Properties

Label 841.2.b.a.840.4
Level 841841
Weight 22
Character 841.840
Analytic conductor 6.7156.715
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(840,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.840");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 841=292 841 = 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 841.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.715418809996.71541880999
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 840.4
Root 0.707107+0.707107i0.707107 + 0.707107i of defining polynomial
Character χ\chi == 841.840
Dual form 841.2.b.a.840.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.41421iq22.41421iq33.82843q4+1.00000q5+5.82843q62.82843q74.41421iq82.82843q9+2.41421iq10+0.414214iq11+9.24264iq12+3.82843q136.82843iq142.41421iq15+3.00000q160.828427iq176.82843iq186.00000iq193.82843q20+6.82843iq211.00000q22+3.65685q2310.6569q244.00000q25+9.24264iq260.414214iq27+10.8284q28+5.82843q3010.0711iq311.58579iq32+1.00000q33+2.00000q342.82843q35+10.8284q364.00000iq37+14.4853q389.24264iq394.41421iq404.48528iq4116.4853q423.58579iq431.58579iq442.82843q45+8.82843iq463.24264iq477.24264iq48+1.00000q499.65685iq502.00000q5114.6569q52+9.48528q53+1.00000q54+0.414214iq55+12.4853iq5614.4853q573.65685q59+9.24264iq60+4.82843iq61+24.3137q62+8.00000q63+9.82843q64+3.82843q65+2.41421iq665.65685q67+3.17157iq688.82843iq696.82843iq70+8.82843q71+12.4853iq72+4.00000iq73+9.65685q74+9.65685iq75+22.9706iq761.17157iq77+22.3137q78+2.41421iq79+3.00000q809.48528q81+10.8284q82+7.65685q8326.1421iq840.828427iq85+8.65685q86+1.82843q88+12.4853iq896.82843iq9010.8284q9114.0000q9224.3137q93+7.82843q946.00000iq953.82843q96+4.48528iq97+2.41421iq981.17157iq99+O(q100)q+2.41421i q^{2} -2.41421i q^{3} -3.82843 q^{4} +1.00000 q^{5} +5.82843 q^{6} -2.82843 q^{7} -4.41421i q^{8} -2.82843 q^{9} +2.41421i q^{10} +0.414214i q^{11} +9.24264i q^{12} +3.82843 q^{13} -6.82843i q^{14} -2.41421i q^{15} +3.00000 q^{16} -0.828427i q^{17} -6.82843i q^{18} -6.00000i q^{19} -3.82843 q^{20} +6.82843i q^{21} -1.00000 q^{22} +3.65685 q^{23} -10.6569 q^{24} -4.00000 q^{25} +9.24264i q^{26} -0.414214i q^{27} +10.8284 q^{28} +5.82843 q^{30} -10.0711i q^{31} -1.58579i q^{32} +1.00000 q^{33} +2.00000 q^{34} -2.82843 q^{35} +10.8284 q^{36} -4.00000i q^{37} +14.4853 q^{38} -9.24264i q^{39} -4.41421i q^{40} -4.48528i q^{41} -16.4853 q^{42} -3.58579i q^{43} -1.58579i q^{44} -2.82843 q^{45} +8.82843i q^{46} -3.24264i q^{47} -7.24264i q^{48} +1.00000 q^{49} -9.65685i q^{50} -2.00000 q^{51} -14.6569 q^{52} +9.48528 q^{53} +1.00000 q^{54} +0.414214i q^{55} +12.4853i q^{56} -14.4853 q^{57} -3.65685 q^{59} +9.24264i q^{60} +4.82843i q^{61} +24.3137 q^{62} +8.00000 q^{63} +9.82843 q^{64} +3.82843 q^{65} +2.41421i q^{66} -5.65685 q^{67} +3.17157i q^{68} -8.82843i q^{69} -6.82843i q^{70} +8.82843 q^{71} +12.4853i q^{72} +4.00000i q^{73} +9.65685 q^{74} +9.65685i q^{75} +22.9706i q^{76} -1.17157i q^{77} +22.3137 q^{78} +2.41421i q^{79} +3.00000 q^{80} -9.48528 q^{81} +10.8284 q^{82} +7.65685 q^{83} -26.1421i q^{84} -0.828427i q^{85} +8.65685 q^{86} +1.82843 q^{88} +12.4853i q^{89} -6.82843i q^{90} -10.8284 q^{91} -14.0000 q^{92} -24.3137 q^{93} +7.82843 q^{94} -6.00000i q^{95} -3.82843 q^{96} +4.48528i q^{97} +2.41421i q^{98} -1.17157i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q4+4q5+12q6+4q13+12q164q204q228q2320q2416q25+32q28+12q30+4q33+8q34+32q36+24q3832q42+4q49+4q96+O(q100) 4 q - 4 q^{4} + 4 q^{5} + 12 q^{6} + 4 q^{13} + 12 q^{16} - 4 q^{20} - 4 q^{22} - 8 q^{23} - 20 q^{24} - 16 q^{25} + 32 q^{28} + 12 q^{30} + 4 q^{33} + 8 q^{34} + 32 q^{36} + 24 q^{38} - 32 q^{42} + 4 q^{49}+ \cdots - 4 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/841Z)×\left(\mathbb{Z}/841\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.41421i 1.70711i 0.521005 + 0.853553i 0.325557π0.325557\pi
−0.521005 + 0.853553i 0.674443π0.674443\pi
33 − 2.41421i − 1.39385i −0.717146 0.696923i 0.754552π-0.754552\pi
0.717146 0.696923i 0.245448π-0.245448\pi
44 −3.82843 −1.91421
55 1.00000 0.447214 0.223607 0.974679i 0.428217π-0.428217\pi
0.223607 + 0.974679i 0.428217π0.428217\pi
66 5.82843 2.37945
77 −2.82843 −1.06904 −0.534522 0.845154i 0.679509π-0.679509\pi
−0.534522 + 0.845154i 0.679509π0.679509\pi
88 − 4.41421i − 1.56066i
99 −2.82843 −0.942809
1010 2.41421i 0.763441i
1111 0.414214i 0.124890i 0.998048 + 0.0624450i 0.0198898π0.0198898\pi
−0.998048 + 0.0624450i 0.980110π0.980110\pi
1212 9.24264i 2.66812i
1313 3.82843 1.06181 0.530907 0.847430i 0.321851π-0.321851\pi
0.530907 + 0.847430i 0.321851π0.321851\pi
1414 − 6.82843i − 1.82497i
1515 − 2.41421i − 0.623347i
1616 3.00000 0.750000
1717 − 0.828427i − 0.200923i −0.994941 0.100462i 0.967968π-0.967968\pi
0.994941 0.100462i 0.0320319π-0.0320319\pi
1818 − 6.82843i − 1.60948i
1919 − 6.00000i − 1.37649i −0.725476 0.688247i 0.758380π-0.758380\pi
0.725476 0.688247i 0.241620π-0.241620\pi
2020 −3.82843 −0.856062
2121 6.82843i 1.49008i
2222 −1.00000 −0.213201
2323 3.65685 0.762507 0.381253 0.924471i 0.375493π-0.375493\pi
0.381253 + 0.924471i 0.375493π0.375493\pi
2424 −10.6569 −2.17532
2525 −4.00000 −0.800000
2626 9.24264i 1.81263i
2727 − 0.414214i − 0.0797154i
2828 10.8284 2.04638
2929 0 0
3030 5.82843 1.06412
3131 − 10.0711i − 1.80882i −0.426667 0.904409i 0.640313π-0.640313\pi
0.426667 0.904409i 0.359687π-0.359687\pi
3232 − 1.58579i − 0.280330i
3333 1.00000 0.174078
3434 2.00000 0.342997
3535 −2.82843 −0.478091
3636 10.8284 1.80474
3737 − 4.00000i − 0.657596i −0.944400 0.328798i 0.893356π-0.893356\pi
0.944400 0.328798i 0.106644π-0.106644\pi
3838 14.4853 2.34982
3939 − 9.24264i − 1.48001i
4040 − 4.41421i − 0.697948i
4141 − 4.48528i − 0.700483i −0.936659 0.350242i 0.886099π-0.886099\pi
0.936659 0.350242i 0.113901π-0.113901\pi
4242 −16.4853 −2.54373
