Properties

Label 725.2.b.b.349.4
Level $725$
Weight $2$
Character 725.349
Analytic conductor $5.789$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(349,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.4
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 725.349
Dual form 725.2.b.b.349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41421i q^{2} +2.41421i q^{3} -3.82843 q^{4} -5.82843 q^{6} +2.82843i q^{7} -4.41421i q^{8} -2.82843 q^{9} -0.414214 q^{11} -9.24264i q^{12} -3.82843i q^{13} -6.82843 q^{14} +3.00000 q^{16} -0.828427i q^{17} -6.82843i q^{18} -6.00000 q^{19} -6.82843 q^{21} -1.00000i q^{22} +3.65685i q^{23} +10.6569 q^{24} +9.24264 q^{26} +0.414214i q^{27} -10.8284i q^{28} -1.00000 q^{29} +10.0711 q^{31} -1.58579i q^{32} -1.00000i q^{33} +2.00000 q^{34} +10.8284 q^{36} +4.00000i q^{37} -14.4853i q^{38} +9.24264 q^{39} -4.48528 q^{41} -16.4853i q^{42} +3.58579i q^{43} +1.58579 q^{44} -8.82843 q^{46} +3.24264i q^{47} +7.24264i q^{48} -1.00000 q^{49} +2.00000 q^{51} +14.6569i q^{52} +9.48528i q^{53} -1.00000 q^{54} +12.4853 q^{56} -14.4853i q^{57} -2.41421i q^{58} +3.65685 q^{59} -4.82843 q^{61} +24.3137i q^{62} -8.00000i q^{63} +9.82843 q^{64} +2.41421 q^{66} -5.65685i q^{67} +3.17157i q^{68} -8.82843 q^{69} -8.82843 q^{71} +12.4853i q^{72} +4.00000i q^{73} -9.65685 q^{74} +22.9706 q^{76} -1.17157i q^{77} +22.3137i q^{78} +2.41421 q^{79} -9.48528 q^{81} -10.8284i q^{82} +7.65685i q^{83} +26.1421 q^{84} -8.65685 q^{86} -2.41421i q^{87} +1.82843i q^{88} +12.4853 q^{89} +10.8284 q^{91} -14.0000i q^{92} +24.3137i q^{93} -7.82843 q^{94} +3.82843 q^{96} -4.48528i q^{97} -2.41421i q^{98} +1.17157 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 12 q^{6} + 4 q^{11} - 16 q^{14} + 12 q^{16} - 24 q^{19} - 16 q^{21} + 20 q^{24} + 20 q^{26} - 4 q^{29} + 12 q^{31} + 8 q^{34} + 32 q^{36} + 20 q^{39} + 16 q^{41} + 12 q^{44} - 24 q^{46}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.41421i 1.70711i 0.521005 + 0.853553i \(0.325557\pi\)
−0.521005 + 0.853553i \(0.674443\pi\)
\(3\) 2.41421i 1.39385i 0.717146 + 0.696923i \(0.245448\pi\)
−0.717146 + 0.696923i \(0.754552\pi\)
\(4\) −3.82843 −1.91421
\(5\) 0 0
\(6\) −5.82843 −2.37945
\(7\) 2.82843i 1.06904i 0.845154 + 0.534522i \(0.179509\pi\)
−0.845154 + 0.534522i \(0.820491\pi\)
\(8\) − 4.41421i − 1.56066i
\(9\) −2.82843 −0.942809
\(10\) 0 0
\(11\) −0.414214 −0.124890 −0.0624450 0.998048i \(-0.519890\pi\)
−0.0624450 + 0.998048i \(0.519890\pi\)
\(12\) − 9.24264i − 2.66812i
\(13\) − 3.82843i − 1.06181i −0.847430 0.530907i \(-0.821851\pi\)
0.847430 0.530907i \(-0.178149\pi\)
\(14\) −6.82843 −1.82497
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) − 0.828427i − 0.200923i −0.994941 0.100462i \(-0.967968\pi\)
0.994941 0.100462i \(-0.0320319\pi\)
\(18\) − 6.82843i − 1.60948i
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) −6.82843 −1.49008
\(22\) − 1.00000i − 0.213201i
\(23\) 3.65685i 0.762507i 0.924471 + 0.381253i \(0.124507\pi\)
−0.924471 + 0.381253i \(0.875493\pi\)
\(24\) 10.6569 2.17532
\(25\) 0 0
\(26\) 9.24264 1.81263
\(27\) 0.414214i 0.0797154i
\(28\) − 10.8284i − 2.04638i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 10.0711 1.80882 0.904409 0.426667i \(-0.140313\pi\)
0.904409 + 0.426667i \(0.140313\pi\)
\(32\) − 1.58579i − 0.280330i
\(33\) − 1.00000i − 0.174078i
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 10.8284 1.80474
\(37\) 4.00000i 0.657596i 0.944400 + 0.328798i \(0.106644\pi\)
−0.944400 + 0.328798i \(0.893356\pi\)
\(38\) − 14.4853i − 2.34982i
\(39\) 9.24264 1.48001
\(40\) 0 0
\(41\) −4.48528 −0.700483 −0.350242 0.936659i \(-0.613901\pi\)
−0.350242 + 0.936659i \(0.613901\pi\)
\(42\) − 16.4853i − 2.54373i
\(43\) 3.58579i 0.546827i 0.961897 + 0.273414i \(0.0881528\pi\)
−0.961897 + 0.273414i \(0.911847\pi\)
\(44\) 1.58579 0.239066
\(45\) 0 0
\(46\) −8.82843 −1.30168
\(47\) 3.24264i 0.472988i 0.971633 + 0.236494i \(0.0759983\pi\)
−0.971633 + 0.236494i \(0.924002\pi\)
\(48\) 7.24264i 1.04539i
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 14.6569i 2.03254i
\(53\) 9.48528i 1.30290i 0.758690 + 0.651452i \(0.225840\pi\)
−0.758690 + 0.651452i \(0.774160\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 12.4853 1.66842
\(57\) − 14.4853i − 1.91862i
\(58\) − 2.41421i − 0.317002i
\(59\) 3.65685 0.476082 0.238041 0.971255i \(-0.423495\pi\)
0.238041 + 0.971255i \(0.423495\pi\)
\(60\) 0 0
\(61\) −4.82843 −0.618217 −0.309108 0.951027i \(-0.600031\pi\)
−0.309108 + 0.951027i \(0.600031\pi\)
\(62\) 24.3137i 3.08784i
\(63\) − 8.00000i − 1.00791i
\(64\) 9.82843 1.22855
\(65\) 0 0
\(66\) 2.41421 0.297169
\(67\) − 5.65685i − 0.691095i −0.938401 0.345547i \(-0.887693\pi\)
0.938401 0.345547i \(-0.112307\pi\)
\(68\) 3.17157i 0.384610i
\(69\) −8.82843 −1.06282
\(70\) 0 0
\(71\) −8.82843 −1.04774 −0.523871 0.851798i \(-0.675513\pi\)
−0.523871 + 0.851798i \(0.675513\pi\)
\(72\) 12.4853i 1.47140i
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) −9.65685 −1.12259
\(75\) 0 0
\(76\) 22.9706 2.63490
\(77\) − 1.17157i − 0.133513i
\(78\) 22.3137i 2.52653i
\(79\) 2.41421 0.271620 0.135810 0.990735i \(-0.456636\pi\)
