Properties

Label 1445.2.a.q.1.8
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(1,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-0.360254\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.360254 q^{2} -0.0542373 q^{3} -1.87022 q^{4} -1.00000 q^{5} -0.0195392 q^{6} -0.298718 q^{7} -1.39426 q^{8} -2.99706 q^{9} -0.360254 q^{10} -2.76730 q^{11} +0.101435 q^{12} -1.97956 q^{13} -0.107615 q^{14} +0.0542373 q^{15} +3.23814 q^{16} -1.07970 q^{18} +2.81896 q^{19} +1.87022 q^{20} +0.0162017 q^{21} -0.996933 q^{22} +6.73975 q^{23} +0.0756210 q^{24} +1.00000 q^{25} -0.713144 q^{26} +0.325264 q^{27} +0.558668 q^{28} +4.72608 q^{29} +0.0195392 q^{30} +3.02620 q^{31} +3.95508 q^{32} +0.150091 q^{33} +0.298718 q^{35} +5.60515 q^{36} +9.42129 q^{37} +1.01554 q^{38} +0.107366 q^{39} +1.39426 q^{40} -3.10972 q^{41} +0.00583672 q^{42} -8.18506 q^{43} +5.17546 q^{44} +2.99706 q^{45} +2.42803 q^{46} +1.08341 q^{47} -0.175628 q^{48} -6.91077 q^{49} +0.360254 q^{50} +3.70220 q^{52} +2.68500 q^{53} +0.117178 q^{54} +2.76730 q^{55} +0.416492 q^{56} -0.152893 q^{57} +1.70259 q^{58} -9.15435 q^{59} -0.101435 q^{60} +11.1939 q^{61} +1.09020 q^{62} +0.895276 q^{63} -5.05145 q^{64} +1.97956 q^{65} +0.0540709 q^{66} +12.5585 q^{67} -0.365546 q^{69} +0.107615 q^{70} +5.88778 q^{71} +4.17869 q^{72} +0.216666 q^{73} +3.39406 q^{74} -0.0542373 q^{75} -5.27208 q^{76} +0.826644 q^{77} +0.0386790 q^{78} -10.6556 q^{79} -3.23814 q^{80} +8.97353 q^{81} -1.12029 q^{82} -15.5747 q^{83} -0.0303006 q^{84} -2.94870 q^{86} -0.256329 q^{87} +3.85835 q^{88} +1.55264 q^{89} +1.07970 q^{90} +0.591330 q^{91} -12.6048 q^{92} -0.164133 q^{93} +0.390304 q^{94} -2.81896 q^{95} -0.214513 q^{96} +8.97035 q^{97} -2.48963 q^{98} +8.29377 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 8 q^{3} + 12 q^{4} - 12 q^{5} + 8 q^{6} + 16 q^{7} - 12 q^{8} + 12 q^{9} + 4 q^{10} + 16 q^{11} + 16 q^{12} - 8 q^{13} - 16 q^{14} - 8 q^{15} + 12 q^{16} + 4 q^{18} - 12 q^{20} + 16 q^{21}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.360254 0.254738 0.127369 0.991855i \(-0.459347\pi\)
0.127369 + 0.991855i \(0.459347\pi\)
\(3\) −0.0542373 −0.0313139 −0.0156569 0.999877i \(-0.504984\pi\)
−0.0156569 + 0.999877i \(0.504984\pi\)
\(4\) −1.87022 −0.935108
\(5\) −1.00000 −0.447214
\(6\) −0.0195392 −0.00797685
\(7\) −0.298718 −0.112905 −0.0564524 0.998405i \(-0.517979\pi\)
−0.0564524 + 0.998405i \(0.517979\pi\)
\(8\) −1.39426 −0.492946
\(9\) −2.99706 −0.999019
\(10\) −0.360254 −0.113922
\(11\) −2.76730 −0.834373 −0.417187 0.908821i \(-0.636984\pi\)
−0.417187 + 0.908821i \(0.636984\pi\)
\(12\) 0.101435 0.0292819
\(13\) −1.97956 −0.549030 −0.274515 0.961583i \(-0.588517\pi\)
−0.274515 + 0.961583i \(0.588517\pi\)
\(14\) −0.107615 −0.0287612
\(15\) 0.0542373 0.0140040
\(16\) 3.23814 0.809536
\(17\) 0 0
\(18\) −1.07970 −0.254489
\(19\) 2.81896 0.646715 0.323357 0.946277i \(-0.395188\pi\)
0.323357 + 0.946277i \(0.395188\pi\)
\(20\) 1.87022 0.418193
\(21\) 0.0162017 0.00353549
\(22\) −0.996933 −0.212547
\(23\) 6.73975 1.40534 0.702668 0.711518i \(-0.251992\pi\)
0.702668 + 0.711518i \(0.251992\pi\)
\(24\) 0.0756210 0.0154361
\(25\) 1.00000 0.200000
\(26\) −0.713144 −0.139859
\(27\) 0.325264 0.0625971
\(28\) 0.558668 0.105578
\(29\) 4.72608 0.877610 0.438805 0.898582i \(-0.355402\pi\)
0.438805 + 0.898582i \(0.355402\pi\)
\(30\) 0.0195392 0.00356736
\(31\) 3.02620 0.543521 0.271761 0.962365i \(-0.412394\pi\)
0.271761 + 0.962365i \(0.412394\pi\)
\(32\) 3.95508 0.699166
\(33\) 0.150091 0.0261275
\(34\) 0 0
\(35\) 0.298718 0.0504926
\(36\) 5.60515 0.934191
\(37\) 9.42129 1.54885 0.774425 0.632665i \(-0.218039\pi\)
0.774425 + 0.632665i \(0.218039\pi\)
\(38\) 1.01554 0.164743
\(39\) 0.107366 0.0171923
\(40\) 1.39426 0.220452
\(41\) −3.10972 −0.485657 −0.242828 0.970069i \(-0.578075\pi\)
−0.242828 + 0.970069i \(0.578075\pi\)
\(42\) 0.00583672 0.000900625 0
\(43\) −8.18506 −1.24821 −0.624105 0.781341i \(-0.714536\pi\)
−0.624105 + 0.781341i \(0.714536\pi\)
\(44\) 5.17546 0.780229
\(45\) 2.99706 0.446775
\(46\) 2.42803 0.357993
\(47\) 1.08341 0.158032 0.0790159 0.996873i \(-0.474822\pi\)
0.0790159 + 0.996873i \(0.474822\pi\)
\(48\) −0.175628 −0.0253497
\(49\) −6.91077 −0.987252
\(50\) 0.360254 0.0509477
\(51\) 0 0
\(52\) 3.70220 0.513403
\(53\) 2.68500 0.368813 0.184406 0.982850i \(-0.440964\pi\)
0.184406 + 0.982850i \(0.440964\pi\)
\(54\) 0.117178 0.0159459
\(55\) 2.76730 0.373143
\(56\) 0.416492 0.0556560
\(57\) −0.152893 −0.0202512
\(58\) 1.70259 0.223561
\(59\) −9.15435 −1.19179 −0.595897 0.803061i \(-0.703203\pi\)
−0.595897 + 0.803061i \(0.703203\pi\)
\(60\) −0.101435 −0.0130953
\(61\) 11.1939 1.43323 0.716616 0.697468i \(-0.245690\pi\)
0.716616 + 0.697468i \(0.245690\pi\)
\(62\) 1.09020 0.138456
\(63\) 0.895276 0.112794
\(64\) −5.05145 −0.631432
\(65\) 1.97956 0.245534
\(66\) 0.0540709 0.00665567
\(67\) 12.5585 1.53427 0.767133 0.641488i \(-0.221683\pi\)
0.767133 + 0.641488i \(0.221683\pi\)
\(68\) 0 0
\(69\) −0.365546 −0.0440066
\(70\) 0.107615 0.0128624
\(71\) 5.88778 0.698750 0.349375 0.936983i \(-0.386394\pi\)
0.349375 + 0.936983i \(0.386394\pi\)
\(72\) 4.17869 0.492463
\(73\) 0.216666 0.0253588 0.0126794 0.999920i \(-0.495964\pi\)