4343 − 3.58579i − 0.546827i −0.961897 0.273414i 0.911847π-0.911847\pi
0.961897 0.273414i 0.0881528π-0.0881528\pi
4444 − 1.58579i − 0.239066i
4545 −2.82843 −0.421637
4646 8.82843i 1.30168i
4747 − 3.24264i − 0.472988i −0.971633 0.236494i 0.924002π-0.924002\pi
0.971633 0.236494i 0.0759983π-0.0759983\pi
4848 − 7.24264i − 1.04539i
4949 1.00000 0.142857
5050 − 9.65685i − 1.36569i
5151 −2.00000 −0.280056
5252 −14.6569 −2.03254
5353 9.48528 1.30290 0.651452 0.758690i 0.274160π-0.274160\pi
0.651452 + 0.758690i 0.274160π0.274160\pi
5454 1.00000 0.136083
5555 0.414214i 0.0558525i
5656 12.4853i 1.66842i
5757 −14.4853 −1.91862
5858 0 0
5959 −3.65685 −0.476082 −0.238041 0.971255i 0.576505π-0.576505\pi
−0.238041 + 0.971255i 0.576505π0.576505\pi
6060 9.24264i 1.19322i
6161 4.82843i 0.618217i 0.951027 + 0.309108i 0.100031π0.100031\pi
−0.951027 + 0.309108i 0.899969π0.899969\pi
6262 24.3137 3.08784
6363 8.00000 1.00791
6464 9.82843 1.22855
6565 3.82843 0.474858
6666 2.41421i 0.297169i
6767 −5.65685 −0.691095 −0.345547 0.938401i 0.612307π-0.612307\pi
−0.345547 + 0.938401i 0.612307π0.612307\pi
6868 3.17157i 0.384610i
6969 − 8.82843i − 1.06282i
7070 − 6.82843i − 0.816153i
7171 8.82843 1.04774 0.523871 0.851798i 0.324487π-0.324487\pi
0.523871 + 0.851798i 0.324487π0.324487\pi
7272 12.4853i 1.47140i
7373 4.00000i 0.468165i 0.972217 + 0.234082i 0.0752085π0.0752085\pi
−0.972217 + 0.234082i 0.924791π0.924791\pi
7474 9.65685 1.12259
7575 9.65685i 1.11508i
7676 22.9706i 2.63490i
7777 − 1.17157i − 0.133513i
7878 22.3137 2.52653
7979 2.41421i 0.271620i 0.990735 + 0.135810i 0.0433637π0.0433637\pi
−0.990735 + 0.135810i 0.956636π0.956636\pi
8080 3.00000 0.335410
8181 −9.48528 −1.05392
8282 10.8284 1.19580
8383 7.65685 0.840449 0.420224 0.907420i 0.361951π-0.361951\pi
0.420224 + 0.907420i 0.361951π0.361951\pi
8484 − 26.1421i − 2.85234i
8585 − 0.828427i − 0.0898555i
8686 8.65685 0.933493
8787 0 0
8888 1.82843 0.194911
8989 12.4853i 1.32344i 0.749752 + 0.661719i 0.230173π0.230173\pi
−0.749752 + 0.661719i 0.769827π0.769827\pi
9090 − 6.82843i − 0.719779i
9191 −10.8284 −1.13513
9292 −14.0000 −1.45960
9393 −24.3137 −2.52121
9494 7.82843 0.807441
9595 − 6.00000i − 0.615587i
9696 −3.82843 −0.390737
9797 4.48528i 0.455411i 0.973730 + 0.227706i 0.0731224π0.0731224\pi
−0.973730 + 0.227706i 0.926878π0.926878\pi
9898 2.41421i 0.243872i
9999 − 1.17157i − 0.117748i
100100 15.3137 1.53137
101101 2.34315i 0.233152i 0.993182 + 0.116576i 0.0371918π0.0371918\pi
−0.993182 + 0.116576i 0.962808π0.962808\pi
102102 − 4.82843i − 0.478086i
103103 −4.82843 −0.475759 −0.237880 0.971295i 0.576452π-0.576452\pi
−0.237880 + 0.971295i 0.576452π0.576452\pi
104104 − 16.8995i − 1.65713i
105105 6.82843i 0.666386i
106106 22.8995i 2.22420i
107107 −14.8284 −1.43352 −0.716759 0.697321i 0.754375π-0.754375\pi
−0.716759 + 0.697321i 0.754375π0.754375\pi
108108 1.58579i 0.152592i
109109 −12.6569 −1.21231 −0.606153 0.795348i 0.707288π-0.707288\pi
−0.606153 + 0.795348i 0.707288π0.707288\pi
110110 −1.00000 −0.0953463
111111 −9.65685 −0.916588
112112 −8.48528 −0.801784
113113 − 13.3137i − 1.25245i −0.779643 0.626224i 0.784599π-0.784599\pi
0.779643 0.626224i 0.215401π-0.215401\pi
114114 − 34.9706i − 3.27529i
115115 3.65685 0.341003
116116 0 0
117117 −10.8284 −1.00109
118118 − 8.82843i − 0.812723i
119119 2.34315i 0.214796i
120120 −10.6569 −0.972833
121121 10.8284 0.984402
122122 −11.6569 −1.05536
123123 −10.8284 −0.976366
124124 38.5563i 3.46246i
125125 −9.00000 −0.804984
126126 19.3137i 1.72060i
127127 4.34315i 0.385392i 0.981259 + 0.192696i 0.0617231π0.0617231\pi
−0.981259 + 0.192696i 0.938277π0.938277\pi
128128 20.5563i 1.81694i
129129 −8.65685 −0.762194
130130 9.24264i 0.810633i
131131 21.3137i 1.86219i 0.364780 + 0.931094i 0.381144π0.381144\pi
−0.364780 + 0.931094i 0.618856π0.618856\pi
132132 −3.82843 −0.333222
133133 16.9706i 1.47153i
134134 − 13.6569i − 1.17977i
135135 − 0.414214i − 0.0356498i
136136 −3.65685 −0.313573
137137 − 12.0000i − 1.02523i −0.858619 0.512615i 0.828677π-0.828677\pi
0.858619 0.512615i 0.171323π-0.171323\pi
138138 21.3137 1.81434
139139 14.0000 1.18746 0.593732 0.804663i 0.297654π-0.297654\pi
0.593732 + 0.804663i 0.297654π0.297654\pi
140140 10.8284 0.915169
141141 −7.82843 −0.659272
142142 21.3137i 1.78861i
143143 1.58579i 0.132610i
144144 −8.48528 −0.707107
145145 0 0
146146 −9.65685 −0.799207
147147 − 2.41421i − 0.199121i
148148 15.3137i 1.25878i
149149 7.82843 0.641330 0.320665 0.947193i 0.396094π-0.396094\pi
0.320665 + 0.947193i 0.396094π0.396094\pi
150150 −23.3137 −1.90356
151151 14.1421 1.15087 0.575435 0.817847i 0.304833π-0.304833\pi
0.575435 + 0.817847i 0.304833π0.304833\pi
152152 −26.4853 −2.14824
153153 2.34315i 0.189432i
154154 2.82843 0.227921
155155 − 10.0711i − 0.808928i
156156 35.3848i 2.83305i
157157 8.48528i 0.677199i 0.940931 + 0.338600i 0.109953π0.109953\pi
−0.940931 + 0.338600i 0.890047π0.890047\pi
158158 −5.82843 −0.463685
159159 − 22.8995i − 1.81605i
160160 − 1.58579i − 0.125367i
161161 −10.3431 −0.815154
162162 − 22.8995i − 1.79915i
163163 3.92893i 0.307738i 0.988091 + 0.153869i 0.0491733π0.0491733\pi
−0.988091 + 0.153869i 0.950827π0.950827\pi
164164 17.1716i 1.34087i
165165 1.00000 0.0778499
166166 18.4853i 1.43474i
167167 3.17157 0.245424 0.122712 0.992442i 0.460841π-0.460841\pi
0.122712 + 0.992442i 0.460841π0.460841\pi
168168 30.1421 2.32552
169169 1.65685 0.127450
170170 2.00000 0.153393
171171 16.9706i 1.29777i
172172 13.7279i 1.04674i
173173 −12.3431 −0.938432 −0.469216 0.883083i 0.655463π-0.655463\pi
−0.469216 + 0.883083i 0.655463π0.655463\pi
174174 0 0
175175 11.3137 0.855236
176176 1.24264i 0.0936676i
177177 8.82843i 0.663585i
178178 −30.1421 −2.25925
179179 6.48528 0.484733 0.242366 0.970185i 0.422076π-0.422076\pi
0.242366 + 0.970185i 0.422076π0.422076\pi
180180 10.8284 0.807103
