277768 + 0.960648i 0.589595π0.589595\pi
314314 −20.4853 −1.15605
315315 0 0
316316 −9.24264 −0.519939
317317 31.4558 1.76674 0.883368 0.468680i 0.155270π-0.155270\pi
0.883368 + 0.468680i 0.155270π0.155270\pi
318318 55.2843 3.10019
319319 −0.414214 −0.0231915
320320 0 0
321321 −35.7990 −1.99810
322322 −24.9706 −1.39156
323323 −4.97056 −0.276570
324324 −36.3137 −2.01743
325325 0 0
326326 −9.48528 −0.525341
327327 −30.5563 −1.68977
328328 −19.7990 −1.09322
329329 9.17157 0.505645
330330 0 0
331331 −2.41421 −0.132697 −0.0663486 0.997797i 0.521135π-0.521135\pi
−0.0663486 + 0.997797i 0.521135π0.521135\pi
332332 −29.3137 −1.60880
333333 11.3137 0.619987
334334 7.65685 0.418964
335335 0 0
336336 −20.4853 −1.11756
337337 −21.7990 −1.18747 −0.593733 0.804662i 0.702347π-0.702347\pi
−0.593733 + 0.804662i 0.702347π0.702347\pi
338338 4.00000 0.217571
339339 −32.1421 −1.74572
340340 0 0
341341 −4.17157 −0.225903
342342 40.9706 2.21543
343343 −16.9706 −0.916324
344344 −15.8284 −0.853412
345345 0 0
346346 −29.7990 −1.60200
347347 −2.48528 −0.133417 −0.0667084 0.997773i 0.521250π-0.521250\pi
−0.0667084 + 0.997773i 0.521250π0.521250\pi
348348 −9.24264 −0.495458
349349 −5.14214 −0.275252 −0.137626 0.990484i 0.543947π-0.543947\pi
−0.137626 + 0.990484i 0.543947π0.543947\pi
350350 0 0
351351 1.58579 0.0846430
352352 0.656854 0.0350104
353353 −26.9706 −1.43550 −0.717749 0.696302i 0.754828π-0.754828\pi
−0.717749 + 0.696302i 0.754828π0.754828\pi
354354 21.3137 1.13281
355355 0 0
356356 −47.7990 −2.53334
357357 5.65685 0.299392
358358 −15.6569 −0.827490
359359 3.92893 0.207361 0.103681 0.994611i 0.466938π-0.466938\pi
0.103681 + 0.994611i 0.466938π0.466938\pi
360360 0 0
361361 17.0000 0.894737
362362 20.0711 1.05491
363363 26.1421 1.37211
364364 41.4558 2.17288
365365 0 0
366366 28.1421 1.47101
367367 −18.0000 −0.939592 −0.469796 0.882775i 0.655673π-0.655673\pi
−0.469796 + 0.882775i 0.655673π0.655673\pi
368368 −10.9706 −0.571880
369369 −12.6863 −0.660422
370370 0 0
371371 −26.8284 −1.39286
372372 −93.0833 −4.82614
373373 26.3137 1.36247 0.681236 0.732064i 0.261443π-0.261443\pi
0.681236 + 0.732064i 0.261443π0.261443\pi
374374 0.828427 0.0428369
375375 0 0
376376 14.3137 0.738173
377377 3.82843 0.197174
378378 2.82843 0.145479
379379 −6.97056 −0.358054 −0.179027 0.983844i 0.557295π-0.557295\pi
−0.179027 + 0.983844i 0.557295π0.557295\pi
380380 0 0
381381 −10.4853 −0.537177
382382 61.1127 3.12680
383383 3.51472 0.179594 0.0897969 0.995960i 0.471378π-0.471378\pi
0.0897969 + 0.995960i 0.471378π0.471378\pi
384384 49.6274 2.53254
385385 0 0
386386 12.4853 0.635484
387387 −10.1421 −0.515554
388388 −17.1716 −0.871755
389389 3.02944 0.153599 0.0767993 0.997047i 0.475530π-0.475530\pi
0.0767993 + 0.997047i 0.475530π0.475530\pi
390390 0 0
391391 3.02944 0.153205
392392 4.41421 0.222951
393393 −51.4558 −2.59560
394394 −4.82843 −0.243253
395395 0 0
396396 −4.48528 −0.225394
397397 −19.3431 −0.970805 −0.485402 0.874291i 0.661327π-0.661327\pi
−0.485402 + 0.874291i 0.661327π0.661327\pi
398398 −1.17157 −0.0587256
399399 −40.9706 −2.05109
400400 0 0
401401 −18.6569 −0.931679 −0.465839 0.884869i 0.654248π-0.654248\pi
−0.465839 + 0.884869i 0.654248π0.654248\pi
402402 32.9706 1.64442
403403 38.5563 1.92063
404404 −8.97056 −0.446302
405405 0 0
406406 6.82843 0.338889
407407 −1.65685 −0.0821272
408408 8.82843 0.437072