0.135810 + 0.990735i \(0.456636\pi\)
\(80\) 0 0
\(81\) −9.48528 −1.05392
\(82\) − 10.8284i − 1.19580i
\(83\) 7.65685i 0.840449i 0.907420 + 0.420224i \(0.138049\pi\)
−0.907420 + 0.420224i \(0.861951\pi\)
\(84\) 26.1421 2.85234
\(85\) 0 0
\(86\) −8.65685 −0.933493
\(87\) − 2.41421i − 0.258831i
\(88\) 1.82843i 0.194911i
\(89\) 12.4853 1.32344 0.661719 0.749752i \(-0.269827\pi\)
0.661719 + 0.749752i \(0.269827\pi\)
\(90\) 0 0
\(91\) 10.8284 1.13513
\(92\) − 14.0000i − 1.45960i
\(93\) 24.3137i 2.52121i
\(94\) −7.82843 −0.807441
\(95\) 0 0
\(96\) 3.82843 0.390737
\(97\) − 4.48528i − 0.455411i −0.973730 0.227706i \(-0.926878\pi\)
0.973730 0.227706i \(-0.0731224\pi\)
\(98\) − 2.41421i − 0.243872i
\(99\) 1.17157 0.117748
\(100\) 0 0
\(101\) −2.34315 −0.233152 −0.116576 0.993182i \(-0.537192\pi\)
−0.116576 + 0.993182i \(0.537192\pi\)
\(102\) 4.82843i 0.478086i
\(103\) − 4.82843i − 0.475759i −0.971295 0.237880i \(-0.923548\pi\)
0.971295 0.237880i \(-0.0764523\pi\)
\(104\) −16.8995 −1.65713
\(105\) 0 0
\(106\) −22.8995 −2.22420
\(107\) 14.8284i 1.43352i 0.697321 + 0.716759i \(0.254375\pi\)
−0.697321 + 0.716759i \(0.745625\pi\)
\(108\) − 1.58579i − 0.152592i
\(109\) −12.6569 −1.21231 −0.606153 0.795348i \(-0.707288\pi\)
−0.606153 + 0.795348i \(0.707288\pi\)
\(110\) 0 0
\(111\) −9.65685 −0.916588
\(112\) 8.48528i 0.801784i
\(113\) − 13.3137i − 1.25245i −0.779643 0.626224i \(-0.784599\pi\)
0.779643 0.626224i \(-0.215401\pi\)
\(114\) 34.9706 3.27529
\(115\) 0 0
\(116\) 3.82843 0.355461
\(117\) 10.8284i 1.00109i
\(118\) 8.82843i 0.812723i
\(119\) 2.34315 0.214796
\(120\) 0 0
\(121\) −10.8284 −0.984402
\(122\) − 11.6569i − 1.05536i
\(123\) − 10.8284i − 0.976366i
\(124\) −38.5563 −3.46246
\(125\) 0 0
\(126\) 19.3137 1.72060
\(127\) 4.34315i 0.385392i 0.981259 + 0.192696i \(0.0617231\pi\)
−0.981259 + 0.192696i \(0.938277\pi\)
\(128\) 20.5563i 1.81694i
\(129\) −8.65685 −0.762194
\(130\) 0 0
\(131\) 21.3137 1.86219 0.931094 0.364780i \(-0.118856\pi\)
0.931094 + 0.364780i \(0.118856\pi\)
\(132\) 3.82843i 0.333222i
\(133\) − 16.9706i − 1.47153i
\(134\) 13.6569 1.17977
\(135\) 0 0
\(136\) −3.65685 −0.313573
\(137\) − 12.0000i − 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) − 21.3137i − 1.81434i
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) −7.82843 −0.659272
\(142\) − 21.3137i − 1.78861i
\(143\) 1.58579i 0.132610i
\(144\) −8.48528 −0.707107
\(145\) 0 0
\(146\) −9.65685 −0.799207
\(147\) − 2.41421i − 0.199121i
\(148\) − 15.3137i − 1.25878i
\(149\) 7.82843 0.641330 0.320665 0.947193i \(-0.396094\pi\)
0.320665 + 0.947193i \(0.396094\pi\)
\(150\) 0 0
\(151\) −14.1421 −1.15087 −0.575435 0.817847i \(-0.695167\pi\)
−0.575435 + 0.817847i \(0.695167\pi\)
\(152\) 26.4853i 2.14824i
\(153\) 2.34315i 0.189432i
\(154\) 2.82843 0.227921
\(155\) 0 0
\(156\) −35.3848 −2.83305
\(157\) − 8.48528i − 0.677199i −0.940931 0.338600i \(-0.890047\pi\)
0.940931 0.338600i \(-0.109953\pi\)
\(158\) 5.82843i 0.463685i
\(159\) −22.8995 −1.81605
\(160\) 0 0
\(161\) −10.3431 −0.815154
\(162\) − 22.8995i − 1.79915i
\(163\) 3.92893i 0.307738i 0.988091 + 0.153869i \(0.0491733\pi\)
−0.988091 + 0.153869i \(0.950827\pi\)
\(164\) 17.1716 1.34087
\(165\) 0 0
\(166\) −18.4853 −1.43474
\(167\) 3.17157i 0.245424i 0.992442 + 0.122712i \(0.0391591\pi\)
−0.992442 + 0.122712i \(0.960841\pi\)
\(168\) 30.1421i 2.32552i
\(169\) −1.65685 −0.127450
\(170\) 0 0
\(171\) 16.9706 1.29777
\(172\) − 13.7279i − 1.04674i
\(173\) 12.3431i 0.938432i 0.883083 + 0.469216i \(0.155463\pi\)
−0.883083 + 0.469216i \(0.844537\pi\)
\(174\) 5.82843 0.441852
\(175\) 0 0
\(176\) −1.24264 −0.0936676
\(177\) 8.82843i 0.663585i
\(178\) 30.1421i 2.25925i
\(179\) 6.48528 0.484733 0.242366 0.970185i \(-0.422076\pi\)
0.242366 + 0.970185i \(0.422076\pi\)
\(180\) 0 0
\(181\) 8.31371 0.617953 0.308977 0.951070i \(-0.400014\pi\)
0.308977 + 0.951070i \(0.400014\pi\)
\(182\) 26.1421i 1.93778i
\(183\) − 11.6569i − 0.861699i
\(184\) 16.1421 1.19001
\(185\) 0 0
\(186\) −58.6985 −4.30398
\(187\) 0.343146i 0.0250933i
\(188\) − 12.4142i − 0.905400i
\(189\) −1.17157 −0.0852194
\(190\) 0 0
\(191\) 25.3137 1.83164 0.915818 0.401594i \(-0.131544\pi\)
0.915818 + 0.401594i \(0.131544\pi\)
\(192\) 23.7279i 1.71242i
\(193\) − 5.17157i − 0.372258i −0.982525 0.186129i \(-0.940406\pi\)
0.982525 0.186129i \(-0.0595942\pi\)
\(194\) 10.8284 0.777436
\(195\) 0 0
\(196\) 3.82843 0.273459
\(197\) − 2.00000i − 0.142494i −0.997459 0.0712470i \(-0.977302\pi\)
0.997459 0.0712470i \(-0.0226979\pi\)
\(198\) 2.82843i 0.201008i
\(199\) 0.485281 0.0344007 0.0172003 0.999852i \(-0.494525\pi\)
0.0172003 + 0.999852i \(0.494525\pi\)
\(200\) 0 0
\(201\) 13.6569 0.963280
\(202\) − 5.65685i − 0.398015i
\(203\) − 2.82843i − 0.198517i
\(204\) −7.65685 −0.536087
\(205\) 0 0
\(206\) 11.6569 0.812172
\(207\) − 10.3431i − 0.718898i
\(208\) − 11.4853i − 0.796361i
\(209\) 2.48528 0.171911
\(210\) 0 0
\(211\) −19.3848 −1.33450 −0.667252 0.744832i \(-0.732529\pi\)
−0.667252 + 0.744832i \(0.732529\pi\)
\(212\) − 36.3137i − 2.49404i
\(213\) − 21.3137i − 1.46039i
\(214\) −35.7990 −2.44717
\(215\) 0 0
\(216\) 1.82843 0.124409
\(217\) 28.4853i 1.93371i