181181 8.31371 0.617953 0.308977 0.951070i 0.400014π-0.400014\pi
0.308977 + 0.951070i 0.400014π0.400014\pi
182182 − 26.1421i − 1.93778i
183183 11.6569 0.861699
184184 − 16.1421i − 1.19001i
185185 − 4.00000i − 0.294086i
186186 − 58.6985i − 4.30398i
187187 0.343146 0.0250933
188188 12.4142i 0.905400i
189189 1.17157i 0.0852194i
190190 14.4853 1.05087
191191 − 25.3137i − 1.83164i −0.401594 0.915818i 0.631544π-0.631544\pi
0.401594 0.915818i 0.368456π-0.368456\pi
192192 − 23.7279i − 1.71242i
193193 5.17157i 0.372258i 0.982525 + 0.186129i 0.0595942π0.0595942\pi
−0.982525 + 0.186129i 0.940406π0.940406\pi
194194 −10.8284 −0.777436
195195 − 9.24264i − 0.661879i
196196 −3.82843 −0.273459
197197 2.00000 0.142494 0.0712470 0.997459i 0.477302π-0.477302\pi
0.0712470 + 0.997459i 0.477302π0.477302\pi
198198 2.82843 0.201008
199199 −0.485281 −0.0344007 −0.0172003 0.999852i 0.505475π-0.505475\pi
−0.0172003 + 0.999852i 0.505475π0.505475\pi
200200 17.6569i 1.24853i
201201 13.6569i 0.963280i
202202 −5.65685 −0.398015
203203 0 0
204204 7.65685 0.536087
205205 − 4.48528i − 0.313266i
206206 − 11.6569i − 0.812172i
207207 −10.3431 −0.718898
208208 11.4853 0.796361
209209 2.48528 0.171911
210210 −16.4853 −1.13759
211211 − 19.3848i − 1.33450i −0.744832 0.667252i 0.767471π-0.767471\pi
0.744832 0.667252i 0.232529π-0.232529\pi
212212 −36.3137 −2.49404
213213 − 21.3137i − 1.46039i
214214 − 35.7990i − 2.44717i
215215 − 3.58579i − 0.244549i
216216 −1.82843 −0.124409
217217 28.4853i 1.93371i
218218 − 30.5563i − 2.06954i
219219 9.65685 0.652550
220220 − 1.58579i − 0.106914i
221221 − 3.17157i − 0.213343i
222222 − 23.3137i − 1.56471i
223223 −3.17157 −0.212384 −0.106192 0.994346i 0.533866π-0.533866\pi
−0.106192 + 0.994346i 0.533866π0.533866\pi
224224 4.48528i 0.299685i
225225 11.3137 0.754247
226226 32.1421 2.13806
227227 −8.14214 −0.540413 −0.270206 0.962802i 0.587092π-0.587092\pi
−0.270206 + 0.962802i 0.587092π0.587092\pi
228228 55.4558 3.67265
229229 − 3.51472i − 0.232259i −0.993234 0.116130i 0.962951π-0.962951\pi
0.993234 0.116130i 0.0370488π-0.0370488\pi
230230 8.82843i 0.582129i
231231 −2.82843 −0.186097
232232 0 0
233233 18.3137 1.19977 0.599885 0.800086i 0.295213π-0.295213\pi
0.599885 + 0.800086i 0.295213π0.295213\pi
234234 − 26.1421i − 1.70896i
235235 − 3.24264i − 0.211527i
236236 14.0000 0.911322
237237 5.82843 0.378597
238238 −5.65685 −0.366679
239239 −19.6569 −1.27150 −0.635748 0.771897i 0.719308π-0.719308\pi
−0.635748 + 0.771897i 0.719308π0.719308\pi
240240 − 7.24264i − 0.467510i
241241 18.3137 1.17969 0.589845 0.807517i 0.299189π-0.299189\pi
0.589845 + 0.807517i 0.299189π0.299189\pi
242242 26.1421i 1.68048i
243243 21.6569i 1.38929i
244244 − 18.4853i − 1.18340i
245245 1.00000 0.0638877
246246 − 26.1421i − 1.66676i
247247 − 22.9706i − 1.46158i
248248 −44.4558 −2.82295
249249 − 18.4853i − 1.17146i
250250 − 21.7279i − 1.37419i
251251 − 20.0711i − 1.26687i −0.773794 0.633437i 0.781643π-0.781643\pi
0.773794 0.633437i 0.218357π-0.218357\pi
252252 −30.6274 −1.92935
253253 1.51472i 0.0952295i
254254 −10.4853 −0.657905
255255 −2.00000 −0.125245
256256 −29.9706 −1.87316
257257 −18.1716 −1.13351 −0.566756 0.823886i 0.691802π-0.691802\pi
−0.566756 + 0.823886i 0.691802π0.691802\pi
258258 − 20.8995i − 1.30115i
259259 11.3137i 0.703000i
260260 −14.6569 −0.908980
261261 0 0
262262 −51.4558 −3.17895
263263 − 2.75736i − 0.170026i −0.996380 0.0850130i 0.972907π-0.972907\pi
0.996380 0.0850130i 0.0270932π-0.0270932\pi
264264 − 4.41421i − 0.271676i
265265 9.48528 0.582676
266266 −40.9706 −2.51207
267267 30.1421 1.84467
268268 21.6569 1.32290
269269 31.4558i 1.91790i 0.283581 + 0.958948i 0.408478π0.408478\pi
−0.283581 + 0.958948i 0.591522π0.591522\pi
270270 1.00000 0.0608581
271271 16.5563i 1.00573i 0.864366 + 0.502863i 0.167720π0.167720\pi
−0.864366 + 0.502863i 0.832280π0.832280\pi
272272 − 2.48528i − 0.150692i
273273 26.1421i 1.58219i
274274 28.9706 1.75018
275275 − 1.65685i − 0.0999121i
276276 33.7990i 2.03446i
277277 −17.3137 −1.04028 −0.520140 0.854081i 0.674120π-0.674120\pi
−0.520140 + 0.854081i 0.674120π0.674120\pi
278278 33.7990i 2.02713i
279279 28.4853i 1.70537i
280280 12.4853i 0.746138i
281281 31.9706 1.90720 0.953602 0.301070i 0.0973439π-0.0973439\pi
0.953602 + 0.301070i 0.0973439π0.0973439\pi
282282 − 18.8995i − 1.12545i
283283 −11.6569 −0.692928 −0.346464 0.938063i 0.612618π-0.612618\pi
−0.346464 + 0.938063i 0.612618π0.612618\pi
284284 −33.7990 −2.00560
285285 −14.4853 −0.858034
286286 −3.82843 −0.226380
287287 12.6863i 0.748848i
288288 4.48528i 0.264298i
289289 16.3137 0.959630
290290 0 0
291291 10.8284 0.634774
292292 − 15.3137i − 0.896167i
293293 − 7.65685i − 0.447318i −0.974667 0.223659i 0.928200π-0.928200\pi
0.974667 0.223659i 0.0718002π-0.0718002\pi
294294 5.82843 0.339921
295295 −3.65685 −0.212910
296296 −17.6569 −1.02628
297297 0.171573 0.00995567
298298 18.8995i 1.09482i
299299 14.0000 0.809641
300300 − 36.9706i − 2.13450i
301301 10.1421i 0.584583i
302302 34.1421i 1.96466i
303303 5.65685 0.324978
304304 − 18.0000i − 1.03237i
305305 4.82843i 0.276475i
306306 −5.65685 −0.323381
307307 − 2.89949i − 0.165483i −0.996571 0.0827415i 0.973632π-0.973632\pi
0.996571 0.0827415i 0.0263676π-0.0263676\pi
308308 4.48528i 0.255573i
309309 11.6569i 0.663135i
310310 24.3137 1.38093
311311 − 2.68629i − 0.152326i −0.997095 0.0761628i 0.975733π-0.975733\pi
0.997095 0.0761628i 0.0242669π-0.0242669\pi
312312 −40.7990 −2.30979
313313 9.82843 0.555536 0.277768 0.960648i 0.410405π-0.410405\pi
0.277768 + 0.960648i 0.410405π0.410405\pi
314314 −20.4853 −1.15605
315315 8.00000 0.450749
316316 − 9.24264i − 0.519939i
317317 − 31.4558i − 1.76674i −0.468680 0.883368i 0.655270π-0.655270\pi
0.468680 0.883368i 0.344730π-0.344730\pi
318318 55.2843 3.10019
319319 0 0
320320 9.82843 0.549426
321321 35.7990i 1.99810i