409409 −18.9706 −0.938034 −0.469017 0.883189i 0.655392π-0.655392\pi
−0.469017 + 0.883189i 0.655392π0.655392\pi
410410 0 0
411411 28.9706 1.42901
412412 18.4853 0.910704
413413 −10.3431 −0.508953
414414 −24.9706 −1.22724
415415 0 0
416416 −6.07107 −0.297659
417417 −33.7990 −1.65514
418418 −6.00000 −0.293470
419419 −9.51472 −0.464824 −0.232412 0.972617i 0.574662π-0.574662\pi
−0.232412 + 0.972617i 0.574662π0.574662\pi
420420 0 0
421421 37.1127 1.80876 0.904381 0.426726i 0.140333π-0.140333\pi
0.904381 + 0.426726i 0.140333π0.140333\pi
422422 −46.7990 −2.27814
423423 9.17157 0.445937
424424 −41.8701 −2.03339
425425 0 0
426426 51.4558 2.49304
427427 −13.6569 −0.660901
428428 56.7696 2.74406
429429 3.82843 0.184838
430430 0 0
431431 19.6569 0.946837 0.473419 0.880838i 0.343020π-0.343020\pi
0.473419 + 0.880838i 0.343020π0.343020\pi
432432 1.24264 0.0597866
433433 −30.6274 −1.47186 −0.735930 0.677058i 0.763255π-0.763255\pi
−0.735930 + 0.677058i 0.763255π0.763255\pi
434434 68.7696 3.30104
435435 0 0
436436 48.4558 2.32061
437437 −21.9411 −1.04959
438438 23.3137 1.11397
439439 −0.343146 −0.0163775 −0.00818873 0.999966i 0.502607π-0.502607\pi
−0.00818873 + 0.999966i 0.502607π0.502607\pi
440440 0 0
441441 2.82843 0.134687
442442 −7.65685 −0.364199
443443 24.3431 1.15658 0.578289 0.815832i 0.303721π-0.303721\pi
0.578289 + 0.815832i 0.303721π0.303721\pi
444444 −36.9706 −1.75455
445445 0 0
446446 7.65685 0.362563
447447 18.8995 0.893915
448448 −27.7990 −1.31338
449449 −34.9706 −1.65036 −0.825181 0.564868i 0.808927π-0.808927\pi
−0.825181 + 0.564868i 0.808927π0.808927\pi
450450 0 0
451451 1.85786 0.0874834
452452 50.9706 2.39745
453453 34.1421 1.60414
454454 19.6569 0.922542
455455 0 0
456456 −63.9411 −2.99432
457457 −1.02944 −0.0481550 −0.0240775 0.999710i 0.507665π-0.507665\pi
−0.0240775 + 0.999710i 0.507665π0.507665\pi
458458 −8.48528 −0.396491
459459 −0.343146 −0.0160167
460460 0 0
461461 14.0000 0.652045 0.326023 0.945362i 0.394291π-0.394291\pi
0.326023 + 0.945362i 0.394291π0.394291\pi
462462 6.82843 0.317687
463463 26.0000 1.20832 0.604161 0.796862i 0.293508π-0.293508\pi
0.604161 + 0.796862i 0.293508π0.293508\pi
464464 3.00000 0.139272
465465 0 0
466466 −44.2132 −2.04814
467467 38.3553 1.77487 0.887437 0.460930i 0.152484π-0.152484\pi
0.887437 + 0.460930i 0.152484π0.152484\pi
468468 41.4558 1.91630
469469 −16.0000 −0.738811
470470 0 0
471471 20.4853 0.943912
472472 −16.1421 −0.743002
473473 1.48528 0.0682933
474474 14.0711 0.646306
475475 0 0
476476 −8.97056 −0.411165
477477 −26.8284 −1.22839
478478 −47.4558 −2.17058
479479 6.89949 0.315246 0.157623 0.987499i 0.449617π-0.449617\pi
0.157623 + 0.987499i 0.449617π0.449617\pi
480480 0 0
481481 15.3137 0.698245
482482 −44.2132 −2.01386
483483 24.9706 1.13620
484484 −41.4558 −1.88436
485485 0 0
486486 52.2843 2.37166
487487 11.5147 0.521782 0.260891 0.965368i 0.415984π-0.415984\pi
0.260891 + 0.965368i 0.415984π0.415984\pi
488488 −21.3137 −0.964826
489489 9.48528 0.428939
490490 0 0
491491 −21.2426 −0.958667 −0.479333 0.877633i 0.659122π-0.659122\pi
−0.479333 + 0.877633i 0.659122π0.659122\pi
492492 41.4558 1.86897
493493 −0.828427 −0.0373105
494494 55.4558 2.49508
495495 0 0
496496 30.2132 1.35661
497497 −24.9706 −1.12008
498498 44.6274 1.99980
499499 18.9706 0.849239 0.424620 0.905372i 0.360408π-0.360408\pi