\(218\) − 30.5563i − 2.06954i
\(219\) −9.65685 −0.652550
\(220\) 0 0
\(221\) −3.17157 −0.213343
\(222\) − 23.3137i − 1.56471i
\(223\) − 3.17157i − 0.212384i −0.994346 0.106192i \(-0.966134\pi\)
0.994346 0.106192i \(-0.0338659\pi\)
\(224\) 4.48528 0.299685
\(225\) 0 0
\(226\) 32.1421 2.13806
\(227\) 8.14214i 0.540413i 0.962802 + 0.270206i \(0.0870919\pi\)
−0.962802 + 0.270206i \(0.912908\pi\)
\(228\) 55.4558i 3.67265i
\(229\) 3.51472 0.232259 0.116130 0.993234i \(-0.462951\pi\)
0.116130 + 0.993234i \(0.462951\pi\)
\(230\) 0 0
\(231\) 2.82843 0.186097
\(232\) 4.41421i 0.289807i
\(233\) 18.3137i 1.19977i 0.800086 + 0.599885i \(0.204787\pi\)
−0.800086 + 0.599885i \(0.795213\pi\)
\(234\) −26.1421 −1.70896
\(235\) 0 0
\(236\) −14.0000 −0.911322
\(237\) 5.82843i 0.378597i
\(238\) 5.65685i 0.366679i
\(239\) 19.6569 1.27150 0.635748 0.771897i \(-0.280692\pi\)
0.635748 + 0.771897i \(0.280692\pi\)
\(240\) 0 0
\(241\) −18.3137 −1.17969 −0.589845 0.807517i \(-0.700811\pi\)
−0.589845 + 0.807517i \(0.700811\pi\)
\(242\) − 26.1421i − 1.68048i
\(243\) − 21.6569i − 1.38929i
\(244\) 18.4853 1.18340
\(245\) 0 0
\(246\) 26.1421 1.66676
\(247\) 22.9706i 1.46158i
\(248\) − 44.4558i − 2.82295i
\(249\) −18.4853 −1.17146
\(250\) 0 0
\(251\) 20.0711 1.26687 0.633437 0.773794i \(-0.281643\pi\)
0.633437 + 0.773794i \(0.281643\pi\)
\(252\) 30.6274i 1.92935i
\(253\) − 1.51472i − 0.0952295i
\(254\) −10.4853 −0.657905
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) 18.1716i 1.13351i 0.823886 + 0.566756i \(0.191802\pi\)
−0.823886 + 0.566756i \(0.808198\pi\)
\(258\) − 20.8995i − 1.30115i
\(259\) −11.3137 −0.703000
\(260\) 0 0
\(261\) 2.82843 0.175075
\(262\) 51.4558i 3.17895i
\(263\) 2.75736i 0.170026i 0.996380 + 0.0850130i \(0.0270932\pi\)
−0.996380 + 0.0850130i \(0.972907\pi\)
\(264\) −4.41421 −0.271676
\(265\) 0 0
\(266\) 40.9706 2.51207
\(267\) 30.1421i 1.84467i
\(268\) 21.6569i 1.32290i
\(269\) −31.4558 −1.91790 −0.958948 0.283581i \(-0.908478\pi\)
−0.958948 + 0.283581i \(0.908478\pi\)
\(270\) 0 0
\(271\) 16.5563 1.00573 0.502863 0.864366i \(-0.332280\pi\)
0.502863 + 0.864366i \(0.332280\pi\)
\(272\) − 2.48528i − 0.150692i
\(273\) 26.1421i 1.58219i
\(274\) 28.9706 1.75018
\(275\) 0 0
\(276\) 33.7990 2.03446
\(277\) 17.3137i 1.04028i 0.854081 + 0.520140i \(0.174120\pi\)
−0.854081 + 0.520140i \(0.825880\pi\)
\(278\) − 33.7990i − 2.02713i
\(279\) −28.4853 −1.70537
\(280\) 0 0
\(281\) 31.9706 1.90720 0.953602 0.301070i \(-0.0973439\pi\)
0.953602 + 0.301070i \(0.0973439\pi\)
\(282\) − 18.8995i − 1.12545i
\(283\) 11.6569i 0.692928i 0.938063 + 0.346464i \(0.112618\pi\)
−0.938063 + 0.346464i \(0.887382\pi\)
\(284\) 33.7990 2.00560
\(285\) 0 0
\(286\) −3.82843 −0.226380
\(287\) − 12.6863i − 0.748848i
\(288\) 4.48528i 0.264298i
\(289\) 16.3137 0.959630
\(290\) 0 0
\(291\) 10.8284 0.634774
\(292\) − 15.3137i − 0.896167i
\(293\) 7.65685i 0.447318i 0.974667 + 0.223659i \(0.0718002\pi\)
−0.974667 + 0.223659i \(0.928200\pi\)
\(294\) 5.82843 0.339921
\(295\) 0 0
\(296\) 17.6569 1.02628
\(297\) − 0.171573i − 0.00995567i
\(298\) 18.8995i 1.09482i
\(299\) 14.0000 0.809641
\(300\) 0 0
\(301\) −10.1421 −0.584583
\(302\) − 34.1421i − 1.96466i
\(303\) − 5.65685i − 0.324978i
\(304\) −18.0000 −1.03237
\(305\) 0 0
\(306\) −5.65685 −0.323381
\(307\) − 2.89949i − 0.165483i −0.996571 0.0827415i \(-0.973632\pi\)
0.996571 0.0827415i \(-0.0263676\pi\)
\(308\) 4.48528i 0.255573i
\(309\) 11.6569 0.663135
\(310\) 0 0
\(311\) 2.68629 0.152326 0.0761628 0.997095i \(-0.475733\pi\)
0.0761628 + 0.997095i \(0.475733\pi\)
\(312\) − 40.7990i − 2.30979i
\(313\) 9.82843i 0.555536i 0.960648 + 0.277768i \(0.0895946\pi\)
−0.960648 + 0.277768i \(0.910405\pi\)
\(314\) 20.4853 1.15605
\(315\) 0 0
\(316\) −9.24264 −0.519939
\(317\) 31.4558i 1.76674i 0.468680 + 0.883368i \(0.344730\pi\)
−0.468680 + 0.883368i \(0.655270\pi\)
\(318\) − 55.2843i − 3.10019i
\(319\) 0.414214 0.0231915
\(320\) 0 0
\(321\) −35.7990 −1.99810
\(322\) − 24.9706i − 1.39156i
\(323\) 4.97056i 0.276570i
\(324\) 36.3137 2.01743
\(325\) 0 0
\(326\) −9.48528 −0.525341
\(327\) − 30.5563i − 1.68977i
\(328\) 19.7990i 1.09322i
\(329\) −9.17157 −0.505645
\(330\) 0 0
\(331\) −2.41421 −0.132697 −0.0663486 0.997797i \(-0.521135\pi\)
−0.0663486 + 0.997797i \(0.521135\pi\)
\(332\) − 29.3137i − 1.60880i
\(333\) − 11.3137i − 0.619987i
\(334\) −7.65685 −0.418964
\(335\) 0 0
\(336\) −20.4853 −1.11756
\(337\) − 21.7990i − 1.18747i −0.804662 0.593733i \(-0.797653\pi\)
0.804662 0.593733i \(-0.202347\pi\)
\(338\) − 4.00000i − 0.217571i
\(339\) 32.1421 1.74572
\(340\) 0 0
\(341\) −4.17157 −0.225903
\(342\) 40.9706i 2.21543i
\(343\) 16.9706i 0.916324i
\(344\) 15.8284 0.853412
\(345\) 0 0
\(346\) −29.7990 −1.60200
\(347\) − 2.48528i − 0.133417i −0.997773 0.0667084i \(-0.978750\pi\)
0.997773 0.0667084i \(-0.0212497\pi\)
\(348\) 9.24264i 0.495458i
\(349\) 5.14214 0.275252 0.137626 0.990484i \(-0.456053\pi\)
0.137626 + 0.990484i \(0.456053\pi\)
\(350\) 0 0
\(351\) 1.58579 0.0846430
\(352\) 0.656854i 0.0350104i
\(353\) 26.9706i 1.43550i 0.696302 + 0.717749i \(0.254828\pi\)
−0.696302 + 0.717749i \(0.745172\pi\)
\(354\) −21.3137 −1.13281