322322 − 24.9706i − 1.39156i
323323 −4.97056 −0.276570
324324 36.3137 2.01743
325325 −15.3137 −0.849452
326326 −9.48528 −0.525341
327327 30.5563i 1.68977i
328328 −19.7990 −1.09322
329329 9.17157i 0.505645i
330330 2.41421i 0.132898i
331331 − 2.41421i − 0.132697i −0.997797 0.0663486i 0.978865π-0.978865\pi
0.997797 0.0663486i 0.0211349π-0.0211349\pi
332332 −29.3137 −1.60880
333333 11.3137i 0.619987i
334334 7.65685i 0.418964i
335335 −5.65685 −0.309067
336336 20.4853i 1.11756i
337337 21.7990i 1.18747i 0.804662 + 0.593733i 0.202347π0.202347\pi
−0.804662 + 0.593733i 0.797653π0.797653\pi
338338 4.00000i 0.217571i
339339 −32.1421 −1.74572
340340 3.17157i 0.172003i
341341 4.17157 0.225903
342342 −40.9706 −2.21543
343343 16.9706 0.916324
344344 −15.8284 −0.853412
345345 − 8.82843i − 0.475307i
346346 − 29.7990i − 1.60200i
347347 −2.48528 −0.133417 −0.0667084 0.997773i 0.521250π-0.521250\pi
−0.0667084 + 0.997773i 0.521250π0.521250\pi
348348 0 0
349349 −5.14214 −0.275252 −0.137626 0.990484i 0.543947π-0.543947\pi
−0.137626 + 0.990484i 0.543947π0.543947\pi
350350 27.3137i 1.45998i
351351 − 1.58579i − 0.0846430i
352352 0.656854 0.0350104
353353 −26.9706 −1.43550 −0.717749 0.696302i 0.754828π-0.754828\pi
−0.717749 + 0.696302i 0.754828π0.754828\pi
354354 −21.3137 −1.13281
355355 8.82843 0.468564
356356 − 47.7990i − 2.53334i
357357 5.65685 0.299392
358358 15.6569i 0.827490i
359359 − 3.92893i − 0.207361i −0.994611 0.103681i 0.966938π-0.966938\pi
0.994611 0.103681i 0.0330620π-0.0330620\pi
360360 12.4853i 0.658032i
361361 −17.0000 −0.894737
362362 20.0711i 1.05491i
363363 − 26.1421i − 1.37211i
364364 41.4558 2.17288
365365 4.00000i 0.209370i
366366 28.1421i 1.47101i
367367 − 18.0000i − 0.939592i −0.882775 0.469796i 0.844327π-0.844327\pi
0.882775 0.469796i 0.155673π-0.155673\pi
368368 10.9706 0.571880
369369 12.6863i 0.660422i
370370 9.65685 0.502036
371371 −26.8284 −1.39286
372372 93.0833 4.82614
373373 −26.3137 −1.36247 −0.681236 0.732064i 0.738557π-0.738557\pi
−0.681236 + 0.732064i 0.738557π0.738557\pi
374374 0.828427i 0.0428369i
375375 21.7279i 1.12203i
376376 −14.3137 −0.738173
377377 0 0
378378 −2.82843 −0.145479
379379 6.97056i 0.358054i 0.983844 + 0.179027i 0.0572949π0.0572949\pi
−0.983844 + 0.179027i 0.942705π0.942705\pi
380380 22.9706i 1.17837i
381381 10.4853 0.537177
382382 61.1127 3.12680
383383 3.51472 0.179594 0.0897969 0.995960i 0.471378π-0.471378\pi
0.0897969 + 0.995960i 0.471378π0.471378\pi
384384 49.6274 2.53254
385385 − 1.17157i − 0.0597089i
386386 −12.4853 −0.635484
387387 10.1421i 0.515554i
388388 − 17.1716i − 0.871755i
389389 3.02944i 0.153599i 0.997047 + 0.0767993i 0.0244701π0.0244701\pi
−0.997047 + 0.0767993i 0.975530π0.975530\pi
390390 22.3137 1.12990
391391 − 3.02944i − 0.153205i
392392 − 4.41421i − 0.222951i
393393 51.4558 2.59560
394394 4.82843i 0.243253i
395395 2.41421i 0.121472i
396396 4.48528i 0.225394i
397397 19.3431 0.970805 0.485402 0.874291i 0.338673π-0.338673\pi
0.485402 + 0.874291i 0.338673π0.338673\pi
398398 − 1.17157i − 0.0587256i
399399 40.9706 2.05109
400400 −12.0000 −0.600000
401401 −18.6569 −0.931679 −0.465839 0.884869i 0.654248π-0.654248\pi
−0.465839 + 0.884869i 0.654248π0.654248\pi
402402 −32.9706 −1.64442
403403 − 38.5563i − 1.92063i
404404 − 8.97056i − 0.446302i
405405 −9.48528 −0.471327
406406 0 0
407407 1.65685 0.0821272
408408 8.82843i 0.437072i
409409 18.9706i 0.938034i 0.883189 + 0.469017i 0.155392π0.155392\pi
−0.883189 + 0.469017i 0.844608π0.844608\pi
410410 10.8284 0.534778
411411 −28.9706 −1.42901
412412 18.4853 0.910704
413413 10.3431 0.508953
414414 − 24.9706i − 1.22724i
415415 7.65685 0.375860
416416 − 6.07107i − 0.297659i
417417 − 33.7990i − 1.65514i
418418 6.00000i 0.293470i
419419 9.51472 0.464824 0.232412 0.972617i 0.425338π-0.425338\pi
0.232412 + 0.972617i 0.425338π0.425338\pi
420420 − 26.1421i − 1.27561i
421421 37.1127i 1.80876i 0.426726 + 0.904381i 0.359667π0.359667\pi
−0.426726 + 0.904381i 0.640333π0.640333\pi
422422 46.7990 2.27814
423423 9.17157i 0.445937i
424424 − 41.8701i − 2.03339i
425425 3.31371i 0.160738i
426426 51.4558 2.49304
427427 − 13.6569i − 0.660901i
428428 56.7696 2.74406
429429 3.82843 0.184838
430430 8.65685 0.417471
431431 19.6569 0.946837 0.473419 0.880838i 0.343020π-0.343020\pi
0.473419 + 0.880838i 0.343020π0.343020\pi
432432 − 1.24264i − 0.0597866i
433433 30.6274i 1.47186i 0.677058 + 0.735930i 0.263255π0.263255\pi
−0.677058 + 0.735930i 0.736745π0.736745\pi
434434 −68.7696 −3.30104
435435 0 0
436436 48.4558 2.32061
437437 − 21.9411i − 1.04959i
438438 23.3137i 1.11397i
439439 0.343146 0.0163775 0.00818873 0.999966i 0.497393π-0.497393\pi
0.00818873 + 0.999966i 0.497393π0.497393\pi
440440 1.82843 0.0871668
441441 −2.82843 −0.134687
442442 7.65685 0.364199
443443 − 24.3431i − 1.15658i −0.815832 0.578289i 0.803721π-0.803721\pi
0.815832 0.578289i 0.196279π-0.196279\pi
444444 36.9706 1.75455
445445 12.4853i 0.591859i
446446 − 7.65685i − 0.362563i
447447 − 18.8995i − 0.893915i
448448 −27.7990 −1.31338
449449 34.9706i 1.65036i 0.564868 + 0.825181i 0.308927π0.308927\pi
−0.564868 + 0.825181i 0.691073π0.691073\pi
450450 27.3137i 1.28758i
451451 1.85786 0.0874834
452452 50.9706i 2.39745i
453453 − 34.1421i − 1.60414i
454454 − 19.6569i − 0.922542i
455455 −10.8284 −0.507644
456456 63.9411i 2.99432i
457457 −1.02944 −0.0481550 −0.0240775 0.999710i 0.507665π-0.507665\pi
−0.0240775 + 0.999710i 0.507665π0.507665\pi
458458 8.48528 0.396491
459459 −0.343146 −0.0160167
460460 −14.0000 −0.652753
461461 14.0000i 0.652045i 0.945362 + 0.326023i 0.105709π0.105709\pi
−0.945362 + 0.326023i 0.894291π0.894291\pi
462462 − 6.82843i − 0.317687i
463463 26.0000 1.20832 0.604161 0.796862i 0.293508π-0.293508\pi
0.604161 + 0.796862i 0.293508π0.293508\pi
464464 0 0
465465 −24.3137 −1.12752
466466 44.2132i 2.04814i
