Properties

Label 425.2.m.b.151.4
Level $425$
Weight $2$
Character 425.151
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(26,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 151.4
Character \(\chi\) \(=\) 425.151
Dual form 425.2.m.b.76.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.254738 + 0.254738i) q^{2} +(-0.0207557 - 0.0501087i) q^{3} -1.87022i q^{4} +(0.00747733 - 0.0180519i) q^{6} +(-0.275980 - 0.114315i) q^{7} +(0.985893 - 0.985893i) q^{8} +(2.11924 - 2.11924i) q^{9} +(-1.05900 + 2.55665i) q^{11} +(-0.0937141 + 0.0388177i) q^{12} -1.97956i q^{13} +(-0.0411823 - 0.0994229i) q^{14} -3.23814 q^{16} +(1.21202 - 3.94094i) q^{17} +1.07970 q^{18} +(-1.99331 - 1.99331i) q^{19} +0.0162017i q^{21} +(-0.921046 + 0.381510i) q^{22} +(2.57919 - 6.22672i) q^{23} +(-0.0698647 - 0.0289389i) q^{24} +(0.504269 - 0.504269i) q^{26} +(-0.300505 - 0.124473i) q^{27} +(-0.213793 + 0.516142i) q^{28} +(4.36632 - 1.80859i) q^{29} +(1.15808 + 2.79584i) q^{31} +(-2.79667 - 2.79667i) q^{32} +0.150091 q^{33} +(1.31266 - 0.695159i) q^{34} +(-3.96344 - 3.96344i) q^{36} +(3.60537 + 8.70414i) q^{37} -1.01554i q^{38} +(-0.0991930 + 0.0410871i) q^{39} +(2.87301 + 1.19004i) q^{41} +(-0.00412718 + 0.00412718i) q^{42} +(-5.78771 + 5.78771i) q^{43} +(4.78150 + 1.98056i) q^{44} +(2.24320 - 0.929166i) q^{46} +1.08341i q^{47} +(0.0672100 + 0.162259i) q^{48} +(-4.88665 - 4.88665i) q^{49} +(-0.222632 + 0.0210640i) q^{51} -3.70220 q^{52} +(1.89858 + 1.89858i) q^{53} +(-0.0448420 - 0.108258i) q^{54} +(-0.384788 + 0.159384i) q^{56} +(-0.0585096 + 0.141255i) q^{57} +(1.57299 + 0.651553i) q^{58} +(-6.47310 + 6.47310i) q^{59} +(10.3418 + 4.28372i) q^{61} +(-0.417202 + 1.00722i) q^{62} +(-0.827127 + 0.342607i) q^{63} +5.05145i q^{64} +(0.0382339 + 0.0382339i) q^{66} +12.5585 q^{67} +(-7.37041 - 2.26675i) q^{68} -0.365546 q^{69} +(-2.25315 - 5.43960i) q^{71} -4.17869i q^{72} +(0.200173 - 0.0829144i) q^{73} +(-1.29885 + 3.13570i) q^{74} +(-3.72792 + 3.72792i) q^{76} +(0.584525 - 0.584525i) q^{77} +(-0.0357347 - 0.0148018i) q^{78} +(-4.07771 + 9.84447i) q^{79} -8.97353i q^{81} +(0.428717 + 1.03501i) q^{82} +(11.0129 + 11.0129i) q^{83} +0.0303006 q^{84} -2.94870 q^{86} +(-0.181252 - 0.181252i) q^{87} +(1.47653 + 3.56465i) q^{88} +1.55264i q^{89} +(-0.226292 + 0.546318i) q^{91} +(-11.6453 - 4.82365i) q^{92} +(0.116059 - 0.116059i) q^{93} +(-0.275986 + 0.275986i) q^{94} +(-0.0820905 + 0.198184i) q^{96} +(-8.28752 + 3.43280i) q^{97} -2.48963i q^{98} +(3.17389 + 7.66244i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} - 24 q^{9} - 8 q^{11} - 24 q^{12} - 24 q^{16} + 8 q^{17} - 8 q^{18} - 8 q^{19} + 32 q^{22} + 16 q^{23} - 8 q^{24} + 16 q^{26} - 24 q^{27} - 48 q^{28} - 8 q^{29} + 16 q^{34} - 24 q^{36} - 24 q^{37}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.254738 + 0.254738i 0.180127 + 0.180127i 0.791411 0.611284i \(-0.209347\pi\)
−0.611284 + 0.791411i \(0.709347\pi\)
\(3\) −0.0207557 0.0501087i −0.0119833 0.0289303i 0.917775 0.397102i \(-0.129984\pi\)
