Properties

Label 841.2.b.a.840.4
Level $841$
Weight $2$
Character 841.840
Analytic conductor $6.715$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(840,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.840");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 840.4
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 841.840
Dual form 841.2.b.a.840.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41421i q^{2} -2.41421i q^{3} -3.82843 q^{4} +1.00000 q^{5} +5.82843 q^{6} -2.82843 q^{7} -4.41421i q^{8} -2.82843 q^{9} +2.41421i q^{10} +0.414214i q^{11} +9.24264i q^{12} +3.82843 q^{13} -6.82843i q^{14} -2.41421i q^{15} +3.00000 q^{16} -0.828427i q^{17} -6.82843i q^{18} -6.00000i q^{19} -3.82843 q^{20} +6.82843i q^{21} -1.00000 q^{22} +3.65685 q^{23} -10.6569 q^{24} -4.00000 q^{25} +9.24264i q^{26} -0.414214i q^{27} +10.8284 q^{28} +5.82843 q^{30} -10.0711i q^{31} -1.58579i q^{32} +1.00000 q^{33} +2.00000 q^{34} -2.82843 q^{35} +10.8284 q^{36} -4.00000i q^{37} +14.4853 q^{38} -9.24264i q^{39} -4.41421i q^{40} -4.48528i q^{41} -16.4853 q^{42} -3.58579i q^{43} -1.58579i q^{44} -2.82843 q^{45} +8.82843i q^{46} -3.24264i q^{47} -7.24264i q^{48} +1.00000 q^{49} -9.65685i q^{50} -2.00000 q^{51} -14.6569 q^{52} +9.48528 q^{53} +1.00000 q^{54} +0.414214i q^{55} +12.4853i q^{56} -14.4853 q^{57} -3.65685 q^{59} +9.24264i q^{60} +4.82843i q^{61} +24.3137 q^{62} +8.00000 q^{63} +9.82843 q^{64} +3.82843 q^{65} +2.41421i q^{66} -5.65685 q^{67} +3.17157i q^{68} -8.82843i q^{69} -6.82843i q^{70} +8.82843 q^{71} +12.4853i q^{72} +4.00000i q^{73} +9.65685 q^{74} +9.65685i q^{75} +22.9706i q^{76} -1.17157i q^{77} +22.3137 q^{78} +2.41421i q^{79} +3.00000 q^{80} -9.48528 q^{81} +10.8284 q^{82} +7.65685 q^{83} -26.1421i q^{84} -0.828427i q^{85} +8.65685 q^{86} +1.82843 q^{88} +12.4853i q^{89} -6.82843i q^{90} -10.8284 q^{91} -14.0000 q^{92} -24.3137 q^{93} +7.82843 q^{94} -6.00000i q^{95} -3.82843 q^{96} +4.48528i q^{97} +2.41421i q^{98} -1.17157i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 4 q^{5} + 12 q^{6} + 4 q^{13} + 12 q^{16} - 4 q^{20} - 4 q^{22} - 8 q^{23} - 20 q^{24} - 16 q^{25} + 32 q^{28} + 12 q^{30} + 4 q^{33} + 8 q^{34} + 32 q^{36} + 24 q^{38} - 32 q^{42} + 4 q^{49}+ \cdots - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.41421i 1.70711i 0.521005 + 0.853553i \(0.325557\pi\)
−0.521005 + 0.853553i \(0.674443\pi\)
\(3\) − 2.41421i − 1.39385i −0.717146 0.696923i \(-0.754552\pi\)
0.717146 0.696923i \(-0.245448\pi\)
\(4\) −3.82843 −1.91421
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 5.82843 2.37945
\(7\) −2.82843 −1.06904 −0.534522 0.845154i \(-0.679509\pi\)
−0.534522 + 0.845154i \(0.679509\pi\)
\(8\) − 4.41421i − 1.56066i
\(9\) −2.82843 −0.942809
\(10\) 2.41421i 0.763441i
\(11\) 0.414214i 0.124890i 0.998048 + 0.0624450i \(0.0198898\pi\)
−0.998048 + 0.0624450i \(0.980110\pi\)
\(12\) 9.24264i 2.66812i
\(13\) 3.82843 1.06181 0.530907 0.847430i \(-0.321851\pi\)
0.530907 + 0.847430i \(0.321851\pi\)
\(14\) − 6.82843i − 1.82497i
\(15\) − 2.41421i − 0.623347i
\(16\) 3.00000 0.750000
\(17\) − 0.828427i − 0.200923i −0.994941 0.100462i \(-0.967968\pi\)
0.994941 0.100462i \(-0.0320319\pi\)
\(18\) − 6.82843i − 1.60948i
\(19\) − 6.00000i − 1.37649i −0.725476 0.688247i \(-0.758380\pi\)
0.725476 0.688247i \(-0.241620\pi\)
\(20\) −3.82843 −0.856062
\(21\) 6.82843i 1.49008i
\(22\) −1.00000 −0.213201
\(23\) 3.65685 0.762507 0.381253 0.924471i \(-0.375493\pi\)
0.381253 + 0.924471i \(0.375493\pi\)
\(24\) −10.6569 −2.17532
\(25\) −4.00000 −0.800000
\(26\) 9.24264i 1.81263i
\(27\) − 0.414214i − 0.0797154i
\(28\) 10.8284 2.04638
\(29\) 0 0
\(30\) 5.82843 1.06412
\(31\) − 10.0711i − 1.80882i −0.426667 0.904409i \(-0.640313\pi\)
0.426667 0.904409i \(-0.359687\pi\)
\(32\) − 1.58579i − 0.280330i
\(33\) 1.00000 0.174078
\(34\) 2.00000 0.342997
\(35\) −2.82843 −0.478091
\(36\) 10.8284 1.80474
\(37\) − 4.00000i − 0.657596i −0.944400 0.328798i \(-0.893356\pi\)
0.944400 0.328798i \(-0.106644\pi\)
\(38\) 14.4853 2.34982
\(39\) − 9.24264i − 1.48001i
\(40\) − 4.41421i − 0.697948i
\(41\) − 4.48528i − 0.700483i −0.936659 0.350242i \(-0.886099\pi\)
0.936659 0.350242i \(-0.113901\pi\)
\(42\) −16.4853 −2.54373
\(43\) − 3.58579i − 0.546827i −0.961897 0.273414i \(-0.911847\pi\)
0.961897 0.273414i \(-0.0881528\pi\)
\(44\) − 1.58579i − 0.239066i
\(45\) −2.82843 −0.421637
\(46\) 8.82843i 1.30168i
\(47\) − 3.24264i − 0.472988i −0.971633 0.236494i \(-0.924002\pi\)
0.971633 0.236494i \(-0.0759983\pi\)
\(48\) − 7.24264i − 1.04539i
\(49\) 1.00000 0.142857
\(50\) − 9.65685i − 1.36569i
\(51\) −2.00000 −0.280056
\(52\) −14.6569 −2.03254
\(53\) 9.48528 1.30290 0.651452 0.758690i \(-0.274160\pi\)
0.651452 + 0.758690i \(0.274160\pi\)
\(54\) 1.00000 0.136083
\(55\) 0.414214i 0.0558525i
\(56\) 12.4853i 1.66842i
\(57\) −14.4853 −1.91862
\(58\) 0 0
\(59\) −3.65685 −0.476082 −0.238041 0.971255i \(-0.576505\pi\)
−0.238041 + 0.971255i \(0.576505\pi\)
\(60\) 9.24264i 1.19322i
\(61\) 4.82843i 0.618217i 0.951027 + 0.309108i \(0.100031\pi\)
−0.951027 + 0.309108i \(0.899969\pi\)
\(62\) 24.3137 3.08784
\(63\) 8.00000 1.00791
\(64\) 9.82843 1.22855
\(65\) 3.82843 0.474858
\(66\) 2.41421i 0.297169i
\(67\) −5.65685 −0.691095 −0.345547 0.938401i \(-0.612307\pi\)
−0.345547 + 0.938401i \(0.612307\pi\)
\(68\) 3.17157i 0.384610i
\(69\) − 8.82843i − 1.06282i
\(70\) − 6.82843i − 0.816153i
\(71\) 8.82843 1.04774 0.523871 0.851798i \(-0.324487\pi\)
0.523871 + 0.851798i \(0.324487\pi\)
\(72\) 12.4853i 1.47140i