467467 38.3553i 1.77487i 0.460930 + 0.887437i 0.347516π0.347516\pi
−0.460930 + 0.887437i 0.652484π0.652484\pi
468468 41.4558 1.91630
469469 16.0000 0.738811
470470 7.82843 0.361098
471471 20.4853 0.943912
472472 16.1421i 0.743002i
473473 1.48528 0.0682933
474474 14.0711i 0.646306i
475475 24.0000i 1.10120i
476476 − 8.97056i − 0.411165i
477477 −26.8284 −1.22839
478478 − 47.4558i − 2.17058i
479479 6.89949i 0.315246i 0.987499 + 0.157623i 0.0503831π0.0503831\pi
−0.987499 + 0.157623i 0.949617π0.949617\pi
480480 −3.82843 −0.174743
481481 − 15.3137i − 0.698245i
482482 44.2132i 2.01386i
483483 24.9706i 1.13620i
484484 −41.4558 −1.88436
485485 4.48528i 0.203666i
486486 −52.2843 −2.37166
487487 −11.5147 −0.521782 −0.260891 0.965368i 0.584016π-0.584016\pi
−0.260891 + 0.965368i 0.584016π0.584016\pi
488488 21.3137 0.964826
489489 9.48528 0.428939
490490 2.41421i 0.109063i
491491 − 21.2426i − 0.958667i −0.877633 0.479333i 0.840878π-0.840878\pi
0.877633 0.479333i 0.159122π-0.159122\pi
492492 41.4558 1.86897
493493 0 0
494494 55.4558 2.49508
495495 − 1.17157i − 0.0526583i
496496 − 30.2132i − 1.35661i
497497 −24.9706 −1.12008
498498 44.6274 1.99980
499499 −18.9706 −0.849239 −0.424620 0.905372i 0.639592π-0.639592\pi
−0.424620 + 0.905372i 0.639592π0.639592\pi
500500 34.4558 1.54091
501501 − 7.65685i − 0.342083i
502502 48.4558 2.16269
503503 0.272078i 0.0121314i 0.999982 + 0.00606568i 0.00193078π0.00193078\pi
−0.999982 + 0.00606568i 0.998069π0.998069\pi
504504 − 35.3137i − 1.57300i
505505 2.34315i 0.104269i
506506 −3.65685 −0.162567
507507 − 4.00000i − 0.177646i
508508 − 16.6274i − 0.737722i
509509 −10.5147 −0.466057 −0.233028 0.972470i 0.574863π-0.574863\pi
−0.233028 + 0.972470i 0.574863π0.574863\pi
510510 − 4.82843i − 0.213806i
511511 − 11.3137i − 0.500489i
512512 − 31.2426i − 1.38074i
513513 −2.48528 −0.109728
514514 − 43.8701i − 1.93503i
515515 −4.82843 −0.212766
516516 33.1421 1.45900
517517 1.34315 0.0590715
518518 −27.3137 −1.20010
519519 29.7990i 1.30803i
520520 − 16.8995i − 0.741092i
521521 29.1421 1.27674 0.638370 0.769730i 0.279609π-0.279609\pi
0.638370 + 0.769730i 0.279609π0.279609\pi
522522 0 0
523523 4.68629 0.204917 0.102459 0.994737i 0.467329π-0.467329\pi
0.102459 + 0.994737i 0.467329π0.467329\pi
524524 − 81.5980i − 3.56462i
525525 − 27.3137i − 1.19207i
526526 6.65685 0.290253
527527 −8.34315 −0.363433
528528 3.00000 0.130558
529529 −9.62742 −0.418583
530530 22.8995i 0.994690i
531531 10.3431 0.448854
532532 − 64.9706i − 2.81683i
533533 − 17.1716i − 0.743783i
534534 72.7696i 3.14905i
535535 −14.8284 −0.641089
536536 24.9706i 1.07856i
537537 − 15.6569i − 0.675643i
538538 −75.9411 −3.27405
539539 0.414214i 0.0178414i
540540 1.58579i 0.0682414i
541541 10.3431i 0.444687i 0.974968 + 0.222343i 0.0713706π0.0713706\pi
−0.974968 + 0.222343i 0.928629π0.928629\pi
542542 −39.9706 −1.71688
543543 − 20.0711i − 0.861332i
544544 −1.31371 −0.0563248
545545 −12.6569 −0.542160
546546 −63.1127 −2.70097
547547 35.7990 1.53065 0.765327 0.643641i 0.222577π-0.222577\pi
0.765327 + 0.643641i 0.222577π0.222577\pi
548548 45.9411i 1.96251i
549549 − 13.6569i − 0.582860i
550550 4.00000 0.170561
551551 0 0
552552 −38.9706 −1.65870
553553 − 6.82843i − 0.290374i
554554 − 41.7990i − 1.77587i
555555 −9.65685 −0.409911
556556 −53.5980 −2.27306
557557 17.3137 0.733605 0.366803 0.930299i 0.380452π-0.380452\pi
0.366803 + 0.930299i 0.380452π0.380452\pi
558558 −68.7696 −2.91125
559559 − 13.7279i − 0.580629i
560560 −8.48528 −0.358569
561561 − 0.828427i − 0.0349762i
562562 77.1838i 3.25580i
563563 − 0.757359i − 0.0319189i −0.999873 0.0159594i 0.994920π-0.994920\pi
0.999873 0.0159594i 0.00508026π-0.00508026\pi
564564 29.9706 1.26199
565565 − 13.3137i − 0.560112i
566566 − 28.1421i − 1.18290i
567567 26.8284 1.12669
568568 − 38.9706i − 1.63517i
569569 − 39.6569i − 1.66250i −0.555897 0.831251i 0.687625π-0.687625\pi
0.555897 0.831251i 0.312375π-0.312375\pi
570570 − 34.9706i − 1.46476i
571571 14.6274 0.612138 0.306069 0.952009i 0.400986π-0.400986\pi
0.306069 + 0.952009i 0.400986π0.400986\pi
572572 − 6.07107i − 0.253844i
573573 −61.1127 −2.55302
574574 −30.6274 −1.27836
575575 −14.6274 −0.610005
576576 −27.7990 −1.15829
577577 − 29.7990i − 1.24055i −0.784385 0.620274i 0.787021π-0.787021\pi
0.784385 0.620274i 0.212979π-0.212979\pi
578578 39.3848i 1.63819i
579579 12.4853 0.518871
580580 0 0
581581 −21.6569 −0.898478
582582 26.1421i 1.08363i
583583 3.92893i 0.162720i
584584 17.6569 0.730646
585585 −10.8284 −0.447700
586586 18.4853 0.763620
587587 7.65685 0.316032 0.158016 0.987437i 0.449490π-0.449490\pi
0.158016 + 0.987437i 0.449490π0.449490\pi
588588 9.24264i 0.381160i
589589 −60.4264 −2.48983
590590 − 8.82843i − 0.363461i
591591 − 4.82843i − 0.198615i
592592 − 12.0000i − 0.493197i
593593 19.4853 0.800165 0.400082 0.916479i 0.368982π-0.368982\pi
0.400082 + 0.916479i 0.368982π0.368982\pi
594594 0.414214i 0.0169954i
595595 2.34315i 0.0960596i
596596 −29.9706 −1.22764
597597 1.17157i 0.0479493i
598598 33.7990i 1.38214i
599599 − 9.87006i − 0.403280i −0.979460 0.201640i 0.935373π-0.935373\pi
0.979460 0.201640i 0.0646270π-0.0646270\pi
600600 42.6274 1.74026
601601 17.1716i 0.700443i 0.936667 + 0.350222i 0.113894π0.113894\pi
−0.936667 + 0.350222i 0.886106π0.886106\pi
602602 −24.4853 −0.997946
603603 16.0000 0.651570
604604 −54.1421 −2.20301
605605 10.8284 0.440238
606606 13.6569i 0.554772i
607607 − 7.72792i − 0.313667i −0.987625 0.156833i 0.949871π-0.949871\pi
0.987625 0.156833i 0.0501286π-0.0501286\pi
608608 −9.51472 −0.385873
609609 0 0
610610 −11.6569 −0.471972
611611 − 12.4142i − 0.502225i
612612 − 8.97056i − 0.362614i
613613 9.00000 0.363507 0.181753 0.983344i 0.441823π-0.441823\pi
0.181753 + 0.983344i 0.441823π0.441823\pi
614614 7.00000 0.282497
615615 −10.8284 −0.436644
616616 −5.17157 −0.208369