0.0126794 + 0.999920i \(0.495964\pi\)
\(74\) 3.39406 0.394552
\(75\) −0.0542373 −0.00626278
\(76\) −5.27208 −0.604749
\(77\) 0.826644 0.0942048
\(78\) 0.0386790 0.00437953
\(79\) −10.6556 −1.19885 −0.599423 0.800432i \(-0.704603\pi\)
−0.599423 + 0.800432i \(0.704603\pi\)
\(80\) −3.23814 −0.362036
\(81\) 8.97353 0.997059
\(82\) −1.12029 −0.123715
\(83\) −15.5747 −1.70954 −0.854770 0.519007i \(-0.826302\pi\)
−0.854770 + 0.519007i \(0.826302\pi\)
\(84\) −0.0303006 −0.00330607
\(85\) 0 0
\(86\) −2.94870 −0.317967
\(87\) −0.256329 −0.0274814
\(88\) 3.85835 0.411301
\(89\) 1.55264 0.164579 0.0822897 0.996608i \(-0.473777\pi\)
0.0822897 + 0.996608i \(0.473777\pi\)
\(90\) 1.07970 0.113811
\(91\) 0.591330 0.0619882
\(92\) −12.6048 −1.31414
\(93\) −0.164133 −0.0170198
\(94\) 0.390304 0.0402568
\(95\) −2.81896 −0.289220
\(96\) −0.214513 −0.0218936
\(97\) 8.97035 0.910801 0.455401 0.890287i \(-0.349496\pi\)
0.455401 + 0.890287i \(0.349496\pi\)
\(98\) −2.48963 −0.251491
\(99\) 8.29377 0.833555
\(100\) −1.87022 −0.187022
\(101\) 6.92132 0.688697 0.344349 0.938842i \(-0.388100\pi\)
0.344349 + 0.938842i \(0.388100\pi\)
\(102\) 0 0
\(103\) 12.9642 1.27740 0.638699 0.769457i \(-0.279473\pi\)
0.638699 + 0.769457i \(0.279473\pi\)
\(104\) 2.76002 0.270643
\(105\) −0.0162017 −0.00158112
\(106\) 0.967283 0.0939508
\(107\) 3.62363 0.350309 0.175155 0.984541i \(-0.443957\pi\)
0.175155 + 0.984541i \(0.443957\pi\)
\(108\) −0.608314 −0.0585351
\(109\) 5.15037 0.493316 0.246658 0.969103i \(-0.420668\pi\)
0.246658 + 0.969103i \(0.420668\pi\)
\(110\) 0.996933 0.0950538
\(111\) −0.510985 −0.0485005
\(112\) −0.967293 −0.0914006
\(113\) 11.0065 1.03541 0.517704 0.855560i \(-0.326787\pi\)
0.517704 + 0.855560i \(0.326787\pi\)
\(114\) −0.0550804 −0.00515875
\(115\) −6.73975 −0.628485
\(116\) −8.83879 −0.820661
\(117\) 5.93285 0.548492
\(118\) −3.29789 −0.303596
\(119\) 0 0
\(120\) −0.0756210 −0.00690322
\(121\) −3.34204 −0.303822
\(122\) 4.03265 0.365099
\(123\) 0.168663 0.0152078
\(124\) −5.65965 −0.508251
\(125\) −1.00000 −0.0894427
\(126\) 0.322527 0.0287330
\(127\) 7.33231 0.650637 0.325319 0.945604i \(-0.394528\pi\)
0.325319 + 0.945604i \(0.394528\pi\)
\(128\) −9.72997 −0.860016
\(129\) 0.443935 0.0390863
\(130\) 0.713144 0.0625469
\(131\) 17.3220 1.51343 0.756716 0.653744i \(-0.226802\pi\)
0.756716 + 0.653744i \(0.226802\pi\)
\(132\) −0.280703 −0.0244320
\(133\) −0.842076 −0.0730173
\(134\) 4.52426 0.390836
\(135\) −0.325264 −0.0279943
\(136\) 0 0
\(137\) −13.9745 −1.19392 −0.596959 0.802272i \(-0.703625\pi\)
−0.596959 + 0.802272i \(0.703625\pi\)
\(138\) −0.131690 −0.0112102
\(139\) 3.62061 0.307096 0.153548 0.988141i \(-0.450930\pi\)
0.153548 + 0.988141i \(0.450930\pi\)
\(140\) −0.558668 −0.0472160
\(141\) −0.0587613 −0.00494859
\(142\) 2.12110 0.177999
\(143\) 5.47803 0.458096
\(144\) −9.70491 −0.808742
\(145\) −4.72608 −0.392479
\(146\) 0.0780548 0.00645986
\(147\) 0.374821 0.0309147
\(148\) −17.6199 −1.44834
\(149\) 12.8580 1.05336 0.526682 0.850062i \(-0.323436\pi\)
0.526682 + 0.850062i \(0.323436\pi\)
\(150\) −0.0195392 −0.00159537
\(151\) 19.1642 1.55956 0.779779 0.626055i \(-0.215331\pi\)
0.779779 + 0.626055i \(0.215331\pi\)
\(152\) −3.93038 −0.318796
\(153\) 0 0
\(154\) 0.297802 0.0239976
\(155\) −3.02620 −0.243070
\(156\) −0.200797 −0.0160766
\(157\) −2.70222 −0.215661 −0.107830 0.994169i \(-0.534390\pi\)
−0.107830 + 0.994169i \(0.534390\pi\)
\(158\) −3.83872 −0.305392
\(159\) −0.145627 −0.0115490
\(160\) −3.95508 −0.312677
\(161\) −2.01329 −0.158669
\(162\) 3.23276 0.253989
\(163\) −17.1057 −1.33983 −0.669913 0.742440i \(-0.733668\pi\)
−0.669913 + 0.742440i \(0.733668\pi\)
\(164\) 5.81585 0.454142
\(165\) −0.150091 −0.0116846
\(166\) −5.61084 −0.435486
\(167\) 8.85257 0.685032 0.342516 0.939512i \(-0.388721\pi\)
0.342516 + 0.939512i \(0.388721\pi\)
\(168\) −0.0225894 −0.00174281
\(169\) −9.08135 −0.698566
\(170\) 0 0
\(171\) −8.44860 −0.646081
\(172\) 15.3078 1.16721
\(173\) −19.1849 −1.45860 −0.729301 0.684193i \(-0.760155\pi\)
−0.729301 + 0.684193i \(0.760155\pi\)
\(174\) −0.0923438 −0.00700057
\(175\) −0.298718 −0.0225810
\(176\) −8.96092 −0.675455
\(177\) 0.496507 0.0373197
\(178\) 0.559345 0.0419247
\(179\) 4.33533 0.324038 0.162019 0.986788i \(-0.448199\pi\)
0.162019 + 0.986788i \(0.448199\pi\)
\(180\) −5.60515 −0.417783
\(181\) −23.7783 −1.76743 −0.883715 0.468025i \(-0.844966\pi\)
−0.883715 + 0.468025i \(0.844966\pi\)
\(182\) 0.213029 0.0157908
\(183\) −0.607127 −0.0448801
\(184\) −9.39699 −0.692755
\(185\) −9.42129 −0.692667
\(186\) −0.0591296 −0.00433559
\(187\) 0 0
\(188\) −2.02621 −0.147777
\(189\) −0.0971623 −0.00706752
\(190\) −1.01554 −0.0736754
\(191\) −7.27055 −0.526079 −0.263039 0.964785i \(-0.584725\pi\)
−0.263039 + 0.964785i \(0.584725\pi\)
\(192\) 0.273977 0.0197726
\(193\) 22.1992 1.59794 0.798968 0.601373i \(-0.205380\pi\)
0.798968 + 0.601373i \(0.205380\pi\)
\(194\) 3.23161 0.232016
\(195\) −0.107366 −0.00768862
\(196\) 12.9246 0.923188
\(197\) 4.48140 0.319286 0.159643 0.987175i \(-0.448966\pi\)
0.159643 + 0.987175i \(0.448966\pi\)
\(198\) 2.98787 0.212338
\(199\) −0.399388 −0.0283119 −0.0141559 0.999900i \(-0.504506\pi\)
−0.0141559 + 0.999900i \(0.504506\pi\)