\(355\) 0 0
\(356\) −47.7990 −2.53334
\(357\) 5.65685i 0.299392i
\(358\) 15.6569i 0.827490i
\(359\) −3.92893 −0.207361 −0.103681 0.994611i \(-0.533062\pi\)
−0.103681 + 0.994611i \(0.533062\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 20.0711i 1.05491i
\(363\) − 26.1421i − 1.37211i
\(364\) −41.4558 −2.17288
\(365\) 0 0
\(366\) 28.1421 1.47101
\(367\) − 18.0000i − 0.939592i −0.882775 0.469796i \(-0.844327\pi\)
0.882775 0.469796i \(-0.155673\pi\)
\(368\) 10.9706i 0.571880i
\(369\) 12.6863 0.660422
\(370\) 0 0
\(371\) −26.8284 −1.39286
\(372\) − 93.0833i − 4.82614i
\(373\) − 26.3137i − 1.36247i −0.732064 0.681236i \(-0.761443\pi\)
0.732064 0.681236i \(-0.238557\pi\)
\(374\) −0.828427 −0.0428369
\(375\) 0 0
\(376\) 14.3137 0.738173
\(377\) 3.82843i 0.197174i
\(378\) − 2.82843i − 0.145479i
\(379\) 6.97056 0.358054 0.179027 0.983844i \(-0.442705\pi\)
0.179027 + 0.983844i \(0.442705\pi\)
\(380\) 0 0
\(381\) −10.4853 −0.537177
\(382\) 61.1127i 3.12680i
\(383\) − 3.51472i − 0.179594i −0.995960 0.0897969i \(-0.971378\pi\)
0.995960 0.0897969i \(-0.0286218\pi\)
\(384\) −49.6274 −2.53254
\(385\) 0 0
\(386\) 12.4853 0.635484
\(387\) − 10.1421i − 0.515554i
\(388\) 17.1716i 0.871755i
\(389\) −3.02944 −0.153599 −0.0767993 0.997047i \(-0.524470\pi\)
−0.0767993 + 0.997047i \(0.524470\pi\)
\(390\) 0 0
\(391\) 3.02944 0.153205
\(392\) 4.41421i 0.222951i
\(393\) 51.4558i 2.59560i
\(394\) 4.82843 0.243253
\(395\) 0 0
\(396\) −4.48528 −0.225394
\(397\) − 19.3431i − 0.970805i −0.874291 0.485402i \(-0.838673\pi\)
0.874291 0.485402i \(-0.161327\pi\)
\(398\) 1.17157i 0.0587256i
\(399\) 40.9706 2.05109
\(400\) 0 0
\(401\) −18.6569 −0.931679 −0.465839 0.884869i \(-0.654248\pi\)
−0.465839 + 0.884869i \(0.654248\pi\)
\(402\) 32.9706i 1.64442i
\(403\) − 38.5563i − 1.92063i
\(404\) 8.97056 0.446302
\(405\) 0 0
\(406\) 6.82843 0.338889
\(407\) − 1.65685i − 0.0821272i
\(408\) − 8.82843i − 0.437072i
\(409\) 18.9706 0.938034 0.469017 0.883189i \(-0.344608\pi\)
0.469017 + 0.883189i \(0.344608\pi\)
\(410\) 0 0
\(411\) 28.9706 1.42901
\(412\) 18.4853i 0.910704i
\(413\) 10.3431i 0.508953i
\(414\) 24.9706 1.22724
\(415\) 0 0
\(416\) −6.07107 −0.297659
\(417\) − 33.7990i − 1.65514i
\(418\) 6.00000i 0.293470i
\(419\) 9.51472 0.464824 0.232412 0.972617i \(-0.425338\pi\)
0.232412 + 0.972617i \(0.425338\pi\)
\(420\) 0 0
\(421\) 37.1127 1.80876 0.904381 0.426726i \(-0.140333\pi\)
0.904381 + 0.426726i \(0.140333\pi\)
\(422\) − 46.7990i − 2.27814i
\(423\) − 9.17157i − 0.445937i
\(424\) 41.8701 2.03339
\(425\) 0 0
\(426\) 51.4558 2.49304
\(427\) − 13.6569i − 0.660901i
\(428\) − 56.7696i − 2.74406i
\(429\) −3.82843 −0.184838
\(430\) 0 0
\(431\) 19.6569 0.946837 0.473419 0.880838i \(-0.343020\pi\)
0.473419 + 0.880838i \(0.343020\pi\)
\(432\) 1.24264i 0.0597866i
\(433\) 30.6274i 1.47186i 0.677058 + 0.735930i \(0.263255\pi\)
−0.677058 + 0.735930i \(0.736745\pi\)
\(434\) −68.7696 −3.30104
\(435\) 0 0
\(436\) 48.4558 2.32061
\(437\) − 21.9411i − 1.04959i
\(438\) − 23.3137i − 1.11397i
\(439\) 0.343146 0.0163775 0.00818873 0.999966i \(-0.497393\pi\)
0.00818873 + 0.999966i \(0.497393\pi\)
\(440\) 0 0
\(441\) 2.82843 0.134687
\(442\) − 7.65685i − 0.364199i
\(443\) − 24.3431i − 1.15658i −0.815832 0.578289i \(-0.803721\pi\)
0.815832 0.578289i \(-0.196279\pi\)
\(444\) 36.9706 1.75455
\(445\) 0 0
\(446\) 7.65685 0.362563
\(447\) 18.8995i 0.893915i
\(448\) 27.7990i 1.31338i
\(449\) 34.9706 1.65036 0.825181 0.564868i \(-0.191073\pi\)
0.825181 + 0.564868i \(0.191073\pi\)
\(450\) 0 0
\(451\) 1.85786 0.0874834
\(452\) 50.9706i 2.39745i
\(453\) − 34.1421i − 1.60414i
\(454\) −19.6569 −0.922542
\(455\) 0 0
\(456\) −63.9411 −2.99432
\(457\) − 1.02944i − 0.0481550i −0.999710 0.0240775i \(-0.992335\pi\)
0.999710 0.0240775i \(-0.00766485\pi\)
\(458\) 8.48528i 0.396491i
\(459\) 0.343146 0.0160167
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 6.82843i 0.317687i
\(463\) − 26.0000i − 1.20832i −0.796862 0.604161i \(-0.793508\pi\)
0.796862 0.604161i \(-0.206492\pi\)
\(464\) −3.00000 −0.139272
\(465\) 0 0
\(466\) −44.2132 −2.04814
\(467\) 38.3553i 1.77487i 0.460930 + 0.887437i \(0.347516\pi\)
−0.460930 + 0.887437i \(0.652484\pi\)
\(468\) − 41.4558i − 1.91630i
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) 20.4853 0.943912
\(472\) − 16.1421i − 0.743002i
\(473\) − 1.48528i − 0.0682933i
\(474\) −14.0711 −0.646306
\(475\) 0 0
\(476\) −8.97056 −0.411165
\(477\) − 26.8284i − 1.22839i
\(478\) 47.4558i 2.17058i
\(479\) −6.89949 −0.315246 −0.157623 0.987499i \(-0.550383\pi\)
−0.157623 + 0.987499i \(0.550383\pi\)
\(480\) 0 0
\(481\) 15.3137 0.698245
\(482\) − 44.2132i − 2.01386i
\(483\) − 24.9706i − 1.13620i
\(484\) 41.4558 1.88436
\(485\) 0 0
\(486\) 52.2843 2.37166
\(487\) 11.5147i 0.521782i 0.965368 + 0.260891i \(0.0840163\pi\)
−0.965368 + 0.260891i \(0.915984\pi\)
\(488\) 21.3137i 0.964826i
\(489\) −9.48528 −0.428939
\(490\) 0 0
\(491\) −21.2426 −0.958667 −0.479333 0.877633i \(-0.659122\pi\)
−0.479333 + 0.877633i \(0.659122\pi\)
\(492\) 41.4558i 1.86897i
\(493\) 0.828427i 0.0373105i
\(494\) −55.4558 −2.49508
\(495\) 0 0
\(496\) 30.2132 1.35661