−0.929758 + 0.368171i \(0.879984\pi\)
\(4\) 1.87022i 0.935108i
\(5\) 0 0
\(6\) 0.00747733 0.0180519i 0.00305261 0.00736965i
\(7\) −0.275980 0.114315i −0.104310 0.0432068i 0.329918 0.944010i \(-0.392979\pi\)
−0.434228 + 0.900803i \(0.642979\pi\)
\(8\) 0.985893 0.985893i 0.348566 0.348566i
\(9\) 2.11924 2.11924i 0.706413 0.706413i
\(10\) 0 0
\(11\) −1.05900 + 2.55665i −0.319301 + 0.770860i 0.679991 + 0.733221i \(0.261984\pi\)
−0.999291 + 0.0376394i \(0.988016\pi\)
\(12\) −0.0937141 + 0.0388177i −0.0270529 + 0.0112057i
\(13\) 1.97956i 0.549030i −0.961583 0.274515i \(-0.911483\pi\)
0.961583 0.274515i \(-0.0885174\pi\)
\(14\) −0.0411823 0.0994229i −0.0110064 0.0265719i
\(15\) 0 0
\(16\) −3.23814 −0.809536
\(17\) 1.21202 3.94094i 0.293959 0.955818i
\(18\) 1.07970 0.254489
\(19\) −1.99331 1.99331i −0.457296 0.457296i 0.440471 0.897767i \(-0.354812\pi\)
−0.897767 + 0.440471i \(0.854812\pi\)
\(20\) 0 0
\(21\) 0.0162017i 0.00353549i
\(22\) −0.921046 + 0.381510i −0.196368 + 0.0813382i
\(23\) 2.57919 6.22672i 0.537799 1.29836i −0.388457 0.921467i \(-0.626992\pi\)
0.926256 0.376895i \(-0.123008\pi\)
\(24\) −0.0698647 0.0289389i −0.0142611 0.00590713i
\(25\) 0 0
\(26\) 0.504269 0.504269i 0.0988953 0.0988953i
\(27\) −0.300505 0.124473i −0.0578322 0.0239549i
\(28\) −0.213793 + 0.516142i −0.0404031 + 0.0975416i
\(29\) 4.36632 1.80859i 0.810806 0.335847i 0.0615305 0.998105i \(-0.480402\pi\)
0.749276 + 0.662258i \(0.230402\pi\)
\(30\) 0 0
\(31\) 1.15808 + 2.79584i 0.207997 + 0.502148i 0.993108 0.117207i \(-0.0373941\pi\)
−0.785111 + 0.619355i \(0.787394\pi\)
\(32\) −2.79667 2.79667i −0.494385 0.494385i
\(33\) 0.150091 0.0261275
\(34\) 1.31266 0.695159i 0.225119 0.119219i
\(35\) 0 0
\(36\) −3.96344 3.96344i −0.660573 0.660573i
\(37\) 3.60537 + 8.70414i 0.592719 + 1.43095i 0.880866 + 0.473365i \(0.156961\pi\)
−0.288147 + 0.957586i \(0.593039\pi\)
\(38\) 1.01554i 0.164743i
\(39\) −0.0991930 + 0.0410871i −0.0158836 + 0.00657920i
\(40\) 0 0
\(41\) 2.87301 + 1.19004i 0.448688 + 0.185853i 0.595574 0.803301i \(-0.296925\pi\)
−0.146885 + 0.989154i \(0.546925\pi\)
\(42\) −0.00412718 + 0.00412718i −0.000636838 + 0.000636838i
\(43\) −5.78771 + 5.78771i −0.882617 + 0.882617i −0.993800 0.111183i \(-0.964536\pi\)
0.111183 + 0.993800i \(0.464536\pi\)
\(44\) 4.78150 + 1.98056i 0.720838 + 0.298581i
\(45\) 0 0
\(46\) 2.24320 0.929166i 0.330742 0.136998i
\(47\) 1.08341i 0.158032i 0.996873 + 0.0790159i \(0.0251778\pi\)
−0.996873 + 0.0790159i \(0.974822\pi\)
\(48\) 0.0672100 + 0.162259i 0.00970092 + 0.0234201i
\(49\) −4.88665 4.88665i −0.698093 0.698093i
\(50\) 0 0
\(51\) −0.222632 + 0.0210640i −0.0311747 + 0.00294954i
\(52\) −3.70220 −0.513403
\(53\) 1.89858 + 1.89858i 0.260790 + 0.260790i 0.825375 0.564585i \(-0.190964\pi\)
−0.564585 + 0.825375i \(0.690964\pi\)
\(54\) −0.0448420 0.108258i −0.00610222 0.0147321i
\(55\) 0 0
\(56\) −0.384788 + 0.159384i −0.0514195 + 0.0212986i
\(57\) −0.0585096 + 0.141255i −0.00774979 + 0.0187096i
\(58\) 1.57299 + 0.651553i 0.206543 + 0.0855531i