\(200\) −1.39426 −0.0985893
\(201\) −0.681139 −0.0480438
\(202\) 2.49344 0.175438
\(203\) −1.41176 −0.0990865
\(204\) 0 0
\(205\) 3.10972 0.217192
\(206\) 4.67040 0.325402
\(207\) −20.1994 −1.40396
\(208\) −6.41009 −0.444460
\(209\) −7.80093 −0.539602
\(210\) −0.00583672 −0.000402772 0
\(211\) 1.95016 0.134255 0.0671273 0.997744i \(-0.478617\pi\)
0.0671273 + 0.997744i \(0.478617\pi\)
\(212\) −5.02153 −0.344880
\(213\) −0.319337 −0.0218806
\(214\) 1.30543 0.0892372
\(215\) 8.18506 0.558216
\(216\) −0.453504 −0.0308570
\(217\) −0.903981 −0.0613662
\(218\) 1.85544 0.125666
\(219\) −0.0117514 −0.000794083 0
\(220\) −5.17546 −0.348929
\(221\) 0 0
\(222\) −0.184085 −0.0123550
\(223\) −23.7306 −1.58912 −0.794558 0.607188i \(-0.792297\pi\)
−0.794558 + 0.607188i \(0.792297\pi\)
\(224\) −1.18145 −0.0789393
\(225\) −2.99706 −0.199804
\(226\) 3.96516 0.263758
\(227\) −20.5598 −1.36460 −0.682301 0.731071i \(-0.739021\pi\)
−0.682301 + 0.731071i \(0.739021\pi\)
\(228\) 0.285943 0.0189370
\(229\) 26.5965 1.75755 0.878773 0.477239i \(-0.158362\pi\)
0.878773 + 0.477239i \(0.158362\pi\)
\(230\) −2.42803 −0.160099
\(231\) −0.0448349 −0.00294992
\(232\) −6.58939 −0.432615
\(233\) −23.4992 −1.53948 −0.769741 0.638356i \(-0.779615\pi\)
−0.769741 + 0.638356i \(0.779615\pi\)
\(234\) 2.13734 0.139722
\(235\) −1.08341 −0.0706740
\(236\) 17.1206 1.11446
\(237\) 0.577929 0.0375405
\(238\) 0 0
\(239\) 5.25737 0.340071 0.170036 0.985438i \(-0.445612\pi\)
0.170036 + 0.985438i \(0.445612\pi\)
\(240\) 0.175628 0.0113367
\(241\) −5.43912 −0.350364 −0.175182 0.984536i \(-0.556051\pi\)
−0.175182 + 0.984536i \(0.556051\pi\)
\(242\) −1.20398 −0.0773950
\(243\) −1.46249 −0.0938189
\(244\) −20.9350 −1.34023
\(245\) 6.91077 0.441513
\(246\) 0.0607615 0.00387401
\(247\) −5.58030 −0.355066
\(248\) −4.21932 −0.267927
\(249\) 0.844727 0.0535324
\(250\) −0.360254 −0.0227845
\(251\) 26.3864 1.66550 0.832748 0.553652i \(-0.186766\pi\)
0.832748 + 0.553652i \(0.186766\pi\)
\(252\) −1.67436 −0.105475
\(253\) −18.6509 −1.17257
\(254\) 2.64150 0.165742
\(255\) 0 0
\(256\) 6.59764 0.412352
\(257\) −18.7509 −1.16965 −0.584823 0.811161i \(-0.698836\pi\)
−0.584823 + 0.811161i \(0.698836\pi\)
\(258\) 0.159930 0.00995678
\(259\) −2.81431 −0.174873
\(260\) −3.70220 −0.229601
\(261\) −14.1643 −0.876750
\(262\) 6.24034 0.385529
\(263\) 16.0011 0.986668 0.493334 0.869840i \(-0.335778\pi\)
0.493334 + 0.869840i \(0.335778\pi\)
\(264\) −0.209266 −0.0128794
\(265\) −2.68500 −0.164938
\(266\) −0.303362 −0.0186003
\(267\) −0.0842109 −0.00515362
\(268\) −23.4871 −1.43470
\(269\) 1.19638 0.0729447 0.0364724 0.999335i \(-0.488388\pi\)
0.0364724 + 0.999335i \(0.488388\pi\)
\(270\) −0.117178 −0.00713122
\(271\) 0.888590 0.0539780 0.0269890 0.999636i \(-0.491408\pi\)
0.0269890 + 0.999636i \(0.491408\pi\)
\(272\) 0 0
\(273\) −0.0320721 −0.00194109
\(274\) −5.03436 −0.304137
\(275\) −2.76730 −0.166875
\(276\) 0.683650 0.0411509
\(277\) 6.17873 0.371244 0.185622 0.982621i \(-0.440570\pi\)
0.185622 + 0.982621i \(0.440570\pi\)
\(278\) 1.30434 0.0782292
\(279\) −9.06970 −0.542989
\(280\) −0.416492 −0.0248901
\(281\) 27.8954 1.66410 0.832051 0.554700i \(-0.187167\pi\)
0.832051 + 0.554700i \(0.187167\pi\)
\(282\) −0.0211690 −0.00126060
\(283\) 29.7120 1.76619 0.883097 0.469190i \(-0.155454\pi\)
0.883097 + 0.469190i \(0.155454\pi\)
\(284\) −11.0114 −0.653407
\(285\) 0.152893 0.00905660
\(286\) 1.97349 0.116695
\(287\) 0.928930 0.0548330
\(288\) −11.8536 −0.698481
\(289\) 0 0
\(290\) −1.70259 −0.0999795
\(291\) −0.486527 −0.0285207
\(292\) −0.405212 −0.0237132
\(293\) 22.4626 1.31228 0.656140 0.754639i \(-0.272188\pi\)
0.656140 + 0.754639i \(0.272188\pi\)
\(294\) 0.135031 0.00787517
\(295\) 9.15435 0.532987
\(296\) −13.1358 −0.763500
\(297\) −0.900104 −0.0522293
\(298\) 4.63214 0.268332
\(299\) −13.3417 −0.771572
\(300\) 0.101435 0.00585638
\(301\) 2.44503 0.140929
\(302\) 6.90398 0.397279
\(303\) −0.375394 −0.0215658
\(304\) 9.12821 0.523539
\(305\) −11.1939 −0.640961
\(306\) 0 0
\(307\) 5.53854 0.316101 0.158050 0.987431i \(-0.449479\pi\)
0.158050 + 0.987431i \(0.449479\pi\)
\(308\) −1.54600 −0.0880917
\(309\) −0.703141 −0.0400003
\(310\) −1.09020 −0.0619193
\(311\) 22.5689 1.27977 0.639883 0.768473i \(-0.278983\pi\)
0.639883 + 0.768473i \(0.278983\pi\)
\(312\) −0.149696 −0.00847487
\(313\) 12.1857 0.688775 0.344387 0.938828i \(-0.388087\pi\)
0.344387 + 0.938828i \(0.388087\pi\)
\(314\) −0.973486 −0.0549370
\(315\) −0.895276 −0.0504431
\(316\) 19.9282 1.12105
\(317\) −21.9772 −1.23436 −0.617181 0.786821i \(-0.711725\pi\)
−0.617181 + 0.786821i \(0.711725\pi\)
\(318\) −0.0524628 −0.00294197
\(319\) −13.0785 −0.732254
\(320\) 5.05145 0.282385
\(321\) −0.196536 −0.0109695
\(322\) −0.725296 −0.0404192
\(323\) 0 0
\(324\) −16.7825 −0.932358
\(325\) −1.97956 −0.109806
\(326\) −6.16242 −0.341305
\(327\) −0.279342 −0.0154476
\(328\) 4.33577 0.239403
\(329\) −0.323635 −0.0178426
\(330\) −0.0540709 −0.00297651
\(331\) 14.4620 0.794905 0.397452 0.917623i \(-0.369894\pi\)
0.397452 + 0.917623i \(0.369894\pi\)
\(332\) 29.1280 1.59861
\(333\) −28.2362 −1.54733
\(334\) 3.18918 0.174504
\(335\) −12.5585 −0.686144
\(336\) 0.0524633 0.00286211