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) 9.65685 1.12259
\(75\) 9.65685i 1.11508i
\(76\) 22.9706i 2.63490i
\(77\) − 1.17157i − 0.133513i
\(78\) 22.3137 2.52653
\(79\) 2.41421i 0.271620i 0.990735 + 0.135810i \(0.0433637\pi\)
−0.990735 + 0.135810i \(0.956636\pi\)
\(80\) 3.00000 0.335410
\(81\) −9.48528 −1.05392
\(82\) 10.8284 1.19580
\(83\) 7.65685 0.840449 0.420224 0.907420i \(-0.361951\pi\)
0.420224 + 0.907420i \(0.361951\pi\)
\(84\) − 26.1421i − 2.85234i
\(85\) − 0.828427i − 0.0898555i
\(86\) 8.65685 0.933493
\(87\) 0 0
\(88\) 1.82843 0.194911
\(89\) 12.4853i 1.32344i 0.749752 + 0.661719i \(0.230173\pi\)
−0.749752 + 0.661719i \(0.769827\pi\)
\(90\) − 6.82843i − 0.719779i
\(91\) −10.8284 −1.13513
\(92\) −14.0000 −1.45960
\(93\) −24.3137 −2.52121
\(94\) 7.82843 0.807441
\(95\) − 6.00000i − 0.615587i
\(96\) −3.82843 −0.390737
\(97\) 4.48528i 0.455411i 0.973730 + 0.227706i \(0.0731224\pi\)
−0.973730 + 0.227706i \(0.926878\pi\)
\(98\) 2.41421i 0.243872i
\(99\) − 1.17157i − 0.117748i
\(100\) 15.3137 1.53137
\(101\) 2.34315i 0.233152i 0.993182 + 0.116576i \(0.0371918\pi\)
−0.993182 + 0.116576i \(0.962808\pi\)
\(102\) − 4.82843i − 0.478086i
\(103\) −4.82843 −0.475759 −0.237880 0.971295i \(-0.576452\pi\)
−0.237880 + 0.971295i \(0.576452\pi\)
\(104\) − 16.8995i − 1.65713i
\(105\) 6.82843i 0.666386i
\(106\) 22.8995i 2.22420i
\(107\) −14.8284 −1.43352 −0.716759 0.697321i \(-0.754375\pi\)
−0.716759 + 0.697321i \(0.754375\pi\)
\(108\) 1.58579i 0.152592i
\(109\) −12.6569 −1.21231 −0.606153 0.795348i \(-0.707288\pi\)
−0.606153 + 0.795348i \(0.707288\pi\)
\(110\) −1.00000 −0.0953463
\(111\) −9.65685 −0.916588
\(112\) −8.48528 −0.801784
\(113\) − 13.3137i − 1.25245i −0.779643 0.626224i \(-0.784599\pi\)
0.779643 0.626224i \(-0.215401\pi\)
\(114\) − 34.9706i − 3.27529i
\(115\) 3.65685 0.341003
\(116\) 0 0
\(117\) −10.8284 −1.00109
\(118\) − 8.82843i − 0.812723i
\(119\) 2.34315i 0.214796i
\(120\) −10.6569 −0.972833
\(121\) 10.8284 0.984402
\(122\) −11.6569 −1.05536
\(123\) −10.8284 −0.976366
\(124\) 38.5563i 3.46246i
\(125\) −9.00000 −0.804984
\(126\) 19.3137i 1.72060i
\(127\) 4.34315i 0.385392i 0.981259 + 0.192696i \(0.0617231\pi\)
−0.981259 + 0.192696i \(0.938277\pi\)
\(128\) 20.5563i 1.81694i
\(129\) −8.65685 −0.762194
\(130\) 9.24264i 0.810633i
\(131\) 21.3137i 1.86219i 0.364780 + 0.931094i \(0.381144\pi\)
−0.364780 + 0.931094i \(0.618856\pi\)
\(132\) −3.82843 −0.333222
\(133\) 16.9706i 1.47153i
\(134\) − 13.6569i − 1.17977i
\(135\) − 0.414214i − 0.0356498i
\(136\) −3.65685 −0.313573
\(137\) − 12.0000i − 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) 21.3137 1.81434
\(139\) 14.0000 1.18746 0.593732 0.804663i \(-0.297654\pi\)
0.593732 + 0.804663i \(0.297654\pi\)
\(140\) 10.8284 0.915169
\(141\) −7.82843 −0.659272
\(142\) 21.3137i 1.78861i
\(143\) 1.58579i 0.132610i
\(144\) −8.48528 −0.707107
\(145\) 0 0
\(146\) −9.65685 −0.799207
\(147\) − 2.41421i − 0.199121i
\(148\) 15.3137i 1.25878i
\(149\) 7.82843 0.641330 0.320665 0.947193i \(-0.396094\pi\)
0.320665 + 0.947193i \(0.396094\pi\)
\(150\) −23.3137 −1.90356
\(151\) 14.1421 1.15087 0.575435 0.817847i \(-0.304833\pi\)
0.575435 + 0.817847i \(0.304833\pi\)
\(152\) −26.4853 −2.14824
\(153\) 2.34315i 0.189432i
\(154\) 2.82843 0.227921
\(155\) − 10.0711i − 0.808928i
\(156\) 35.3848i 2.83305i
\(157\) 8.48528i 0.677199i 0.940931 + 0.338600i \(0.109953\pi\)
−0.940931 + 0.338600i \(0.890047\pi\)
\(158\) −5.82843 −0.463685
\(159\) − 22.8995i − 1.81605i
\(160\) − 1.58579i − 0.125367i
\(161\) −10.3431 −0.815154
\(162\) − 22.8995i − 1.79915i
\(163\) 3.92893i 0.307738i 0.988091 + 0.153869i \(0.0491733\pi\)
−0.988091 + 0.153869i \(0.950827\pi\)
\(164\) 17.1716i 1.34087i
\(165\) 1.00000 0.0778499
\(166\) 18.4853i 1.43474i
\(167\) 3.17157 0.245424 0.122712 0.992442i \(-0.460841\pi\)
0.122712 + 0.992442i \(0.460841\pi\)
\(168\) 30.1421 2.32552
\(169\) 1.65685 0.127450
\(170\) 2.00000 0.153393
\(171\) 16.9706i 1.29777i
\(172\) 13.7279i 1.04674i
\(173\) −12.3431 −0.938432 −0.469216 0.883083i \(-0.655463\pi\)
−0.469216 + 0.883083i \(0.655463\pi\)
\(174\) 0 0
\(175\) 11.3137 0.855236
\(176\) 1.24264i 0.0936676i
\(177\) 8.82843i 0.663585i
\(178\) −30.1421 −2.25925
\(179\) 6.48528 0.484733 0.242366 0.970185i \(-0.422076\pi\)
0.242366 + 0.970185i \(0.422076\pi\)
\(180\) 10.8284 0.807103
\(181\) 8.31371 0.617953 0.308977 0.951070i \(-0.400014\pi\)
0.308977 + 0.951070i \(0.400014\pi\)
\(182\) − 26.1421i − 1.93778i
\(183\) 11.6569 0.861699
\(184\) − 16.1421i − 1.19001i
\(185\) − 4.00000i − 0.294086i
\(186\) − 58.6985i − 4.30398i
\(187\) 0.343146 0.0250933
\(188\) 12.4142i 0.905400i
\(189\) 1.17157i 0.0852194i
\(190\) 14.4853 1.05087
\(191\) − 25.3137i − 1.83164i −0.401594 0.915818i \(-0.631544\pi\)
0.401594 0.915818i \(-0.368456\pi\)
\(192\) − 23.7279i − 1.71242i
\(193\) 5.17157i 0.372258i 0.982525 + 0.186129i \(0.0595942\pi\)
−0.982525 + 0.186129i \(0.940406\pi\)
\(194\) −10.8284 −0.777436
\(195\) − 9.24264i − 0.661879i
\(196\) −3.82843 −0.273459
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 2.82843 0.201008
\(199\) −0.485281 −0.0344007 −0.0172003 0.999852i \(-0.505475\pi\)
−0.0172003 + 0.999852i \(0.505475\pi\)
\(200\) 17.6569i 1.24853i
\(201\) 13.6569i 0.963280i
\(202\) −5.65685 −0.398015
\(203\) 0 0
\(204\) 7.65685 0.536087
\(205\) − 4.48528i − 0.313266i
\(206\) − 11.6569i − 0.812172i
\(207\) −10.3431 −0.718898
\(208\) 11.4853 0.796361
\(209\) 2.48528 0.171911
\(210\) −16.4853 −1.13759
\(211\) − 19.3848i − 1.33450i −0.744832 0.667252i \(-0.767471\pi\)