\(497\) − 24.9706i − 1.12008i
\(498\) − 44.6274i − 1.99980i
\(499\) −18.9706 −0.849239 −0.424620 0.905372i \(-0.639592\pi\)
−0.424620 + 0.905372i \(0.639592\pi\)
\(500\) 0 0
\(501\) −7.65685 −0.342083
\(502\) 48.4558i 2.16269i
\(503\) 0.272078i 0.0121314i 0.999982 + 0.00606568i \(0.00193078\pi\)
−0.999982 + 0.00606568i \(0.998069\pi\)
\(504\) −35.3137 −1.57300
\(505\) 0 0
\(506\) 3.65685 0.162567
\(507\) − 4.00000i − 0.177646i
\(508\) − 16.6274i − 0.737722i
\(509\) 10.5147 0.466057 0.233028 0.972470i \(-0.425137\pi\)
0.233028 + 0.972470i \(0.425137\pi\)
\(510\) 0 0
\(511\) −11.3137 −0.500489
\(512\) − 31.2426i − 1.38074i
\(513\) − 2.48528i − 0.109728i
\(514\) −43.8701 −1.93503
\(515\) 0 0
\(516\) 33.1421 1.45900
\(517\) − 1.34315i − 0.0590715i
\(518\) − 27.3137i − 1.20010i
\(519\) −29.7990 −1.30803
\(520\) 0 0
\(521\) −29.1421 −1.27674 −0.638370 0.769730i \(-0.720391\pi\)
−0.638370 + 0.769730i \(0.720391\pi\)
\(522\) 6.82843i 0.298872i
\(523\) 4.68629i 0.204917i 0.994737 + 0.102459i \(0.0326709\pi\)
−0.994737 + 0.102459i \(0.967329\pi\)
\(524\) −81.5980 −3.56462
\(525\) 0 0
\(526\) −6.65685 −0.290253
\(527\) − 8.34315i − 0.363433i
\(528\) − 3.00000i − 0.130558i
\(529\) 9.62742 0.418583
\(530\) 0 0
\(531\) −10.3431 −0.448854
\(532\) 64.9706i 2.81683i
\(533\) 17.1716i 0.743783i
\(534\) −72.7696 −3.14905
\(535\) 0 0
\(536\) −24.9706 −1.07856
\(537\) 15.6569i 0.675643i
\(538\) − 75.9411i − 3.27405i
\(539\) 0.414214 0.0178414
\(540\) 0 0
\(541\) −10.3431 −0.444687 −0.222343 0.974968i \(-0.571371\pi\)
−0.222343 + 0.974968i \(0.571371\pi\)
\(542\) 39.9706i 1.71688i
\(543\) 20.0711i 0.861332i
\(544\) −1.31371 −0.0563248
\(545\) 0 0
\(546\) −63.1127 −2.70097
\(547\) − 35.7990i − 1.53065i −0.643641 0.765327i \(-0.722577\pi\)
0.643641 0.765327i \(-0.277423\pi\)
\(548\) 45.9411i 1.96251i
\(549\) 13.6569 0.582860
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 38.9706i 1.65870i
\(553\) 6.82843i 0.290374i
\(554\) −41.7990 −1.77587
\(555\) 0 0
\(556\) 53.5980 2.27306
\(557\) 17.3137i 0.733605i 0.930299 + 0.366803i \(0.119548\pi\)
−0.930299 + 0.366803i \(0.880452\pi\)
\(558\) − 68.7696i − 2.91125i
\(559\) 13.7279 0.580629
\(560\) 0 0
\(561\) −0.828427 −0.0349762
\(562\) 77.1838i 3.25580i
\(563\) − 0.757359i − 0.0319189i −0.999873 0.0159594i \(-0.994920\pi\)
0.999873 0.0159594i \(-0.00508026\pi\)
\(564\) 29.9706 1.26199
\(565\) 0 0
\(566\) −28.1421 −1.18290
\(567\) − 26.8284i − 1.12669i
\(568\) 38.9706i 1.63517i
\(569\) 39.6569 1.66250 0.831251 0.555897i \(-0.187625\pi\)
0.831251 + 0.555897i \(0.187625\pi\)
\(570\) 0 0
\(571\) 14.6274 0.612138 0.306069 0.952009i \(-0.400986\pi\)
0.306069 + 0.952009i \(0.400986\pi\)
\(572\) − 6.07107i − 0.253844i
\(573\) 61.1127i 2.55302i
\(574\) 30.6274 1.27836
\(575\) 0 0
\(576\) −27.7990 −1.15829
\(577\) 29.7990i 1.24055i 0.784385 + 0.620274i \(0.212979\pi\)
−0.784385 + 0.620274i \(0.787021\pi\)
\(578\) 39.3848i 1.63819i
\(579\) 12.4853 0.518871
\(580\) 0 0
\(581\) −21.6569 −0.898478
\(582\) 26.1421i 1.08363i
\(583\) − 3.92893i − 0.162720i
\(584\) 17.6569 0.730646
\(585\) 0 0
\(586\) −18.4853 −0.763620
\(587\) − 7.65685i − 0.316032i −0.987437 0.158016i \(-0.949490\pi\)
0.987437 0.158016i \(-0.0505098\pi\)
\(588\) 9.24264i 0.381160i
\(589\) −60.4264 −2.48983
\(590\) 0 0
\(591\) 4.82843 0.198615
\(592\) 12.0000i 0.493197i
\(593\) − 19.4853i − 0.800165i −0.916479 0.400082i \(-0.868982\pi\)
0.916479 0.400082i \(-0.131018\pi\)
\(594\) 0.414214 0.0169954
\(595\) 0 0
\(596\) −29.9706 −1.22764
\(597\) 1.17157i 0.0479493i
\(598\) 33.7990i 1.38214i
\(599\) −9.87006 −0.403280 −0.201640 0.979460i \(-0.564627\pi\)
−0.201640 + 0.979460i \(0.564627\pi\)
\(600\) 0 0
\(601\) −17.1716 −0.700443 −0.350222 0.936667i \(-0.613894\pi\)
−0.350222 + 0.936667i \(0.613894\pi\)
\(602\) − 24.4853i − 0.997946i
\(603\) 16.0000i 0.651570i
\(604\) 54.1421 2.20301
\(605\) 0 0
\(606\) 13.6569 0.554772
\(607\) 7.72792i 0.313667i 0.987625 + 0.156833i \(0.0501286\pi\)
−0.987625 + 0.156833i \(0.949871\pi\)
\(608\) 9.51472i 0.385873i
\(609\) 6.82843 0.276702
\(610\) 0 0
\(611\) 12.4142 0.502225
\(612\) − 8.97056i − 0.362614i
\(613\) − 9.00000i − 0.363507i −0.983344 0.181753i \(-0.941823\pi\)
0.983344 0.181753i \(-0.0581772\pi\)
\(614\) 7.00000 0.282497
\(615\) 0 0
\(616\) −5.17157 −0.208369
\(617\) − 0.686292i − 0.0276291i −0.999905 0.0138145i \(-0.995603\pi\)
0.999905 0.0138145i \(-0.00439744\pi\)
\(618\) 28.1421i 1.13204i
\(619\) −33.5858 −1.34993 −0.674963 0.737851i \(-0.735841\pi\)
−0.674963 + 0.737851i \(0.735841\pi\)
\(620\) 0 0
\(621\) −1.51472 −0.0607836
\(622\) 6.48528i 0.260036i
\(623\) 35.3137i 1.41481i
\(624\) 27.7279 1.11001
\(625\) 0 0
\(626\) −23.7279 −0.948358
\(627\) 6.00000i 0.239617i
\(628\) 32.4853i 1.29630i
\(629\) 3.31371 0.132126
\(630\) 0 0
\(631\) −36.8284 −1.46612 −0.733058 0.680166i \(-0.761908\pi\)
−0.733058 + 0.680166i \(0.761908\pi\)
\(632\) − 10.6569i − 0.423907i
\(633\) − 46.7990i − 1.86009i
\(634\) −75.9411 −3.01601
\(635\) 0 0
\(636\) 87.6690 3.47630
\(637\) 3.82843i 0.151688i
\(638\) 1.00000i 0.0395904i
\(639\) 24.9706 0.987820
\(640\) 0 0
\(641\) 17.7990 0.703018 0.351509 0.936185i \(-0.385669\pi\)
