Properties

Label 725.2.b.b.349.4
Level 725725
Weight 22
Character 725.349
Analytic conductor 5.7895.789
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(349,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 725=5229 725 = 5^{2} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 725.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.789154146545.78915414654
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 349.4
Root 0.707107+0.707107i0.707107 + 0.707107i of defining polynomial
Character χ\chi == 725.349
Dual form 725.2.b.b.349.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.41421iq2+2.41421iq33.82843q45.82843q6+2.82843iq74.41421iq82.82843q90.414214q119.24264iq123.82843iq136.82843q14+3.00000q160.828427iq176.82843iq186.00000q196.82843q211.00000iq22+3.65685iq23+10.6569q24+9.24264q26+0.414214iq2710.8284iq281.00000q29+10.0711q311.58579iq321.00000iq33+2.00000q34+10.8284q36+4.00000iq3714.4853iq38+9.24264q394.48528q4116.4853iq42+3.58579iq43+1.58579q448.82843q46+3.24264iq47+7.24264iq481.00000q49+2.00000q51+14.6569iq52+9.48528iq531.00000q54+12.4853q5614.4853iq572.41421iq58+3.65685q594.82843q61+24.3137iq628.00000iq63+9.82843q64+2.41421q665.65685iq67+3.17157iq688.82843q698.82843q71+12.4853iq72+4.00000iq739.65685q74+22.9706q761.17157iq77+22.3137iq78+2.41421q799.48528q8110.8284iq82+7.65685iq83+26.1421q848.65685q862.41421iq87+1.82843iq88+12.4853q89+10.8284q9114.0000iq92+24.3137iq937.82843q94+3.82843q964.48528iq972.41421iq98+1.17157q99+O(q100)q+2.41421i q^{2} +2.41421i q^{3} -3.82843 q^{4} -5.82843 q^{6} +2.82843i q^{7} -4.41421i q^{8} -2.82843 q^{9} -0.414214 q^{11} -9.24264i q^{12} -3.82843i q^{13} -6.82843 q^{14} +3.00000 q^{16} -0.828427i q^{17} -6.82843i q^{18} -6.00000 q^{19} -6.82843 q^{21} -1.00000i q^{22} +3.65685i q^{23} +10.6569 q^{24} +9.24264 q^{26} +0.414214i q^{27} -10.8284i q^{28} -1.00000 q^{29} +10.0711 q^{31} -1.58579i q^{32} -1.00000i q^{33} +2.00000 q^{34} +10.8284 q^{36} +4.00000i q^{37} -14.4853i q^{38} +9.24264 q^{39} -4.48528 q^{41} -16.4853i q^{42} +3.58579i q^{43} +1.58579 q^{44} -8.82843 q^{46} +3.24264i q^{47} +7.24264i q^{48} -1.00000 q^{49} +2.00000 q^{51} +14.6569i q^{52} +9.48528i q^{53} -1.00000 q^{54} +12.4853 q^{56} -14.4853i q^{57} -2.41421i q^{58} +3.65685 q^{59} -4.82843 q^{61} +24.3137i q^{62} -8.00000i q^{63} +9.82843 q^{64} +2.41421 q^{66} -5.65685i q^{67} +3.17157i q^{68} -8.82843 q^{69} -8.82843 q^{71} +12.4853i q^{72} +4.00000i q^{73} -9.65685 q^{74} +22.9706 q^{76} -1.17157i q^{77} +22.3137i q^{78} +2.41421 q^{79} -9.48528 q^{81} -10.8284i q^{82} +7.65685i q^{83} +26.1421 q^{84} -8.65685 q^{86} -2.41421i q^{87} +1.82843i q^{88} +12.4853 q^{89} +10.8284 q^{91} -14.0000i q^{92} +24.3137i q^{93} -7.82843 q^{94} +3.82843 q^{96} -4.48528i q^{97} -2.41421i q^{98} +1.17157 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q412q6+4q1116q14+12q1624q1916q21+20q24+20q264q29+12q31+8q34+32q36+20q39+16q41+12q4424q46++16q99+O(q100) 4 q - 4 q^{4} - 12 q^{6} + 4 q^{11} - 16 q^{14} + 12 q^{16} - 24 q^{19} - 16 q^{21} + 20 q^{24} + 20 q^{26} - 4 q^{29} + 12 q^{31} + 8 q^{34} + 32 q^{36} + 20 q^{39} + 16 q^{41} + 12 q^{44} - 24 q^{46}+ \cdots + 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/725Z)×\left(\mathbb{Z}/725\mathbb{Z}\right)^\times.

nn 176176 552552
χ(n)\chi(n) 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.41421i 1.70711i 0.521005 + 0.853553i 0.325557π0.325557\pi
−0.521005 + 0.853553i 0.674443π0.674443\pi
33 2.41421i 1.39385i 0.717146 + 0.696923i 0.245448π0.245448\pi
−0.717146 + 0.696923i 0.754552π0.754552\pi
44 −3.82843 −1.91421
55 0 0
66 −5.82843 −2.37945
77 2.82843i 1.06904i 0.845154 + 0.534522i 0.179509π0.179509\pi
−0.845154 + 0.534522i 0.820491π0.820491\pi
88 − 4.41421i − 1.56066i
99 −2.82843 −0.942809
1010 0 0
1111 −0.414214 −0.124890 −0.0624450 0.998048i 0.519890π-0.519890\pi
−0.0624450 + 0.998048i 0.519890π0.519890\pi
1212 − 9.24264i − 2.66812i
1313 − 3.82843i − 1.06181i −0.847430 0.530907i 0.821851π-0.821851\pi
0.847430 0.530907i 0.178149π-0.178149\pi
1414 −6.82843 −1.82497
1515 0 0
1616 3.00000 0.750000
1717 − 0.828427i − 0.200923i −0.994941 0.100462i 0.967968π-0.967968\pi
0.994941 0.100462i 0.0320319π-0.0320319\pi
1818 − 6.82843i − 1.60948i
1919 −6.00000 −1.37649 −0.688247 0.725476i 0.741620π-0.741620\pi
−0.688247 + 0.725476i 0.741620π0.741620\pi
2020 0 0
2121 −6.82843 −1.49008
2222 − 1.00000i − 0.213201i
2323 3.65685i 0.762507i 0.924471 + 0.381253i 0.124507π0.124507\pi
−0.924471 + 0.381253i 0.875493π0.875493\pi
2424 10.6569 2.17532
2525 0 0
2626 9.24264 1.81263
2727 0.414214i 0.0797154i
2828 − 10.8284i − 2.04638i
2929 −1.00000 −0.185695
3030 0 0
3131 10.0711 1.80882 0.904409 0.426667i 0.140313π-0.140313\pi
0.904409 + 0.426667i 0.140313π0.140313\pi
3232 − 1.58579i − 0.280330i
3333 − 1.00000i − 0.174078i
3434 2.00000 0.342997
3535 0 0
3636 10.8284 1.80474
3737 4.00000i 0.657596i 0.944400 + 0.328798i 0.106644π0.106644\pi
−0.944400 + 0.328798i 0.893356π0.893356\pi
3838 − 14.4853i − 2.34982i
3939 9.24264 1.48001
4040 0 0
4141 −4.48528 −0.700483 −0.350242 0.936659i 0.613901π-0.613901\pi
−0.350242 + 0.936659i 0.613901π0.613901\pi
4242 − 16.4853i − 2.54373i
4343 3.58579i 0.546827i 0.961897 + 0.273414i 0.0881528π0.0881528\pi
−0.961897 + 0.273414i 0.911847π0.911847\pi
4444 1.58579 0.239066
4545 0 0
4646 −8.82843 −1.30168
4747 3.24264i 0.472988i 0.971633 + 0.236494i 0.0759983π0.0759983\pi
−0.971633 + 0.236494i 0.924002π0.924002\pi