0.744832 0.667252i \(-0.232529\pi\)
\(212\) −36.3137 −2.49404
\(213\) − 21.3137i − 1.46039i
\(214\) − 35.7990i − 2.44717i
\(215\) − 3.58579i − 0.244549i
\(216\) −1.82843 −0.124409
\(217\) 28.4853i 1.93371i
\(218\) − 30.5563i − 2.06954i
\(219\) 9.65685 0.652550
\(220\) − 1.58579i − 0.106914i
\(221\) − 3.17157i − 0.213343i
\(222\) − 23.3137i − 1.56471i
\(223\) −3.17157 −0.212384 −0.106192 0.994346i \(-0.533866\pi\)
−0.106192 + 0.994346i \(0.533866\pi\)
\(224\) 4.48528i 0.299685i
\(225\) 11.3137 0.754247
\(226\) 32.1421 2.13806
\(227\) −8.14214 −0.540413 −0.270206 0.962802i \(-0.587092\pi\)
−0.270206 + 0.962802i \(0.587092\pi\)
\(228\) 55.4558 3.67265
\(229\) − 3.51472i − 0.232259i −0.993234 0.116130i \(-0.962951\pi\)
0.993234 0.116130i \(-0.0370488\pi\)
\(230\) 8.82843i 0.582129i
\(231\) −2.82843 −0.186097
\(232\) 0 0
\(233\) 18.3137 1.19977 0.599885 0.800086i \(-0.295213\pi\)
0.599885 + 0.800086i \(0.295213\pi\)
\(234\) − 26.1421i − 1.70896i
\(235\) − 3.24264i − 0.211527i
\(236\) 14.0000 0.911322
\(237\) 5.82843 0.378597
\(238\) −5.65685 −0.366679
\(239\) −19.6569 −1.27150 −0.635748 0.771897i \(-0.719308\pi\)
−0.635748 + 0.771897i \(0.719308\pi\)
\(240\) − 7.24264i − 0.467510i
\(241\) 18.3137 1.17969 0.589845 0.807517i \(-0.299189\pi\)
0.589845 + 0.807517i \(0.299189\pi\)
\(242\) 26.1421i 1.68048i
\(243\) 21.6569i 1.38929i
\(244\) − 18.4853i − 1.18340i
\(245\) 1.00000 0.0638877
\(246\) − 26.1421i − 1.66676i
\(247\) − 22.9706i − 1.46158i
\(248\) −44.4558 −2.82295
\(249\) − 18.4853i − 1.17146i
\(250\) − 21.7279i − 1.37419i
\(251\) − 20.0711i − 1.26687i −0.773794 0.633437i \(-0.781643\pi\)
0.773794 0.633437i \(-0.218357\pi\)
\(252\) −30.6274 −1.92935
\(253\) 1.51472i 0.0952295i
\(254\) −10.4853 −0.657905
\(255\) −2.00000 −0.125245
\(256\) −29.9706 −1.87316
\(257\) −18.1716 −1.13351 −0.566756 0.823886i \(-0.691802\pi\)
−0.566756 + 0.823886i \(0.691802\pi\)
\(258\) − 20.8995i − 1.30115i
\(259\) 11.3137i 0.703000i
\(260\) −14.6569 −0.908980
\(261\) 0 0
\(262\) −51.4558 −3.17895
\(263\) − 2.75736i − 0.170026i −0.996380 0.0850130i \(-0.972907\pi\)
0.996380 0.0850130i \(-0.0270932\pi\)
\(264\) − 4.41421i − 0.271676i
\(265\) 9.48528 0.582676
\(266\) −40.9706 −2.51207
\(267\) 30.1421 1.84467
\(268\) 21.6569 1.32290
\(269\) 31.4558i 1.91790i 0.283581 + 0.958948i \(0.408478\pi\)
−0.283581 + 0.958948i \(0.591522\pi\)
\(270\) 1.00000 0.0608581
\(271\) 16.5563i 1.00573i 0.864366 + 0.502863i \(0.167720\pi\)
−0.864366 + 0.502863i \(0.832280\pi\)
\(272\) − 2.48528i − 0.150692i
\(273\) 26.1421i 1.58219i
\(274\) 28.9706 1.75018
\(275\) − 1.65685i − 0.0999121i
\(276\) 33.7990i 2.03446i
\(277\) −17.3137 −1.04028 −0.520140 0.854081i \(-0.674120\pi\)
−0.520140 + 0.854081i \(0.674120\pi\)
\(278\) 33.7990i 2.02713i
\(279\) 28.4853i 1.70537i
\(280\) 12.4853i 0.746138i
\(281\) 31.9706 1.90720 0.953602 0.301070i \(-0.0973439\pi\)
0.953602 + 0.301070i \(0.0973439\pi\)
\(282\) − 18.8995i − 1.12545i
\(283\) −11.6569 −0.692928 −0.346464 0.938063i \(-0.612618\pi\)
−0.346464 + 0.938063i \(0.612618\pi\)
\(284\) −33.7990 −2.00560
\(285\) −14.4853 −0.858034
\(286\) −3.82843 −0.226380
\(287\) 12.6863i 0.748848i
\(288\) 4.48528i 0.264298i
\(289\) 16.3137 0.959630
\(290\) 0 0
\(291\) 10.8284 0.634774
\(292\) − 15.3137i − 0.896167i
\(293\) − 7.65685i − 0.447318i −0.974667 0.223659i \(-0.928200\pi\)
0.974667 0.223659i \(-0.0718002\pi\)
\(294\) 5.82843 0.339921
\(295\) −3.65685 −0.212910
\(296\) −17.6569 −1.02628
\(297\) 0.171573 0.00995567
\(298\) 18.8995i 1.09482i
\(299\) 14.0000 0.809641
\(300\) − 36.9706i − 2.13450i
\(301\) 10.1421i 0.584583i
\(302\) 34.1421i 1.96466i
\(303\) 5.65685 0.324978
\(304\) − 18.0000i − 1.03237i
\(305\) 4.82843i 0.276475i
\(306\) −5.65685 −0.323381
\(307\) − 2.89949i − 0.165483i −0.996571 0.0827415i \(-0.973632\pi\)
0.996571 0.0827415i \(-0.0263676\pi\)
\(308\) 4.48528i 0.255573i
\(309\) 11.6569i 0.663135i
\(310\) 24.3137 1.38093
\(311\) − 2.68629i − 0.152326i −0.997095 0.0761628i \(-0.975733\pi\)
0.997095 0.0761628i \(-0.0242669\pi\)
\(312\) −40.7990 −2.30979
\(313\) 9.82843 0.555536 0.277768 0.960648i \(-0.410405\pi\)
0.277768 + 0.960648i \(0.410405\pi\)
\(314\) −20.4853 −1.15605
\(315\) 8.00000 0.450749
\(316\) − 9.24264i − 0.519939i
\(317\) − 31.4558i − 1.76674i −0.468680 0.883368i \(-0.655270\pi\)
0.468680 0.883368i \(-0.344730\pi\)
\(318\) 55.2843 3.10019
\(319\) 0 0
\(320\) 9.82843 0.549426
\(321\) 35.7990i 1.99810i
\(322\) − 24.9706i − 1.39156i
\(323\) −4.97056 −0.276570
\(324\) 36.3137 2.01743
\(325\) −15.3137 −0.849452
\(326\) −9.48528 −0.525341
\(327\) 30.5563i 1.68977i
\(328\) −19.7990 −1.09322
\(329\) 9.17157i 0.505645i
\(330\) 2.41421i 0.132898i
\(331\) − 2.41421i − 0.132697i −0.997797 0.0663486i \(-0.978865\pi\)
0.997797 0.0663486i \(-0.0211349\pi\)
\(332\) −29.3137 −1.60880
\(333\) 11.3137i 0.619987i
\(334\) 7.65685i 0.418964i
\(335\) −5.65685 −0.309067
\(336\) 20.4853i 1.11756i
\(337\) 21.7990i 1.18747i 0.804662 + 0.593733i \(0.202347\pi\)
−0.804662 + 0.593733i \(0.797653\pi\)
\(338\) 4.00000i 0.217571i
\(339\) −32.1421 −1.74572
\(340\) 3.17157i 0.172003i
\(341\) 4.17157 0.225903
\(342\) −40.9706 −2.21543
\(343\) 16.9706 0.916324
\(344\) −15.8284 −0.853412
\(345\) − 8.82843i − 0.475307i
\(346\) − 29.7990i − 1.60200i
\(347\) −2.48528 −0.133417 −0.0667084 0.997773i \(-0.521250\pi\)
−0.0667084 + 0.997773i \(0.521250\pi\)
\(348\) 0 0
\(349\) −5.14214 −0.275252 −0.137626 0.990484i \(-0.543947\pi\)
−0.137626 + 0.990484i \(0.543947\pi\)
\(350\) 27.3137i 1.45998i