0.351509 + 0.936185i \(0.385669\pi\)
\(642\) − 86.4264i − 3.41098i
\(643\) 32.4853i 1.28109i 0.767919 + 0.640547i \(0.221292\pi\)
−0.767919 + 0.640547i \(0.778708\pi\)
\(644\) 39.5980 1.56038
\(645\) 0 0
\(646\) −12.0000 −0.472134
\(647\) − 39.6569i − 1.55907i −0.626358 0.779536i \(-0.715455\pi\)
0.626358 0.779536i \(-0.284545\pi\)
\(648\) 41.8701i 1.64481i
\(649\) −1.51472 −0.0594579
\(650\) 0 0
\(651\) −68.7696 −2.69529
\(652\) − 15.0416i − 0.589076i
\(653\) − 30.1421i − 1.17955i −0.807567 0.589776i \(-0.799216\pi\)
0.807567 0.589776i \(-0.200784\pi\)
\(654\) 73.7696 2.88462
\(655\) 0 0
\(656\) −13.4558 −0.525362
\(657\) − 11.3137i − 0.441390i
\(658\) − 22.1421i − 0.863190i
\(659\) −14.4142 −0.561498 −0.280749 0.959781i \(-0.590583\pi\)
−0.280749 + 0.959781i \(0.590583\pi\)
\(660\) 0 0
\(661\) 33.3137 1.29575 0.647877 0.761745i \(-0.275657\pi\)
0.647877 + 0.761745i \(0.275657\pi\)
\(662\) − 5.82843i − 0.226528i
\(663\) − 7.65685i − 0.297368i
\(664\) 33.7990 1.31166
\(665\) 0 0
\(666\) 27.3137 1.05838
\(667\) − 3.65685i − 0.141594i
\(668\) − 12.1421i − 0.469793i
\(669\) 7.65685 0.296031
\(670\) 0 0
\(671\) 2.00000 0.0772091
\(672\) 10.8284i 0.417716i
\(673\) − 21.6274i − 0.833676i −0.908981 0.416838i \(-0.863138\pi\)
0.908981 0.416838i \(-0.136862\pi\)
\(674\) 52.6274 2.02713
\(675\) 0 0
\(676\) 6.34315 0.243967
\(677\) 22.0000i 0.845529i 0.906240 + 0.422764i \(0.138940\pi\)
−0.906240 + 0.422764i \(0.861060\pi\)
\(678\) 77.5980i 2.98013i
\(679\) 12.6863 0.486855
\(680\) 0 0
\(681\) −19.6569 −0.753252
\(682\) − 10.0711i − 0.385641i
\(683\) 20.9706i 0.802416i 0.915987 + 0.401208i \(0.131410\pi\)
−0.915987 + 0.401208i \(0.868590\pi\)
\(684\) −64.9706 −2.48421
\(685\) 0 0
\(686\) −40.9706 −1.56426
\(687\) 8.48528i 0.323734i
\(688\) 10.7574i 0.410120i
\(689\) 36.3137 1.38344
\(690\) 0 0
\(691\) 48.0000 1.82601 0.913003 0.407953i \(-0.133757\pi\)
0.913003 + 0.407953i \(0.133757\pi\)
\(692\) − 47.2548i − 1.79636i
\(693\) 3.31371i 0.125877i
\(694\) 6.00000 0.227757
\(695\) 0 0
\(696\) −10.6569 −0.403947
\(697\) 3.71573i 0.140743i
\(698\) 12.4142i 0.469885i
\(699\) −44.2132 −1.67230
\(700\) 0 0
\(701\) −40.1127 −1.51504 −0.757518 0.652814i \(-0.773588\pi\)
−0.757518 + 0.652814i \(0.773588\pi\)
\(702\) 3.82843i 0.144495i
\(703\) − 24.0000i − 0.905177i
\(704\) −4.07107 −0.153434
\(705\) 0 0
\(706\) −65.1127 −2.45055
\(707\) − 6.62742i − 0.249250i
\(708\) − 33.7990i − 1.27024i
\(709\) −29.1421 −1.09446 −0.547228 0.836984i \(-0.684317\pi\)
−0.547228 + 0.836984i \(0.684317\pi\)
\(710\) 0 0
\(711\) −6.82843 −0.256086
\(712\) − 55.1127i − 2.06544i
\(713\) 36.8284i 1.37924i
\(714\) −13.6569 −0.511095
\(715\) 0 0
\(716\) −24.8284 −0.927882
\(717\) 47.4558i 1.77227i
\(718\) − 9.48528i − 0.353988i
\(719\) 20.1421 0.751175 0.375587 0.926787i \(-0.377441\pi\)
0.375587 + 0.926787i \(0.377441\pi\)
\(720\) 0 0
\(721\) 13.6569 0.508608
\(722\) 41.0416i 1.52741i
\(723\) − 44.2132i − 1.64431i
\(724\) −31.8284 −1.18289
\(725\) 0 0
\(726\) 63.1127 2.34233
\(727\) − 1.31371i − 0.0487228i −0.999703 0.0243614i \(-0.992245\pi\)
0.999703 0.0243614i \(-0.00775523\pi\)
\(728\) − 47.7990i − 1.77155i
\(729\) 23.8284 0.882534
\(730\) 0 0
\(731\) 2.97056 0.109870
\(732\) 44.6274i 1.64948i
\(733\) − 41.2548i − 1.52378i −0.647705 0.761891i \(-0.724271\pi\)
0.647705 0.761891i \(-0.275729\pi\)
\(734\) 43.4558 1.60398
\(735\) 0 0
\(736\) 5.79899 0.213754
\(737\) 2.34315i 0.0863109i
\(738\) 30.6274i 1.12741i
\(739\) −4.07107 −0.149757 −0.0748783 0.997193i \(-0.523857\pi\)
−0.0748783 + 0.997193i \(0.523857\pi\)
\(740\) 0 0
\(741\) −55.4558 −2.03722
\(742\) − 64.7696i − 2.37777i
\(743\) 23.6569i 0.867886i 0.900940 + 0.433943i \(0.142878\pi\)
−0.900940 + 0.433943i \(0.857122\pi\)
\(744\) 107.326 3.93476
\(745\) 0 0
\(746\) 63.5269 2.32589
\(747\) − 21.6569i − 0.792383i
\(748\) − 1.31371i − 0.0480339i
\(749\) −41.9411 −1.53250
\(750\) 0 0
\(751\) 25.3137 0.923710 0.461855 0.886955i \(-0.347184\pi\)
0.461855 + 0.886955i \(0.347184\pi\)
\(752\) 9.72792i 0.354741i
\(753\) 48.4558i 1.76583i
\(754\) −9.24264 −0.336597
\(755\) 0 0
\(756\) 4.48528 0.163128
\(757\) − 25.5147i − 0.927348i −0.886006 0.463674i \(-0.846531\pi\)
0.886006 0.463674i \(-0.153469\pi\)
\(758\) 16.8284i 0.611236i
\(759\) 3.65685 0.132735
\(760\) 0 0
\(761\) 45.5980 1.65293 0.826463 0.562991i \(-0.190350\pi\)
0.826463 + 0.562991i \(0.190350\pi\)
\(762\) − 25.3137i − 0.917019i
\(763\) − 35.7990i − 1.29601i
\(764\) −96.9117 −3.50614
\(765\) 0 0
\(766\) 8.48528 0.306586
\(767\) − 14.0000i − 0.505511i
\(768\) − 72.3553i − 2.61090i
\(769\) 49.1127 1.77105 0.885525 0.464592i \(-0.153799\pi\)
0.885525 + 0.464592i \(0.153799\pi\)
\(770\) 0 0
\(771\) −43.8701 −1.57994
\(772\) 19.7990i 0.712581i
\(773\) − 19.5147i − 0.701896i −0.936395 0.350948i \(-0.885859\pi\)
0.936395 0.350948i \(-0.114141\pi\)
\(774\) 24.4853 0.880105
\(775\) 0 0
\(776\) −19.7990 −0.710742
\(777\) − 27.3137i − 0.979874i
\(778\) − 7.31371i − 0.262209i
\(779\) 26.9117 0.964211
\(780\) 0 0
\(781\) 3.65685 0.130853
\(782\) 7.31371i 0.261538i
\(783\) − 0.414214i − 0.0148028i
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) −124.225 −4.43097