4848 7.24264i 1.04539i
4949 −1.00000 −0.142857
5050 0 0
5151 2.00000 0.280056
5252 14.6569i 2.03254i
5353 9.48528i 1.30290i 0.758690 + 0.651452i 0.225840π0.225840\pi
−0.758690 + 0.651452i 0.774160π0.774160\pi
5454 −1.00000 −0.136083
5555 0 0
5656 12.4853 1.66842
5757 − 14.4853i − 1.91862i
5858 − 2.41421i − 0.317002i
5959 3.65685 0.476082 0.238041 0.971255i 0.423495π-0.423495\pi
0.238041 + 0.971255i 0.423495π0.423495\pi
6060 0 0
6161 −4.82843 −0.618217 −0.309108 0.951027i 0.600031π-0.600031\pi
−0.309108 + 0.951027i 0.600031π0.600031\pi
6262 24.3137i 3.08784i
6363 − 8.00000i − 1.00791i
6464 9.82843 1.22855
6565 0 0
6666 2.41421 0.297169
6767 − 5.65685i − 0.691095i −0.938401 0.345547i 0.887693π-0.887693\pi
0.938401 0.345547i 0.112307π-0.112307\pi
6868 3.17157i 0.384610i
6969 −8.82843 −1.06282
7070 0 0
7171 −8.82843 −1.04774 −0.523871 0.851798i 0.675513π-0.675513\pi
−0.523871 + 0.851798i 0.675513π0.675513\pi
7272 12.4853i 1.47140i
7373 4.00000i 0.468165i 0.972217 + 0.234082i 0.0752085π0.0752085\pi
−0.972217 + 0.234082i 0.924791π0.924791\pi
7474 −9.65685 −1.12259
7575 0 0
7676 22.9706 2.63490
7777 − 1.17157i − 0.133513i
7878 22.3137i 2.52653i
7979 2.41421 0.271620 0.135810 0.990735i 0.456636π-0.456636\pi
0.135810 + 0.990735i 0.456636π0.456636\pi
8080 0 0
8181 −9.48528 −1.05392
8282 − 10.8284i − 1.19580i
8383 7.65685i 0.840449i 0.907420 + 0.420224i 0.138049π0.138049\pi
−0.907420 + 0.420224i 0.861951π0.861951\pi
8484 26.1421 2.85234
8585 0 0
8686 −8.65685 −0.933493
8787 − 2.41421i − 0.258831i
8888 1.82843i 0.194911i
8989 12.4853 1.32344 0.661719 0.749752i 0.269827π-0.269827\pi
0.661719 + 0.749752i 0.269827π0.269827\pi
9090 0 0
9191 10.8284 1.13513
9292 − 14.0000i − 1.45960i
9393 24.3137i 2.52121i
9494 −7.82843 −0.807441
9595 0 0
9696 3.82843 0.390737
9797 − 4.48528i − 0.455411i −0.973730 0.227706i 0.926878π-0.926878\pi
0.973730 0.227706i 0.0731224π-0.0731224\pi
9898 − 2.41421i − 0.243872i
9999 1.17157 0.117748
100100 0 0
101101 −2.34315 −0.233152 −0.116576 0.993182i 0.537192π-0.537192\pi
−0.116576 + 0.993182i 0.537192π0.537192\pi
102102 4.82843i 0.478086i
103103 − 4.82843i − 0.475759i −0.971295 0.237880i 0.923548π-0.923548\pi
0.971295 0.237880i 0.0764523π-0.0764523\pi
104104 −16.8995 −1.65713
105105 0 0
106106 −22.8995 −2.22420
107107 14.8284i 1.43352i 0.697321 + 0.716759i 0.254375π0.254375\pi
−0.697321 + 0.716759i 0.745625π0.745625\pi
108108 − 1.58579i − 0.152592i
109109 −12.6569 −1.21231 −0.606153 0.795348i 0.707288π-0.707288\pi
−0.606153 + 0.795348i 0.707288π0.707288\pi
110110 0 0
111111 −9.65685 −0.916588
112112 8.48528i 0.801784i
113113 − 13.3137i − 1.25245i −0.779643 0.626224i 0.784599π-0.784599\pi
0.779643 0.626224i 0.215401π-0.215401\pi
114114 34.9706 3.27529
115115 0 0
116116 3.82843 0.355461
117117 10.8284i 1.00109i
118118 8.82843i 0.812723i
119119 2.34315 0.214796
120120 0 0
121121 −10.8284 −0.984402
122122 − 11.6569i − 1.05536i
123123 − 10.8284i − 0.976366i
124124 −38.5563 −3.46246
125125 0 0
126126 19.3137 1.72060
127127 4.34315i 0.385392i 0.981259 + 0.192696i 0.0617231π0.0617231\pi
−0.981259 + 0.192696i 0.938277π0.938277\pi
128128 20.5563i 1.81694i
129129 −8.65685 −0.762194
130130 0 0
131131 21.3137 1.86219 0.931094 0.364780i 0.118856π-0.118856\pi
0.931094 + 0.364780i 0.118856π0.118856\pi
132132 3.82843i 0.333222i
133133 − 16.9706i − 1.47153i
134134 13.6569 1.17977
135135 0 0
136136 −3.65685 −0.313573
137137 − 12.0000i − 1.02523i −0.858619 0.512615i 0.828677π-0.828677\pi
0.858619 0.512615i 0.171323π-0.171323\pi
138138 − 21.3137i − 1.81434i
139139 −14.0000 −1.18746 −0.593732 0.804663i 0.702346π-0.702346\pi
−0.593732 + 0.804663i 0.702346π0.702346\pi
140140 0 0
141141 −7.82843 −0.659272
142142 − 21.3137i − 1.78861i
143143 1.58579i 0.132610i
144144 −8.48528 −0.707107
145145 0 0
146146 −9.65685 −0.799207
147147 − 2.41421i − 0.199121i
148148 − 15.3137i − 1.25878i
149149 7.82843 0.641330 0.320665 0.947193i 0.396094π-0.396094\pi
0.320665 + 0.947193i 0.396094π0.396094\pi
150150 0 0
151151 −14.1421 −1.15087 −0.575435 0.817847i 0.695167π-0.695167\pi
−0.575435 + 0.817847i 0.695167π0.695167\pi
152152 26.4853i 2.14824i
153153 2.34315i 0.189432i
154154 2.82843 0.227921
155155 0 0
156156 −35.3848 −2.83305
157157 − 8.48528i − 0.677199i −0.940931 0.338600i 0.890047π-0.890047\pi
0.940931 0.338600i 0.109953π-0.109953\pi
158158 5.82843i 0.463685i
159159 −22.8995 −1.81605
160160 0 0
161161 −10.3431 −0.815154
162162 − 22.8995i − 1.79915i
163163 3.92893i 0.307738i 0.988091 + 0.153869i 0.0491733π0.0491733\pi
−0.988091 + 0.153869i 0.950827π0.950827\pi
164164 17.1716 1.34087
165165 0 0
166166 −18.4853 −1.43474
167167 3.17157i 0.245424i 0.992442 + 0.122712i 0.0391591π0.0391591\pi
−0.992442 + 0.122712i 0.960841π0.960841\pi
168168 30.1421i 2.32552i
169169 −1.65685 −0.127450
170170 0 0
171171 16.9706 1.29777
172172 − 13.7279i − 1.04674i
173173 12.3431i 0.938432i 0.883083 + 0.469216i 0.155463π0.155463\pi
−0.883083 + 0.469216i 0.844537π0.844537\pi
174174 5.82843 0.441852
175175 0 0
176176 −1.24264 −0.0936676
177177 8.82843i 0.663585i
178178 30.1421i 2.25925i
179179 6.48528 0.484733 0.242366 0.970185i 0.422076π-0.422076\pi
0.242366 + 0.970185i 0.422076π0.422076\pi
180180 0 0
181181 8.31371 0.617953 0.308977 0.951070i 0.400014π-0.400014\pi
0.308977 + 0.951070i 0.400014π0.400014\pi
182182 26.1421i 1.93778i
183183 − 11.6569i − 0.861699i
184184 16.1421 1.19001
185185 0 0
186186 −58.6985 −4.30398