\(351\) − 1.58579i − 0.0846430i
\(352\) 0.656854 0.0350104
\(353\) −26.9706 −1.43550 −0.717749 0.696302i \(-0.754828\pi\)
−0.717749 + 0.696302i \(0.754828\pi\)
\(354\) −21.3137 −1.13281
\(355\) 8.82843 0.468564
\(356\) − 47.7990i − 2.53334i
\(357\) 5.65685 0.299392
\(358\) 15.6569i 0.827490i
\(359\) − 3.92893i − 0.207361i −0.994611 0.103681i \(-0.966938\pi\)
0.994611 0.103681i \(-0.0330620\pi\)
\(360\) 12.4853i 0.658032i
\(361\) −17.0000 −0.894737
\(362\) 20.0711i 1.05491i
\(363\) − 26.1421i − 1.37211i
\(364\) 41.4558 2.17288
\(365\) 4.00000i 0.209370i
\(366\) 28.1421i 1.47101i
\(367\) − 18.0000i − 0.939592i −0.882775 0.469796i \(-0.844327\pi\)
0.882775 0.469796i \(-0.155673\pi\)
\(368\) 10.9706 0.571880
\(369\) 12.6863i 0.660422i
\(370\) 9.65685 0.502036
\(371\) −26.8284 −1.39286
\(372\) 93.0833 4.82614
\(373\) −26.3137 −1.36247 −0.681236 0.732064i \(-0.738557\pi\)
−0.681236 + 0.732064i \(0.738557\pi\)
\(374\) 0.828427i 0.0428369i
\(375\) 21.7279i 1.12203i
\(376\) −14.3137 −0.738173
\(377\) 0 0
\(378\) −2.82843 −0.145479
\(379\) 6.97056i 0.358054i 0.983844 + 0.179027i \(0.0572949\pi\)
−0.983844 + 0.179027i \(0.942705\pi\)
\(380\) 22.9706i 1.17837i
\(381\) 10.4853 0.537177
\(382\) 61.1127 3.12680
\(383\) 3.51472 0.179594 0.0897969 0.995960i \(-0.471378\pi\)
0.0897969 + 0.995960i \(0.471378\pi\)
\(384\) 49.6274 2.53254
\(385\) − 1.17157i − 0.0597089i
\(386\) −12.4853 −0.635484
\(387\) 10.1421i 0.515554i
\(388\) − 17.1716i − 0.871755i
\(389\) 3.02944i 0.153599i 0.997047 + 0.0767993i \(0.0244701\pi\)
−0.997047 + 0.0767993i \(0.975530\pi\)
\(390\) 22.3137 1.12990
\(391\) − 3.02944i − 0.153205i
\(392\) − 4.41421i − 0.222951i
\(393\) 51.4558 2.59560
\(394\) 4.82843i 0.243253i
\(395\) 2.41421i 0.121472i
\(396\) 4.48528i 0.225394i
\(397\) 19.3431 0.970805 0.485402 0.874291i \(-0.338673\pi\)
0.485402 + 0.874291i \(0.338673\pi\)
\(398\) − 1.17157i − 0.0587256i
\(399\) 40.9706 2.05109
\(400\) −12.0000 −0.600000
\(401\) −18.6569 −0.931679 −0.465839 0.884869i \(-0.654248\pi\)
−0.465839 + 0.884869i \(0.654248\pi\)
\(402\) −32.9706 −1.64442
\(403\) − 38.5563i − 1.92063i
\(404\) − 8.97056i − 0.446302i
\(405\) −9.48528 −0.471327
\(406\) 0 0
\(407\) 1.65685 0.0821272
\(408\) 8.82843i 0.437072i
\(409\) 18.9706i 0.938034i 0.883189 + 0.469017i \(0.155392\pi\)
−0.883189 + 0.469017i \(0.844608\pi\)
\(410\) 10.8284 0.534778
\(411\) −28.9706 −1.42901
\(412\) 18.4853 0.910704
\(413\) 10.3431 0.508953
\(414\) − 24.9706i − 1.22724i
\(415\) 7.65685 0.375860
\(416\) − 6.07107i − 0.297659i
\(417\) − 33.7990i − 1.65514i
\(418\) 6.00000i 0.293470i
\(419\) 9.51472 0.464824 0.232412 0.972617i \(-0.425338\pi\)
0.232412 + 0.972617i \(0.425338\pi\)
\(420\) − 26.1421i − 1.27561i
\(421\) 37.1127i 1.80876i 0.426726 + 0.904381i \(0.359667\pi\)
−0.426726 + 0.904381i \(0.640333\pi\)
\(422\) 46.7990 2.27814
\(423\) 9.17157i 0.445937i
\(424\) − 41.8701i − 2.03339i
\(425\) 3.31371i 0.160738i
\(426\) 51.4558 2.49304
\(427\) − 13.6569i − 0.660901i
\(428\) 56.7696 2.74406
\(429\) 3.82843 0.184838
\(430\) 8.65685 0.417471
\(431\) 19.6569 0.946837 0.473419 0.880838i \(-0.343020\pi\)
0.473419 + 0.880838i \(0.343020\pi\)
\(432\) − 1.24264i − 0.0597866i
\(433\) 30.6274i 1.47186i 0.677058 + 0.735930i \(0.263255\pi\)
−0.677058 + 0.735930i \(0.736745\pi\)
\(434\) −68.7696 −3.30104
\(435\) 0 0
\(436\) 48.4558 2.32061
\(437\) − 21.9411i − 1.04959i
\(438\) 23.3137i 1.11397i
\(439\) 0.343146 0.0163775 0.00818873 0.999966i \(-0.497393\pi\)
0.00818873 + 0.999966i \(0.497393\pi\)
\(440\) 1.82843 0.0871668
\(441\) −2.82843 −0.134687
\(442\) 7.65685 0.364199
\(443\) − 24.3431i − 1.15658i −0.815832 0.578289i \(-0.803721\pi\)
0.815832 0.578289i \(-0.196279\pi\)
\(444\) 36.9706 1.75455
\(445\) 12.4853i 0.591859i
\(446\) − 7.65685i − 0.362563i
\(447\) − 18.8995i − 0.893915i
\(448\) −27.7990 −1.31338
\(449\) 34.9706i 1.65036i 0.564868 + 0.825181i \(0.308927\pi\)
−0.564868 + 0.825181i \(0.691073\pi\)
\(450\) 27.3137i 1.28758i
\(451\) 1.85786 0.0874834
\(452\) 50.9706i 2.39745i
\(453\) − 34.1421i − 1.60414i
\(454\) − 19.6569i − 0.922542i
\(455\) −10.8284 −0.507644
\(456\) 63.9411i 2.99432i
\(457\) −1.02944 −0.0481550 −0.0240775 0.999710i \(-0.507665\pi\)
−0.0240775 + 0.999710i \(0.507665\pi\)
\(458\) 8.48528 0.396491
\(459\) −0.343146 −0.0160167
\(460\) −14.0000 −0.652753
\(461\) 14.0000i 0.652045i 0.945362 + 0.326023i \(0.105709\pi\)
−0.945362 + 0.326023i \(0.894291\pi\)
\(462\) − 6.82843i − 0.317687i
\(463\) 26.0000 1.20832 0.604161 0.796862i \(-0.293508\pi\)
0.604161 + 0.796862i \(0.293508\pi\)
\(464\) 0 0
\(465\) −24.3137 −1.12752
\(466\) 44.2132i 2.04814i
\(467\) 38.3553i 1.77487i 0.460930 + 0.887437i \(0.347516\pi\)
−0.460930 + 0.887437i \(0.652484\pi\)
\(468\) 41.4558 1.91630
\(469\) 16.0000 0.738811
\(470\) 7.82843 0.361098
\(471\) 20.4853 0.943912
\(472\) 16.1421i 0.743002i
\(473\) 1.48528 0.0682933
\(474\) 14.0711i 0.646306i
\(475\) 24.0000i 1.10120i
\(476\) − 8.97056i − 0.411165i
\(477\) −26.8284 −1.22839
\(478\) − 47.4558i − 2.17058i
\(479\) 6.89949i 0.315246i 0.987499 + 0.157623i \(0.0503831\pi\)
−0.987499 + 0.157623i \(0.949617\pi\)
\(480\) −3.82843 −0.174743
\(481\) − 15.3137i − 0.698245i
\(482\) 44.2132i 2.01386i
\(483\) 24.9706i 1.13620i
\(484\) −41.4558 −1.88436
\(485\) 4.48528i 0.203666i
\(486\) −52.2843 −2.37166
\(487\) −11.5147 −0.521782 −0.260891 0.965368i \(-0.584016\pi\)
−0.260891 + 0.965368i \(0.584016\pi\)
\(488\) 21.3137 0.964826
\(489\) 9.48528 0.428939
\(490\) 2.41421i 0.109063i
\(491\) − 21.2426i − 0.958667i −0.877633 0.479333i \(-0.840878\pi\)