\(59\) −6.47310 + 6.47310i −0.842726 + 0.842726i −0.989213 0.146487i \(-0.953203\pi\)
0.146487 + 0.989213i \(0.453203\pi\)
\(60\) 0 0
\(61\) 10.3418 + 4.28372i 1.32413 + 0.548474i 0.928976 0.370139i \(-0.120690\pi\)
0.395158 + 0.918613i \(0.370690\pi\)
\(62\) −0.417202 + 1.00722i −0.0529847 + 0.127916i
\(63\) −0.827127 + 0.342607i −0.104208 + 0.0431645i
\(64\) 5.05145i 0.631432i
\(65\) 0 0
\(66\) 0.0382339 + 0.0382339i 0.00470627 + 0.00470627i
\(67\) 12.5585 1.53427 0.767133 0.641488i \(-0.221683\pi\)
0.767133 + 0.641488i \(0.221683\pi\)
\(68\) −7.37041 2.26675i −0.893793 0.274884i
\(69\) −0.365546 −0.0440066
\(70\) 0 0
\(71\) −2.25315 5.43960i −0.267400 0.645561i 0.731959 0.681348i \(-0.238606\pi\)
−0.999359 + 0.0357872i \(0.988606\pi\)
\(72\) 4.17869i 0.492463i
\(73\) 0.200173 0.0829144i 0.0234285 0.00970440i −0.370938 0.928657i \(-0.620964\pi\)
0.394367 + 0.918953i \(0.370964\pi\)
\(74\) −1.29885 + 3.13570i −0.150988 + 0.364518i
\(75\) 0 0
\(76\) −3.72792 + 3.72792i −0.427622 + 0.427622i
\(77\) 0.584525 0.584525i 0.0666128 0.0666128i
\(78\) −0.0357347 0.0148018i −0.00404616 0.00167598i
\(79\) −4.07771 + 9.84447i −0.458779 + 1.10759i 0.510114 + 0.860107i \(0.329603\pi\)
−0.968892 + 0.247482i \(0.920397\pi\)
\(80\) 0 0
\(81\) 8.97353i 0.997059i
\(82\) 0.428717 + 1.03501i 0.0473438 + 0.114298i
\(83\) 11.0129 + 11.0129i 1.20883 + 1.20883i 0.971407 + 0.237421i \(0.0763020\pi\)
0.237421 + 0.971407i \(0.423698\pi\)
\(84\) 0.0303006 0.00330607
\(85\) 0 0
\(86\) −2.94870 −0.317967
\(87\) −0.181252 0.181252i −0.0194323 0.0194323i
\(88\) 1.47653 + 3.56465i 0.157398 + 0.379993i
\(89\) 1.55264i 0.164579i 0.996608 + 0.0822897i \(0.0262233\pi\)
−0.996608 + 0.0822897i \(0.973777\pi\)
\(90\) 0 0
\(91\) −0.226292 + 0.546318i −0.0237219 + 0.0572696i
\(92\) −11.6453 4.82365i −1.21411 0.502900i
\(93\) 0.116059 0.116059i 0.0120348 0.0120348i
\(94\) −0.275986 + 0.275986i −0.0284658 + 0.0284658i
\(95\) 0 0
\(96\) −0.0820905 + 0.198184i −0.00837833 + 0.0202271i
\(97\) −8.28752 + 3.43280i −0.841471 + 0.348549i −0.761433 0.648243i \(-0.775504\pi\)
−0.0800373 + 0.996792i \(0.525504\pi\)
\(98\) 2.48963i 0.251491i
\(99\) 3.17389 + 7.66244i 0.318988 + 0.770104i
\(100\) 0 0
\(101\) −6.92132 −0.688697 −0.344349 0.938842i \(-0.611900\pi\)
−0.344349 + 0.938842i \(0.611900\pi\)
\(102\) −0.0620786 0.0513470i −0.00614670 0.00508412i
\(103\) −12.9642 −1.27740 −0.638699 0.769457i \(-0.720527\pi\)
−0.638699 + 0.769457i \(0.720527\pi\)
\(104\) −1.95163 1.95163i −0.191373 0.191373i
\(105\) 0 0
\(106\) 0.967283i 0.0939508i
\(107\) 3.34779 1.38670i 0.323643 0.134058i −0.214946 0.976626i \(-0.568957\pi\)
0.538589 + 0.842568i \(0.318957\pi\)
\(108\) −0.232792 + 0.562009i −0.0224004 + 0.0540793i
\(109\) −4.75832 1.97096i −0.455764 0.188784i 0.142977 0.989726i \(-0.454332\pi\)
−0.598742 + 0.800942i \(0.704332\pi\)
\(110\) 0 0
\(111\) 0.361321 0.361321i 0.0342951 0.0342951i
\(112\) 0.893662 + 0.370167i 0.0844431 + 0.0349775i