187187 0.343146i 0.0250933i
188188 − 12.4142i − 0.905400i
189189 −1.17157 −0.0852194
190190 0 0
191191 25.3137 1.83164 0.915818 0.401594i 0.131544π-0.131544\pi
0.915818 + 0.401594i 0.131544π0.131544\pi
192192 23.7279i 1.71242i
193193 − 5.17157i − 0.372258i −0.982525 0.186129i 0.940406π-0.940406\pi
0.982525 0.186129i 0.0595942π-0.0595942\pi
194194 10.8284 0.777436
195195 0 0
196196 3.82843 0.273459
197197 − 2.00000i − 0.142494i −0.997459 0.0712470i 0.977302π-0.977302\pi
0.997459 0.0712470i 0.0226979π-0.0226979\pi
198198 2.82843i 0.201008i
199199 0.485281 0.0344007 0.0172003 0.999852i 0.494525π-0.494525\pi
0.0172003 + 0.999852i 0.494525π0.494525\pi
200200 0 0
201201 13.6569 0.963280
202202 − 5.65685i − 0.398015i
203203 − 2.82843i − 0.198517i
204204 −7.65685 −0.536087
205205 0 0
206206 11.6569 0.812172
207207 − 10.3431i − 0.718898i
208208 − 11.4853i − 0.796361i
209209 2.48528 0.171911
210210 0 0
211211 −19.3848 −1.33450 −0.667252 0.744832i 0.732529π-0.732529\pi
−0.667252 + 0.744832i 0.732529π0.732529\pi
212212 − 36.3137i − 2.49404i
213213 − 21.3137i − 1.46039i
214214 −35.7990 −2.44717
215215 0 0
216216 1.82843 0.124409
217217 28.4853i 1.93371i
218218 − 30.5563i − 2.06954i
219219 −9.65685 −0.652550
220220 0 0
221221 −3.17157 −0.213343
222222 − 23.3137i − 1.56471i
223223 − 3.17157i − 0.212384i −0.994346 0.106192i 0.966134π-0.966134\pi
0.994346 0.106192i 0.0338659π-0.0338659\pi
224224 4.48528 0.299685
225225 0 0
226226 32.1421 2.13806
227227 8.14214i 0.540413i 0.962802 + 0.270206i 0.0870919π0.0870919\pi
−0.962802 + 0.270206i 0.912908π0.912908\pi
228228 55.4558i 3.67265i
229229 3.51472 0.232259 0.116130 0.993234i 0.462951π-0.462951\pi
0.116130 + 0.993234i 0.462951π0.462951\pi
230230 0 0
231231 2.82843 0.186097
232232 4.41421i 0.289807i
233233 18.3137i 1.19977i 0.800086 + 0.599885i 0.204787π0.204787\pi
−0.800086 + 0.599885i 0.795213π0.795213\pi
234234 −26.1421 −1.70896
235235 0 0
236236 −14.0000 −0.911322
237237 5.82843i 0.378597i
238238 5.65685i 0.366679i
239239 19.6569 1.27150 0.635748 0.771897i 0.280692π-0.280692\pi
0.635748 + 0.771897i 0.280692π0.280692\pi
240240 0 0
241241 −18.3137 −1.17969 −0.589845 0.807517i 0.700811π-0.700811\pi
−0.589845 + 0.807517i 0.700811π0.700811\pi
242242 − 26.1421i − 1.68048i
243243 − 21.6569i − 1.38929i
244244 18.4853 1.18340
245245 0 0
246246 26.1421 1.66676
247247 22.9706i 1.46158i
248248 − 44.4558i − 2.82295i
249249 −18.4853 −1.17146
250250 0 0
251251 20.0711 1.26687 0.633437 0.773794i 0.281643π-0.281643\pi
0.633437 + 0.773794i 0.281643π0.281643\pi
252252 30.6274i 1.92935i
253253 − 1.51472i − 0.0952295i
254254 −10.4853 −0.657905
255255 0 0
256256 −29.9706 −1.87316
257257 18.1716i 1.13351i 0.823886 + 0.566756i 0.191802π0.191802\pi
−0.823886 + 0.566756i 0.808198π0.808198\pi
258258 − 20.8995i − 1.30115i
259259 −11.3137 −0.703000
260260 0 0
261261 2.82843 0.175075
262262 51.4558i 3.17895i
263263 2.75736i 0.170026i 0.996380 + 0.0850130i 0.0270932π0.0270932\pi
−0.996380 + 0.0850130i 0.972907π0.972907\pi
264264 −4.41421 −0.271676
265265 0 0
266266 40.9706 2.51207
267267 30.1421i 1.84467i
268268 21.6569i 1.32290i
269269 −31.4558 −1.91790 −0.958948 0.283581i 0.908478π-0.908478\pi
−0.958948 + 0.283581i 0.908478π0.908478\pi
270270 0 0
271271 16.5563 1.00573 0.502863 0.864366i 0.332280π-0.332280\pi
0.502863 + 0.864366i 0.332280π0.332280\pi
272272 − 2.48528i − 0.150692i
273273 26.1421i 1.58219i
274274 28.9706 1.75018
275275 0 0
276276 33.7990 2.03446
277277 17.3137i 1.04028i 0.854081 + 0.520140i 0.174120π0.174120\pi
−0.854081 + 0.520140i 0.825880π0.825880\pi
278278 − 33.7990i − 2.02713i
279279 −28.4853 −1.70537
280280 0 0
281281 31.9706 1.90720 0.953602 0.301070i 0.0973439π-0.0973439\pi
0.953602 + 0.301070i 0.0973439π0.0973439\pi
282282 − 18.8995i − 1.12545i
283283 11.6569i 0.692928i 0.938063 + 0.346464i 0.112618π0.112618\pi
−0.938063 + 0.346464i 0.887382π0.887382\pi
284284 33.7990 2.00560
285285 0 0
286286 −3.82843 −0.226380
287287 − 12.6863i − 0.748848i
288288 4.48528i 0.264298i
289289 16.3137 0.959630
290290 0 0
291291 10.8284 0.634774
292292 − 15.3137i − 0.896167i
293293 7.65685i 0.447318i 0.974667 + 0.223659i 0.0718002π0.0718002\pi
−0.974667 + 0.223659i 0.928200π0.928200\pi
294294 5.82843 0.339921
295295 0 0
296296 17.6569 1.02628
297297 − 0.171573i − 0.00995567i
298298 18.8995i 1.09482i
299299 14.0000 0.809641
300300 0 0
301301 −10.1421 −0.584583
302302 − 34.1421i − 1.96466i
303303 − 5.65685i − 0.324978i
304304 −18.0000 −1.03237
305305 0 0
306306 −5.65685 −0.323381
307307 − 2.89949i − 0.165483i −0.996571 0.0827415i 0.973632π-0.973632\pi
0.996571 0.0827415i 0.0263676π-0.0263676\pi
308308 4.48528i 0.255573i
309309 11.6569 0.663135
310310 0 0
311311 2.68629 0.152326 0.0761628 0.997095i 0.475733π-0.475733\pi
0.0761628 + 0.997095i 0.475733π0.475733\pi
312312 − 40.7990i − 2.30979i
313313 9.82843i 0.555536i 0.960648 + 0.277768i 0.0895946π0.0895946\pi
−0.960648 + 0.277768i 0.910405π0.910405\pi
314314 20.4853 1.15605
315315 0 0
316316 −9.24264 −0.519939
317317 31.4558i 1.76674i 0.468680 + 0.883368i 0.344730π0.344730\pi
−0.468680 + 0.883368i 0.655270π0.655270\pi
318318 − 55.2843i − 3.10019i
319319 0.414214 0.0231915
320320 0 0
321321 −35.7990 −1.99810
322322 − 24.9706i − 1.39156i
323323 4.97056i 0.276570i
324324 36.3137 2.01743
325325 0 0
326326 −9.48528 −0.525341
327327 − 30.5563i − 1.68977i
328328 19.7990i 1.09322i
329329 −9.17157 −0.505645
330330 0 0