0.877633 0.479333i \(-0.159122\pi\)
\(492\) 41.4558 1.86897
\(493\) 0 0
\(494\) 55.4558 2.49508
\(495\) − 1.17157i − 0.0526583i
\(496\) − 30.2132i − 1.35661i
\(497\) −24.9706 −1.12008
\(498\) 44.6274 1.99980
\(499\) −18.9706 −0.849239 −0.424620 0.905372i \(-0.639592\pi\)
−0.424620 + 0.905372i \(0.639592\pi\)
\(500\) 34.4558 1.54091
\(501\) − 7.65685i − 0.342083i
\(502\) 48.4558 2.16269
\(503\) 0.272078i 0.0121314i 0.999982 + 0.00606568i \(0.00193078\pi\)
−0.999982 + 0.00606568i \(0.998069\pi\)
\(504\) − 35.3137i − 1.57300i
\(505\) 2.34315i 0.104269i
\(506\) −3.65685 −0.162567
\(507\) − 4.00000i − 0.177646i
\(508\) − 16.6274i − 0.737722i
\(509\) −10.5147 −0.466057 −0.233028 0.972470i \(-0.574863\pi\)
−0.233028 + 0.972470i \(0.574863\pi\)
\(510\) − 4.82843i − 0.213806i
\(511\) − 11.3137i − 0.500489i
\(512\) − 31.2426i − 1.38074i
\(513\) −2.48528 −0.109728
\(514\) − 43.8701i − 1.93503i
\(515\) −4.82843 −0.212766
\(516\) 33.1421 1.45900
\(517\) 1.34315 0.0590715
\(518\) −27.3137 −1.20010
\(519\) 29.7990i 1.30803i
\(520\) − 16.8995i − 0.741092i
\(521\) 29.1421 1.27674 0.638370 0.769730i \(-0.279609\pi\)
0.638370 + 0.769730i \(0.279609\pi\)
\(522\) 0 0
\(523\) 4.68629 0.204917 0.102459 0.994737i \(-0.467329\pi\)
0.102459 + 0.994737i \(0.467329\pi\)
\(524\) − 81.5980i − 3.56462i
\(525\) − 27.3137i − 1.19207i
\(526\) 6.65685 0.290253
\(527\) −8.34315 −0.363433
\(528\) 3.00000 0.130558
\(529\) −9.62742 −0.418583
\(530\) 22.8995i 0.994690i
\(531\) 10.3431 0.448854
\(532\) − 64.9706i − 2.81683i
\(533\) − 17.1716i − 0.743783i
\(534\) 72.7696i 3.14905i
\(535\) −14.8284 −0.641089
\(536\) 24.9706i 1.07856i
\(537\) − 15.6569i − 0.675643i
\(538\) −75.9411 −3.27405
\(539\) 0.414214i 0.0178414i
\(540\) 1.58579i 0.0682414i
\(541\) 10.3431i 0.444687i 0.974968 + 0.222343i \(0.0713706\pi\)
−0.974968 + 0.222343i \(0.928629\pi\)
\(542\) −39.9706 −1.71688
\(543\) − 20.0711i − 0.861332i
\(544\) −1.31371 −0.0563248
\(545\) −12.6569 −0.542160
\(546\) −63.1127 −2.70097
\(547\) 35.7990 1.53065 0.765327 0.643641i \(-0.222577\pi\)
0.765327 + 0.643641i \(0.222577\pi\)
\(548\) 45.9411i 1.96251i
\(549\) − 13.6569i − 0.582860i
\(550\) 4.00000 0.170561
\(551\) 0 0
\(552\) −38.9706 −1.65870
\(553\) − 6.82843i − 0.290374i
\(554\) − 41.7990i − 1.77587i
\(555\) −9.65685 −0.409911
\(556\) −53.5980 −2.27306
\(557\) 17.3137 0.733605 0.366803 0.930299i \(-0.380452\pi\)
0.366803 + 0.930299i \(0.380452\pi\)
\(558\) −68.7696 −2.91125
\(559\) − 13.7279i − 0.580629i
\(560\) −8.48528 −0.358569
\(561\) − 0.828427i − 0.0349762i
\(562\) 77.1838i 3.25580i
\(563\) − 0.757359i − 0.0319189i −0.999873 0.0159594i \(-0.994920\pi\)
0.999873 0.0159594i \(-0.00508026\pi\)
\(564\) 29.9706 1.26199
\(565\) − 13.3137i − 0.560112i
\(566\) − 28.1421i − 1.18290i
\(567\) 26.8284 1.12669
\(568\) − 38.9706i − 1.63517i
\(569\) − 39.6569i − 1.66250i −0.555897 0.831251i \(-0.687625\pi\)
0.555897 0.831251i \(-0.312375\pi\)
\(570\) − 34.9706i − 1.46476i
\(571\) 14.6274 0.612138 0.306069 0.952009i \(-0.400986\pi\)
0.306069 + 0.952009i \(0.400986\pi\)
\(572\) − 6.07107i − 0.253844i
\(573\) −61.1127 −2.55302
\(574\) −30.6274 −1.27836
\(575\) −14.6274 −0.610005
\(576\) −27.7990 −1.15829
\(577\) − 29.7990i − 1.24055i −0.784385 0.620274i \(-0.787021\pi\)
0.784385 0.620274i \(-0.212979\pi\)
\(578\) 39.3848i 1.63819i
\(579\) 12.4853 0.518871
\(580\) 0 0
\(581\) −21.6569 −0.898478
\(582\) 26.1421i 1.08363i
\(583\) 3.92893i 0.162720i
\(584\) 17.6569 0.730646
\(585\) −10.8284 −0.447700
\(586\) 18.4853 0.763620
\(587\) 7.65685 0.316032 0.158016 0.987437i \(-0.449490\pi\)
0.158016 + 0.987437i \(0.449490\pi\)
\(588\) 9.24264i 0.381160i
\(589\) −60.4264 −2.48983
\(590\) − 8.82843i − 0.363461i
\(591\) − 4.82843i − 0.198615i
\(592\) − 12.0000i − 0.493197i
\(593\) 19.4853 0.800165 0.400082 0.916479i \(-0.368982\pi\)
0.400082 + 0.916479i \(0.368982\pi\)
\(594\) 0.414214i 0.0169954i
\(595\) 2.34315i 0.0960596i
\(596\) −29.9706 −1.22764
\(597\) 1.17157i 0.0479493i
\(598\) 33.7990i 1.38214i
\(599\) − 9.87006i − 0.403280i −0.979460 0.201640i \(-0.935373\pi\)
0.979460 0.201640i \(-0.0646270\pi\)
\(600\) 42.6274 1.74026
\(601\) 17.1716i 0.700443i 0.936667 + 0.350222i \(0.113894\pi\)
−0.936667 + 0.350222i \(0.886106\pi\)
\(602\) −24.4853 −0.997946
\(603\) 16.0000 0.651570
\(604\) −54.1421 −2.20301
\(605\) 10.8284 0.440238
\(606\) 13.6569i 0.554772i
\(607\) − 7.72792i − 0.313667i −0.987625 0.156833i \(-0.949871\pi\)
0.987625 0.156833i \(-0.0501286\pi\)
\(608\) −9.51472 −0.385873
\(609\) 0 0
\(610\) −11.6569 −0.471972
\(611\) − 12.4142i − 0.502225i
\(612\) − 8.97056i − 0.362614i
\(613\) 9.00000 0.363507 0.181753 0.983344i \(-0.441823\pi\)
0.181753 + 0.983344i \(0.441823\pi\)
\(614\) 7.00000 0.282497
\(615\) −10.8284 −0.436644
\(616\) −5.17157 −0.208369
\(617\) 0.686292i 0.0276291i 0.999905 + 0.0138145i \(0.00439744\pi\)
−0.999905 + 0.0138145i \(0.995603\pi\)
\(618\) −28.1421 −1.13204
\(619\) 33.5858i 1.34993i 0.737851 + 0.674963i \(0.235841\pi\)
−0.737851 + 0.674963i \(0.764159\pi\)
\(620\) 38.5563i 1.54846i
\(621\) − 1.51472i − 0.0607836i
\(622\) 6.48528 0.260036
\(623\) − 35.3137i − 1.41481i
\(624\) − 27.7279i − 1.11001i
\(625\) 11.0000 0.440000
\(626\) 23.7279i 0.948358i
\(627\) − 6.00000i − 0.239617i
\(628\) − 32.4853i − 1.29630i
\(629\) −3.31371 −0.132126
\(630\) 19.3137i 0.769477i
\(631\) 36.8284 1.46612 0.733058 0.680166i \(-0.238092\pi\)
0.733058 + 0.680166i \(0.238092\pi\)
\(632\) 10.6569 0.423907
\(633\) −46.7990 −1.86009