\(113\) −4.21202 + 10.1687i −0.396234 + 0.956593i 0.592317 + 0.805705i \(0.298213\pi\)
−0.988551 + 0.150888i \(0.951787\pi\)
\(114\) −0.0508876 + 0.0210783i −0.00476606 + 0.00197417i
\(115\) 0 0
\(116\) −3.38246 8.16597i −0.314053 0.758192i
\(117\) −4.19516 4.19516i −0.387842 0.387842i
\(118\) −3.29789 −0.303596
\(119\) −0.785001 + 0.949067i −0.0719609 + 0.0870008i
\(120\) 0 0
\(121\) 2.36318 + 2.36318i 0.214834 + 0.214834i
\(122\) 1.54323 + 3.72569i 0.139717 + 0.337308i
\(123\) 0.168663i 0.0152078i
\(124\) 5.22883 2.16585i 0.469563 0.194499i
\(125\) 0 0
\(126\) −0.297976 0.123426i −0.0265458 0.0109956i
\(127\) −5.18472 + 5.18472i −0.460070 + 0.460070i −0.898678 0.438608i \(-0.855472\pi\)
0.438608 + 0.898678i \(0.355472\pi\)
\(128\) −6.88013 + 6.88013i −0.608123 + 0.608123i
\(129\) 0.410143 + 0.169887i 0.0361110 + 0.0149577i
\(130\) 0 0
\(131\) 16.0035 6.62885i 1.39823 0.579166i 0.448938 0.893563i \(-0.351802\pi\)
0.949291 + 0.314397i \(0.101802\pi\)
\(132\) 0.280703i 0.0244320i
\(133\) 0.322249 + 0.777977i 0.0279425 + 0.0674592i
\(134\) 3.19913 + 3.19913i 0.276363 + 0.276363i
\(135\) 0 0
\(136\) −2.69042 5.08027i −0.230701 0.435629i
\(137\) 13.9745 1.19392 0.596959 0.802272i \(-0.296375\pi\)
0.596959 + 0.802272i \(0.296375\pi\)
\(138\) −0.0931186 0.0931186i −0.00792678 0.00792678i
\(139\) −1.38555 3.34501i −0.117521 0.283720i 0.854163 0.520005i \(-0.174070\pi\)
−0.971684 + 0.236285i \(0.924070\pi\)
\(140\) 0 0
\(141\) 0.0542883 0.0224870i 0.00457190 0.00189374i
\(142\) 0.811709 1.95964i 0.0681171 0.164449i
\(143\) 5.06104 + 2.09635i 0.423226 + 0.175306i
\(144\) −6.86241 + 6.86241i −0.571867 + 0.571867i
\(145\) 0 0
\(146\) 0.0721133 + 0.0298703i 0.00596814 + 0.00247208i
\(147\) −0.143438 + 0.346290i −0.0118306 + 0.0285615i
\(148\) 16.2786 6.74283i 1.33809 0.554257i
\(149\) 12.8580i 1.05336i −0.850062 0.526682i \(-0.823436\pi\)
0.850062 0.526682i \(-0.176564\pi\)
\(150\) 0 0
\(151\) 13.5511 + 13.5511i 1.10277 + 1.10277i 0.994075 + 0.108700i \(0.0346687\pi\)
0.108700 + 0.994075i \(0.465331\pi\)
\(152\) −3.93038 −0.318796
\(153\) −5.78322 10.9204i −0.467546 0.882859i
\(154\) 0.297802 0.0239976
\(155\) 0 0
\(156\) 0.0768418 + 0.185512i 0.00615227 + 0.0148529i
\(157\) 2.70222i 0.215661i 0.994169 + 0.107830i \(0.0343903\pi\)
−0.994169 + 0.107830i \(0.965610\pi\)
\(158\) −3.54651 + 1.46901i −0.282146 + 0.116868i
\(159\) 0.0557290 0.134542i 0.00441960 0.0106699i
\(160\) 0 0
\(161\) −1.42361 + 1.42361i −0.112196 + 0.112196i
\(162\) 2.28590 2.28590i 0.179598 0.179598i
\(163\) 15.8036 + 6.54609i 1.23784 + 0.512729i 0.903038 0.429561i \(-0.141332\pi\)
0.334799 + 0.942290i \(0.391332\pi\)
\(164\) 2.22563 5.37315i 0.173792 0.419572i
\(165\) 0 0
\(166\) 5.61084i 0.435486i
\(167\) −3.38773 8.17871i −0.262151 0.632887i 0.736921 0.675979i \(-0.236279\pi\)
−0.999071 + 0.0430919i \(0.986279\pi\)
\(168\) 0.0159731 + 0.0159731i 0.00123235 + 0.00123235i
\(169\) 9.08135 0.698566
\(170\) 0 0
\(171\) −8.44860 −0.646081
\(172\) 10.8243 + 10.8243i 0.825343 + 0.825343i