331331 −2.41421 −0.132697 −0.0663486 0.997797i 0.521135π-0.521135\pi
−0.0663486 + 0.997797i 0.521135π0.521135\pi
332332 − 29.3137i − 1.60880i
333333 − 11.3137i − 0.619987i
334334 −7.65685 −0.418964
335335 0 0
336336 −20.4853 −1.11756
337337 − 21.7990i − 1.18747i −0.804662 0.593733i 0.797653π-0.797653\pi
0.804662 0.593733i 0.202347π-0.202347\pi
338338 − 4.00000i − 0.217571i
339339 32.1421 1.74572
340340 0 0
341341 −4.17157 −0.225903
342342 40.9706i 2.21543i
343343 16.9706i 0.916324i
344344 15.8284 0.853412
345345 0 0
346346 −29.7990 −1.60200
347347 − 2.48528i − 0.133417i −0.997773 0.0667084i 0.978750π-0.978750\pi
0.997773 0.0667084i 0.0212497π-0.0212497\pi
348348 9.24264i 0.495458i
349349 5.14214 0.275252 0.137626 0.990484i 0.456053π-0.456053\pi
0.137626 + 0.990484i 0.456053π0.456053\pi
350350 0 0
351351 1.58579 0.0846430
352352 0.656854i 0.0350104i
353353 26.9706i 1.43550i 0.696302 + 0.717749i 0.254828π0.254828\pi
−0.696302 + 0.717749i 0.745172π0.745172\pi
354354 −21.3137 −1.13281
355355 0 0
356356 −47.7990 −2.53334
357357 5.65685i 0.299392i
358358 15.6569i 0.827490i
359359 −3.92893 −0.207361 −0.103681 0.994611i 0.533062π-0.533062\pi
−0.103681 + 0.994611i 0.533062π0.533062\pi
360360 0 0
361361 17.0000 0.894737
362362 20.0711i 1.05491i
363363 − 26.1421i − 1.37211i
364364 −41.4558 −2.17288
365365 0 0
366366 28.1421 1.47101
367367 − 18.0000i − 0.939592i −0.882775 0.469796i 0.844327π-0.844327\pi
0.882775 0.469796i 0.155673π-0.155673\pi
368368 10.9706i 0.571880i
369369 12.6863 0.660422
370370 0 0
371371 −26.8284 −1.39286
372372 − 93.0833i − 4.82614i
373373 − 26.3137i − 1.36247i −0.732064 0.681236i 0.761443π-0.761443\pi
0.732064 0.681236i 0.238557π-0.238557\pi
374374 −0.828427 −0.0428369
375375 0 0
376376 14.3137 0.738173
377377 3.82843i 0.197174i
378378 − 2.82843i − 0.145479i
379379 6.97056 0.358054 0.179027 0.983844i 0.442705π-0.442705\pi
0.179027 + 0.983844i 0.442705π0.442705\pi
380380 0 0
381381 −10.4853 −0.537177
382382 61.1127i 3.12680i
383383 − 3.51472i − 0.179594i −0.995960 0.0897969i 0.971378π-0.971378\pi
0.995960 0.0897969i 0.0286218π-0.0286218\pi
384384 −49.6274 −2.53254
385385 0 0
386386 12.4853 0.635484
387387 − 10.1421i − 0.515554i
388388 17.1716i 0.871755i
389389 −3.02944 −0.153599 −0.0767993 0.997047i 0.524470π-0.524470\pi
−0.0767993 + 0.997047i 0.524470π0.524470\pi
390390 0 0
391391 3.02944 0.153205
392392 4.41421i 0.222951i
393393 51.4558i 2.59560i
394394 4.82843 0.243253
395395 0 0
396396 −4.48528 −0.225394
397397 − 19.3431i − 0.970805i −0.874291 0.485402i 0.838673π-0.838673\pi
0.874291 0.485402i 0.161327π-0.161327\pi
398398 1.17157i 0.0587256i
399399 40.9706 2.05109
400400 0 0
401401 −18.6569 −0.931679 −0.465839 0.884869i 0.654248π-0.654248\pi
−0.465839 + 0.884869i 0.654248π0.654248\pi
402402 32.9706i 1.64442i
403403 − 38.5563i − 1.92063i
404404 8.97056 0.446302
405405 0 0
406406 6.82843 0.338889
407407 − 1.65685i − 0.0821272i
408408 − 8.82843i − 0.437072i
409409 18.9706 0.938034 0.469017 0.883189i 0.344608π-0.344608\pi
0.469017 + 0.883189i 0.344608π0.344608\pi
410410 0 0
411411 28.9706 1.42901
412412 18.4853i 0.910704i
413413 10.3431i 0.508953i
414414 24.9706 1.22724
415415 0 0
416416 −6.07107 −0.297659
417417 − 33.7990i − 1.65514i
418418 6.00000i 0.293470i
419419 9.51472 0.464824 0.232412 0.972617i 0.425338π-0.425338\pi
0.232412 + 0.972617i 0.425338π0.425338\pi
420420 0 0
421421 37.1127 1.80876 0.904381 0.426726i 0.140333π-0.140333\pi
0.904381 + 0.426726i 0.140333π0.140333\pi
422422 − 46.7990i − 2.27814i
423423 − 9.17157i − 0.445937i
424424 41.8701 2.03339
425425 0 0
426426 51.4558 2.49304
427427 − 13.6569i − 0.660901i
428428 − 56.7696i − 2.74406i
429429 −3.82843 −0.184838
430430 0 0
431431 19.6569 0.946837 0.473419 0.880838i 0.343020π-0.343020\pi
0.473419 + 0.880838i 0.343020π0.343020\pi
432432 1.24264i 0.0597866i
433433 30.6274i 1.47186i 0.677058 + 0.735930i 0.263255π0.263255\pi
−0.677058 + 0.735930i 0.736745π0.736745\pi
434434 −68.7696 −3.30104
435435 0 0
436436 48.4558 2.32061
437437 − 21.9411i − 1.04959i
438438 − 23.3137i − 1.11397i
439439 0.343146 0.0163775 0.00818873 0.999966i 0.497393π-0.497393\pi
0.00818873 + 0.999966i 0.497393π0.497393\pi
440440 0 0
441441 2.82843 0.134687
442442 − 7.65685i − 0.364199i
443443 − 24.3431i − 1.15658i −0.815832 0.578289i 0.803721π-0.803721\pi
0.815832 0.578289i 0.196279π-0.196279\pi
444444 36.9706 1.75455
445445 0 0
446446 7.65685 0.362563
447447 18.8995i 0.893915i
448448 27.7990i 1.31338i
449449 34.9706 1.65036 0.825181 0.564868i 0.191073π-0.191073\pi
0.825181 + 0.564868i 0.191073π0.191073\pi
450450 0 0
451451 1.85786 0.0874834
452452 50.9706i 2.39745i
453453 − 34.1421i − 1.60414i
454454 −19.6569 −0.922542
455455 0 0
456456 −63.9411 −2.99432
457457 − 1.02944i − 0.0481550i −0.999710 0.0240775i 0.992335π-0.992335\pi
0.999710 0.0240775i 0.00766485π-0.00766485\pi
458458 8.48528i 0.396491i
459459 0.343146 0.0160167
460460 0 0
461461 14.0000 0.652045 0.326023 0.945362i 0.394291π-0.394291\pi
0.326023 + 0.945362i 0.394291π0.394291\pi
462462 6.82843i 0.317687i
463463 − 26.0000i − 1.20832i −0.796862 0.604161i 0.793508π-0.793508\pi
0.796862 0.604161i 0.206492π-0.206492\pi
464464 −3.00000 −0.139272
465465 0 0
466466 −44.2132 −2.04814
467467 38.3553i 1.77487i 0.460930 + 0.887437i 0.347516π0.347516\pi
−0.460930 + 0.887437i 0.652484π0.652484\pi
468468 − 41.4558i − 1.91630i
469469 16.0000 0.738811
470470 0 0
471471 20.4853 0.943912