0.424620 + 0.905372i 0.360408π0.360408\pi
500500 0 0
501501 −7.65685 −0.342083
502502 48.4558 2.16269
503503 −0.272078 −0.0121314 −0.00606568 0.999982i 0.501931π-0.501931\pi
−0.00606568 + 0.999982i 0.501931π0.501931\pi
504504 35.3137 1.57300
505505 0 0
506506 3.65685 0.162567
507507 −4.00000 −0.177646
508508 16.6274 0.737722
509509 −10.5147 −0.466057 −0.233028 0.972470i 0.574863π-0.574863\pi
−0.233028 + 0.972470i 0.574863π0.574863\pi
510510 0 0
511511 −11.3137 −0.500489
512512 −31.2426 −1.38074
513513 2.48528 0.109728
514514 43.8701 1.93503
515515 0 0
516516 33.1421 1.45900
517517 −1.34315 −0.0590715
518518 27.3137 1.20010
519519 29.7990 1.30803
520520 0 0
521521 −29.1421 −1.27674 −0.638370 0.769730i 0.720391π-0.720391\pi
−0.638370 + 0.769730i 0.720391π0.720391\pi
522522 6.82843 0.298872
523523 −4.68629 −0.204917 −0.102459 0.994737i 0.532671π-0.532671\pi
−0.102459 + 0.994737i 0.532671π0.532671\pi
524524 81.5980 3.56462
525525 0 0
526526 −6.65685 −0.290253
527527 −8.34315 −0.363433
528528 3.00000 0.130558
529529 −9.62742 −0.418583
530530 0 0
531531 −10.3431 −0.448854
532532 64.9706 2.81683
533533 −17.1716 −0.743783
534534 72.7696 3.14905
535535 0 0
536536 −24.9706 −1.07856
537537 15.6569 0.675643
538538 75.9411 3.27405
539539 −0.414214 −0.0178414
540540 0 0
541541 −10.3431 −0.444687 −0.222343 0.974968i 0.571371π-0.571371\pi
−0.222343 + 0.974968i 0.571371π0.571371\pi
542542 39.9706 1.71688
543543 −20.0711 −0.861332
544544 1.31371 0.0563248
545545 0 0
546546 −63.1127 −2.70097
547547 −35.7990 −1.53065 −0.765327 0.643641i 0.777423π-0.777423\pi
−0.765327 + 0.643641i 0.777423π0.777423\pi
548548 −45.9411 −1.96251
549549 −13.6569 −0.582860
550550 0 0
551551 6.00000 0.255609
552552 38.9706 1.65870
553553 −6.82843 −0.290374
554554 41.7990 1.77587
555555 0 0
556556 53.5980 2.27306
557557 17.3137 0.733605 0.366803 0.930299i 0.380452π-0.380452\pi
0.366803 + 0.930299i 0.380452π0.380452\pi
558558 68.7696 2.91125
559559 −13.7279 −0.580629
560560 0 0
561561 −0.828427 −0.0349762
562562 77.1838 3.25580
563563 0.757359 0.0319189 0.0159594 0.999873i 0.494920π-0.494920\pi
0.0159594 + 0.999873i 0.494920π0.494920\pi
564564 −29.9706 −1.26199
565565 0 0
566566 −28.1421 −1.18290
567567 −26.8284 −1.12669
568568 −38.9706 −1.63517
569569 −39.6569 −1.66250 −0.831251 0.555897i 0.812375π-0.812375\pi
−0.831251 + 0.555897i 0.812375π0.812375\pi
570570 0 0
571571 14.6274 0.612138 0.306069 0.952009i 0.400986π-0.400986\pi
0.306069 + 0.952009i 0.400986π0.400986\pi
572572 −6.07107 −0.253844
573573 −61.1127 −2.55302
574574 −30.6274 −1.27836
575575 0 0
576576 −27.7990 −1.15829
577577 29.7990 1.24055 0.620274 0.784385i 0.287021π-0.287021\pi
0.620274 + 0.784385i 0.287021π0.287021\pi
578578 −39.3848 −1.63819
579579 −12.4853 −0.518871
580580 0 0
581581 −21.6569 −0.898478
582582 26.1421 1.08363
583583 3.92893 0.162720
584584 −17.6569 −0.730646
585585 0 0
586586 −18.4853 −0.763620
587587 −7.65685 −0.316032 −0.158016 0.987437i 0.550510π-0.550510\pi
−0.158016 + 0.987437i 0.550510π0.550510\pi
588588 −9.24264 −0.381160
589589 60.4264 2.48983
590590 0 0
591591 4.82843 0.198615
592592 12.0000 0.493197
593593 19.4853 0.800165 0.400082 0.916479i 0.368982π-0.368982\pi
0.400082 + 0.916479i 0.368982π0.368982\pi
594594 −0.414214 −0.0169954
595595 0 0
596596 −29.9706 −1.22764
597597 1.17157 0.0479493
598598 −33.7990 −1.38214