\(173\) −7.34175 17.7246i −0.558183 1.34757i −0.911203 0.411957i \(-0.864845\pi\)
0.353020 0.935616i \(-0.385155\pi\)
\(174\) 0.0923438i 0.00700057i
\(175\) 0 0
\(176\) 3.42920 8.27881i 0.258485 0.624039i
\(177\) 0.458712 + 0.190005i 0.0344789 + 0.0142816i
\(178\) −0.395517 + 0.395517i −0.0296452 + 0.0296452i
\(179\) −3.06554 + 3.06554i −0.229129 + 0.229129i −0.812329 0.583200i \(-0.801801\pi\)
0.583200 + 0.812329i \(0.301801\pi\)
\(180\) 0 0
\(181\) −9.09958 + 21.9683i −0.676366 + 1.63289i 0.0942155 + 0.995552i \(0.469966\pi\)
−0.770582 + 0.637341i \(0.780034\pi\)
\(182\) −0.196813 + 0.0815228i −0.0145888 + 0.00604287i
\(183\) 0.607127i 0.0448801i
\(184\) −3.59607 8.68169i −0.265106 0.640022i
\(185\) 0 0
\(186\) 0.0591296 0.00433559
\(187\) 8.79208 + 7.27219i 0.642941 + 0.531795i
\(188\) 2.02621 0.147777
\(189\) 0.0687041 + 0.0687041i 0.00499749 + 0.00499749i
\(190\) 0 0
\(191\) 7.27055i 0.526079i −0.964785 0.263039i \(-0.915275\pi\)
0.964785 0.263039i \(-0.0847249\pi\)
\(192\) 0.253122 0.104846i 0.0182675 0.00756664i
\(193\) 8.49528 20.5094i 0.611504 1.47630i −0.249845 0.968286i \(-0.580380\pi\)
0.861348 0.508015i \(-0.169620\pi\)
\(194\) −2.98562 1.23668i −0.214355 0.0887887i
\(195\) 0 0
\(196\) −9.13910 + 9.13910i −0.652793 + 0.652793i
\(197\) −4.14027 1.71496i −0.294982 0.122186i 0.230284 0.973123i \(-0.426034\pi\)
−0.525267 + 0.850938i \(0.676034\pi\)
\(198\) −1.14341 + 2.76043i −0.0812584 + 0.196175i
\(199\) −0.368987 + 0.152839i −0.0261568 + 0.0108345i −0.395723 0.918370i \(-0.629506\pi\)
0.369567 + 0.929204i \(0.379506\pi\)
\(200\) 0 0
\(201\) −0.260661 0.629290i −0.0183856 0.0443867i
\(202\) −1.76313 1.76313i −0.124053 0.124053i
\(203\) −1.41176 −0.0990865
\(204\) 0.0393942 + 0.416370i 0.00275814 + 0.0291517i
\(205\) 0 0
\(206\) −3.30247 3.30247i −0.230094 0.230094i
\(207\) −7.72999 18.6618i −0.537271 1.29709i
\(208\) 6.41009i 0.444460i
\(209\) 7.20712 2.98529i 0.498527 0.206497i
\(210\) 0 0
\(211\) −1.80171 0.746294i −0.124035 0.0513770i 0.319803 0.947484i \(-0.396383\pi\)
−0.443838 + 0.896107i \(0.646383\pi\)
\(212\) 3.55076 3.55076i 0.243867 0.243867i
\(213\) −0.225805 + 0.225805i −0.0154719 + 0.0154719i
\(214\) 1.20606 + 0.499566i 0.0824444 + 0.0341496i
\(215\) 0 0
\(216\) −0.418983 + 0.173548i −0.0285082 + 0.0118085i
\(217\) 0.903981i 0.0613662i
\(218\) −0.710047 1.71421i −0.0480905 0.116101i
\(219\) −0.00830947 0.00830947i −0.000561502 0.000561502i
\(220\) 0 0
\(221\) −7.80131 2.39927i −0.524773 0.161393i
\(222\) 0.184085 0.0123550
\(223\) −16.7800 16.7800i −1.12367 1.12367i −0.991184 0.132491i \(-0.957703\pi\)
−0.132491 0.991184i \(-0.542297\pi\)
\(224\) 0.452123 + 1.09152i 0.0302088 + 0.0729304i
\(225\) 0 0
\(226\) −3.66333 + 1.51740i −0.243681 + 0.100936i
\(227\) −7.86790 + 18.9948i −0.522211 + 1.26073i 0.414316 + 0.910133i \(0.364021\pi\)
−0.936527 + 0.350595i \(0.885979\pi\)
\(228\) 0.264177 + 0.109426i 0.0174955 + 0.00724689i
\(229\) 18.8066 18.8066i 1.24277 1.24277i 0.283928 0.958846i \(-0.408362\pi\)
0.958846 0.283928i \(-0.0916375\pi\)