617617 0.686292i 0.0276291i 0.999905 + 0.0138145i 0.00439744π0.00439744\pi
−0.999905 + 0.0138145i 0.995603π0.995603\pi
618618 −28.1421 −1.13204
619619 33.5858i 1.34993i 0.737851 + 0.674963i 0.235841π0.235841\pi
−0.737851 + 0.674963i 0.764159π0.764159\pi
620620 38.5563i 1.54846i
621621 − 1.51472i − 0.0607836i
622622 6.48528 0.260036
623623 − 35.3137i − 1.41481i
624624 − 27.7279i − 1.11001i
625625 11.0000 0.440000
626626 23.7279i 0.948358i
627627 − 6.00000i − 0.239617i
628628 − 32.4853i − 1.29630i
629629 −3.31371 −0.132126
630630 19.3137i 0.769477i
631631 36.8284 1.46612 0.733058 0.680166i 0.238092π-0.238092\pi
0.733058 + 0.680166i 0.238092π0.238092\pi
632632 10.6569 0.423907
633633 −46.7990 −1.86009
634634 75.9411 3.01601
635635 4.34315i 0.172352i
636636 87.6690i 3.47630i
637637 3.82843 0.151688
638638 0 0
639639 −24.9706 −0.987820
640640 20.5563i 0.812561i
641641 − 17.7990i − 0.703018i −0.936185 0.351509i 0.885669π-0.885669\pi
0.936185 0.351509i 0.114331π-0.114331\pi
642642 −86.4264 −3.41098
643643 −32.4853 −1.28109 −0.640547 0.767919i 0.721292π-0.721292\pi
−0.640547 + 0.767919i 0.721292π0.721292\pi
644644 39.5980 1.56038
645645 −8.65685 −0.340863
646646 − 12.0000i − 0.472134i
647647 −39.6569 −1.55907 −0.779536 0.626358i 0.784545π-0.784545\pi
−0.779536 + 0.626358i 0.784545π0.784545\pi
648648 41.8701i 1.64481i
649649 − 1.51472i − 0.0594579i
650650 − 36.9706i − 1.45010i
651651 68.7696 2.69529
652652 − 15.0416i − 0.589076i
653653 − 30.1421i − 1.17955i −0.807567 0.589776i 0.799216π-0.799216\pi
0.807567 0.589776i 0.200784π-0.200784\pi
654654 −73.7696 −2.88462
655655 21.3137i 0.832796i
656656 − 13.4558i − 0.525362i
657657 − 11.3137i − 0.441390i
658658 −22.1421 −0.863190
659659 − 14.4142i − 0.561498i −0.959781 0.280749i 0.909417π-0.909417\pi
0.959781 0.280749i 0.0905829π-0.0905829\pi
660660 −3.82843 −0.149021
661661 33.3137 1.29575 0.647877 0.761745i 0.275657π-0.275657\pi
0.647877 + 0.761745i 0.275657π0.275657\pi
662662 5.82843 0.226528
663663 −7.65685 −0.297368
664664 − 33.7990i − 1.31166i
665665 16.9706i 0.658090i
666666 −27.3137 −1.05838
667667 0 0
668668 −12.1421 −0.469793
669669 7.65685i 0.296031i
670670 − 13.6569i − 0.527610i
671671 −2.00000 −0.0772091
672672 10.8284 0.417716
673673 21.6274 0.833676 0.416838 0.908981i 0.363138π-0.363138\pi
0.416838 + 0.908981i 0.363138π0.363138\pi
674674 −52.6274 −2.02713
675675 1.65685i 0.0637723i
676676 −6.34315 −0.243967
677677 − 22.0000i − 0.845529i −0.906240 0.422764i 0.861060π-0.861060\pi
0.906240 0.422764i 0.138940π-0.138940\pi
678678 − 77.5980i − 2.98013i
679679 − 12.6863i − 0.486855i
680680 −3.65685 −0.140234
681681 19.6569i 0.753252i
682682 10.0711i 0.385641i
683683 20.9706 0.802416 0.401208 0.915987i 0.368590π-0.368590\pi
0.401208 + 0.915987i 0.368590π0.368590\pi
684684 − 64.9706i − 2.48421i
685685 − 12.0000i − 0.458496i
686686 40.9706i 1.56426i
687687 −8.48528 −0.323734
688688 − 10.7574i − 0.410120i
689689 36.3137 1.38344
690690 21.3137 0.811399
691691 48.0000 1.82601 0.913003 0.407953i 0.133757π-0.133757\pi
0.913003 + 0.407953i 0.133757π0.133757\pi
692692 47.2548 1.79636
693693 3.31371i 0.125877i
694694 − 6.00000i − 0.227757i
695695 14.0000 0.531050
696696 0 0
697697 −3.71573 −0.140743
698698 − 12.4142i − 0.469885i
699699 − 44.2132i − 1.67230i
700700 −43.3137 −1.63710
701701 40.1127 1.51504 0.757518 0.652814i 0.226412π-0.226412\pi
0.757518 + 0.652814i 0.226412π0.226412\pi
702702 3.82843 0.144495
703703 −24.0000 −0.905177
704704 4.07107i 0.153434i
705705 −7.82843 −0.294836
706706 − 65.1127i − 2.45055i
707707 − 6.62742i − 0.249250i
708708 − 33.7990i − 1.27024i
709709 −29.1421 −1.09446 −0.547228 0.836984i 0.684317π-0.684317\pi
−0.547228 + 0.836984i 0.684317π0.684317\pi
710710 21.3137i 0.799889i
711711 − 6.82843i − 0.256086i
712712 55.1127 2.06544
713713 − 36.8284i − 1.37924i
714714 13.6569i 0.511095i
715715 1.58579i 0.0593051i
716716 −24.8284 −0.927882
717717 47.4558i 1.77227i
718718 9.48528 0.353988
719719 −20.1421 −0.751175 −0.375587 0.926787i 0.622559π-0.622559\pi
−0.375587 + 0.926787i 0.622559π0.622559\pi
720720 −8.48528 −0.316228
721721 13.6569 0.508608
722722 − 41.0416i − 1.52741i
723723 − 44.2132i − 1.64431i
724724 −31.8284 −1.18289
725725 0 0
726726 63.1127 2.34233
727727 − 1.31371i − 0.0487228i −0.999703 0.0243614i 0.992245π-0.992245\pi
0.999703 0.0243614i 0.00775523π-0.00775523\pi
728728 47.7990i 1.77155i
729729 23.8284 0.882534
730730 −9.65685 −0.357416
731731 −2.97056 −0.109870
732732 −44.6274 −1.64948
733733 − 41.2548i − 1.52378i −0.647705 0.761891i 0.724271π-0.724271\pi
0.647705 0.761891i 0.275729π-0.275729\pi
734734 43.4558 1.60398
735735 − 2.41421i − 0.0890496i
736736 − 5.79899i − 0.213754i
737737 − 2.34315i − 0.0863109i
738738 −30.6274 −1.12741
739739 − 4.07107i − 0.149757i −0.997193 0.0748783i 0.976143π-0.976143\pi
0.997193 0.0748783i 0.0238568π-0.0238568\pi
740740 15.3137i 0.562943i
741741 −55.4558 −2.03722
742742 − 64.7696i − 2.37777i
743743 23.6569i 0.867886i 0.900940 + 0.433943i 0.142878π0.142878\pi
−0.900940 + 0.433943i 0.857122π0.857122\pi
744744 107.326i 3.93476i
745745 7.82843 0.286811
746746 − 63.5269i − 2.32589i
747747 −21.6569 −0.792383
748748 −1.31371 −0.0480339
749749 41.9411 1.53250
750750 −52.4558 −1.91542
751751 25.3137i 0.923710i 0.886955 + 0.461855i 0.152816π0.152816\pi
−0.886955 + 0.461855i 0.847184π0.847184\pi
752752 − 9.72792i − 0.354741i
753753 −48.4558 −1.76583
754754 0 0
755755 14.1421 0.514685
756756 − 4.48528i − 0.163128i
757757 − 25.5147i − 0.927348i −0.886006 0.463674i 0.846531π-0.846531\pi
0.886006 0.463674i 0.153469π-0.153469\pi
758758 −16.8284 −0.611236
759759 3.65685 0.132735
760760 −26.4853 −0.960722
761761 45.5980 1.65293 0.826463 0.562991i 0.190350π-0.190350\pi
0.826463 + 0.562991i 0.190350π0.190350\pi
762762 25.3137i 0.917019i
763763 35.7990 1.29601
764764 96.9117i 3.50614i