\(634\) 75.9411 3.01601
\(635\) 4.34315i 0.172352i
\(636\) 87.6690i 3.47630i
\(637\) 3.82843 0.151688
\(638\) 0 0
\(639\) −24.9706 −0.987820
\(640\) 20.5563i 0.812561i
\(641\) − 17.7990i − 0.703018i −0.936185 0.351509i \(-0.885669\pi\)
0.936185 0.351509i \(-0.114331\pi\)
\(642\) −86.4264 −3.41098
\(643\) −32.4853 −1.28109 −0.640547 0.767919i \(-0.721292\pi\)
−0.640547 + 0.767919i \(0.721292\pi\)
\(644\) 39.5980 1.56038
\(645\) −8.65685 −0.340863
\(646\) − 12.0000i − 0.472134i
\(647\) −39.6569 −1.55907 −0.779536 0.626358i \(-0.784545\pi\)
−0.779536 + 0.626358i \(0.784545\pi\)
\(648\) 41.8701i 1.64481i
\(649\) − 1.51472i − 0.0594579i
\(650\) − 36.9706i − 1.45010i
\(651\) 68.7696 2.69529
\(652\) − 15.0416i − 0.589076i
\(653\) − 30.1421i − 1.17955i −0.807567 0.589776i \(-0.799216\pi\)
0.807567 0.589776i \(-0.200784\pi\)
\(654\) −73.7696 −2.88462
\(655\) 21.3137i 0.832796i
\(656\) − 13.4558i − 0.525362i
\(657\) − 11.3137i − 0.441390i
\(658\) −22.1421 −0.863190
\(659\) − 14.4142i − 0.561498i −0.959781 0.280749i \(-0.909417\pi\)
0.959781 0.280749i \(-0.0905829\pi\)
\(660\) −3.82843 −0.149021
\(661\) 33.3137 1.29575 0.647877 0.761745i \(-0.275657\pi\)
0.647877 + 0.761745i \(0.275657\pi\)
\(662\) 5.82843 0.226528
\(663\) −7.65685 −0.297368
\(664\) − 33.7990i − 1.31166i
\(665\) 16.9706i 0.658090i
\(666\) −27.3137 −1.05838
\(667\) 0 0
\(668\) −12.1421 −0.469793
\(669\) 7.65685i 0.296031i
\(670\) − 13.6569i − 0.527610i
\(671\) −2.00000 −0.0772091
\(672\) 10.8284 0.417716
\(673\) 21.6274 0.833676 0.416838 0.908981i \(-0.363138\pi\)
0.416838 + 0.908981i \(0.363138\pi\)
\(674\) −52.6274 −2.02713
\(675\) 1.65685i 0.0637723i
\(676\) −6.34315 −0.243967
\(677\) − 22.0000i − 0.845529i −0.906240 0.422764i \(-0.861060\pi\)
0.906240 0.422764i \(-0.138940\pi\)
\(678\) − 77.5980i − 2.98013i
\(679\) − 12.6863i − 0.486855i
\(680\) −3.65685 −0.140234
\(681\) 19.6569i 0.753252i
\(682\) 10.0711i 0.385641i
\(683\) 20.9706 0.802416 0.401208 0.915987i \(-0.368590\pi\)
0.401208 + 0.915987i \(0.368590\pi\)
\(684\) − 64.9706i − 2.48421i
\(685\) − 12.0000i − 0.458496i
\(686\) 40.9706i 1.56426i
\(687\) −8.48528 −0.323734
\(688\) − 10.7574i − 0.410120i
\(689\) 36.3137 1.38344
\(690\) 21.3137 0.811399
\(691\) 48.0000 1.82601 0.913003 0.407953i \(-0.133757\pi\)
0.913003 + 0.407953i \(0.133757\pi\)
\(692\) 47.2548 1.79636
\(693\) 3.31371i 0.125877i
\(694\) − 6.00000i − 0.227757i
\(695\) 14.0000 0.531050
\(696\) 0 0
\(697\) −3.71573 −0.140743
\(698\) − 12.4142i − 0.469885i
\(699\) − 44.2132i − 1.67230i
\(700\) −43.3137 −1.63710
\(701\) 40.1127 1.51504 0.757518 0.652814i \(-0.226412\pi\)
0.757518 + 0.652814i \(0.226412\pi\)
\(702\) 3.82843 0.144495
\(703\) −24.0000 −0.905177
\(704\) 4.07107i 0.153434i
\(705\) −7.82843 −0.294836
\(706\) − 65.1127i − 2.45055i
\(707\) − 6.62742i − 0.249250i
\(708\) − 33.7990i − 1.27024i
\(709\) −29.1421 −1.09446 −0.547228 0.836984i \(-0.684317\pi\)
−0.547228 + 0.836984i \(0.684317\pi\)
\(710\) 21.3137i 0.799889i
\(711\) − 6.82843i − 0.256086i
\(712\) 55.1127 2.06544
\(713\) − 36.8284i − 1.37924i
\(714\) 13.6569i 0.511095i
\(715\) 1.58579i 0.0593051i
\(716\) −24.8284 −0.927882
\(717\) 47.4558i 1.77227i
\(718\) 9.48528 0.353988
\(719\) −20.1421 −0.751175 −0.375587 0.926787i \(-0.622559\pi\)
−0.375587 + 0.926787i \(0.622559\pi\)
\(720\) −8.48528 −0.316228
\(721\) 13.6569 0.508608
\(722\) − 41.0416i − 1.52741i
\(723\) − 44.2132i − 1.64431i
\(724\) −31.8284 −1.18289
\(725\) 0 0
\(726\) 63.1127 2.34233
\(727\) − 1.31371i − 0.0487228i −0.999703 0.0243614i \(-0.992245\pi\)
0.999703 0.0243614i \(-0.00775523\pi\)
\(728\) 47.7990i 1.77155i
\(729\) 23.8284 0.882534
\(730\) −9.65685 −0.357416
\(731\) −2.97056 −0.109870
\(732\) −44.6274 −1.64948
\(733\) − 41.2548i − 1.52378i −0.647705 0.761891i \(-0.724271\pi\)
0.647705 0.761891i \(-0.275729\pi\)
\(734\) 43.4558 1.60398
\(735\) − 2.41421i − 0.0890496i
\(736\) − 5.79899i − 0.213754i
\(737\) − 2.34315i − 0.0863109i
\(738\) −30.6274 −1.12741
\(739\) − 4.07107i − 0.149757i −0.997193 0.0748783i \(-0.976143\pi\)
0.997193 0.0748783i \(-0.0238568\pi\)
\(740\) 15.3137i 0.562943i
\(741\) −55.4558 −2.03722
\(742\) − 64.7696i − 2.37777i
\(743\) 23.6569i 0.867886i 0.900940 + 0.433943i \(0.142878\pi\)
−0.900940 + 0.433943i \(0.857122\pi\)
\(744\) 107.326i 3.93476i
\(745\) 7.82843 0.286811
\(746\) − 63.5269i − 2.32589i
\(747\) −21.6569 −0.792383
\(748\) −1.31371 −0.0480339
\(749\) 41.9411 1.53250
\(750\) −52.4558 −1.91542
\(751\) 25.3137i 0.923710i 0.886955 + 0.461855i \(0.152816\pi\)
−0.886955 + 0.461855i \(0.847184\pi\)
\(752\) − 9.72792i − 0.354741i
\(753\) −48.4558 −1.76583
\(754\) 0 0
\(755\) 14.1421 0.514685
\(756\) − 4.48528i − 0.163128i
\(757\) − 25.5147i − 0.927348i −0.886006 0.463674i \(-0.846531\pi\)
0.886006 0.463674i \(-0.153469\pi\)
\(758\) −16.8284 −0.611236
\(759\) 3.65685 0.132735
\(760\) −26.4853 −0.960722
\(761\) 45.5980 1.65293 0.826463 0.562991i \(-0.190350\pi\)
0.826463 + 0.562991i \(0.190350\pi\)
\(762\) 25.3137i 0.917019i
\(763\) 35.7990 1.29601
\(764\) 96.9117i 3.50614i
\(765\) 2.34315i 0.0847166i
\(766\) 8.48528i 0.306586i
\(767\) −14.0000 −0.505511
\(768\) 72.3553i 2.61090i
\(769\) − 49.1127i − 1.77105i −0.464592 0.885525i \(-0.653799\pi\)
0.464592 0.885525i \(-0.346201\pi\)
\(770\) 2.82843 0.101929
\(771\) 43.8701i 1.57994i
\(772\) − 19.7990i − 0.712581i
\(773\) 19.5147i 0.701896i 0.936395 + 0.350948i \(0.114141\pi\)
−0.936395 + 0.350948i \(0.885859\pi\)
\(774\) −24.4853 −0.880105
\(775\) 40.2843i 1.44705i
\(776\) 19.7990 0.710742