\(787\) 54.0833i 1.92786i 0.266156 + 0.963930i \(0.414246\pi\)
−0.266156 + 0.963930i \(0.585754\pi\)
\(788\) 7.65685i 0.272764i
\(789\) −6.65685 −0.236990
\(790\) 0 0
\(791\) 37.6569 1.33892
\(792\) − 5.17157i − 0.183764i
\(793\) 18.4853i 0.656432i
\(794\) 46.6985 1.65727
\(795\) 0 0
\(796\) −1.85786 −0.0658503
\(797\) − 51.7401i − 1.83273i −0.400345 0.916364i \(-0.631110\pi\)
0.400345 0.916364i \(-0.368890\pi\)
\(798\) 98.9117i 3.50144i
\(799\) 2.68629 0.0950342
\(800\) 0 0
\(801\) −35.3137 −1.24775
\(802\) − 45.0416i − 1.59048i
\(803\) − 1.65685i − 0.0584691i
\(804\) −52.2843 −1.84392
\(805\) 0 0
\(806\) 93.0833 3.27872
\(807\) − 75.9411i − 2.67325i
\(808\) 10.3431i 0.363871i
\(809\) −36.2843 −1.27569 −0.637844 0.770166i \(-0.720173\pi\)
−0.637844 + 0.770166i \(0.720173\pi\)
\(810\) 0 0
\(811\) 10.8284 0.380238 0.190119 0.981761i \(-0.439113\pi\)
0.190119 + 0.981761i \(0.439113\pi\)
\(812\) 10.8284i 0.380003i
\(813\) 39.9706i 1.40183i
\(814\) 4.00000 0.140200
\(815\) 0 0
\(816\) 6.00000 0.210042
\(817\) − 21.5147i − 0.752705i
\(818\) 45.7990i 1.60132i
\(819\) −30.6274 −1.07021
\(820\) 0 0
\(821\) −1.48528 −0.0518367 −0.0259183 0.999664i \(-0.508251\pi\)
−0.0259183 + 0.999664i \(0.508251\pi\)
\(822\) 69.9411i 2.43948i
\(823\) − 54.2843i − 1.89223i −0.323830 0.946115i \(-0.604971\pi\)
0.323830 0.946115i \(-0.395029\pi\)
\(824\) −21.3137 −0.742498
\(825\) 0 0
\(826\) −24.9706 −0.868837
\(827\) − 32.8995i − 1.14403i −0.820244 0.572014i \(-0.806162\pi\)
0.820244 0.572014i \(-0.193838\pi\)
\(828\) 39.5980i 1.37612i
\(829\) 29.7990 1.03496 0.517481 0.855695i \(-0.326870\pi\)
0.517481 + 0.855695i \(0.326870\pi\)
\(830\) 0 0
\(831\) −41.7990 −1.44999
\(832\) − 37.6274i − 1.30450i
\(833\) 0.828427i 0.0287033i
\(834\) 81.5980 2.82551
\(835\) 0 0
\(836\) −9.51472 −0.329073
\(837\) 4.17157i 0.144191i
\(838\) 22.9706i 0.793505i
\(839\) 7.92893 0.273737 0.136869 0.990589i \(-0.456296\pi\)
0.136869 + 0.990589i \(0.456296\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 89.5980i 3.08775i
\(843\) 77.1838i 2.65835i
\(844\) 74.2132 2.55452
\(845\) 0 0
\(846\) 22.1421 0.761262
\(847\) − 30.6274i − 1.05237i
\(848\) 28.4558i 0.977178i
\(849\) −28.1421 −0.965836
\(850\) 0 0
\(851\) −14.6274 −0.501421
\(852\) 81.5980i 2.79550i
\(853\) − 22.9706i − 0.786497i −0.919432 0.393249i \(-0.871351\pi\)
0.919432 0.393249i \(-0.128649\pi\)
\(854\) 32.9706 1.12823
\(855\) 0 0
\(856\) 65.4558 2.23723
\(857\) 6.17157i 0.210817i 0.994429 + 0.105408i \(0.0336150\pi\)
−0.994429 + 0.105408i \(0.966385\pi\)
\(858\) − 9.24264i − 0.315539i
\(859\) −19.7279 −0.673108 −0.336554 0.941664i \(-0.609261\pi\)
−0.336554 + 0.941664i \(0.609261\pi\)
\(860\) 0 0
\(861\) 30.6274 1.04378
\(862\) 47.4558i 1.61635i
\(863\) 17.1127i 0.582523i 0.956643 + 0.291262i \(0.0940750\pi\)
−0.956643 + 0.291262i \(0.905925\pi\)
\(864\) 0.656854 0.0223466
\(865\) 0 0
\(866\) −73.9411 −2.51262
\(867\) 39.3848i 1.33758i
\(868\) − 109.054i − 3.70153i
\(869\) −1.00000 −0.0339227
\(870\) 0 0
\(871\) −21.6569 −0.733815
\(872\) 55.8701i 1.89200i
\(873\) 12.6863i 0.429366i
\(874\) 52.9706 1.79176
\(875\) 0 0
\(876\) 36.9706 1.24912
\(877\) 37.1421i 1.25420i 0.778938 + 0.627100i \(0.215758\pi\)
−0.778938 + 0.627100i \(0.784242\pi\)
\(878\) 0.828427i 0.0279581i
\(879\) −18.4853 −0.623493
\(880\) 0 0
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 6.82843i 0.229925i
\(883\) 38.4264i 1.29315i 0.762850 + 0.646576i \(0.223800\pi\)
−0.762850 + 0.646576i \(0.776200\pi\)
\(884\) 12.1421 0.408384
\(885\) 0 0
\(886\) 58.7696 1.97440
\(887\) − 17.1005i − 0.574179i −0.957904 0.287089i \(-0.907312\pi\)
0.957904 0.287089i \(-0.0926877\pi\)
\(888\) 42.6274i 1.43048i
\(889\) −12.2843 −0.412001
\(890\) 0 0
\(891\) 3.92893 0.131624
\(892\) 12.1421i 0.406549i
\(893\) − 19.4558i − 0.651065i
\(894\) −45.6274 −1.52601
\(895\) 0 0
\(896\) −58.1421 −1.94239
\(897\) 33.7990i 1.12852i
\(898\) 84.4264i 2.81735i
\(899\) −10.0711 −0.335889
\(900\) 0 0
\(901\) 7.85786 0.261783
\(902\) 4.48528i 0.149344i
\(903\) − 24.4853i − 0.814819i
\(904\) −58.7696 −1.95465
\(905\) 0 0
\(906\) 82.4264 2.73843
\(907\) − 22.2843i − 0.739937i −0.929044 0.369969i \(-0.879368\pi\)
0.929044 0.369969i \(-0.120632\pi\)
\(908\) − 31.1716i − 1.03446i
\(909\) 6.62742 0.219818
\(910\) 0 0
\(911\) −15.4437 −0.511671 −0.255835 0.966720i \(-0.582351\pi\)
−0.255835 + 0.966720i \(0.582351\pi\)
\(912\) − 43.4558i − 1.43897i
\(913\) − 3.17157i − 0.104964i
\(914\) 2.48528 0.0822058
\(915\) 0 0
\(916\) −13.4558 −0.444594
\(917\) 60.2843i 1.99076i
\(918\) 0.828427i 0.0273422i
\(919\) −8.14214 −0.268584 −0.134292 0.990942i \(-0.542876\pi\)
−0.134292 + 0.990942i \(0.542876\pi\)
\(920\) 0 0
\(921\) 7.00000 0.230658
\(922\) 33.7990i 1.11311i
\(923\) 33.7990i 1.11251i
\(924\) −10.8284 −0.356229
\(925\) 0 0
\(926\) 62.7696 2.06274
\(927\) 13.6569i 0.448550i
\(928\) 1.58579i 0.0520560i
\(929\) −18.6863 −0.613077 −0.306539 0.951858i \(-0.599171\pi\)
−0.306539 + 0.951858i \(0.599171\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) − 70.1127i − 2.29662i
\(933\) 6.48528i 0.212319i
\(934\) −92.5980 −3.02990