472472 − 16.1421i − 0.743002i
473473 − 1.48528i − 0.0682933i
474474 −14.0711 −0.646306
475475 0 0
476476 −8.97056 −0.411165
477477 − 26.8284i − 1.22839i
478478 47.4558i 2.17058i
479479 −6.89949 −0.315246 −0.157623 0.987499i 0.550383π-0.550383\pi
−0.157623 + 0.987499i 0.550383π0.550383\pi
480480 0 0
481481 15.3137 0.698245
482482 − 44.2132i − 2.01386i
483483 − 24.9706i − 1.13620i
484484 41.4558 1.88436
485485 0 0
486486 52.2843 2.37166
487487 11.5147i 0.521782i 0.965368 + 0.260891i 0.0840163π0.0840163\pi
−0.965368 + 0.260891i 0.915984π0.915984\pi
488488 21.3137i 0.964826i
489489 −9.48528 −0.428939
490490 0 0
491491 −21.2426 −0.958667 −0.479333 0.877633i 0.659122π-0.659122\pi
−0.479333 + 0.877633i 0.659122π0.659122\pi
492492 41.4558i 1.86897i
493493 0.828427i 0.0373105i
494494 −55.4558 −2.49508
495495 0 0
496496 30.2132 1.35661
497497 − 24.9706i − 1.12008i
498498 − 44.6274i − 1.99980i
499499 −18.9706 −0.849239 −0.424620 0.905372i 0.639592π-0.639592\pi
−0.424620 + 0.905372i 0.639592π0.639592\pi
500500 0 0
501501 −7.65685 −0.342083
502502 48.4558i 2.16269i
503503 0.272078i 0.0121314i 0.999982 + 0.00606568i 0.00193078π0.00193078\pi
−0.999982 + 0.00606568i 0.998069π0.998069\pi
504504 −35.3137 −1.57300
505505 0 0
506506 3.65685 0.162567
507507 − 4.00000i − 0.177646i
508508 − 16.6274i − 0.737722i
509509 10.5147 0.466057 0.233028 0.972470i 0.425137π-0.425137\pi
0.233028 + 0.972470i 0.425137π0.425137\pi
510510 0 0
511511 −11.3137 −0.500489
512512 − 31.2426i − 1.38074i
513513 − 2.48528i − 0.109728i
514514 −43.8701 −1.93503
515515 0 0
516516 33.1421 1.45900
517517 − 1.34315i − 0.0590715i
518518 − 27.3137i − 1.20010i
519519 −29.7990 −1.30803
520520 0 0
521521 −29.1421 −1.27674 −0.638370 0.769730i 0.720391π-0.720391\pi
−0.638370 + 0.769730i 0.720391π0.720391\pi
522522 6.82843i 0.298872i
523523 4.68629i 0.204917i 0.994737 + 0.102459i 0.0326709π0.0326709\pi
−0.994737 + 0.102459i 0.967329π0.967329\pi
524524 −81.5980 −3.56462
525525 0 0
526526 −6.65685 −0.290253
527527 − 8.34315i − 0.363433i
528528 − 3.00000i − 0.130558i
529529 9.62742 0.418583
530530 0 0
531531 −10.3431 −0.448854
532532 64.9706i 2.81683i
533533 17.1716i 0.743783i
534534 −72.7696 −3.14905
535535 0 0
536536 −24.9706 −1.07856
537537 15.6569i 0.675643i
538538 − 75.9411i − 3.27405i
539539 0.414214 0.0178414
540540 0 0
541541 −10.3431 −0.444687 −0.222343 0.974968i 0.571371π-0.571371\pi
−0.222343 + 0.974968i 0.571371π0.571371\pi
542542 39.9706i 1.71688i
543543 20.0711i 0.861332i
544544 −1.31371 −0.0563248
545545 0 0
546546 −63.1127 −2.70097
547547 − 35.7990i − 1.53065i −0.643641 0.765327i 0.722577π-0.722577\pi
0.643641 0.765327i 0.277423π-0.277423\pi
548548 45.9411i 1.96251i
549549 13.6569 0.582860
550550 0 0
551551 6.00000 0.255609
552552 38.9706i 1.65870i
553553 6.82843i 0.290374i
554554 −41.7990 −1.77587
555555 0 0
556556 53.5980 2.27306
557557 17.3137i 0.733605i 0.930299 + 0.366803i 0.119548π0.119548\pi
−0.930299 + 0.366803i 0.880452π0.880452\pi
558558 − 68.7696i − 2.91125i
559559 13.7279 0.580629
560560 0 0
561561 −0.828427 −0.0349762
562562 77.1838i 3.25580i
563563 − 0.757359i − 0.0319189i −0.999873 0.0159594i 0.994920π-0.994920\pi
0.999873 0.0159594i 0.00508026π-0.00508026\pi
564564 29.9706 1.26199
565565 0 0
566566 −28.1421 −1.18290
567567 − 26.8284i − 1.12669i
568568 38.9706i 1.63517i
569569 39.6569 1.66250 0.831251 0.555897i 0.187625π-0.187625\pi
0.831251 + 0.555897i 0.187625π0.187625\pi
570570 0 0
571571 14.6274 0.612138 0.306069 0.952009i 0.400986π-0.400986\pi
0.306069 + 0.952009i 0.400986π0.400986\pi
572572 − 6.07107i − 0.253844i
573573 61.1127i 2.55302i
574574 30.6274 1.27836
575575 0 0
576576 −27.7990 −1.15829
577577 29.7990i 1.24055i 0.784385 + 0.620274i 0.212979π0.212979\pi
−0.784385 + 0.620274i 0.787021π0.787021\pi
578578 39.3848i 1.63819i
579579 12.4853 0.518871
580580 0 0
581581 −21.6569 −0.898478
582582 26.1421i 1.08363i
583583 − 3.92893i − 0.162720i
584584 17.6569 0.730646
585585 0 0
586586 −18.4853 −0.763620
587587 − 7.65685i − 0.316032i −0.987437 0.158016i 0.949490π-0.949490\pi
0.987437 0.158016i 0.0505098π-0.0505098\pi
588588 9.24264i 0.381160i
589589 −60.4264 −2.48983
590590 0 0
591591 4.82843 0.198615
592592 12.0000i 0.493197i
593593 − 19.4853i − 0.800165i −0.916479 0.400082i 0.868982π-0.868982\pi
0.916479 0.400082i 0.131018π-0.131018\pi
594594 0.414214 0.0169954
595595 0 0
596596 −29.9706 −1.22764
597597 1.17157i 0.0479493i
598598 33.7990i 1.38214i
599599 −9.87006 −0.403280 −0.201640 0.979460i 0.564627π-0.564627\pi
−0.201640 + 0.979460i 0.564627π0.564627\pi
600600 0 0
601601 −17.1716 −0.700443 −0.350222 0.936667i 0.613894π-0.613894\pi
−0.350222 + 0.936667i 0.613894π0.613894\pi
602602 − 24.4853i − 0.997946i
603603 16.0000i 0.651570i
604604 54.1421 2.20301
605605 0 0
606606 13.6569 0.554772
607607 7.72792i 0.313667i 0.987625 + 0.156833i 0.0501286π0.0501286\pi
−0.987625 + 0.156833i 0.949871π0.949871\pi
608608 9.51472i 0.385873i
609609 6.82843 0.276702
610610 0 0
611611 12.4142 0.502225
612612 − 8.97056i − 0.362614i
613613 − 9.00000i − 0.363507i −0.983344 0.181753i 0.941823π-0.941823\pi
0.983344 0.181753i 0.0581772π-0.0581772\pi
614614 7.00000 0.282497
615615 0 0
616616 −5.17157 −0.208369
617617 − 0.686292i − 0.0276291i −0.999905 0.0138145i 0.995603π-0.995603\pi
0.999905 0.0138145i 0.00439744π-0.00439744\pi
618618 28.1421i 1.13204i
619619 −33.5858 −1.34993 −0.674963 0.737851i 0.735841π-0.735841\pi