599599 9.87006 0.403280 0.201640 0.979460i 0.435373π-0.435373\pi
0.201640 + 0.979460i 0.435373π0.435373\pi
600600 0 0
601601 −17.1716 −0.700443 −0.350222 0.936667i 0.613894π-0.613894\pi
−0.350222 + 0.936667i 0.613894π0.613894\pi
602602 −24.4853 −0.997946
603603 −16.0000 −0.651570
604604 −54.1421 −2.20301
605605 0 0
606606 13.6569 0.554772
607607 7.72792 0.313667 0.156833 0.987625i 0.449871π-0.449871\pi
0.156833 + 0.987625i 0.449871π0.449871\pi
608608 −9.51472 −0.385873
609609 −6.82843 −0.276702
610610 0 0
611611 12.4142 0.502225
612612 −8.97056 −0.362614
613613 9.00000 0.363507 0.181753 0.983344i 0.441823π-0.441823\pi
0.181753 + 0.983344i 0.441823π0.441823\pi
614614 −7.00000 −0.282497
615615 0 0
616616 −5.17157 −0.208369
617617 −0.686292 −0.0276291 −0.0138145 0.999905i 0.504397π-0.504397\pi
−0.0138145 + 0.999905i 0.504397π0.504397\pi
618618 −28.1421 −1.13204
619619 33.5858 1.34993 0.674963 0.737851i 0.264159π-0.264159\pi
0.674963 + 0.737851i 0.264159π0.264159\pi
620620 0 0
621621 −1.51472 −0.0607836
622622 6.48528 0.260036
623623 −35.3137 −1.41481
624624 −27.7279 −1.11001
625625 0 0
626626 −23.7279 −0.948358
627627 6.00000 0.239617
628628 −32.4853 −1.29630
629629 −3.31371 −0.132126
630630 0 0
631631 −36.8284 −1.46612 −0.733058 0.680166i 0.761908π-0.761908\pi
−0.733058 + 0.680166i 0.761908π0.761908\pi
632632 −10.6569 −0.423907
633633 46.7990 1.86009
634634 75.9411 3.01601
635635 0 0
636636 87.6690 3.47630
637637 3.82843 0.151688
638638 −1.00000 −0.0395904
639639 −24.9706 −0.987820
640640 0 0
641641 17.7990 0.703018 0.351509 0.936185i 0.385669π-0.385669\pi
0.351509 + 0.936185i 0.385669π0.385669\pi
642642 −86.4264 −3.41098
643643 −32.4853 −1.28109 −0.640547 0.767919i 0.721292π-0.721292\pi
−0.640547 + 0.767919i 0.721292π0.721292\pi
644644 −39.5980 −1.56038
645645 0 0
646646 −12.0000 −0.472134
647647 −39.6569 −1.55907 −0.779536 0.626358i 0.784545π-0.784545\pi
−0.779536 + 0.626358i 0.784545π0.784545\pi
648648 −41.8701 −1.64481
649649 1.51472 0.0594579
650650 0 0
651651 −68.7696 −2.69529
652652 −15.0416 −0.589076
653653 30.1421 1.17955 0.589776 0.807567i 0.299216π-0.299216\pi
0.589776 + 0.807567i 0.299216π0.299216\pi
654654 −73.7696 −2.88462
655655 0 0
656656 −13.4558 −0.525362
657657 −11.3137 −0.441390
658658 22.1421 0.863190
659659 14.4142 0.561498 0.280749 0.959781i 0.409417π-0.409417\pi
0.280749 + 0.959781i 0.409417π0.409417\pi
660660 0 0
661661 33.3137 1.29575 0.647877 0.761745i 0.275657π-0.275657\pi
0.647877 + 0.761745i 0.275657π0.275657\pi
662662 −5.82843 −0.226528
663663 7.65685 0.297368
664664 −33.7990 −1.31166
665665 0 0
666666 27.3137 1.05838
667667 −3.65685 −0.141594
668668 12.1421 0.469793
669669 −7.65685 −0.296031
670670 0 0
671671 2.00000 0.0772091
672672 10.8284 0.417716
673673 21.6274 0.833676 0.416838 0.908981i 0.363138π-0.363138\pi
0.416838 + 0.908981i 0.363138π0.363138\pi
674674 −52.6274 −2.02713
675675 0 0
676676 6.34315 0.243967
677677 22.0000 0.845529 0.422764 0.906240i 0.361060π-0.361060\pi
0.422764 + 0.906240i 0.361060π0.361060\pi
678678 −77.5980 −2.98013
679679 −12.6863 −0.486855
680680 0 0
681681 −19.6569 −0.753252
682682 −10.0711 −0.385641
683683 −20.9706 −0.802416 −0.401208 0.915987i 0.631410π-0.631410\pi
−0.401208 + 0.915987i 0.631410π0.631410\pi
684684 64.9706 2.48421
685685 0 0
686686 −40.9706 −1.56426
687687 8.48528 0.323734