\(935\) 0 0
\(936\) 47.7990 1.56236
\(937\) 16.6274i 0.543194i 0.962411 + 0.271597i \(0.0875518\pi\)
−0.962411 + 0.271597i \(0.912448\pi\)
\(938\) 38.6274i 1.26123i
\(939\) −23.7279 −0.774331
\(940\) 0 0
\(941\) −56.5980 −1.84504 −0.922521 0.385948i \(-0.873875\pi\)
−0.922521 + 0.385948i \(0.873875\pi\)
\(942\) 49.4558i 1.61136i
\(943\) − 16.4020i − 0.534123i
\(944\) 10.9706 0.357061
\(945\) 0 0
\(946\) 3.58579 0.116584
\(947\) − 2.61522i − 0.0849834i −0.999097 0.0424917i \(-0.986470\pi\)
0.999097 0.0424917i \(-0.0135296\pi\)
\(948\) − 22.3137i − 0.724716i
\(949\) 15.3137 0.497104
\(950\) 0 0
\(951\) −75.9411 −2.46256
\(952\) − 10.3431i − 0.335223i
\(953\) − 35.6274i − 1.15409i −0.816714 0.577043i \(-0.804207\pi\)
0.816714 0.577043i \(-0.195793\pi\)
\(954\) 64.7696 2.09699
\(955\) 0 0
\(956\) −75.2548 −2.43392
\(957\) 1.00000i 0.0323254i
\(958\) − 16.6569i − 0.538159i
\(959\) 33.9411 1.09602
\(960\) 0 0
\(961\) 70.4264 2.27182
\(962\) 36.9706i 1.19198i
\(963\) − 41.9411i − 1.35153i
\(964\) 70.1127 2.25818
\(965\) 0 0
\(966\) 60.2843 1.93961
\(967\) 35.2426i 1.13333i 0.823949 + 0.566663i \(0.191766\pi\)
−0.823949 + 0.566663i \(0.808234\pi\)
\(968\) 47.7990i 1.53632i
\(969\) −12.0000 −0.385496
\(970\) 0 0
\(971\) −15.6569 −0.502452 −0.251226 0.967928i \(-0.580834\pi\)
−0.251226 + 0.967928i \(0.580834\pi\)
\(972\) 82.9117i 2.65939i
\(973\) − 39.5980i − 1.26945i
\(974\) −27.7990 −0.890737
\(975\) 0 0
\(976\) −14.4853 −0.463663
\(977\) − 36.1716i − 1.15723i −0.815600 0.578616i \(-0.803593\pi\)
0.815600 0.578616i \(-0.196407\pi\)
\(978\) − 22.8995i − 0.732245i
\(979\) −5.17157 −0.165284
\(980\) 0 0
\(981\) 35.7990 1.14297
\(982\) − 51.2843i − 1.63655i
\(983\) − 21.8701i − 0.697547i −0.937207 0.348773i \(-0.886598\pi\)
0.937207 0.348773i \(-0.113402\pi\)
\(984\) −47.7990 −1.52378
\(985\) 0 0
\(986\) −2.00000 −0.0636930
\(987\) − 22.1421i − 0.704792i
\(988\) − 87.9411i − 2.79778i
\(989\) −13.1127 −0.416960
\(990\) 0 0
\(991\) −12.8284 −0.407508 −0.203754 0.979022i \(-0.565314\pi\)
−0.203754 + 0.979022i \(0.565314\pi\)
\(992\) − 15.9706i − 0.507066i
\(993\) − 5.82843i − 0.184960i
\(994\) 60.2843 1.91210
\(995\) 0 0
\(996\) 70.7696 2.24242
\(997\) − 28.2843i − 0.895772i −0.894091 0.447886i \(-0.852177\pi\)
0.894091 0.447886i \(-0.147823\pi\)
\(998\) − 45.7990i − 1.44974i
\(999\) −1.65685 −0.0524205
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.b.b.349.4 4
5.2 odd 4 29.2.a.a.1.1 2
5.3 odd 4 725.2.a.b.1.2 2
5.4 even 2 inner 725.2.b.b.349.1 4
15.2 even 4 261.2.a.d.1.2 2
15.8 even 4 6525.2.a.o.1.1 2
20.7 even 4 464.2.a.h.1.1 2
35.27 even 4 1421.2.a.j.1.1 2
40.27 even 4 1856.2.a.w.1.2 2
40.37 odd 4 1856.2.a.r.1.1 2
55.32 even 4 3509.2.a.j.1.2 2
60.47 odd 4 4176.2.a.bq.1.2 2
65.12 odd 4 4901.2.a.g.1.2 2
85.67 odd 4 8381.2.a.e.1.1 2
145.2 even 28 841.2.e.k.236.1 24
145.7 odd 28 841.2.d.j.571.2 12
145.12 even 4 841.2.b.a.840.1 4
145.17 even 4 841.2.b.a.840.4 4
145.22 odd 28 841.2.d.f.571.1 12
145.27 even 28 841.2.e.k.236.4 24
145.32 even 28 841.2.e.k.270.1 24
145.37 even 28 841.2.e.k.267.1 24
145.42 odd 28 841.2.d.f.778.2 12
145.47 even 28 841.2.e.k.63.4 24
145.52 odd 28 841.2.d.j.645.2 12
145.57 odd 4 841.2.a.d.1.2 2
145.62 odd 28 841.2.d.f.190.1 12
145.67 odd 28 841.2.d.f.574.2 12
145.72 even 28 841.2.e.k.196.4 24
145.77 even 28 841.2.e.k.651.4 24
145.82 odd 28 841.2.d.j.605.2 12
145.92 odd 28 841.2.d.f.605.1 12
145.97 even 28 841.2.e.k.651.1 24
145.102 even 28 841.2.e.k.196.1 24
145.107 odd 28 841.2.d.j.574.1 12
145.112 odd 28 841.2.d.j.190.2 12
145.122 odd 28 841.2.d.f.645.1 12
145.127 even 28 841.2.e.k.63.1 24
145.132 odd 28 841.2.d.j.778.1 12
145.137 even 28 841.2.e.k.267.4 24
145.142 even 28 841.2.e.k.270.4 24
435.347 even 4 7569.2.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.a.a.1.1 2 5.2 odd 4
261.2.a.d.1.2 2 15.2 even 4
464.2.a.h.1.1 2 20.7 even 4
725.2.a.b.1.2 2 5.3 odd 4
725.2.b.b.349.1 4 5.4 even 2 inner
725.2.b.b.349.4 4 1.1 even 1 trivial
841.2.a.d.1.2 2 145.57 odd 4
841.2.b.a.840.1 4 145.12 even 4
841.2.b.a.840.4 4 145.17 even 4
841.2.d.f.190.1 12 145.62 odd 28
841.2.d.f.571.1 12 145.22 odd 28
841.2.d.f.574.2 12 145.67 odd 28
841.2.d.f.605.1 12 145.92 odd 28
841.2.d.f.645.1 12 145.122 odd 28
841.2.d.f.778.2 12 145.42 odd 28
841.2.d.j.190.2 12 145.112 odd 28
841.2.d.j.571.2 12 145.7 odd 28
841.2.d.j.574.1 12 145.107 odd 28
841.2.d.j.605.2 12 145.82 odd 28
841.2.d.j.645.2 12 145.52 odd 28
841.2.d.j.778.1 12 145.132 odd 28
841.2.e.k.63.1 24 145.127 even 28
841.2.e.k.63.4 24 145.47 even 28
841.2.e.k.196.1 24 145.102 even 28
841.2.e.k.196.4 24 145.72 even 28
841.2.e.k.236.1 24 145.2 even 28
841.2.e.k.236.4 24 145.27 even 28
841.2.e.k.267.1 24 145.37 even 28
841.2.e.k.267.4 24 145.137 even 28
841.2.e.k.270.1 24 145.32 even 28
841.2.e.k.270.4 24 145.142 even 28
841.2.e.k.651.1 24 145.97 even 28
841.2.e.k.651.4 24 145.77 even 28
1421.2.a.j.1.1 2 35.27 even 4
1856.2.a.r.1.1 2 40.37 odd 4
1856.2.a.w.1.2 2 40.27 even 4
3509.2.a.j.1.2 2 55.32 even 4
4176.2.a.bq.1.2 2 60.47 odd 4
4901.2.a.g.1.2 2 65.12 odd 4
6525.2.a.o.1.1 2 15.8 even 4
7569.2.a.c.1.1 2 435.347 even 4
8381.2.a.e.1.1 2 85.67 odd 4