765765 2.34315i 0.0847166i
766766 8.48528i 0.306586i
767767 −14.0000 −0.505511
768768 72.3553i 2.61090i
769769 − 49.1127i − 1.77105i −0.464592 0.885525i 0.653799π-0.653799\pi
0.464592 0.885525i 0.346201π-0.346201\pi
770770 2.82843 0.101929
771771 43.8701i 1.57994i
772772 − 19.7990i − 0.712581i
773773 19.5147i 0.701896i 0.936395 + 0.350948i 0.114141π0.114141\pi
−0.936395 + 0.350948i 0.885859π0.885859\pi
774774 −24.4853 −0.880105
775775 40.2843i 1.44705i
776776 19.7990 0.710742
777777 27.3137 0.979874
778778 −7.31371 −0.262209
779779 −26.9117 −0.964211
780780 35.3848i 1.26698i
781781 3.65685i 0.130853i
782782 7.31371 0.261538
783783 0 0
784784 3.00000 0.107143
785785 8.48528i 0.302853i
786786 124.225i 4.43097i
787787 54.0833 1.92786 0.963930 0.266156i 0.0857536π-0.0857536\pi
0.963930 + 0.266156i 0.0857536π0.0857536\pi
788788 −7.65685 −0.272764
789789 −6.65685 −0.236990
790790 −5.82843 −0.207366
791791 37.6569i 1.33892i
792792 −5.17157 −0.183764
793793 18.4853i 0.656432i
794794 46.6985i 1.65727i
795795 − 22.8995i − 0.812161i
796796 1.85786 0.0658503
797797 − 51.7401i − 1.83273i −0.400345 0.916364i 0.631110π-0.631110\pi
0.400345 0.916364i 0.368890π-0.368890\pi
798798 98.9117i 3.50144i
799799 −2.68629 −0.0950342
800800 6.34315i 0.224264i
801801 − 35.3137i − 1.24775i
802802 − 45.0416i − 1.59048i
803803 −1.65685 −0.0584691
804804 − 52.2843i − 1.84392i
805805 −10.3431 −0.364548
806806 93.0833 3.27872
807807 75.9411 2.67325
808808 10.3431 0.363871
809809 36.2843i 1.27569i 0.770166 + 0.637844i 0.220173π0.220173\pi
−0.770166 + 0.637844i 0.779827π0.779827\pi
810810 − 22.8995i − 0.804606i
811811 −10.8284 −0.380238 −0.190119 0.981761i 0.560887π-0.560887\pi
−0.190119 + 0.981761i 0.560887π0.560887\pi
812812 0 0
813813 39.9706 1.40183
814814 4.00000i 0.140200i
815815 3.92893i 0.137624i
816816 −6.00000 −0.210042
817817 −21.5147 −0.752705
818818 −45.7990 −1.60132
819819 30.6274 1.07021
820820 17.1716i 0.599657i
821821 1.48528 0.0518367 0.0259183 0.999664i 0.491749π-0.491749\pi
0.0259183 + 0.999664i 0.491749π0.491749\pi
822822 − 69.9411i − 2.43948i
823823 54.2843i 1.89223i 0.323830 + 0.946115i 0.395029π0.395029\pi
−0.323830 + 0.946115i 0.604971π0.604971\pi
824824 21.3137i 0.742498i
825825 −4.00000 −0.139262
826826 24.9706i 0.868837i
827827 32.8995i 1.14403i 0.820244 + 0.572014i 0.193838π0.193838\pi
−0.820244 + 0.572014i 0.806162π0.806162\pi
828828 39.5980 1.37612
829829 29.7990i 1.03496i 0.855695 + 0.517481i 0.173130π0.173130\pi
−0.855695 + 0.517481i 0.826870π0.826870\pi
830830 18.4853i 0.641633i
831831 41.7990i 1.44999i
832832 37.6274 1.30450
833833 − 0.828427i − 0.0287033i
834834 81.5980 2.82551
835835 3.17157 0.109757
836836 −9.51472 −0.329073
837837 −4.17157 −0.144191
838838 22.9706i 0.793505i
839839 − 7.92893i − 0.273737i −0.990589 0.136869i 0.956296π-0.956296\pi
0.990589 0.136869i 0.0437038π-0.0437038\pi
840840 30.1421 1.04000
841841 0 0
842842 −89.5980 −3.08775
843843 − 77.1838i − 2.65835i
844844 74.2132i 2.55452i
845845 1.65685 0.0569975
846846 −22.1421 −0.761262
847847 −30.6274 −1.05237
848848 28.4558 0.977178
849849 28.1421i 0.965836i
850850 −8.00000 −0.274398
851851 − 14.6274i − 0.501421i
852852 81.5980i 2.79550i
853853 − 22.9706i − 0.786497i −0.919432 0.393249i 0.871351π-0.871351\pi
0.919432 0.393249i 0.128649π-0.128649\pi
854854 32.9706 1.12823
855855 16.9706i 0.580381i
856856 65.4558i 2.23723i
857857 −6.17157 −0.210817 −0.105408 0.994429i 0.533615π-0.533615\pi
−0.105408 + 0.994429i 0.533615π0.533615\pi
858858 9.24264i 0.315539i
859859 19.7279i 0.673108i 0.941664 + 0.336554i 0.109261π0.109261\pi
−0.941664 + 0.336554i 0.890739π0.890739\pi
860860 13.7279i 0.468118i
861861 30.6274 1.04378
862862 47.4558i 1.61635i
863863 −17.1127 −0.582523 −0.291262 0.956643i 0.594075π-0.594075\pi
−0.291262 + 0.956643i 0.594075π0.594075\pi
864864 −0.656854 −0.0223466
865865 −12.3431 −0.419680
866866 −73.9411 −2.51262
867867 − 39.3848i − 1.33758i
868868 − 109.054i − 3.70153i
869869 −1.00000 −0.0339227
870870 0 0
871871 −21.6569 −0.733815
872872 55.8701i 1.89200i
873873 − 12.6863i − 0.429366i
874874 52.9706 1.79176
875875 25.4558 0.860565
876876 −36.9706 −1.24912
877877 −37.1421 −1.25420 −0.627100 0.778938i 0.715758π-0.715758\pi
−0.627100 + 0.778938i 0.715758π0.715758\pi
878878 0.828427i 0.0279581i
879879 −18.4853 −0.623493
880880 1.24264i 0.0418894i
881881 − 14.0000i − 0.471672i −0.971793 0.235836i 0.924217π-0.924217\pi
0.971793 0.235836i 0.0757828π-0.0757828\pi
882882 − 6.82843i − 0.229925i
883883 −38.4264 −1.29315 −0.646576 0.762850i 0.723800π-0.723800\pi
−0.646576 + 0.762850i 0.723800π0.723800\pi
884884 12.1421i 0.408384i
885885 8.82843i 0.296764i
886886 58.7696 1.97440
887887 − 17.1005i − 0.574179i −0.957904 0.287089i 0.907312π-0.907312\pi
0.957904 0.287089i 0.0926877π-0.0926877\pi
888888 42.6274i 1.43048i
889889 − 12.2843i − 0.412001i
890890 −30.1421 −1.01037
891891 − 3.92893i − 0.131624i
892892 12.1421 0.406549
893893 −19.4558 −0.651065
894894 45.6274 1.52601
895895 6.48528 0.216779
896896 − 58.1421i − 1.94239i
897897 − 33.7990i − 1.12852i
898898 −84.4264 −2.81735
899899 0 0
900900 −43.3137 −1.44379
901901 − 7.85786i − 0.261783i
902902 4.48528i 0.149344i
903903 24.4853 0.814819
904904 −58.7696 −1.95465
905905 8.31371 0.276357
906906 82.4264 2.73843
907907 22.2843i 0.739937i 0.929044 + 0.369969i 0.120632π0.120632\pi
−0.929044 + 0.369969i 0.879368π0.879368\pi
908908 31.1716 1.03446
909909 − 6.62742i − 0.219818i
910910 − 26.1421i − 0.866603i
911911 − 15.4437i − 0.511671i −0.966720 0.255835i 0.917649π-0.917649\pi
0.966720 0.255835i 0.0823505π-0.0823505\pi
912912 −43.4558 −1.43897
913913 3.17157i 0.104964i
914914 − 2.48528i − 0.0822058i
915915 11.6569 0.385364
916916 13.4558i 0.444594i
917917 − 60.2843i − 1.99076i
918918 − 0.828427i − 0.0273422i
919919 8.14214 0.268584 0.134292 0.990942i 0.457124π-0.457124\pi