\(230\) 0 0
\(231\) −0.0414220 0.0171576i −0.00272537 0.00112889i
\(232\) 2.52165 6.08780i 0.165554 0.399684i
\(233\) 21.7104 8.99275i 1.42230 0.589135i 0.466860 0.884331i \(-0.345385\pi\)
0.955437 + 0.295196i \(0.0953851\pi\)
\(234\) 2.13734i 0.139722i
\(235\) 0 0
\(236\) 12.1061 + 12.1061i 0.788040 + 0.788040i
\(237\) 0.577929 0.0375405
\(238\) −0.441734 + 0.0417939i −0.0286333 + 0.00270910i
\(239\) 5.25737 0.340071 0.170036 0.985438i \(-0.445612\pi\)
0.170036 + 0.985438i \(0.445612\pi\)
\(240\) 0 0
\(241\) 2.08146 + 5.02509i 0.134079 + 0.323694i 0.976632 0.214918i \(-0.0689486\pi\)
−0.842553 + 0.538613i \(0.818949\pi\)
\(242\) 1.20398i 0.0773950i
\(243\) −1.35117 + 0.559671i −0.0866774 + 0.0359029i
\(244\) 8.01149 19.3414i 0.512883 1.23821i
\(245\) 0 0
\(246\) 0.0429649 0.0429649i 0.00273934 0.00273934i
\(247\) −3.94587 + 3.94587i −0.251070 + 0.251070i
\(248\) 3.89814 + 1.61466i 0.247532 + 0.102531i
\(249\) 0.323263 0.780426i 0.0204860 0.0494575i
\(250\) 0 0
\(251\) 26.3864i 1.66550i −0.553652 0.832748i \(-0.686766\pi\)
0.553652 0.832748i \(-0.313234\pi\)
\(252\) 0.640750 + 1.54691i 0.0403634 + 0.0974460i
\(253\) 13.1882 + 13.1882i 0.829135 + 0.829135i
\(254\) −2.64150 −0.165742
\(255\) 0 0
\(256\) 6.59764 0.412352
\(257\) −13.2589 13.2589i −0.827065 0.827065i 0.160045 0.987110i \(-0.448836\pi\)
−0.987110 + 0.160045i \(0.948836\pi\)
\(258\) 0.0612024 + 0.147756i 0.00381030 + 0.00919887i
\(259\) 2.81431i 0.174873i
\(260\) 0 0
\(261\) 5.42045 13.0861i 0.335518 0.810011i
\(262\) 5.76532 + 2.38807i 0.356183 + 0.147536i
\(263\) −11.3145 + 11.3145i −0.697680 + 0.697680i −0.963910 0.266230i \(-0.914222\pi\)
0.266230 + 0.963910i \(0.414222\pi\)
\(264\) 0.147974 0.147974i 0.00910714 0.00910714i
\(265\) 0 0
\(266\) −0.116091 + 0.280270i −0.00711803 + 0.0171844i
\(267\) 0.0778007 0.0322261i 0.00476133 0.00197221i
\(268\) 23.4871i 1.43470i
\(269\) 0.457836 + 1.10531i 0.0279147 + 0.0673922i 0.937222 0.348733i \(-0.113388\pi\)
−0.909307 + 0.416125i \(0.863388\pi\)
\(270\) 0 0
\(271\) −0.888590 −0.0539780 −0.0269890 0.999636i \(-0.508592\pi\)
−0.0269890 + 0.999636i \(0.508592\pi\)
\(272\) −3.92471 + 12.7613i −0.237971 + 0.773769i
\(273\) 0.0320721 0.00194109
\(274\) 3.55983 + 3.55983i 0.215057 + 0.215057i
\(275\) 0 0
\(276\) 0.683650i 0.0411509i
\(277\) 5.70841 2.36450i 0.342985 0.142069i −0.204540 0.978858i \(-0.565570\pi\)
0.547525 + 0.836789i \(0.315570\pi\)
\(278\) 0.499150 1.20505i 0.0299370 0.0722744i
\(279\) 8.37931 + 3.47082i 0.501656 + 0.207793i
\(280\) 0 0
\(281\) −19.7250 + 19.7250i −1.17670 + 1.17670i −0.196117 + 0.980581i \(0.562833\pi\)
−0.980581 + 0.196117i \(0.937167\pi\)
\(282\) 0.0195576 + 0.00810103i 0.00116464 + 0.000482409i
\(283\) −11.3703 + 27.4503i −0.675893 + 1.63175i 0.0955282 + 0.995427i \(0.469546\pi\)
−0.771422 + 0.636324i \(0.780454\pi\)
\(284\) −10.1732 + 4.21389i −0.603670 + 0.250048i
\(285\) 0 0
\(286\) 0.755221 + 1.82326i 0.0446571 + 0.107812i
\(287\) −0.656853 0.656853i −0.0387728 0.0387728i