\(337\) −24.2460 −1.32076 −0.660381 0.750931i \(-0.729605\pi\)
−0.660381 + 0.750931i \(0.729605\pi\)
\(338\) −3.27160 −0.177951
\(339\) −0.596965 −0.0324227
\(340\) 0 0
\(341\) −8.37441 −0.453500
\(342\) −3.04365 −0.164582
\(343\) 4.15540 0.224370
\(344\) 11.4121 0.615300
\(345\) 0.365546 0.0196803
\(346\) −6.91145 −0.371562
\(347\) 21.4962 1.15398 0.576989 0.816752i \(-0.304228\pi\)
0.576989 + 0.816752i \(0.304228\pi\)
\(348\) 0.479392 0.0256981
\(349\) 24.1362 1.29198 0.645991 0.763345i \(-0.276444\pi\)
0.645991 + 0.763345i \(0.276444\pi\)
\(350\) −0.107615 −0.00575224
\(351\) −0.643879 −0.0343677
\(352\) −10.9449 −0.583366
\(353\) −7.24444 −0.385583 −0.192791 0.981240i \(-0.561754\pi\)
−0.192791 + 0.981240i \(0.561754\pi\)
\(354\) 0.178869 0.00950677
\(355\) −5.88778 −0.312491
\(356\) −2.90377 −0.153900
\(357\) 0 0
\(358\) 1.56182 0.0825449
\(359\) −17.2646 −0.911189 −0.455595 0.890187i \(-0.650573\pi\)
−0.455595 + 0.890187i \(0.650573\pi\)
\(360\) −4.17869 −0.220236
\(361\) −11.0534 −0.581760
\(362\) −8.56626 −0.450232
\(363\) 0.181263 0.00951384
\(364\) −1.10591 −0.0579657
\(365\) −0.216666 −0.0113408
\(366\) −0.218720 −0.0114327
\(367\) 37.4432 1.95452 0.977261 0.212042i \(-0.0680114\pi\)
0.977261 + 0.212042i \(0.0680114\pi\)
\(368\) 21.8243 1.13767
\(369\) 9.32001 0.485180
\(370\) −3.39406 −0.176449
\(371\) −0.802058 −0.0416408
\(372\) 0.306964 0.0159153
\(373\) −29.8887 −1.54758 −0.773789 0.633443i \(-0.781641\pi\)
−0.773789 + 0.633443i \(0.781641\pi\)
\(374\) 0 0
\(375\) 0.0542373 0.00280080
\(376\) −1.51056 −0.0779012
\(377\) −9.35554 −0.481835
\(378\) −0.0350031 −0.00180037
\(379\) 30.0204 1.54205 0.771023 0.636807i \(-0.219745\pi\)
0.771023 + 0.636807i \(0.219745\pi\)
\(380\) 5.27208 0.270452
\(381\) −0.397684 −0.0203740
\(382\) −2.61925 −0.134012
\(383\) −19.7234 −1.00782 −0.503908 0.863757i \(-0.668105\pi\)
−0.503908 + 0.863757i \(0.668105\pi\)
\(384\) 0.527727 0.0269305
\(385\) −0.826644 −0.0421297
\(386\) 7.99738 0.407056
\(387\) 24.5311 1.24699
\(388\) −16.7765 −0.851698
\(389\) 3.71513 0.188364 0.0941822 0.995555i \(-0.469976\pi\)
0.0941822 + 0.995555i \(0.469976\pi\)
\(390\) −0.0386790 −0.00195859
\(391\) 0 0
\(392\) 9.63543 0.486663
\(393\) −0.939499 −0.0473915
\(394\) 1.61444 0.0813345
\(395\) 10.6556 0.536140
\(396\) −15.5111 −0.779464
\(397\) 5.17180 0.259565 0.129783 0.991542i \(-0.458572\pi\)
0.129783 + 0.991542i \(0.458572\pi\)
\(398\) −0.143881 −0.00721212
\(399\) 0.0456719 0.00228646
\(400\) 3.23814 0.161907
\(401\) 0.394746 0.0197127 0.00985635 0.999951i \(-0.496863\pi\)
0.00985635 + 0.999951i \(0.496863\pi\)
\(402\) −0.245383 −0.0122386
\(403\) −5.99054 −0.298410
\(404\) −12.9444 −0.644007
\(405\) −8.97353 −0.445898
\(406\) −0.508595 −0.0252411
\(407\) −26.0716 −1.29232
\(408\) 0 0
\(409\) 0.521080 0.0257657 0.0128829 0.999917i \(-0.495899\pi\)
0.0128829 + 0.999917i \(0.495899\pi\)
\(410\) 1.12029 0.0553272
\(411\) 0.757936 0.0373862
\(412\) −24.2458 −1.19451
\(413\) 2.73457 0.134559
\(414\) −7.27694 −0.357642
\(415\) 15.5747 0.764530
\(416\) −7.82931 −0.383864
\(417\) −0.196372 −0.00961638
\(418\) −2.81032 −0.137457
\(419\) 4.57224 0.223368 0.111684 0.993744i \(-0.464376\pi\)
0.111684 + 0.993744i \(0.464376\pi\)
\(420\) 0.0303006 0.00147852
\(421\) 7.55233 0.368078 0.184039 0.982919i \(-0.441083\pi\)
0.184039 + 0.982919i \(0.441083\pi\)
\(422\) 0.702554 0.0341998
\(423\) −3.24705 −0.157877
\(424\) −3.74359 −0.181805
\(425\) 0 0
\(426\) −0.115043 −0.00557383
\(427\) −3.34382 −0.161819
\(428\) −6.77697 −0.327577
\(429\) −0.297114 −0.0143448
\(430\) 2.94870 0.142199
\(431\) −20.8886 −1.00617 −0.503083 0.864238i \(-0.667801\pi\)
−0.503083 + 0.864238i \(0.667801\pi\)
\(432\) 1.05325 0.0506746
\(433\) 32.8510 1.57872 0.789359 0.613932i \(-0.210413\pi\)
0.789359 + 0.613932i \(0.210413\pi\)
\(434\) −0.325663 −0.0156323
\(435\) 0.256329 0.0122901
\(436\) −9.63230 −0.461304
\(437\) 18.9991 0.908852
\(438\) −0.00423348 −0.000202284 0
\(439\) 24.0164 1.14624 0.573121 0.819471i \(-0.305733\pi\)
0.573121 + 0.819471i \(0.305733\pi\)
\(440\) −3.85835 −0.183939
\(441\) 20.7120 0.986284
\(442\) 0 0
\(443\) 8.36893 0.397620 0.198810 0.980038i \(-0.436292\pi\)
0.198810 + 0.980038i \(0.436292\pi\)
\(444\) 0.955653 0.0453533
\(445\) −1.55264 −0.0736022
\(446\) −8.54904 −0.404809
\(447\) −0.697380 −0.0329850
\(448\) 1.50896 0.0712917
\(449\) −24.5964 −1.16078 −0.580389 0.814339i \(-0.697099\pi\)
−0.580389 + 0.814339i \(0.697099\pi\)
\(450\) −1.07970 −0.0508977
\(451\) 8.60554 0.405219
\(452\) −20.5846 −0.968219
\(453\) −1.03941 −0.0488359
\(454\) −7.40676 −0.347617
\(455\) −0.591330 −0.0277220
\(456\) 0.213173 0.00998274
\(457\) 7.61053 0.356005 0.178003 0.984030i \(-0.443036\pi\)
0.178003 + 0.984030i \(0.443036\pi\)
\(458\) 9.58151 0.447715
\(459\) 0 0
\(460\) 12.6048 0.587702
\(461\) −7.22066 −0.336299 −0.168150 0.985761i \(-0.553779\pi\)
−0.168150 + 0.985761i \(0.553779\pi\)
\(462\) −0.0161520 −0.000751458 0
\(463\) −23.0362 −1.07058 −0.535292 0.844667i \(-0.679798\pi\)
−0.535292 + 0.844667i \(0.679798\pi\)
\(464\) 15.3037 0.710457
\(465\) 0.164133 0.00761148
\(466\) −8.46569 −0.392165
\(467\) −29.9045 −1.38382 −0.691908 0.721985i \(-0.743230\pi\)