688688 −10.7574 −0.410120
689689 −36.3137 −1.38344
690690 0 0
691691 48.0000 1.82601 0.913003 0.407953i 0.133757π-0.133757\pi
0.913003 + 0.407953i 0.133757π0.133757\pi
692692 −47.2548 −1.79636
693693 −3.31371 −0.125877
694694 −6.00000 −0.227757
695695 0 0
696696 −10.6569 −0.403947
697697 3.71573 0.140743
698698 −12.4142 −0.469885
699699 44.2132 1.67230
700700 0 0
701701 −40.1127 −1.51504 −0.757518 0.652814i 0.773588π-0.773588\pi
−0.757518 + 0.652814i 0.773588π0.773588\pi
702702 3.82843 0.144495
703703 24.0000 0.905177
704704 4.07107 0.153434
705705 0 0
706706 −65.1127 −2.45055
707707 −6.62742 −0.249250
708708 33.7990 1.27024
709709 29.1421 1.09446 0.547228 0.836984i 0.315683π-0.315683\pi
0.547228 + 0.836984i 0.315683π0.315683\pi
710710 0 0
711711 −6.82843 −0.256086
712712 −55.1127 −2.06544
713713 −36.8284 −1.37924
714714 13.6569 0.511095
715715 0 0
716716 −24.8284 −0.927882
717717 47.4558 1.77227
718718 9.48528 0.353988
719719 −20.1421 −0.751175 −0.375587 0.926787i 0.622559π-0.622559\pi
−0.375587 + 0.926787i 0.622559π0.622559\pi
720720 0 0
721721 13.6569 0.508608
722722 41.0416 1.52741
723723 44.2132 1.64431
724724 31.8284 1.18289
725725 0 0
726726 63.1127 2.34233
727727 −1.31371 −0.0487228 −0.0243614 0.999703i 0.507755π-0.507755\pi
−0.0243614 + 0.999703i 0.507755π0.507755\pi
728728 47.7990 1.77155
729729 −23.8284 −0.882534
730730 0 0
731731 2.97056 0.109870
732732 44.6274 1.64948
733733 41.2548 1.52378 0.761891 0.647705i 0.224271π-0.224271\pi
0.761891 + 0.647705i 0.224271π0.224271\pi
734734 −43.4558 −1.60398
735735 0 0
736736 5.79899 0.213754
737737 2.34315 0.0863109
738738 −30.6274 −1.12741
739739 4.07107 0.149757 0.0748783 0.997193i 0.476143π-0.476143\pi
0.0748783 + 0.997193i 0.476143π0.476143\pi
740740 0 0
741741 −55.4558 −2.03722
742742 −64.7696 −2.37777
743743 −23.6569 −0.867886 −0.433943 0.900940i 0.642878π-0.642878\pi
−0.433943 + 0.900940i 0.642878π0.642878\pi
744744 −107.326 −3.93476
745745 0 0
746746 63.5269 2.32589
747747 −21.6569 −0.792383
748748 1.31371 0.0480339
749749 41.9411 1.53250
750750 0 0
751751 25.3137 0.923710 0.461855 0.886955i 0.347184π-0.347184\pi
0.461855 + 0.886955i 0.347184π0.347184\pi
752752 9.72792 0.354741
753753 −48.4558 −1.76583
754754 9.24264 0.336597
755755 0 0
756756 4.48528 0.163128
757757 −25.5147 −0.927348 −0.463674 0.886006i 0.653469π-0.653469\pi
−0.463674 + 0.886006i 0.653469π0.653469\pi
758758 −16.8284 −0.611236
759759 −3.65685 −0.132735
760760 0 0
761761 45.5980 1.65293 0.826463 0.562991i 0.190350π-0.190350\pi
0.826463 + 0.562991i 0.190350π0.190350\pi
762762 −25.3137 −0.917019
763763 35.7990 1.29601
764764 96.9117 3.50614
765765 0 0
766766 8.48528 0.306586
767767 −14.0000 −0.505511
768768 72.3553 2.61090
769769 −49.1127 −1.77105 −0.885525 0.464592i 0.846201π-0.846201\pi
−0.885525 + 0.464592i 0.846201π0.846201\pi
770770 0 0
771771 −43.8701 −1.57994
772772 19.7990 0.712581
773773 19.5147 0.701896 0.350948 0.936395i 0.385859π-0.385859\pi
0.350948 + 0.936395i 0.385859π0.385859\pi
774774 −24.4853 −0.880105
775775 0 0
776776 −19.7990 −0.710742
777777 −27.3137 −0.979874
778778 7.31371 0.262209
779779 −26.9117 −0.964211
780780 0 0
781781 3.65685 0.130853
782782 7.31371 0.261538
783783 0.414214 0.0148028
784784 3.00000 0.107143
785785 0 0
786786 −124.225 −4.43097
787787 54.0833 1.92786 0.963930 0.266156i 0.0857536π-0.0857536\pi