\(288\) −11.8536 −0.698481
\(289\) −14.0620 9.55303i −0.827176 0.561943i
\(290\) 0 0
\(291\) 0.344027 + 0.344027i 0.0201672 + 0.0201672i
\(292\) −0.155068 0.374367i −0.00907466 0.0219082i
\(293\) 22.4626i 1.31228i −0.754639 0.656140i \(-0.772188\pi\)
0.754639 0.656140i \(-0.227812\pi\)
\(294\) −0.124752 + 0.0516741i −0.00727571 + 0.00301370i
\(295\) 0 0
\(296\) 12.1359 + 5.02684i 0.705382 + 0.292179i
\(297\) 0.636470 0.636470i 0.0369317 0.0369317i
\(298\) 3.27542 3.27542i 0.189740 0.189740i
\(299\) −12.3262 5.10566i −0.712840 0.295268i
\(300\) 0 0
\(301\) 2.25891 0.935671i 0.130201 0.0539312i
\(302\) 6.90398i 0.397279i
\(303\) 0.143657 + 0.346818i 0.00825287 + 0.0199242i
\(304\) 6.45462 + 6.45462i 0.370198 + 0.370198i
\(305\) 0 0
\(306\) 1.30863 4.25505i 0.0748093 0.243245i
\(307\) −5.53854 −0.316101 −0.158050 0.987431i \(-0.550521\pi\)
−0.158050 + 0.987431i \(0.550521\pi\)
\(308\) −1.09319 1.09319i −0.0622902 0.0622902i
\(309\) 0.269080 + 0.649618i 0.0153075 + 0.0369555i
\(310\) 0 0
\(311\) −20.8510 + 8.63675i −1.18235 + 0.489745i −0.885256 0.465104i \(-0.846017\pi\)
−0.297093 + 0.954849i \(0.596017\pi\)
\(312\) −0.0572862 + 0.138301i −0.00324319 + 0.00782976i
\(313\) 11.2581 + 4.66325i 0.636345 + 0.263583i 0.677446 0.735572i \(-0.263087\pi\)
−0.0411013 + 0.999155i \(0.513087\pi\)
\(314\) −0.688359 + 0.688359i −0.0388463 + 0.0388463i
\(315\) 0 0
\(316\) 18.4113 + 7.62621i 1.03572 + 0.429008i
\(317\) 8.41030 20.3043i 0.472370 1.14040i −0.490743 0.871304i \(-0.663275\pi\)
0.963113 0.269097i \(-0.0867253\pi\)
\(318\) 0.0484693 0.0200766i 0.00271802 0.00112584i
\(319\) 13.0785i 0.732254i
\(320\) 0 0
\(321\) −0.138972 0.138972i −0.00775664 0.00775664i
\(322\) −0.725296 −0.0404192
\(323\) −10.2714 + 5.43957i −0.571519 + 0.302666i
\(324\) −16.7825 −0.932358
\(325\) 0 0
\(326\) 2.35826 + 5.69333i 0.130612 + 0.315325i
\(327\) 0.279342i 0.0154476i
\(328\) 4.00573 1.65923i 0.221179 0.0916155i
\(329\) 0.123850 0.298999i 0.00682805 0.0164844i
\(330\) 0 0
\(331\) 10.2262 10.2262i 0.562083 0.562083i −0.367816 0.929899i \(-0.619894\pi\)
0.929899 + 0.367816i \(0.119894\pi\)
\(332\) 20.5966 20.5966i 1.13038 1.13038i
\(333\) 26.0868 + 10.8055i 1.42955 + 0.592138i
\(334\) 1.22045 2.94642i 0.0667798 0.161221i
\(335\) 0 0
\(336\) 0.0524633i 0.00286211i
\(337\) 9.27853 + 22.4004i 0.505434 + 1.22023i 0.946486 + 0.322744i \(0.104605\pi\)
−0.441052 + 0.897481i \(0.645395\pi\)
\(338\) 2.31337 + 2.31337i 0.125831 + 0.125831i
\(339\) 0.596965 0.0324227
\(340\) 0 0
\(341\) −8.37441 −0.453500
\(342\) −2.15218 2.15218i −0.116377 0.116377i
\(343\) 1.59020 + 3.83909i 0.0858629 + 0.207291i
\(344\) 11.4121i 0.615300i
\(345\) 0 0
\(346\) 2.64490 6.38535i 0.142191 0.343279i
\(347\) 19.8599 + 8.22624i 1.06614 + 0.441608i 0.845625 0.533777i \(-0.179228\pi\)
0.220510 + 0.975385i \(0.429228\pi\)
\(348\) −0.338981 + 0.338981i −0.0181713 + 0.0181713i
\(349\) −17.0669 + 17.0669i −0.913570 + 0.913570i −0.996551 0.0829813i \(-0.973556\pi\)
0.0829813 + 0.996551i \(0.473556\pi\)
\(350\) 0 0