−0.691908 + 0.721985i \(0.743230\pi\)
\(468\) −11.0957 −0.512900
\(469\) −3.75145 −0.173226
\(470\) −0.390304 −0.0180034
\(471\) 0.146561 0.00675317
\(472\) 12.7636 0.587491
\(473\) 22.6505 1.04147
\(474\) 0.208202 0.00956302
\(475\) 2.81896 0.129343
\(476\) 0 0
\(477\) −8.04710 −0.368451
\(478\) 1.89399 0.0866292
\(479\) −9.65729 −0.441253 −0.220627 0.975358i \(-0.570810\pi\)
−0.220627 + 0.975358i \(0.570810\pi\)
\(480\) 0.214513 0.00979113
\(481\) −18.6500 −0.850366
\(482\) −1.95947 −0.0892512
\(483\) 0.109195 0.00496855
\(484\) 6.25033 0.284106
\(485\) −8.97035 −0.407323
\(486\) −0.526869 −0.0238993
\(487\) −4.83011 −0.218873 −0.109436 0.993994i \(-0.534905\pi\)
−0.109436 + 0.993994i \(0.534905\pi\)
\(488\) −15.6072 −0.706507
\(489\) 0.927769 0.0419552
\(490\) 2.48963 0.112470
\(491\) 21.4747 0.969142 0.484571 0.874752i \(-0.338976\pi\)
0.484571 + 0.874752i \(0.338976\pi\)
\(492\) −0.315436 −0.0142209
\(493\) 0 0
\(494\) −2.01033 −0.0904490
\(495\) −8.29377 −0.372777
\(496\) 9.79927 0.440000
\(497\) −1.75879 −0.0788923
\(498\) 0.304317 0.0136368
\(499\) 18.6381 0.834357 0.417178 0.908825i \(-0.363019\pi\)
0.417178 + 0.908825i \(0.363019\pi\)
\(500\) 1.87022 0.0836386
\(501\) −0.480139 −0.0214510
\(502\) 9.50583 0.424266
\(503\) −18.5788 −0.828389 −0.414195 0.910188i \(-0.635937\pi\)
−0.414195 + 0.910188i \(0.635937\pi\)
\(504\) −1.24825 −0.0556015
\(505\) −6.92132 −0.307995
\(506\) −6.71908 −0.298700
\(507\) 0.492548 0.0218748
\(508\) −13.7130 −0.608416
\(509\) 28.4343 1.26033 0.630163 0.776463i \(-0.282988\pi\)
0.630163 + 0.776463i \(0.282988\pi\)
\(510\) 0 0
\(511\) −0.0647220 −0.00286313
\(512\) 21.8368 0.965058
\(513\) 0.916908 0.0404825
\(514\) −6.75508 −0.297954
\(515\) −12.9642 −0.571270
\(516\) −0.830255 −0.0365499
\(517\) −2.99813 −0.131857
\(518\) −1.01387 −0.0445468
\(519\) 1.04054 0.0456745
\(520\) −2.76002 −0.121035
\(521\) −18.9733 −0.831236 −0.415618 0.909539i \(-0.636435\pi\)
−0.415618 + 0.909539i \(0.636435\pi\)
\(522\) −5.10276 −0.223342
\(523\) −24.4504 −1.06914 −0.534571 0.845124i \(-0.679527\pi\)
−0.534571 + 0.845124i \(0.679527\pi\)
\(524\) −32.3959 −1.41522
\(525\) 0.0162017 0.000707098 0
\(526\) 5.76445 0.251342
\(527\) 0 0
\(528\) 0.486016 0.0211511
\(529\) 22.4243 0.974969
\(530\) −0.967283 −0.0420161
\(531\) 27.4361 1.19063
\(532\) 1.57486 0.0682791
\(533\) 6.15587 0.266640
\(534\) −0.0303374 −0.00131283
\(535\) −3.62363 −0.156663
\(536\) −17.5099 −0.756311
\(537\) −0.235136 −0.0101469
\(538\) 0.431002 0.0185818
\(539\) 19.1242 0.823737
\(540\) 0.608314 0.0261777
\(541\) −10.8105 −0.464780 −0.232390 0.972623i \(-0.574655\pi\)
−0.232390 + 0.972623i \(0.574655\pi\)
\(542\) 0.320119 0.0137503
\(543\) 1.28967 0.0553451
\(544\) 0 0
\(545\) −5.15037 −0.220618
\(546\) −0.0115541 −0.000494471 0
\(547\) 7.27247 0.310948 0.155474 0.987840i \(-0.450309\pi\)
0.155474 + 0.987840i \(0.450309\pi\)
\(548\) 26.1353 1.11644
\(549\) −33.5488 −1.43183
\(550\) −0.996933 −0.0425094
\(551\) 13.3226 0.567564
\(552\) 0.509667 0.0216929
\(553\) 3.18301 0.135356
\(554\) 2.22592 0.0945701
\(555\) 0.510985 0.0216901
\(556\) −6.77133 −0.287168
\(557\) −18.3930 −0.779335 −0.389667 0.920956i \(-0.627410\pi\)
−0.389667 + 0.920956i \(0.627410\pi\)
\(558\) −3.26740 −0.138320
\(559\) 16.2028 0.685305
\(560\) 0.967293 0.0408756
\(561\) 0 0
\(562\) 10.0495 0.423911
\(563\) −0.449134 −0.0189288 −0.00946438 0.999955i \(-0.503013\pi\)
−0.00946438 + 0.999955i \(0.503013\pi\)
\(564\) 0.109896 0.00462747
\(565\) −11.0065 −0.463049
\(566\) 10.7039 0.449918
\(567\) −2.68056 −0.112573
\(568\) −8.20911 −0.344447
\(569\) 14.3259 0.600573 0.300287 0.953849i \(-0.402918\pi\)
0.300287 + 0.953849i \(0.402918\pi\)
\(570\) 0.0550804 0.00230706
\(571\) 27.9925 1.17145 0.585724 0.810510i \(-0.300810\pi\)
0.585724 + 0.810510i \(0.300810\pi\)
\(572\) −10.2451 −0.428370
\(573\) 0.394335 0.0164736
\(574\) 0.334651 0.0139681
\(575\) 6.73975 0.281067
\(576\) 15.1395 0.630812
\(577\) 6.76924 0.281807 0.140904 0.990023i \(-0.454999\pi\)
0.140904 + 0.990023i \(0.454999\pi\)
\(578\) 0 0
\(579\) −1.20403 −0.0500376
\(580\) 8.83879 0.367011
\(581\) 4.65243 0.193015
\(582\) −0.175274 −0.00726533
\(583\) −7.43020 −0.307728
\(584\) −0.302089 −0.0125005
\(585\) −5.93285 −0.245293
\(586\) 8.09226 0.334288
\(587\) −24.7081 −1.01981 −0.509907 0.860230i \(-0.670320\pi\)
−0.509907 + 0.860230i \(0.670320\pi\)
\(588\) −0.700997 −0.0289086
\(589\) 8.53075 0.351503
\(590\) 3.29789 0.135772
\(591\) −0.243059 −0.00999810
\(592\) 30.5075 1.25385
\(593\) −22.4505 −0.921932 −0.460966 0.887418i \(-0.652497\pi\)
−0.460966 + 0.887418i \(0.652497\pi\)
\(594\) −0.324266 −0.0133048
\(595\) 0 0
\(596\) −24.0472 −0.985010
\(597\) 0.0216617 0.000886555 0
\(598\) −4.80642 −0.196549
\(599\) −19.1639 −0.783018 −0.391509 0.920174i \(-0.628047\pi\)
−0.391509 + 0.920174i \(0.628047\pi\)
\(600\) 0.0756210 0.00308721
\(601\) 23.2032 0.946477 0.473239 0.880934i \(-0.343085\pi\)
0.473239 + 0.880934i \(0.343085\pi\)
\(602\) 0.880832 0.0359000
\(603\) −37.6386 −1.53276
\(604\) −35.8412 −1.45836
\(605\) 3.34204 0.135873
\(606\) −0.135237 −0.00549364
\(607\) 1.86436 0.0756720 0.0378360 0.999284i \(-0.487954\pi\)
0.0378360 + 0.999284i \(0.487954\pi\)