−0.674963 + 0.737851i 0.735841π0.735841\pi
620620 0 0
621621 −1.51472 −0.0607836
622622 6.48528i 0.260036i
623623 35.3137i 1.41481i
624624 27.7279 1.11001
625625 0 0
626626 −23.7279 −0.948358
627627 6.00000i 0.239617i
628628 32.4853i 1.29630i
629629 3.31371 0.132126
630630 0 0
631631 −36.8284 −1.46612 −0.733058 0.680166i 0.761908π-0.761908\pi
−0.733058 + 0.680166i 0.761908π0.761908\pi
632632 − 10.6569i − 0.423907i
633633 − 46.7990i − 1.86009i
634634 −75.9411 −3.01601
635635 0 0
636636 87.6690 3.47630
637637 3.82843i 0.151688i
638638 1.00000i 0.0395904i
639639 24.9706 0.987820
640640 0 0
641641 17.7990 0.703018 0.351509 0.936185i 0.385669π-0.385669\pi
0.351509 + 0.936185i 0.385669π0.385669\pi
642642 − 86.4264i − 3.41098i
643643 32.4853i 1.28109i 0.767919 + 0.640547i 0.221292π0.221292\pi
−0.767919 + 0.640547i 0.778708π0.778708\pi
644644 39.5980 1.56038
645645 0 0
646646 −12.0000 −0.472134
647647 − 39.6569i − 1.55907i −0.626358 0.779536i 0.715455π-0.715455\pi
0.626358 0.779536i 0.284545π-0.284545\pi
648648 41.8701i 1.64481i
649649 −1.51472 −0.0594579
650650 0 0
651651 −68.7696 −2.69529
652652 − 15.0416i − 0.589076i
653653 − 30.1421i − 1.17955i −0.807567 0.589776i 0.799216π-0.799216\pi
0.807567 0.589776i 0.200784π-0.200784\pi
654654 73.7696 2.88462
655655 0 0
656656 −13.4558 −0.525362
657657 − 11.3137i − 0.441390i
658658 − 22.1421i − 0.863190i
659659 −14.4142 −0.561498 −0.280749 0.959781i 0.590583π-0.590583\pi
−0.280749 + 0.959781i 0.590583π0.590583\pi
660660 0 0
661661 33.3137 1.29575 0.647877 0.761745i 0.275657π-0.275657\pi
0.647877 + 0.761745i 0.275657π0.275657\pi
662662 − 5.82843i − 0.226528i
663663 − 7.65685i − 0.297368i
664664 33.7990 1.31166
665665 0 0
666666 27.3137 1.05838
667667 − 3.65685i − 0.141594i
668668 − 12.1421i − 0.469793i
669669 7.65685 0.296031
670670 0 0
671671 2.00000 0.0772091
672672 10.8284i 0.417716i
673673 − 21.6274i − 0.833676i −0.908981 0.416838i 0.863138π-0.863138\pi
0.908981 0.416838i 0.136862π-0.136862\pi
674674 52.6274 2.02713
675675 0 0
676676 6.34315 0.243967
677677 22.0000i 0.845529i 0.906240 + 0.422764i 0.138940π0.138940\pi
−0.906240 + 0.422764i 0.861060π0.861060\pi
678678 77.5980i 2.98013i
679679 12.6863 0.486855
680680 0 0
681681 −19.6569 −0.753252
682682 − 10.0711i − 0.385641i
683683 20.9706i 0.802416i 0.915987 + 0.401208i 0.131410π0.131410\pi
−0.915987 + 0.401208i 0.868590π0.868590\pi
684684 −64.9706 −2.48421
685685 0 0
686686 −40.9706 −1.56426
687687 8.48528i 0.323734i
688688 10.7574i 0.410120i
689689 36.3137 1.38344
690690 0 0
691691 48.0000 1.82601 0.913003 0.407953i 0.133757π-0.133757\pi
0.913003 + 0.407953i 0.133757π0.133757\pi
692692 − 47.2548i − 1.79636i
693693 3.31371i 0.125877i
694694 6.00000 0.227757
695695 0 0
696696 −10.6569 −0.403947
697697 3.71573i 0.140743i
698698 12.4142i 0.469885i
699699 −44.2132 −1.67230
700700 0 0
701701 −40.1127 −1.51504 −0.757518 0.652814i 0.773588π-0.773588\pi
−0.757518 + 0.652814i 0.773588π0.773588\pi
702702 3.82843i 0.144495i
703703 − 24.0000i − 0.905177i
704704 −4.07107 −0.153434
705705 0 0
706706 −65.1127 −2.45055
707707 − 6.62742i − 0.249250i
708708 − 33.7990i − 1.27024i
709709 −29.1421 −1.09446 −0.547228 0.836984i 0.684317π-0.684317\pi
−0.547228 + 0.836984i 0.684317π0.684317\pi
710710 0 0
711711 −6.82843 −0.256086
712712 − 55.1127i − 2.06544i
713713 36.8284i 1.37924i
714714 −13.6569 −0.511095
715715 0 0
716716 −24.8284 −0.927882
717717 47.4558i 1.77227i
718718 − 9.48528i − 0.353988i
719719 20.1421 0.751175 0.375587 0.926787i 0.377441π-0.377441\pi
0.375587 + 0.926787i 0.377441π0.377441\pi
720720 0 0
721721 13.6569 0.508608
722722 41.0416i 1.52741i
723723 − 44.2132i − 1.64431i
724724 −31.8284 −1.18289
725725 0 0
726726 63.1127 2.34233
727727 − 1.31371i − 0.0487228i −0.999703 0.0243614i 0.992245π-0.992245\pi
0.999703 0.0243614i 0.00775523π-0.00775523\pi
728728 − 47.7990i − 1.77155i
729729 23.8284 0.882534
730730 0 0
731731 2.97056 0.109870
732732 44.6274i 1.64948i
733733 − 41.2548i − 1.52378i −0.647705 0.761891i 0.724271π-0.724271\pi
0.647705 0.761891i 0.275729π-0.275729\pi
734734 43.4558 1.60398
735735 0 0
736736 5.79899 0.213754
737737 2.34315i 0.0863109i
738738 30.6274i 1.12741i
739739 −4.07107 −0.149757 −0.0748783 0.997193i 0.523857π-0.523857\pi
−0.0748783 + 0.997193i 0.523857π0.523857\pi
740740 0 0
741741 −55.4558 −2.03722
742742 − 64.7696i − 2.37777i
743743 23.6569i 0.867886i 0.900940 + 0.433943i 0.142878π0.142878\pi
−0.900940 + 0.433943i 0.857122π0.857122\pi
744744 107.326 3.93476
745745 0 0
746746 63.5269 2.32589
747747 − 21.6569i − 0.792383i
748748 − 1.31371i − 0.0480339i
749749 −41.9411 −1.53250
750750 0 0
751751 25.3137 0.923710 0.461855 0.886955i 0.347184π-0.347184\pi
0.461855 + 0.886955i 0.347184π0.347184\pi
752752 9.72792i 0.354741i
753753 48.4558i 1.76583i
754754 −9.24264 −0.336597
755755 0 0
756756 4.48528 0.163128
757757 − 25.5147i − 0.927348i −0.886006 0.463674i 0.846531π-0.846531\pi
0.886006 0.463674i 0.153469π-0.153469\pi
758758 16.8284i 0.611236i
759759 3.65685 0.132735
760760 0 0
761761 45.5980 1.65293 0.826463 0.562991i 0.190350π-0.190350\pi
0.826463 + 0.562991i 0.190350π0.190350\pi
762762 − 25.3137i − 0.917019i
763763 − 35.7990i − 1.29601i
764764 −96.9117 −3.50614
765765 0 0
766766 8.48528 0.306586
767767 − 14.0000i − 0.505511i
768768 − 72.3553i − 2.61090i
769769 49.1127 1.77105 0.885525 0.464592i 0.153799π-0.153799\pi
0.885525 + 0.464592i 0.153799π0.153799\pi
770770 0 0
771771 −43.8701 −1.57994