0.134292 + 0.990942i 0.457124π0.457124\pi
920920 − 16.1421i − 0.532190i
921921 −7.00000 −0.230658
922922 −33.7990 −1.11311
923923 33.7990 1.11251
924924 10.8284 0.356229
925925 16.0000i 0.526077i
926926 62.7696i 2.06274i
927927 13.6569 0.448550
928928 0 0
929929 18.6863 0.613077 0.306539 0.951858i 0.400829π-0.400829\pi
0.306539 + 0.951858i 0.400829π0.400829\pi
930930 − 58.6985i − 1.92480i
931931 − 6.00000i − 0.196642i
932932 −70.1127 −2.29662
933933 −6.48528 −0.212319
934934 −92.5980 −3.02990
935935 0.343146 0.0112221
936936 47.7990i 1.56236i
937937 16.6274 0.543194 0.271597 0.962411i 0.412448π-0.412448\pi
0.271597 + 0.962411i 0.412448π0.412448\pi
938938 38.6274i 1.26123i
939939 − 23.7279i − 0.774331i
940940 12.4142i 0.404907i
941941 56.5980 1.84504 0.922521 0.385948i 0.126125π-0.126125\pi
0.922521 + 0.385948i 0.126125π0.126125\pi
942942 49.4558i 1.61136i
943943 − 16.4020i − 0.534123i
944944 −10.9706 −0.357061
945945 1.17157i 0.0381113i
946946 3.58579i 0.116584i
947947 − 2.61522i − 0.0849834i −0.999097 0.0424917i 0.986470π-0.986470\pi
0.999097 0.0424917i 0.0135296π-0.0135296\pi
948948 −22.3137 −0.724716
949949 15.3137i 0.497104i
950950 −57.9411 −1.87986
951951 −75.9411 −2.46256
952952 10.3431 0.335223
953953 −35.6274 −1.15409 −0.577043 0.816714i 0.695793π-0.695793\pi
−0.577043 + 0.816714i 0.695793π0.695793\pi
954954 − 64.7696i − 2.09699i
955955 − 25.3137i − 0.819132i
956956 75.2548 2.43392
957957 0 0
958958 −16.6569 −0.538159
959959 33.9411i 1.09602i
960960 − 23.7279i − 0.765815i
961961 −70.4264 −2.27182
962962 36.9706 1.19198
963963 41.9411 1.35153
964964 −70.1127 −2.25818
965965 5.17157i 0.166479i
966966 −60.2843 −1.93961
967967 − 35.2426i − 1.13333i −0.823949 0.566663i 0.808234π-0.808234\pi
0.823949 0.566663i 0.191766π-0.191766\pi
968968 − 47.7990i − 1.53632i
969969 12.0000i 0.385496i
970970 −10.8284 −0.347680
971971 15.6569i 0.502452i 0.967928 + 0.251226i 0.0808338π0.0808338\pi
−0.967928 + 0.251226i 0.919166π0.919166\pi
972972 − 82.9117i − 2.65939i
973973 −39.5980 −1.26945
974974 − 27.7990i − 0.890737i
975975 36.9706i 1.18401i
976976 14.4853i 0.463663i
977977 36.1716 1.15723 0.578616 0.815600i 0.303593π-0.303593\pi
0.578616 + 0.815600i 0.303593π0.303593\pi
978978 22.8995i 0.732245i
979979 −5.17157 −0.165284
980980 −3.82843 −0.122295
981981 35.7990 1.14297
982982 51.2843 1.63655
983983 − 21.8701i − 0.697547i −0.937207 0.348773i 0.886598π-0.886598\pi
0.937207 0.348773i 0.113402π-0.113402\pi
984984 47.7990i 1.52378i
985985 2.00000 0.0637253
986986 0 0
987987 22.1421 0.704792
988988 87.9411i 2.79778i
989989 − 13.1127i − 0.416960i
990990 2.82843 0.0898933
991991 12.8284 0.407508 0.203754 0.979022i 0.434686π-0.434686\pi
0.203754 + 0.979022i 0.434686π0.434686\pi
992992 −15.9706 −0.507066
993993 −5.82843 −0.184960
994994 − 60.2843i − 1.91210i
995995 −0.485281 −0.0153845
996996 70.7696i 2.24242i
997997 − 28.2843i − 0.895772i −0.894091 0.447886i 0.852177π-0.852177\pi
0.894091 0.447886i 0.147823π-0.147823\pi
998998 − 45.7990i − 1.44974i
999999 −1.65685 −0.0524205
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.b.a.840.4 4
29.2 odd 28 841.2.d.f.605.1 12
29.3 odd 28 841.2.d.f.571.1 12
29.4 even 14 841.2.e.k.651.1 24
29.5 even 14 841.2.e.k.236.4 24
29.6 even 14 841.2.e.k.196.1 24
29.7 even 7 841.2.e.k.270.1 24
29.8 odd 28 841.2.d.j.574.1 12
29.9 even 14 841.2.e.k.267.1 24
29.10 odd 28 841.2.d.j.190.2 12
29.11 odd 28 841.2.d.f.778.2 12
29.12 odd 4 29.2.a.a.1.1 2
29.13 even 14 841.2.e.k.63.4 24
29.14 odd 28 841.2.d.f.645.1 12
29.15 odd 28 841.2.d.j.645.2 12
29.16 even 7 841.2.e.k.63.1 24
29.17 odd 4 841.2.a.d.1.2 2
29.18 odd 28 841.2.d.j.778.1 12
29.19 odd 28 841.2.d.f.190.1 12
29.20 even 7 841.2.e.k.267.4 24
29.21 odd 28 841.2.d.f.574.2 12
29.22 even 14 841.2.e.k.270.4 24
29.23 even 7 841.2.e.k.196.4 24
29.24 even 7 841.2.e.k.236.1 24
29.25 even 7 841.2.e.k.651.4 24
29.26 odd 28 841.2.d.j.571.2 12
29.27 odd 28 841.2.d.j.605.2 12
29.28 even 2 inner 841.2.b.a.840.1 4
87.17 even 4 7569.2.a.c.1.1 2
87.41 even 4 261.2.a.d.1.2 2
116.99 even 4 464.2.a.h.1.1 2
145.12 even 4 725.2.b.b.349.1 4
145.99 odd 4 725.2.a.b.1.2 2
145.128 even 4 725.2.b.b.349.4 4
203.41 even 4 1421.2.a.j.1.1 2
232.99 even 4 1856.2.a.w.1.2 2
232.157 odd 4 1856.2.a.r.1.1 2
319.186 even 4 3509.2.a.j.1.2 2
348.215 odd 4 4176.2.a.bq.1.2 2
377.12 odd 4 4901.2.a.g.1.2 2
435.389 even 4 6525.2.a.o.1.1 2
493.186 odd 4 8381.2.a.e.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.a.a.1.1 2 29.12 odd 4
261.2.a.d.1.2 2 87.41 even 4
464.2.a.h.1.1 2 116.99 even 4
725.2.a.b.1.2 2 145.99 odd 4
725.2.b.b.349.1 4 145.12 even 4
725.2.b.b.349.4 4 145.128 even 4
841.2.a.d.1.2 2 29.17 odd 4
841.2.b.a.840.1 4 29.28 even 2 inner
841.2.b.a.840.4 4 1.1 even 1 trivial
841.2.d.f.190.1 12 29.19 odd 28
841.2.d.f.571.1 12 29.3 odd 28
841.2.d.f.574.2 12 29.21 odd 28
841.2.d.f.605.1 12 29.2 odd 28
841.2.d.f.645.1 12 29.14 odd 28
841.2.d.f.778.2 12 29.11 odd 28
841.2.d.j.190.2 12 29.10 odd 28
841.2.d.j.571.2 12 29.26 odd 28
841.2.d.j.574.1 12 29.8 odd 28
841.2.d.j.605.2 12 29.27 odd 28
841.2.d.j.645.2 12 29.15 odd 28
841.2.d.j.778.1 12 29.18 odd 28
841.2.e.k.63.1 24 29.16 even 7
841.2.e.k.63.4 24 29.13 even 14
841.2.e.k.196.1 24 29.6 even 14
841.2.e.k.196.4 24 29.23 even 7
841.2.e.k.236.1 24 29.24 even 7
841.2.e.k.236.4 24 29.5 even 14
841.2.e.k.267.1 24 29.9 even 14
841.2.e.k.267.4 24 29.20 even 7
841.2.e.k.270.1 24 29.7 even 7
841.2.e.k.270.4 24 29.22 even 14
841.2.e.k.651.1 24 29.4 even 14
841.2.e.k.651.4 24 29.25 even 7
1421.2.a.j.1.1 2 203.41 even 4
1856.2.a.r.1.1 2 232.157 odd 4
1856.2.a.w.1.2 2 232.99 even 4
3509.2.a.j.1.2 2 319.186 even 4
4176.2.a.bq.1.2 2 348.215 odd 4
4901.2.a.g.1.2 2 377.12 odd 4
6525.2.a.o.1.1 2 435.389 even 4
7569.2.a.c.1.1 2 87.17 even 4
8381.2.a.e.1.1 2 493.186 odd 4