0.963930 + 0.266156i 0.0857536π0.0857536\pi
788788 −7.65685 −0.272764
789789 6.65685 0.236990
790790 0 0
791791 37.6569 1.33892
792792 −5.17157 −0.183764
793793 −18.4853 −0.656432
794794 −46.6985 −1.65727
795795 0 0
796796 −1.85786 −0.0658503
797797 −51.7401 −1.83273 −0.916364 0.400345i 0.868890π-0.868890\pi
−0.916364 + 0.400345i 0.868890π0.868890\pi
798798 −98.9117 −3.50144
799799 −2.68629 −0.0950342
800800 0 0
801801 −35.3137 −1.24775
802802 −45.0416 −1.59048
803803 1.65685 0.0584691
804804 52.2843 1.84392
805805 0 0
806806 93.0833 3.27872
807807 −75.9411 −2.67325
808808 −10.3431 −0.363871
809809 36.2843 1.27569 0.637844 0.770166i 0.279827π-0.279827\pi
0.637844 + 0.770166i 0.279827π0.279827\pi
810810 0 0
811811 10.8284 0.380238 0.190119 0.981761i 0.439113π-0.439113\pi
0.190119 + 0.981761i 0.439113π0.439113\pi
812812 10.8284 0.380003
813813 −39.9706 −1.40183
814814 −4.00000 −0.140200
815815 0 0
816816 6.00000 0.210042
817817 −21.5147 −0.752705
818818 −45.7990 −1.60132
819819 30.6274 1.07021
820820 0 0
821821 −1.48528 −0.0518367 −0.0259183 0.999664i 0.508251π-0.508251\pi
−0.0259183 + 0.999664i 0.508251π0.508251\pi
822822 69.9411 2.43948
823823 54.2843 1.89223 0.946115 0.323830i 0.104971π-0.104971\pi
0.946115 + 0.323830i 0.104971π0.104971\pi
824824 21.3137 0.742498
825825 0 0
826826 −24.9706 −0.868837
827827 −32.8995 −1.14403 −0.572014 0.820244i 0.693838π-0.693838\pi
−0.572014 + 0.820244i 0.693838π0.693838\pi
828828 −39.5980 −1.37612
829829 −29.7990 −1.03496 −0.517481 0.855695i 0.673130π-0.673130\pi
−0.517481 + 0.855695i 0.673130π0.673130\pi
830830 0 0
831831 −41.7990 −1.44999
832832 −37.6274 −1.30450
833833 −0.828427 −0.0287033
834834 −81.5980 −2.82551
835835 0 0
836836 −9.51472 −0.329073
837837 4.17157 0.144191
838838 −22.9706 −0.793505
839839 −7.92893 −0.273737 −0.136869 0.990589i 0.543704π-0.543704\pi
−0.136869 + 0.990589i 0.543704π0.543704\pi
840840 0 0
841841 1.00000 0.0344828
842842 89.5980 3.08775
843843 −77.1838 −2.65835
844844 −74.2132 −2.55452
845845 0 0
846846 22.1421 0.761262
847847 −30.6274 −1.05237
848848 −28.4558 −0.977178
849849 28.1421 0.965836
850850 0 0
851851 −14.6274 −0.501421
852852 81.5980 2.79550
853853 22.9706 0.786497 0.393249 0.919432i 0.371351π-0.371351\pi
0.393249 + 0.919432i 0.371351π0.371351\pi
854854 −32.9706 −1.12823
855855 0 0
856856 65.4558 2.23723
857857 6.17157 0.210817 0.105408 0.994429i 0.466385π-0.466385\pi
0.105408 + 0.994429i 0.466385π0.466385\pi
858858 9.24264 0.315539
859859 19.7279 0.673108 0.336554 0.941664i 0.390739π-0.390739\pi
0.336554 + 0.941664i 0.390739π0.390739\pi
860860 0 0
861861 30.6274 1.04378
862862 47.4558 1.61635
863863 −17.1127 −0.582523 −0.291262 0.956643i 0.594075π-0.594075\pi
−0.291262 + 0.956643i 0.594075π0.594075\pi
864864 −0.656854 −0.0223466
865865 0 0
866866 −73.9411 −2.51262
867867 39.3848 1.33758
868868 109.054 3.70153
869869 1.00000 0.0339227
870870 0 0
871871 −21.6569 −0.733815
872872 55.8701 1.89200
873873 −12.6863 −0.429366
874874 −52.9706 −1.79176
875875 0 0
876876 36.9706 1.24912
877877 37.1421 1.25420 0.627100 0.778938i 0.284242π-0.284242\pi
0.627100 + 0.778938i 0.284242π0.284242\pi
878878 −0.828427 −0.0279581
879879 18.4853 0.623493
880880 0 0
881881 14.0000 0.471672 0.235836 0.971793i 0.424217π-0.424217\pi
0.235836 + 0.971793i 0.424217π0.424217\pi
882882 6.82843 0.229925