772772 19.7990i 0.712581i
773773 − 19.5147i − 0.701896i −0.936395 0.350948i 0.885859π-0.885859\pi
0.936395 0.350948i 0.114141π-0.114141\pi
774774 24.4853 0.880105
775775 0 0
776776 −19.7990 −0.710742
777777 − 27.3137i − 0.979874i
778778 − 7.31371i − 0.262209i
779779 26.9117 0.964211
780780 0 0
781781 3.65685 0.130853
782782 7.31371i 0.261538i
783783 − 0.414214i − 0.0148028i
784784 −3.00000 −0.107143
785785 0 0
786786 −124.225 −4.43097
787787 54.0833i 1.92786i 0.266156 + 0.963930i 0.414246π0.414246\pi
−0.266156 + 0.963930i 0.585754π0.585754\pi
788788 7.65685i 0.272764i
789789 −6.65685 −0.236990
790790 0 0
791791 37.6569 1.33892
792792 − 5.17157i − 0.183764i
793793 18.4853i 0.656432i
794794 46.6985 1.65727
795795 0 0
796796 −1.85786 −0.0658503
797797 − 51.7401i − 1.83273i −0.400345 0.916364i 0.631110π-0.631110\pi
0.400345 0.916364i 0.368890π-0.368890\pi
798798 98.9117i 3.50144i
799799 2.68629 0.0950342
800800 0 0
801801 −35.3137 −1.24775
802802 − 45.0416i − 1.59048i
803803 − 1.65685i − 0.0584691i
804804 −52.2843 −1.84392
805805 0 0
806806 93.0833 3.27872
807807 − 75.9411i − 2.67325i
808808 10.3431i 0.363871i
809809 −36.2843 −1.27569 −0.637844 0.770166i 0.720173π-0.720173\pi
−0.637844 + 0.770166i 0.720173π0.720173\pi
810810 0 0
811811 10.8284 0.380238 0.190119 0.981761i 0.439113π-0.439113\pi
0.190119 + 0.981761i 0.439113π0.439113\pi
812812 10.8284i 0.380003i
813813 39.9706i 1.40183i
814814 4.00000 0.140200
815815 0 0
816816 6.00000 0.210042
817817 − 21.5147i − 0.752705i
818818 45.7990i 1.60132i
819819 −30.6274 −1.07021
820820 0 0
821821 −1.48528 −0.0518367 −0.0259183 0.999664i 0.508251π-0.508251\pi
−0.0259183 + 0.999664i 0.508251π0.508251\pi
822822 69.9411i 2.43948i
823823 − 54.2843i − 1.89223i −0.323830 0.946115i 0.604971π-0.604971\pi
0.323830 0.946115i 0.395029π-0.395029\pi
824824 −21.3137 −0.742498
825825 0 0
826826 −24.9706 −0.868837
827827 − 32.8995i − 1.14403i −0.820244 0.572014i 0.806162π-0.806162\pi
0.820244 0.572014i 0.193838π-0.193838\pi
828828 39.5980i 1.37612i
829829 29.7990 1.03496 0.517481 0.855695i 0.326870π-0.326870\pi
0.517481 + 0.855695i 0.326870π0.326870\pi
830830 0 0
831831 −41.7990 −1.44999
832832 − 37.6274i − 1.30450i
833833 0.828427i 0.0287033i
834834 81.5980 2.82551
835835 0 0
836836 −9.51472 −0.329073
837837 4.17157i 0.144191i
838838 22.9706i 0.793505i
839839 7.92893 0.273737 0.136869 0.990589i 0.456296π-0.456296\pi
0.136869 + 0.990589i 0.456296π0.456296\pi
840840 0 0
841841 1.00000 0.0344828
842842 89.5980i 3.08775i
843843 77.1838i 2.65835i
844844 74.2132 2.55452
845845 0 0
846846 22.1421 0.761262
847847 − 30.6274i − 1.05237i
848848 28.4558i 0.977178i
849849 −28.1421 −0.965836
850850 0 0
851851 −14.6274 −0.501421
852852 81.5980i 2.79550i
853853 − 22.9706i − 0.786497i −0.919432 0.393249i 0.871351π-0.871351\pi
0.919432 0.393249i 0.128649π-0.128649\pi
854854 32.9706 1.12823
855855 0 0
856856 65.4558 2.23723
857857 6.17157i 0.210817i 0.994429 + 0.105408i 0.0336150π0.0336150\pi
−0.994429 + 0.105408i 0.966385π0.966385\pi
858858 − 9.24264i − 0.315539i
859859 −19.7279 −0.673108 −0.336554 0.941664i 0.609261π-0.609261\pi
−0.336554 + 0.941664i 0.609261π0.609261\pi
860860 0 0
861861 30.6274 1.04378
862862 47.4558i 1.61635i
863863 17.1127i 0.582523i 0.956643 + 0.291262i 0.0940750π0.0940750\pi
−0.956643 + 0.291262i 0.905925π0.905925\pi
864864 0.656854 0.0223466
865865 0 0
866866 −73.9411 −2.51262
867867 39.3848i 1.33758i
868868 − 109.054i − 3.70153i
869869 −1.00000 −0.0339227
870870 0 0
871871 −21.6569 −0.733815
872872 55.8701i 1.89200i
873873 12.6863i 0.429366i
874874 52.9706 1.79176
875875 0 0
876876 36.9706 1.24912
877877 37.1421i 1.25420i 0.778938 + 0.627100i 0.215758π0.215758\pi
−0.778938 + 0.627100i 0.784242π0.784242\pi
878878 0.828427i 0.0279581i
879879 −18.4853 −0.623493
880880 0 0
881881 14.0000 0.471672 0.235836 0.971793i 0.424217π-0.424217\pi
0.235836 + 0.971793i 0.424217π0.424217\pi
882882 6.82843i 0.229925i
883883 38.4264i 1.29315i 0.762850 + 0.646576i 0.223800π0.223800\pi
−0.762850 + 0.646576i 0.776200π0.776200\pi
884884 12.1421 0.408384
885885 0 0
886886 58.7696 1.97440
887887 − 17.1005i − 0.574179i −0.957904 0.287089i 0.907312π-0.907312\pi
0.957904 0.287089i 0.0926877π-0.0926877\pi
888888 42.6274i 1.43048i
889889 −12.2843 −0.412001
890890 0 0
891891 3.92893 0.131624
892892 12.1421i 0.406549i
893893 − 19.4558i − 0.651065i
894894 −45.6274 −1.52601
895895 0 0
896896 −58.1421 −1.94239
897897 33.7990i 1.12852i
898898 84.4264i 2.81735i
899899 −10.0711 −0.335889
900900 0 0
901901 7.85786 0.261783
902902 4.48528i 0.149344i
903903 − 24.4853i − 0.814819i
904904 −58.7696 −1.95465
905905 0 0
906906 82.4264 2.73843
907907 − 22.2843i − 0.739937i −0.929044 0.369969i 0.879368π-0.879368\pi
0.929044 0.369969i 0.120632π-0.120632\pi
908908 − 31.1716i − 1.03446i
909909 6.62742 0.219818
910910 0 0
911911 −15.4437 −0.511671 −0.255835 0.966720i 0.582351π-0.582351\pi
−0.255835 + 0.966720i 0.582351π0.582351\pi
912912 − 43.4558i − 1.43897i
913913 − 3.17157i − 0.104964i
914914 2.48528 0.0822058
915915 0 0
916916 −13.4558 −0.444594
917917 60.2843i 1.99076i
918918 0.828427i 0.0273422i
919919 −8.14214 −0.268584 −0.134292 0.990942i 0.542876π-0.542876\pi
−0.134292 + 0.990942i 0.542876π0.542876\pi
920920 0 0
921921 7.00000 0.230658
922922 33.7990i 1.11311i
923923 33.7990i 1.11251i
924924 −10.8284 −0.356229
925925 0 0
926926 62.7696 2.06274
927927 13.6569i 0.448550i