\(608\) 11.1492 0.452161
\(609\) 0.0765703 0.00310278
\(610\) −4.03265 −0.163277
\(611\) −2.14468 −0.0867643
\(612\) 0 0
\(613\) −0.383092 −0.0154729 −0.00773647 0.999970i \(-0.502463\pi\)
−0.00773647 + 0.999970i \(0.502463\pi\)
\(614\) 1.99528 0.0805230
\(615\) −0.168663 −0.00680114
\(616\) −1.15256 −0.0464379
\(617\) −11.6676 −0.469719 −0.234860 0.972029i \(-0.575463\pi\)
−0.234860 + 0.972029i \(0.575463\pi\)
\(618\) −0.253310 −0.0101896
\(619\) 13.4856 0.542030 0.271015 0.962575i \(-0.412641\pi\)
0.271015 + 0.962575i \(0.412641\pi\)
\(620\) 5.65965 0.227297
\(621\) 2.19220 0.0879699
\(622\) 8.13055 0.326005
\(623\) −0.463802 −0.0185818
\(624\) 0.347666 0.0139178
\(625\) 1.00000 0.0400000
\(626\) 4.38994 0.175457
\(627\) 0.423101 0.0168970
\(628\) 5.05373 0.201666
\(629\) 0 0
\(630\) −0.322527 −0.0128498
\(631\) 46.9395 1.86863 0.934316 0.356445i \(-0.116011\pi\)
0.934316 + 0.356445i \(0.116011\pi\)
\(632\) 14.8567 0.590967
\(633\) −0.105771 −0.00420403
\(634\) −7.91738 −0.314439
\(635\) −7.33231 −0.290974
\(636\) 0.272354 0.0107995
\(637\) 13.6803 0.542032
\(638\) −4.71158 −0.186533
\(639\) −17.6460 −0.698065
\(640\) 9.72997 0.384611
\(641\) 39.5785 1.56326 0.781628 0.623745i \(-0.214390\pi\)
0.781628 + 0.623745i \(0.214390\pi\)
\(642\) −0.0708028 −0.00279436
\(643\) 17.7172 0.698700 0.349350 0.936992i \(-0.386402\pi\)
0.349350 + 0.936992i \(0.386402\pi\)
\(644\) 3.76528 0.148373
\(645\) −0.443935 −0.0174799
\(646\) 0 0
\(647\) −14.8304 −0.583045 −0.291522 0.956564i \(-0.594162\pi\)
−0.291522 + 0.956564i \(0.594162\pi\)
\(648\) −12.5115 −0.491497
\(649\) 25.3328 0.994401
\(650\) −0.713144 −0.0279718
\(651\) 0.0490294 0.00192162
\(652\) 31.9915 1.25288
\(653\) −10.1986 −0.399102 −0.199551 0.979887i \(-0.563948\pi\)
−0.199551 + 0.979887i \(0.563948\pi\)
\(654\) −0.100634 −0.00393511
\(655\) −17.3220 −0.676828
\(656\) −10.0697 −0.393157
\(657\) −0.649360 −0.0253340
\(658\) −0.116591 −0.00454518
\(659\) 45.4453 1.77030 0.885148 0.465309i \(-0.154057\pi\)
0.885148 + 0.465309i \(0.154057\pi\)
\(660\) 0.280703 0.0109263
\(661\) −7.95091 −0.309254 −0.154627 0.987973i \(-0.549418\pi\)
−0.154627 + 0.987973i \(0.549418\pi\)
\(662\) 5.21001 0.202493
\(663\) 0 0
\(664\) 21.7152 0.842712
\(665\) 0.842076 0.0326543
\(666\) −10.1722 −0.394165
\(667\) 31.8526 1.23334
\(668\) −16.5562 −0.640580
\(669\) 1.28708 0.0497614
\(670\) −4.52426 −0.174787
\(671\) −30.9769 −1.19585
\(672\) 0.0640789 0.00247190
\(673\) 21.9876 0.847558 0.423779 0.905766i \(-0.360703\pi\)
0.423779 + 0.905766i \(0.360703\pi\)
\(674\) −8.73472 −0.336449
\(675\) 0.325264 0.0125194
\(676\) 16.9841 0.653234
\(677\) −18.2370 −0.700904 −0.350452 0.936581i \(-0.613972\pi\)
−0.350452 + 0.936581i \(0.613972\pi\)
\(678\) −0.215059 −0.00825930
\(679\) −2.67961 −0.102834
\(680\) 0 0
\(681\) 1.11511 0.0427310
\(682\) −3.01692 −0.115524
\(683\) 18.2031 0.696523 0.348262 0.937397i \(-0.386772\pi\)
0.348262 + 0.937397i \(0.386772\pi\)
\(684\) 15.8007 0.604156
\(685\) 13.9745 0.533937
\(686\) 1.49700 0.0571558
\(687\) −1.44252 −0.0550356
\(688\) −26.5044 −1.01047
\(689\) −5.31511 −0.202490
\(690\) 0.131690 0.00501333
\(691\) 15.5626 0.592031 0.296015 0.955183i \(-0.404342\pi\)
0.296015 + 0.955183i \(0.404342\pi\)
\(692\) 35.8800 1.36395
\(693\) −2.47750 −0.0941124
\(694\) 7.74411 0.293962
\(695\) −3.62061 −0.137338
\(696\) 0.357391 0.0135469
\(697\) 0 0
\(698\) 8.69519 0.329118
\(699\) 1.27453 0.0482072
\(700\) 0.558668 0.0211157
\(701\) 8.07561 0.305011 0.152506 0.988303i \(-0.451266\pi\)
0.152506 + 0.988303i \(0.451266\pi\)
\(702\) −0.231960 −0.00875477
\(703\) 26.5583 1.00166
\(704\) 13.9789 0.526849
\(705\) 0.0587613 0.00221308
\(706\) −2.60984 −0.0982227
\(707\) −2.06753 −0.0777573
\(708\) −0.928575 −0.0348980
\(709\) −5.29018 −0.198677 −0.0993385 0.995054i \(-0.531673\pi\)
−0.0993385 + 0.995054i \(0.531673\pi\)
\(710\) −2.12110 −0.0796034
\(711\) 31.9354 1.19767
\(712\) −2.16479 −0.0811289
\(713\) 20.3958 0.763830
\(714\) 0 0
\(715\) −5.47803 −0.204867
\(716\) −8.10801 −0.303010
\(717\) −0.285146 −0.0106490
\(718\) −6.21964 −0.232115
\(719\) 8.95929 0.334125 0.167063 0.985946i \(-0.446572\pi\)
0.167063 + 0.985946i \(0.446572\pi\)
\(720\) 9.70491 0.361681
\(721\) −3.87263 −0.144224
\(722\) −3.98205 −0.148197
\(723\) 0.295003 0.0109713
\(724\) 44.4707 1.65274
\(725\) 4.72608 0.175522
\(726\) 0.0653008 0.00242354
\(727\) −29.9868 −1.11215 −0.556074 0.831133i \(-0.687693\pi\)
−0.556074 + 0.831133i \(0.687693\pi\)
\(728\) −0.824469 −0.0305569
\(729\) −26.8413 −0.994121
\(730\) −0.0780548 −0.00288894
\(731\) 0 0
\(732\) 1.13546 0.0419678
\(733\) 26.9685 0.996104 0.498052 0.867147i \(-0.334049\pi\)
0.498052 + 0.867147i \(0.334049\pi\)
\(734\) 13.4891 0.497892
\(735\) −0.374821 −0.0138255
\(736\) 26.6563 0.982564
\(737\) −34.7532 −1.28015
\(738\) 3.35758 0.123594
\(739\) −34.8463 −1.28184 −0.640922 0.767606i \(-0.721448\pi\)
−0.640922 + 0.767606i \(0.721448\pi\)
\(740\) 17.6199 0.647719
\(741\) 0.302660 0.0111185
\(742\) −0.288945 −0.0106075
\(743\) −17.0929 −0.627077 −0.313539 0.949575i \(-0.601514\pi\)
−0.313539 + 0.949575i \(0.601514\pi\)
\(744\) 0.228844 0.00838984
\(745\) −12.8580 −0.471079
\(746\) −10.7675 −0.394228
\(747\) 46.6781 1.70786