\(777\) 27.3137 0.979874
\(778\) −7.31371 −0.262209
\(779\) −26.9117 −0.964211
\(780\) 35.3848i 1.26698i
\(781\) 3.65685i 0.130853i
\(782\) 7.31371 0.261538
\(783\) 0 0
\(784\) 3.00000 0.107143
\(785\) 8.48528i 0.302853i
\(786\) 124.225i 4.43097i
\(787\) 54.0833 1.92786 0.963930 0.266156i \(-0.0857536\pi\)
0.963930 + 0.266156i \(0.0857536\pi\)
\(788\) −7.65685 −0.272764
\(789\) −6.65685 −0.236990
\(790\) −5.82843 −0.207366
\(791\) 37.6569i 1.33892i
\(792\) −5.17157 −0.183764
\(793\) 18.4853i 0.656432i
\(794\) 46.6985i 1.65727i
\(795\) − 22.8995i − 0.812161i
\(796\) 1.85786 0.0658503
\(797\) − 51.7401i − 1.83273i −0.400345 0.916364i \(-0.631110\pi\)
0.400345 0.916364i \(-0.368890\pi\)
\(798\) 98.9117i 3.50144i
\(799\) −2.68629 −0.0950342
\(800\) 6.34315i 0.224264i
\(801\) − 35.3137i − 1.24775i
\(802\) − 45.0416i − 1.59048i
\(803\) −1.65685 −0.0584691
\(804\) − 52.2843i − 1.84392i
\(805\) −10.3431 −0.364548
\(806\) 93.0833 3.27872
\(807\) 75.9411 2.67325
\(808\) 10.3431 0.363871
\(809\) 36.2843i 1.27569i 0.770166 + 0.637844i \(0.220173\pi\)
−0.770166 + 0.637844i \(0.779827\pi\)
\(810\) − 22.8995i − 0.804606i
\(811\) −10.8284 −0.380238 −0.190119 0.981761i \(-0.560887\pi\)
−0.190119 + 0.981761i \(0.560887\pi\)
\(812\) 0 0
\(813\) 39.9706 1.40183
\(814\) 4.00000i 0.140200i
\(815\) 3.92893i 0.137624i
\(816\) −6.00000 −0.210042
\(817\) −21.5147 −0.752705
\(818\) −45.7990 −1.60132
\(819\) 30.6274 1.07021
\(820\) 17.1716i 0.599657i
\(821\) 1.48528 0.0518367 0.0259183 0.999664i \(-0.491749\pi\)
0.0259183 + 0.999664i \(0.491749\pi\)
\(822\) − 69.9411i − 2.43948i
\(823\) 54.2843i 1.89223i 0.323830 + 0.946115i \(0.395029\pi\)
−0.323830 + 0.946115i \(0.604971\pi\)
\(824\) 21.3137i 0.742498i
\(825\) −4.00000 −0.139262
\(826\) 24.9706i 0.868837i
\(827\) 32.8995i 1.14403i 0.820244 + 0.572014i \(0.193838\pi\)
−0.820244 + 0.572014i \(0.806162\pi\)
\(828\) 39.5980 1.37612
\(829\) 29.7990i 1.03496i 0.855695 + 0.517481i \(0.173130\pi\)
−0.855695 + 0.517481i \(0.826870\pi\)
\(830\) 18.4853i 0.641633i
\(831\) 41.7990i 1.44999i
\(832\) 37.6274 1.30450
\(833\) − 0.828427i − 0.0287033i
\(834\) 81.5980 2.82551
\(835\) 3.17157 0.109757
\(836\) −9.51472 −0.329073
\(837\) −4.17157 −0.144191
\(838\) 22.9706i 0.793505i
\(839\) − 7.92893i − 0.273737i −0.990589 0.136869i \(-0.956296\pi\)
0.990589 0.136869i \(-0.0437038\pi\)
\(840\) 30.1421 1.04000
\(841\) 0 0
\(842\) −89.5980 −3.08775
\(843\) − 77.1838i − 2.65835i
\(844\) 74.2132i 2.55452i
\(845\) 1.65685 0.0569975
\(846\) −22.1421 −0.761262
\(847\) −30.6274 −1.05237
\(848\) 28.4558 0.977178
\(849\) 28.1421i 0.965836i
\(850\) −8.00000 −0.274398
\(851\) − 14.6274i − 0.501421i
\(852\) 81.5980i 2.79550i
\(853\) − 22.9706i − 0.786497i −0.919432 0.393249i \(-0.871351\pi\)
0.919432 0.393249i \(-0.128649\pi\)
\(854\) 32.9706 1.12823
\(855\) 16.9706i 0.580381i
\(856\) 65.4558i 2.23723i
\(857\) −6.17157 −0.210817 −0.105408 0.994429i \(-0.533615\pi\)
−0.105408 + 0.994429i \(0.533615\pi\)
\(858\) 9.24264i 0.315539i
\(859\) 19.7279i 0.673108i 0.941664 + 0.336554i \(0.109261\pi\)
−0.941664 + 0.336554i \(0.890739\pi\)
\(860\) 13.7279i 0.468118i
\(861\) 30.6274 1.04378
\(862\) 47.4558i 1.61635i
\(863\) −17.1127 −0.582523 −0.291262 0.956643i \(-0.594075\pi\)
−0.291262 + 0.956643i \(0.594075\pi\)
\(864\) −0.656854 −0.0223466
\(865\) −12.3431 −0.419680
\(866\) −73.9411 −2.51262
\(867\) − 39.3848i − 1.33758i
\(868\) − 109.054i − 3.70153i
\(869\) −1.00000 −0.0339227
\(870\) 0 0
\(871\) −21.6569 −0.733815
\(872\) 55.8701i 1.89200i
\(873\) − 12.6863i − 0.429366i
\(874\) 52.9706 1.79176
\(875\) 25.4558 0.860565
\(876\) −36.9706 −1.24912
\(877\) −37.1421 −1.25420 −0.627100 0.778938i \(-0.715758\pi\)
−0.627100 + 0.778938i \(0.715758\pi\)
\(878\) 0.828427i 0.0279581i
\(879\) −18.4853 −0.623493
\(880\) 1.24264i 0.0418894i
\(881\) − 14.0000i − 0.471672i −0.971793 0.235836i \(-0.924217\pi\)
0.971793 0.235836i \(-0.0757828\pi\)
\(882\) − 6.82843i − 0.229925i
\(883\) −38.4264 −1.29315 −0.646576 0.762850i \(-0.723800\pi\)
−0.646576 + 0.762850i \(0.723800\pi\)
\(884\) 12.1421i 0.408384i
\(885\) 8.82843i 0.296764i
\(886\) 58.7696 1.97440
\(887\) − 17.1005i − 0.574179i −0.957904 0.287089i \(-0.907312\pi\)
0.957904 0.287089i \(-0.0926877\pi\)
\(888\) 42.6274i 1.43048i
\(889\) − 12.2843i − 0.412001i
\(890\) −30.1421 −1.01037
\(891\) − 3.92893i − 0.131624i
\(892\) 12.1421 0.406549
\(893\) −19.4558 −0.651065
\(894\) 45.6274 1.52601
\(895\) 6.48528 0.216779
\(896\) − 58.1421i − 1.94239i
\(897\) − 33.7990i − 1.12852i
\(898\) −84.4264 −2.81735
\(899\) 0 0
\(900\) −43.3137 −1.44379
\(901\) − 7.85786i − 0.261783i
\(902\) 4.48528i 0.149344i
\(903\) 24.4853 0.814819
\(904\) −58.7696 −1.95465
\(905\) 8.31371 0.276357
\(906\) 82.4264 2.73843
\(907\) 22.2843i 0.739937i 0.929044 + 0.369969i \(0.120632\pi\)
−0.929044 + 0.369969i \(0.879368\pi\)
\(908\) 31.1716 1.03446
\(909\) − 6.62742i − 0.219818i
\(910\) − 26.1421i − 0.866603i
\(911\) − 15.4437i − 0.511671i −0.966720 0.255835i \(-0.917649\pi\)
0.966720 0.255835i \(-0.0823505\pi\)
\(912\) −43.4558 −1.43897
\(913\) 3.17157i 0.104964i
\(914\) − 2.48528i − 0.0822058i
\(915\) 11.6569 0.385364
\(916\) 13.4558i 0.444594i
\(917\) − 60.2843i − 1.99076i
\(918\) − 0.828427i − 0.0273422i
\(919\) 8.14214 0.268584 0.134292 0.990942i \(-0.457124\pi\)
0.134292 + 0.990942i \(0.457124\pi\)
\(920\) − 16.1421i − 0.532190i
\(921\) −7.00000 −0.230658
\(922\) −33.7990 −1.11311
\(923\) 33.7990 1.11251
\(924\) 10.8284 0.356229
\(925\) 16.0000i 0.526077i
\(926\) 62.7696i 2.06274i