928928 1.58579i 0.0520560i
929929 −18.6863 −0.613077 −0.306539 0.951858i 0.599171π-0.599171\pi
−0.306539 + 0.951858i 0.599171π0.599171\pi
930930 0 0
931931 6.00000 0.196642
932932 − 70.1127i − 2.29662i
933933 6.48528i 0.212319i
934934 −92.5980 −3.02990
935935 0 0
936936 47.7990 1.56236
937937 16.6274i 0.543194i 0.962411 + 0.271597i 0.0875518π0.0875518\pi
−0.962411 + 0.271597i 0.912448π0.912448\pi
938938 38.6274i 1.26123i
939939 −23.7279 −0.774331
940940 0 0
941941 −56.5980 −1.84504 −0.922521 0.385948i 0.873875π-0.873875\pi
−0.922521 + 0.385948i 0.873875π0.873875\pi
942942 49.4558i 1.61136i
943943 − 16.4020i − 0.534123i
944944 10.9706 0.357061
945945 0 0
946946 3.58579 0.116584
947947 − 2.61522i − 0.0849834i −0.999097 0.0424917i 0.986470π-0.986470\pi
0.999097 0.0424917i 0.0135296π-0.0135296\pi
948948 − 22.3137i − 0.724716i
949949 15.3137 0.497104
950950 0 0
951951 −75.9411 −2.46256
952952 − 10.3431i − 0.335223i
953953 − 35.6274i − 1.15409i −0.816714 0.577043i 0.804207π-0.804207\pi
0.816714 0.577043i 0.195793π-0.195793\pi
954954 64.7696 2.09699
955955 0 0
956956 −75.2548 −2.43392
957957 1.00000i 0.0323254i
958958 − 16.6569i − 0.538159i
959959 33.9411 1.09602
960960 0 0
961961 70.4264 2.27182
962962 36.9706i 1.19198i
963963 − 41.9411i − 1.35153i
964964 70.1127 2.25818
965965 0 0
966966 60.2843 1.93961
967967 35.2426i 1.13333i 0.823949 + 0.566663i 0.191766π0.191766\pi
−0.823949 + 0.566663i 0.808234π0.808234\pi
968968 47.7990i 1.53632i
969969 −12.0000 −0.385496
970970 0 0
971971 −15.6569 −0.502452 −0.251226 0.967928i 0.580834π-0.580834\pi
−0.251226 + 0.967928i 0.580834π0.580834\pi
972972 82.9117i 2.65939i
973973 − 39.5980i − 1.26945i
974974 −27.7990 −0.890737
975975 0 0
976976 −14.4853 −0.463663
977977 − 36.1716i − 1.15723i −0.815600 0.578616i 0.803593π-0.803593\pi
0.815600 0.578616i 0.196407π-0.196407\pi
978978 − 22.8995i − 0.732245i
979979 −5.17157 −0.165284
980980 0 0
981981 35.7990 1.14297
982982 − 51.2843i − 1.63655i
983983 − 21.8701i − 0.697547i −0.937207 0.348773i 0.886598π-0.886598\pi
0.937207 0.348773i 0.113402π-0.113402\pi
984984 −47.7990 −1.52378
985985 0 0
986986 −2.00000 −0.0636930
987987 − 22.1421i − 0.704792i
988988 − 87.9411i − 2.79778i
989989 −13.1127 −0.416960
990990 0 0
991991 −12.8284 −0.407508 −0.203754 0.979022i 0.565314π-0.565314\pi
−0.203754 + 0.979022i 0.565314π0.565314\pi
992992 − 15.9706i − 0.507066i
993993 − 5.82843i − 0.184960i
994994 60.2843 1.91210
995995 0 0
996996 70.7696 2.24242
997997 − 28.2843i − 0.895772i −0.894091 0.447886i 0.852177π-0.852177\pi
0.894091 0.447886i 0.147823π-0.147823\pi
998998 − 45.7990i − 1.44974i
999999 −1.65685 −0.0524205
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.b.b.349.4 4
5.2 odd 4 29.2.a.a.1.1 2
5.3 odd 4 725.2.a.b.1.2 2
5.4 even 2 inner 725.2.b.b.349.1 4
15.2 even 4 261.2.a.d.1.2 2
15.8 even 4 6525.2.a.o.1.1 2
20.7 even 4 464.2.a.h.1.1 2
35.27 even 4 1421.2.a.j.1.1 2
40.27 even 4 1856.2.a.w.1.2 2
40.37 odd 4 1856.2.a.r.1.1 2
55.32 even 4 3509.2.a.j.1.2 2
60.47 odd 4 4176.2.a.bq.1.2 2
65.12 odd 4 4901.2.a.g.1.2 2
85.67 odd 4 8381.2.a.e.1.1 2
145.2 even 28 841.2.e.k.236.1 24
145.7 odd 28 841.2.d.j.571.2 12
145.12 even 4 841.2.b.a.840.1 4
145.17 even 4 841.2.b.a.840.4 4
145.22 odd 28 841.2.d.f.571.1 12
145.27 even 28 841.2.e.k.236.4 24
145.32 even 28 841.2.e.k.270.1 24
145.37 even 28 841.2.e.k.267.1 24
145.42 odd 28 841.2.d.f.778.2 12
145.47 even 28 841.2.e.k.63.4 24
145.52 odd 28 841.2.d.j.645.2 12
145.57 odd 4 841.2.a.d.1.2 2
145.62 odd 28 841.2.d.f.190.1 12
145.67 odd 28 841.2.d.f.574.2 12
145.72 even 28 841.2.e.k.196.4 24
145.77 even 28 841.2.e.k.651.4 24
145.82 odd 28 841.2.d.j.605.2 12
145.92 odd 28 841.2.d.f.605.1 12
145.97 even 28 841.2.e.k.651.1 24
145.102 even 28 841.2.e.k.196.1 24
145.107 odd 28 841.2.d.j.574.1 12
145.112 odd 28 841.2.d.j.190.2 12
145.122 odd 28 841.2.d.f.645.1 12
145.127 even 28 841.2.e.k.63.1 24
145.132 odd 28 841.2.d.j.778.1 12
145.137 even 28 841.2.e.k.267.4 24
145.142 even 28 841.2.e.k.270.4 24
435.347 even 4 7569.2.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.a.a.1.1 2 5.2 odd 4
261.2.a.d.1.2 2 15.2 even 4
464.2.a.h.1.1 2 20.7 even 4
725.2.a.b.1.2 2 5.3 odd 4
725.2.b.b.349.1 4 5.4 even 2 inner
725.2.b.b.349.4 4 1.1 even 1 trivial
841.2.a.d.1.2 2 145.57 odd 4
841.2.b.a.840.1 4 145.12 even 4
841.2.b.a.840.4 4 145.17 even 4
841.2.d.f.190.1 12 145.62 odd 28
841.2.d.f.571.1 12 145.22 odd 28
841.2.d.f.574.2 12 145.67 odd 28
841.2.d.f.605.1 12 145.92 odd 28
841.2.d.f.645.1 12 145.122 odd 28
841.2.d.f.778.2 12 145.42 odd 28
841.2.d.j.190.2 12 145.112 odd 28
841.2.d.j.571.2 12 145.7 odd 28
841.2.d.j.574.1 12 145.107 odd 28
841.2.d.j.605.2 12 145.82 odd 28
841.2.d.j.645.2 12 145.52 odd 28
841.2.d.j.778.1 12 145.132 odd 28
841.2.e.k.63.1 24 145.127 even 28
841.2.e.k.63.4 24 145.47 even 28
841.2.e.k.196.1 24 145.102 even 28
841.2.e.k.196.4 24 145.72 even 28
841.2.e.k.236.1 24 145.2 even 28
841.2.e.k.236.4 24 145.27 even 28
841.2.e.k.267.1 24 145.37 even 28
841.2.e.k.267.4 24 145.137 even 28
841.2.e.k.270.1 24 145.32 even 28
841.2.e.k.270.4 24 145.142 even 28
841.2.e.k.651.1 24 145.97 even 28
841.2.e.k.651.4 24 145.77 even 28
1421.2.a.j.1.1 2 35.27 even 4
1856.2.a.r.1.1 2 40.37 odd 4
1856.2.a.w.1.2 2 40.27 even 4
3509.2.a.j.1.2 2 55.32 even 4
4176.2.a.bq.1.2 2 60.47 odd 4
4901.2.a.g.1.2 2 65.12 odd 4
6525.2.a.o.1.1 2 15.8 even 4
7569.2.a.c.1.1 2 435.347 even 4
8381.2.a.e.1.1 2 85.67 odd 4