883883 −38.4264 −1.29315 −0.646576 0.762850i 0.723800π-0.723800\pi
−0.646576 + 0.762850i 0.723800π0.723800\pi
884884 −12.1421 −0.408384
885885 0 0
886886 58.7696 1.97440
887887 −17.1005 −0.574179 −0.287089 0.957904i 0.592688π-0.592688\pi
−0.287089 + 0.957904i 0.592688π0.592688\pi
888888 −42.6274 −1.43048
889889 12.2843 0.412001
890890 0 0
891891 3.92893 0.131624
892892 12.1421 0.406549
893893 19.4558 0.651065
894894 45.6274 1.52601
895895 0 0
896896 −58.1421 −1.94239
897897 33.7990 1.12852
898898 −84.4264 −2.81735
899899 10.0711 0.335889
900900 0 0
901901 7.85786 0.261783
902902 4.48528 0.149344
903903 24.4853 0.814819
904904 58.7696 1.95465
905905 0 0
906906 82.4264 2.73843
907907 −22.2843 −0.739937 −0.369969 0.929044i 0.620632π-0.620632\pi
−0.369969 + 0.929044i 0.620632π0.620632\pi
908908 31.1716 1.03446
909909 −6.62742 −0.219818
910910 0 0
911911 −15.4437 −0.511671 −0.255835 0.966720i 0.582351π-0.582351\pi
−0.255835 + 0.966720i 0.582351π0.582351\pi
912912 −43.4558 −1.43897
913913 3.17157 0.104964
914914 −2.48528 −0.0822058
915915 0 0
916916 −13.4558 −0.444594
917917 60.2843 1.99076
918918 −0.828427 −0.0273422
919919 8.14214 0.268584 0.134292 0.990942i 0.457124π-0.457124\pi
0.134292 + 0.990942i 0.457124π0.457124\pi
920920 0 0
921921 7.00000 0.230658
922922 33.7990 1.11311
923923 −33.7990 −1.11251
924924 10.8284 0.356229
925925 0 0
926926 62.7696 2.06274
927927 13.6569 0.448550
928928 −1.58579 −0.0520560
929929 18.6863 0.613077 0.306539 0.951858i 0.400829π-0.400829\pi
0.306539 + 0.951858i 0.400829π0.400829\pi
930930 0 0
931931 6.00000 0.196642
932932 −70.1127 −2.29662
933933 −6.48528 −0.212319
934934 92.5980 3.02990
935935 0 0
936936 47.7990 1.56236
937937 16.6274 0.543194 0.271597 0.962411i 0.412448π-0.412448\pi
0.271597 + 0.962411i 0.412448π0.412448\pi
938938 −38.6274 −1.26123
939939 23.7279 0.774331
940940 0 0
941941 −56.5980 −1.84504 −0.922521 0.385948i 0.873875π-0.873875\pi
−0.922521 + 0.385948i 0.873875π0.873875\pi
942942 49.4558 1.61136
943943 16.4020 0.534123
944944 −10.9706 −0.357061
945945 0 0
946946 3.58579 0.116584
947947 −2.61522 −0.0849834 −0.0424917 0.999097i 0.513530π-0.513530\pi
−0.0424917 + 0.999097i 0.513530π0.513530\pi
948948 22.3137 0.724716
949949 −15.3137 −0.497104
950950 0 0
951951 −75.9411 −2.46256
952952 −10.3431 −0.335223
953953 35.6274 1.15409 0.577043 0.816714i 0.304207π-0.304207\pi
0.577043 + 0.816714i 0.304207π0.304207\pi
954954 −64.7696 −2.09699
955955 0 0
956956 −75.2548 −2.43392
957957 1.00000 0.0323254
958958 16.6569 0.538159
959959 −33.9411 −1.09602
960960 0 0
961961 70.4264 2.27182
962962 36.9706 1.19198
963963 41.9411 1.35153
964964 −70.1127 −2.25818
965965 0 0
966966 60.2843 1.93961
967967 35.2426 1.13333 0.566663 0.823949i 0.308234π-0.308234\pi
0.566663 + 0.823949i 0.308234π0.308234\pi
968968 −47.7990 −1.53632
969969 12.0000 0.385496
970970 0 0
971971 −15.6569 −0.502452 −0.251226 0.967928i 0.580834π-0.580834\pi
−0.251226 + 0.967928i 0.580834π0.580834\pi
972972 82.9117 2.65939
973973 39.5980 1.26945
974974 27.7990 0.890737
975975 0 0
976976 −14.4853 −0.463663
977977 −36.1716 −1.15723 −0.578616 0.815600i 0.696407π-0.696407\pi
−0.578616 + 0.815600i 0.696407π0.696407\pi
978978 22.8995 0.732245
979979 5.17157 0.165284
980980 0 0
981981 35.7990 1.14297
982982 −51.2843 −1.63655
983983 21.8701 0.697547 0.348773 0.937207i 0.386598π-0.386598\pi