\(927\) 13.6569 0.448550
\(928\) 0 0
\(929\) 18.6863 0.613077 0.306539 0.951858i \(-0.400829\pi\)
0.306539 + 0.951858i \(0.400829\pi\)
\(930\) − 58.6985i − 1.92480i
\(931\) − 6.00000i − 0.196642i
\(932\) −70.1127 −2.29662
\(933\) −6.48528 −0.212319
\(934\) −92.5980 −3.02990
\(935\) 0.343146 0.0112221
\(936\) 47.7990i 1.56236i
\(937\) 16.6274 0.543194 0.271597 0.962411i \(-0.412448\pi\)
0.271597 + 0.962411i \(0.412448\pi\)
\(938\) 38.6274i 1.26123i
\(939\) − 23.7279i − 0.774331i
\(940\) 12.4142i 0.404907i
\(941\) 56.5980 1.84504 0.922521 0.385948i \(-0.126125\pi\)
0.922521 + 0.385948i \(0.126125\pi\)
\(942\) 49.4558i 1.61136i
\(943\) − 16.4020i − 0.534123i
\(944\) −10.9706 −0.357061
\(945\) 1.17157i 0.0381113i
\(946\) 3.58579i 0.116584i
\(947\) − 2.61522i − 0.0849834i −0.999097 0.0424917i \(-0.986470\pi\)
0.999097 0.0424917i \(-0.0135296\pi\)
\(948\) −22.3137 −0.724716
\(949\) 15.3137i 0.497104i
\(950\) −57.9411 −1.87986
\(951\) −75.9411 −2.46256
\(952\) 10.3431 0.335223
\(953\) −35.6274 −1.15409 −0.577043 0.816714i \(-0.695793\pi\)
−0.577043 + 0.816714i \(0.695793\pi\)
\(954\) − 64.7696i − 2.09699i
\(955\) − 25.3137i − 0.819132i
\(956\) 75.2548 2.43392
\(957\) 0 0
\(958\) −16.6569 −0.538159
\(959\) 33.9411i 1.09602i
\(960\) − 23.7279i − 0.765815i
\(961\) −70.4264 −2.27182
\(962\) 36.9706 1.19198
\(963\) 41.9411 1.35153
\(964\) −70.1127 −2.25818
\(965\) 5.17157i 0.166479i
\(966\) −60.2843 −1.93961
\(967\) − 35.2426i − 1.13333i −0.823949 0.566663i \(-0.808234\pi\)
0.823949 0.566663i \(-0.191766\pi\)
\(968\) − 47.7990i − 1.53632i
\(969\) 12.0000i 0.385496i
\(970\) −10.8284 −0.347680
\(971\) 15.6569i 0.502452i 0.967928 + 0.251226i \(0.0808338\pi\)
−0.967928 + 0.251226i \(0.919166\pi\)
\(972\) − 82.9117i − 2.65939i
\(973\) −39.5980 −1.26945
\(974\) − 27.7990i − 0.890737i
\(975\) 36.9706i 1.18401i
\(976\) 14.4853i 0.463663i
\(977\) 36.1716 1.15723 0.578616 0.815600i \(-0.303593\pi\)
0.578616 + 0.815600i \(0.303593\pi\)
\(978\) 22.8995i 0.732245i
\(979\) −5.17157 −0.165284
\(980\) −3.82843 −0.122295
\(981\) 35.7990 1.14297
\(982\) 51.2843 1.63655
\(983\) − 21.8701i − 0.697547i −0.937207 0.348773i \(-0.886598\pi\)
0.937207 0.348773i \(-0.113402\pi\)
\(984\) 47.7990i 1.52378i
\(985\) 2.00000 0.0637253
\(986\) 0 0
\(987\) 22.1421 0.704792
\(988\) 87.9411i 2.79778i
\(989\) − 13.1127i − 0.416960i
\(990\) 2.82843 0.0898933
\(991\) 12.8284 0.407508 0.203754 0.979022i \(-0.434686\pi\)
0.203754 + 0.979022i \(0.434686\pi\)
\(992\) −15.9706 −0.507066
\(993\) −5.82843 −0.184960
\(994\) − 60.2843i − 1.91210i
\(995\) −0.485281 −0.0153845
\(996\) 70.7696i 2.24242i
\(997\) − 28.2843i − 0.895772i −0.894091 0.447886i \(-0.852177\pi\)
0.894091 0.447886i \(-0.147823\pi\)
\(998\) − 45.7990i − 1.44974i
\(999\) −1.65685 −0.0524205
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.b.a.840.4 4
29.2 odd 28 841.2.d.f.605.1 12
29.3 odd 28 841.2.d.f.571.1 12
29.4 even 14 841.2.e.k.651.1 24
29.5 even 14 841.2.e.k.236.4 24
29.6 even 14 841.2.e.k.196.1 24
29.7 even 7 841.2.e.k.270.1 24
29.8 odd 28 841.2.d.j.574.1 12
29.9 even 14 841.2.e.k.267.1 24
29.10 odd 28 841.2.d.j.190.2 12
29.11 odd 28 841.2.d.f.778.2 12
29.12 odd 4 29.2.a.a.1.1 2
29.13 even 14 841.2.e.k.63.4 24
29.14 odd 28 841.2.d.f.645.1 12
29.15 odd 28 841.2.d.j.645.2 12
29.16 even 7 841.2.e.k.63.1 24
29.17 odd 4 841.2.a.d.1.2 2
29.18 odd 28 841.2.d.j.778.1 12
29.19 odd 28 841.2.d.f.190.1 12
29.20 even 7 841.2.e.k.267.4 24
29.21 odd 28 841.2.d.f.574.2 12
29.22 even 14 841.2.e.k.270.4 24
29.23 even 7 841.2.e.k.196.4 24
29.24 even 7 841.2.e.k.236.1 24
29.25 even 7 841.2.e.k.651.4 24
29.26 odd 28 841.2.d.j.571.2 12
29.27 odd 28 841.2.d.j.605.2 12
29.28 even 2 inner 841.2.b.a.840.1 4
87.17 even 4 7569.2.a.c.1.1 2
87.41 even 4 261.2.a.d.1.2 2
116.99 even 4 464.2.a.h.1.1 2
145.12 even 4 725.2.b.b.349.1 4
145.99 odd 4 725.2.a.b.1.2 2
145.128 even 4 725.2.b.b.349.4 4
203.41 even 4 1421.2.a.j.1.1 2
232.99 even 4 1856.2.a.w.1.2 2
232.157 odd 4 1856.2.a.r.1.1 2
319.186 even 4 3509.2.a.j.1.2 2
348.215 odd 4 4176.2.a.bq.1.2 2
377.12 odd 4 4901.2.a.g.1.2 2
435.389 even 4 6525.2.a.o.1.1 2
493.186 odd 4 8381.2.a.e.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.a.a.1.1 2 29.12 odd 4
261.2.a.d.1.2 2 87.41 even 4
464.2.a.h.1.1 2 116.99 even 4
725.2.a.b.1.2 2 145.99 odd 4
725.2.b.b.349.1 4 145.12 even 4
725.2.b.b.349.4 4 145.128 even 4
841.2.a.d.1.2 2 29.17 odd 4
841.2.b.a.840.1 4 29.28 even 2 inner
841.2.b.a.840.4 4 1.1 even 1 trivial
841.2.d.f.190.1 12 29.19 odd 28
841.2.d.f.571.1 12 29.3 odd 28
841.2.d.f.574.2 12 29.21 odd 28
841.2.d.f.605.1 12 29.2 odd 28
841.2.d.f.645.1 12 29.14 odd 28
841.2.d.f.778.2 12 29.11 odd 28
841.2.d.j.190.2 12 29.10 odd 28
841.2.d.j.571.2 12 29.26 odd 28
841.2.d.j.574.1 12 29.8 odd 28
841.2.d.j.605.2 12 29.27 odd 28
841.2.d.j.645.2 12 29.15 odd 28
841.2.d.j.778.1 12 29.18 odd 28
841.2.e.k.63.1 24 29.16 even 7
841.2.e.k.63.4 24 29.13 even 14
841.2.e.k.196.1 24 29.6 even 14
841.2.e.k.196.4 24 29.23 even 7
841.2.e.k.236.1 24 29.24 even 7
841.2.e.k.236.4 24 29.5 even 14
841.2.e.k.267.1 24 29.9 even 14
841.2.e.k.267.4 24 29.20 even 7
841.2.e.k.270.1 24 29.7 even 7
841.2.e.k.270.4 24 29.22 even 14
841.2.e.k.651.1 24 29.4 even 14
841.2.e.k.651.4 24 29.25 even 7
1421.2.a.j.1.1 2 203.41 even 4
1856.2.a.r.1.1 2 232.157 odd 4
1856.2.a.w.1.2 2 232.99 even 4
3509.2.a.j.1.2 2 319.186 even 4
4176.2.a.bq.1.2 2 348.215 odd 4
4901.2.a.g.1.2 2 377.12 odd 4
6525.2.a.o.1.1 2 435.389 even 4
7569.2.a.c.1.1 2 87.17 even 4
8381.2.a.e.1.1 2 493.186 odd 4