\(748\) 0 0
\(749\) −1.08244 −0.0395516
\(750\) 0.0195392 0.000713471 0
\(751\) 32.8813 1.19985 0.599927 0.800054i \(-0.295196\pi\)
0.599927 + 0.800054i \(0.295196\pi\)
\(752\) 3.50824 0.127932
\(753\) −1.43113 −0.0521532
\(754\) −3.37037 −0.122742
\(755\) −19.1642 −0.697456
\(756\) 0.181715 0.00660889
\(757\) −17.4978 −0.635968 −0.317984 0.948096i \(-0.603006\pi\)
−0.317984 + 0.948096i \(0.603006\pi\)
\(758\) 10.8150 0.392818
\(759\) 1.01158 0.0367179
\(760\) 3.93038 0.142570
\(761\) −10.8439 −0.393092 −0.196546 0.980495i \(-0.562972\pi\)
−0.196546 + 0.980495i \(0.562972\pi\)
\(762\) −0.143268 −0.00519004
\(763\) −1.53851 −0.0556978
\(764\) 13.5975 0.491941
\(765\) 0 0
\(766\) −7.10543 −0.256730
\(767\) 18.1216 0.654331
\(768\) −0.357838 −0.0129124
\(769\) 14.8775 0.536497 0.268248 0.963350i \(-0.413555\pi\)
0.268248 + 0.963350i \(0.413555\pi\)
\(770\) −0.297802 −0.0107320
\(771\) 1.01699 0.0366262
\(772\) −41.5174 −1.49424
\(773\) 7.71506 0.277491 0.138746 0.990328i \(-0.455693\pi\)
0.138746 + 0.990328i \(0.455693\pi\)
\(774\) 8.83744 0.317655
\(775\) 3.02620 0.108704
\(776\) −12.5070 −0.448976
\(777\) 0.152641 0.00547595
\(778\) 1.33839 0.0479836
\(779\) −8.76619 −0.314081
\(780\) 0.200797 0.00718970
\(781\) −16.2933 −0.583019
\(782\) 0 0
\(783\) 1.53722 0.0549358
\(784\) −22.3781 −0.799216
\(785\) 2.70222 0.0964463
\(786\) −0.338459 −0.0120724
\(787\) 38.2522 1.36354 0.681772 0.731565i \(-0.261210\pi\)
0.681772 + 0.731565i \(0.261210\pi\)
\(788\) −8.38119 −0.298567
\(789\) −0.867854 −0.0308964
\(790\) 3.83872 0.136575
\(791\) −3.28786 −0.116903
\(792\) −11.5637 −0.410898
\(793\) −22.1590 −0.786888
\(794\) 1.86317 0.0661213
\(795\) 0.145627 0.00516486
\(796\) 0.746943 0.0264747
\(797\) −26.6162 −0.942796 −0.471398 0.881921i \(-0.656250\pi\)
−0.471398 + 0.881921i \(0.656250\pi\)
\(798\) 0.0164535 0.000582448 0
\(799\) 0 0
\(800\) 3.95508 0.139833
\(801\) −4.65335 −0.164418
\(802\) 0.142209 0.00502158
\(803\) −0.599580 −0.0211587
\(804\) 1.27388 0.0449262
\(805\) 2.01329 0.0709591
\(806\) −2.15812 −0.0760164
\(807\) −0.0648885 −0.00228418
\(808\) −9.65014 −0.339491
\(809\) 16.4368 0.577887 0.288943 0.957346i \(-0.406696\pi\)
0.288943 + 0.957346i \(0.406696\pi\)
\(810\) −3.23276 −0.113587
\(811\) −3.64147 −0.127869 −0.0639347 0.997954i \(-0.520365\pi\)
−0.0639347 + 0.997954i \(0.520365\pi\)
\(812\) 2.64031 0.0926566
\(813\) −0.0481947 −0.00169026
\(814\) −9.39240 −0.329203
\(815\) 17.1057 0.599188
\(816\) 0 0
\(817\) −23.0734 −0.807236
\(818\) 0.187721 0.00656352
\(819\) −1.77225 −0.0619274
\(820\) −5.81585 −0.203098
\(821\) −35.5272 −1.23991 −0.619953 0.784639i \(-0.712848\pi\)
−0.619953 + 0.784639i \(0.712848\pi\)
\(822\) 0.273050 0.00952371
\(823\) −5.01622 −0.174854 −0.0874271 0.996171i \(-0.527864\pi\)
−0.0874271 + 0.996171i \(0.527864\pi\)
\(824\) −18.0755 −0.629689
\(825\) 0.150091 0.00522549
\(826\) 0.985141 0.0342774
\(827\) 39.0885 1.35924 0.679621 0.733564i \(-0.262144\pi\)
0.679621 + 0.733564i \(0.262144\pi\)
\(828\) 37.7773 1.31285
\(829\) −16.3998 −0.569587 −0.284794 0.958589i \(-0.591925\pi\)
−0.284794 + 0.958589i \(0.591925\pi\)
\(830\) 5.61084 0.194755
\(831\) −0.335118 −0.0116251
\(832\) 9.99964 0.346675
\(833\) 0 0
\(834\) −0.0707439 −0.00244966
\(835\) −8.85257 −0.306356
\(836\) 14.5894 0.504586
\(837\) 0.984314 0.0340229
\(838\) 1.64717 0.0569005
\(839\) 29.9127 1.03270 0.516350 0.856378i \(-0.327290\pi\)
0.516350 + 0.856378i \(0.327290\pi\)
\(840\) 0.0225894 0.000779407 0
\(841\) −6.66421 −0.229800
\(842\) 2.72076 0.0937636
\(843\) −1.51297 −0.0521095
\(844\) −3.64722 −0.125543
\(845\) 9.08135 0.312408
\(846\) −1.16976 −0.0402173
\(847\) 0.998327 0.0343029
\(848\) 8.69441 0.298567
\(849\) −1.61150 −0.0553064
\(850\) 0 0
\(851\) 63.4972 2.17666
\(852\) 0.597229 0.0204607
\(853\) 35.9121 1.22961 0.614803 0.788680i \(-0.289235\pi\)
0.614803 + 0.788680i \(0.289235\pi\)
\(854\) −1.20463 −0.0412215
\(855\) 8.44860 0.288936
\(856\) −5.05229 −0.172684
\(857\) −21.0716 −0.719791 −0.359896 0.932993i \(-0.617188\pi\)
−0.359896 + 0.932993i \(0.617188\pi\)
\(858\) −0.107036 −0.00365417
\(859\) 15.8539 0.540928 0.270464 0.962730i \(-0.412823\pi\)
0.270464 + 0.962730i \(0.412823\pi\)
\(860\) −15.3078 −0.521993
\(861\) −0.0503826 −0.00171704
\(862\) −7.52520 −0.256309
\(863\) 23.8125 0.810587 0.405294 0.914187i \(-0.367169\pi\)
0.405294 + 0.914187i \(0.367169\pi\)
\(864\) 1.28645 0.0437658
\(865\) 19.1849 0.652307
\(866\) 11.8347 0.402160
\(867\) 0 0
\(868\) 1.69064 0.0573841
\(869\) 29.4872 1.00028
\(870\) 0.0923438 0.00313075
\(871\) −24.8603 −0.842359
\(872\) −7.18097 −0.243178
\(873\) −26.8847 −0.909908
\(874\) 6.84452 0.231519
\(875\) 0.298718 0.0100985
\(876\) 0.0219776 0.000742554 0
\(877\) 17.9197 0.605107 0.302553 0.953132i \(-0.402161\pi\)
0.302553 + 0.953132i \(0.402161\pi\)
\(878\) 8.65203 0.291992
\(879\) −1.21831 −0.0410926
\(880\) 8.96092 0.302073
\(881\) −33.7879 −1.13834 −0.569171 0.822219i \(-0.692736\pi\)
−0.569171 + 0.822219i \(0.692736\pi\)
\(882\) 7.46158 0.251245
\(883\) −26.0211 −0.875680 −0.437840 0.899053i \(-0.644256\pi\)
−0.437840 + 0.899053i \(0.644256\pi\)
\(884\) 0 0
\(885\) −0.496507 −0.0166899
\(886\) 3.01495 0.101289