0.348773 + 0.937207i 0.386598π0.386598\pi
984984 47.7990 1.52378
985985 0 0
986986 −2.00000 −0.0636930
987987 −22.1421 −0.704792
988988 87.9411 2.79778
989989 13.1127 0.416960
990990 0 0
991991 −12.8284 −0.407508 −0.203754 0.979022i 0.565314π-0.565314\pi
−0.203754 + 0.979022i 0.565314π0.565314\pi
992992 −15.9706 −0.507066
993993 5.82843 0.184960
994994 −60.2843 −1.91210
995995 0 0
996996 70.7696 2.24242
997997 −28.2843 −0.895772 −0.447886 0.894091i 0.647823π-0.647823\pi
−0.447886 + 0.894091i 0.647823π0.647823\pi
998998 45.7990 1.44974
999999 1.65685 0.0524205
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.a.b.1.2 2
3.2 odd 2 6525.2.a.o.1.1 2
5.2 odd 4 725.2.b.b.349.4 4
5.3 odd 4 725.2.b.b.349.1 4
5.4 even 2 29.2.a.a.1.1 2
15.14 odd 2 261.2.a.d.1.2 2
20.19 odd 2 464.2.a.h.1.1 2
35.34 odd 2 1421.2.a.j.1.1 2
40.19 odd 2 1856.2.a.w.1.2 2
40.29 even 2 1856.2.a.r.1.1 2
55.54 odd 2 3509.2.a.j.1.2 2
60.59 even 2 4176.2.a.bq.1.2 2
65.64 even 2 4901.2.a.g.1.2 2
85.84 even 2 8381.2.a.e.1.1 2
145.4 even 14 841.2.d.f.190.1 12
145.9 even 14 841.2.d.f.574.2 12
145.14 odd 28 841.2.e.k.196.4 24
145.19 odd 28 841.2.e.k.651.4 24
145.24 even 14 841.2.d.j.605.2 12
145.34 even 14 841.2.d.f.605.1 12
145.39 odd 28 841.2.e.k.651.1 24
145.44 odd 28 841.2.e.k.196.1 24
145.49 even 14 841.2.d.j.574.1 12
145.54 even 14 841.2.d.j.190.2 12
145.64 even 14 841.2.d.f.645.1 12
145.69 odd 28 841.2.e.k.63.1 24
145.74 even 14 841.2.d.j.778.1 12
145.79 odd 28 841.2.e.k.267.4 24
145.84 odd 28 841.2.e.k.270.4 24
145.89 odd 28 841.2.e.k.236.1 24
145.94 even 14 841.2.d.j.571.2 12
145.99 odd 4 841.2.b.a.840.1 4
145.104 odd 4 841.2.b.a.840.4 4
145.109 even 14 841.2.d.f.571.1 12
145.114 odd 28 841.2.e.k.236.4 24
145.119 odd 28 841.2.e.k.270.1 24
145.124 odd 28 841.2.e.k.267.1 24
145.129 even 14 841.2.d.f.778.2 12
145.134 odd 28 841.2.e.k.63.4 24
145.139 even 14 841.2.d.j.645.2 12
145.144 even 2 841.2.a.d.1.2 2
435.434 odd 2 7569.2.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.a.a.1.1 2 5.4 even 2
261.2.a.d.1.2 2 15.14 odd 2
464.2.a.h.1.1 2 20.19 odd 2
725.2.a.b.1.2 2 1.1 even 1 trivial
725.2.b.b.349.1 4 5.3 odd 4
725.2.b.b.349.4 4 5.2 odd 4
841.2.a.d.1.2 2 145.144 even 2
841.2.b.a.840.1 4 145.99 odd 4
841.2.b.a.840.4 4 145.104 odd 4
841.2.d.f.190.1 12 145.4 even 14
841.2.d.f.571.1 12 145.109 even 14
841.2.d.f.574.2 12 145.9 even 14
841.2.d.f.605.1 12 145.34 even 14
841.2.d.f.645.1 12 145.64 even 14
841.2.d.f.778.2 12 145.129 even 14
841.2.d.j.190.2 12 145.54 even 14
841.2.d.j.571.2 12 145.94 even 14
841.2.d.j.574.1 12 145.49 even 14
841.2.d.j.605.2 12 145.24 even 14
841.2.d.j.645.2 12 145.139 even 14
841.2.d.j.778.1 12 145.74 even 14
841.2.e.k.63.1 24 145.69 odd 28
841.2.e.k.63.4 24 145.134 odd 28
841.2.e.k.196.1 24 145.44 odd 28
841.2.e.k.196.4 24 145.14 odd 28
841.2.e.k.236.1 24 145.89 odd 28
841.2.e.k.236.4 24 145.114 odd 28
841.2.e.k.267.1 24 145.124 odd 28
841.2.e.k.267.4 24 145.79 odd 28
841.2.e.k.270.1 24 145.119 odd 28
841.2.e.k.270.4 24 145.84 odd 28
841.2.e.k.651.1 24 145.39 odd 28
841.2.e.k.651.4 24 145.19 odd 28
1421.2.a.j.1.1 2 35.34 odd 2
1856.2.a.r.1.1 2 40.29 even 2
1856.2.a.w.1.2 2 40.19 odd 2
3509.2.a.j.1.2 2 55.54 odd 2
4176.2.a.bq.1.2 2 60.59 even 2
4901.2.a.g.1.2 2 65.64 even 2
6525.2.a.o.1.1 2 3.2 odd 2
7569.2.a.c.1.1 2 435.434 odd 2
8381.2.a.e.1.1 2 85.84 even 2