\(887\) 29.6531 0.995652 0.497826 0.867277i \(-0.334132\pi\)
0.497826 + 0.867277i \(0.334132\pi\)
\(888\) 0.712447 0.0239082
\(889\) −2.19029 −0.0734601
\(890\) −0.559345 −0.0187493
\(891\) −24.8325 −0.831919
\(892\) 44.3813 1.48600
\(893\) 3.05410 0.102202
\(894\) −0.251234 −0.00840254
\(895\) −4.33533 −0.144914
\(896\) 2.90652 0.0971000
\(897\) 0.723619 0.0241609
\(898\) −8.86098 −0.295695
\(899\) 14.3020 0.477000
\(900\) 5.60515 0.186838
\(901\) 0 0
\(902\) 3.10018 0.103225
\(903\) −0.132612 −0.00441303
\(904\) −15.3460 −0.510401
\(905\) 23.7783 0.790419
\(906\) −0.374453 −0.0124404
\(907\) 6.01268 0.199648 0.0998238 0.995005i \(-0.468172\pi\)
0.0998238 + 0.995005i \(0.468172\pi\)
\(908\) 38.4513 1.27605
\(909\) −20.7436 −0.688022
\(910\) −0.213029 −0.00706185
\(911\) −36.3470 −1.20423 −0.602115 0.798409i \(-0.705675\pi\)
−0.602115 + 0.798409i \(0.705675\pi\)
\(912\) −0.495089 −0.0163940
\(913\) 43.0998 1.42639
\(914\) 2.74173 0.0906883
\(915\) 0.607127 0.0200710
\(916\) −49.7412 −1.64350
\(917\) −5.17440 −0.170874
\(918\) 0 0
\(919\) 31.4827 1.03852 0.519259 0.854617i \(-0.326208\pi\)
0.519259 + 0.854617i \(0.326208\pi\)
\(920\) 9.39699 0.309810
\(921\) −0.300395 −0.00989835
\(922\) −2.60127 −0.0856684
\(923\) −11.6552 −0.383635
\(924\) 0.0838510 0.00275849
\(925\) 9.42129 0.309770
\(926\) −8.29890 −0.272719
\(927\) −38.8544 −1.27615
\(928\) 18.6920 0.613595
\(929\) −43.2005 −1.41736 −0.708682 0.705528i \(-0.750710\pi\)
−0.708682 + 0.705528i \(0.750710\pi\)
\(930\) 0.0591296 0.00193893
\(931\) −19.4812 −0.638471
\(932\) 43.9486 1.43958
\(933\) −1.22408 −0.0400744
\(934\) −10.7732 −0.352511
\(935\) 0 0
\(936\) −8.27195 −0.270377
\(937\) −11.5364 −0.376877 −0.188439 0.982085i \(-0.560343\pi\)
−0.188439 + 0.982085i \(0.560343\pi\)
\(938\) −1.35148 −0.0441273
\(939\) −0.660917 −0.0215682
\(940\) 2.02621 0.0660878
\(941\) 27.2725 0.889057 0.444528 0.895765i \(-0.353371\pi\)
0.444528 + 0.895765i \(0.353371\pi\)
\(942\) 0.0527992 0.00172029
\(943\) −20.9588 −0.682511
\(944\) −29.6431 −0.964800
\(945\) 0.0971623 0.00316069
\(946\) 8.15996 0.265303
\(947\) −22.7925 −0.740657 −0.370328 0.928901i \(-0.620755\pi\)
−0.370328 + 0.928901i \(0.620755\pi\)
\(948\) −1.08085 −0.0351045
\(949\) −0.428902 −0.0139228
\(950\) 1.01554 0.0329486
\(951\) 1.19198 0.0386527
\(952\) 0 0
\(953\) −28.9548 −0.937938 −0.468969 0.883215i \(-0.655374\pi\)
−0.468969 + 0.883215i \(0.655374\pi\)
\(954\) −2.89900 −0.0938587
\(955\) 7.27055 0.235270
\(956\) −9.83243 −0.318003
\(957\) 0.709341 0.0229297
\(958\) −3.47908 −0.112404
\(959\) 4.17443 0.134799
\(960\) −0.273977 −0.00884257
\(961\) −21.8421 −0.704584
\(962\) −6.71874 −0.216621
\(963\) −10.8602 −0.349966
\(964\) 10.1723 0.327629
\(965\) −22.1992 −0.714619
\(966\) 0.0393381 0.00126568
\(967\) 50.6105 1.62752 0.813762 0.581198i \(-0.197416\pi\)
0.813762 + 0.581198i \(0.197416\pi\)
\(968\) 4.65968 0.149768
\(969\) 0 0
\(970\) −3.23161 −0.103761
\(971\) −32.8412 −1.05392 −0.526962 0.849889i \(-0.676669\pi\)
−0.526962 + 0.849889i \(0.676669\pi\)
\(972\) 2.73518 0.0877308
\(973\) −1.08154 −0.0346727
\(974\) −1.74007 −0.0557553
\(975\) 0.107366 0.00343846
\(976\) 36.2475 1.16025
\(977\) −21.6326 −0.692089 −0.346044 0.938218i \(-0.612475\pi\)
−0.346044 + 0.938218i \(0.612475\pi\)
\(978\) 0.334233 0.0106876
\(979\) −4.29662 −0.137321
\(980\) −12.9246 −0.412862
\(981\) −15.4360 −0.492832
\(982\) 7.73637 0.246878
\(983\) 5.11049 0.162999 0.0814996 0.996673i \(-0.474029\pi\)
0.0814996 + 0.996673i \(0.474029\pi\)
\(984\) −0.235160 −0.00749663
\(985\) −4.48140 −0.142789
\(986\) 0 0
\(987\) 0.0175531 0.000558720 0
\(988\) 10.4364 0.332025
\(989\) −55.1653 −1.75415
\(990\) −2.98787 −0.0949606
\(991\) −2.51317 −0.0798336 −0.0399168 0.999203i \(-0.512709\pi\)
−0.0399168 + 0.999203i \(0.512709\pi\)
\(992\) 11.9689 0.380012
\(993\) −0.784381 −0.0248916
\(994\) −0.633611 −0.0200969
\(995\) 0.399388 0.0126615
\(996\) −1.57982 −0.0500586
\(997\) 36.0472 1.14163 0.570813 0.821080i \(-0.306628\pi\)
0.570813 + 0.821080i \(0.306628\pi\)
\(998\) 6.71447 0.212543
\(999\) 3.06441 0.0969535
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.q.1.8 12
5.4 even 2 7225.2.a.bq.1.5 12
17.4 even 4 1445.2.d.j.866.10 24
17.5 odd 16 85.2.l.a.76.3 yes 24
17.7 odd 16 85.2.l.a.66.3 24
17.13 even 4 1445.2.d.j.866.9 24
17.16 even 2 1445.2.a.p.1.8 12
51.5 even 16 765.2.be.b.586.4 24
51.41 even 16 765.2.be.b.406.4 24
85.7 even 16 425.2.n.c.49.4 24
85.22 even 16 425.2.n.f.399.3 24
85.24 odd 16 425.2.m.b.151.4 24
85.39 odd 16 425.2.m.b.76.4 24
85.58 even 16 425.2.n.f.49.3 24
85.73 even 16 425.2.n.c.399.4 24
85.84 even 2 7225.2.a.bs.1.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.3 24 17.7 odd 16
85.2.l.a.76.3 yes 24 17.5 odd 16
425.2.m.b.76.4 24 85.39 odd 16
425.2.m.b.151.4 24 85.24 odd 16
425.2.n.c.49.4 24 85.7 even 16
425.2.n.c.399.4 24 85.73 even 16
425.2.n.f.49.3 24 85.58 even 16
425.2.n.f.399.3 24 85.22 even 16
765.2.be.b.406.4 24 51.41 even 16
765.2.be.b.586.4 24 51.5 even 16
1445.2.a.p.1.8 12 17.16 even 2
1445.2.a.q.1.8 12 1.1 even 1 trivial
1445.2.d.j.866.9 24 17.13 even 4
1445.2.d.j.866.10 24 17.4 even 4
7225.2.a.bq.1.5 12 5.4 even 2
7225.2.a.bs.1.5 12 85.84 even 2