\(351\) −0.246402 + 0.594866i −0.0131520 + 0.0317516i
\(352\) 10.1118 4.18843i 0.538959 0.223244i
\(353\) 7.24444i 0.385583i −0.981240 0.192791i \(-0.938246\pi\)
0.981240 0.192791i \(-0.0617541\pi\)
\(354\) 0.0684501 + 0.165253i 0.00363808 + 0.00878311i
\(355\) 0 0
\(356\) 2.90377 0.153900
\(357\) 0.0638497 + 0.0196368i 0.00337929 + 0.00103929i
\(358\) −1.56182 −0.0825449
\(359\) 12.2079 + 12.2079i 0.644308 + 0.644308i 0.951612 0.307303i \(-0.0994266\pi\)
−0.307303 + 0.951612i \(0.599427\pi\)
\(360\) 0 0
\(361\) 11.0534i 0.581760i
\(362\) −7.91419 + 3.27816i −0.415960 + 0.172296i
\(363\) 0.0693663 0.167465i 0.00364079 0.00878964i
\(364\) 1.02173 + 0.423215i 0.0535533 + 0.0221825i
\(365\) 0 0
\(366\) 0.154658 0.154658i 0.00808413 0.00808413i
\(367\) −34.5930 14.3289i −1.80574 0.747963i −0.984016 0.178080i \(-0.943011\pi\)
−0.821726 0.569883i \(-0.806989\pi\)
\(368\) −8.35180 + 20.1630i −0.435368 + 1.05107i
\(369\) 8.61057 3.56661i 0.448248 0.185671i
\(370\) 0 0
\(371\) −0.306934 0.741005i −0.0159352 0.0384711i
\(372\) −0.217056 0.217056i −0.0112538 0.0112538i
\(373\) −29.8887 −1.54758 −0.773789 0.633443i \(-0.781641\pi\)
−0.773789 + 0.633443i \(0.781641\pi\)
\(374\) 0.387176 + 4.09219i 0.0200204 + 0.211602i
\(375\) 0 0
\(376\) 1.06813 + 1.06813i 0.0550845 + 0.0550845i
\(377\) −3.58021 8.64339i −0.184390 0.445157i
\(378\) 0.0350031i 0.00180037i
\(379\) −27.7353 + 11.4883i −1.42467 + 0.590116i −0.956028 0.293275i \(-0.905255\pi\)
−0.468637 + 0.883391i \(0.655255\pi\)
\(380\) 0 0
\(381\) 0.367412 + 0.152187i 0.0188231 + 0.00779679i
\(382\) 1.85209 1.85209i 0.0947611 0.0947611i
\(383\) −13.9465 + 13.9465i −0.712634 + 0.712634i −0.967086 0.254451i \(-0.918105\pi\)
0.254451 + 0.967086i \(0.418105\pi\)
\(384\) 0.487556 + 0.201952i 0.0248805 + 0.0103058i
\(385\) 0 0
\(386\) 7.38861 3.06046i 0.376070 0.155773i
\(387\) 24.5311i 1.24699i
\(388\) 6.42009 + 15.4995i 0.325931 + 0.786866i
\(389\) 2.62699 + 2.62699i 0.133194 + 0.133194i 0.770561 0.637367i \(-0.219976\pi\)
−0.637367 + 0.770561i \(0.719976\pi\)
\(390\) 0 0
\(391\) −21.4131 17.7114i −1.08291 0.895703i
\(392\) −9.63543 −0.486663
\(393\) −0.664326 0.664326i −0.0335108 0.0335108i
\(394\) −0.617821 1.49155i −0.0311254 0.0751433i
\(395\) 0 0
\(396\) 14.3304 5.93586i 0.720131 0.298288i
\(397\) 1.97916 4.77812i 0.0993314 0.239807i −0.866400 0.499350i \(-0.833572\pi\)
0.965731 + 0.259543i \(0.0835720\pi\)
\(398\) −0.132929 0.0550610i −0.00666313 0.00275996i
\(399\) 0.0322949 0.0322949i 0.00161677 0.00161677i
\(400\) 0 0
\(401\) 0.364698 + 0.151063i 0.0182122 + 0.00754372i 0.391771 0.920063i \(-0.371863\pi\)
−0.373559 + 0.927607i \(0.621863\pi\)
\(402\) 0.0939042 0.226705i 0.00468351 0.0113070i
\(403\) 5.53453 2.29248i 0.275695 0.114196i
\(404\) 12.9444i 0.644007i
\(405\) 0 0
\(406\) −0.359631 0.359631i −0.0178482 0.0178482i
\(407\) −26.0716 −1.29232
\(408\) −0.198724 + 0.240258i −0.00983831 + 0.0118945i
\(409\) 0.521080 0.0257657 0.0128829 0.999917i \(-0.495899\pi\)
0.0128829 + 0.999917i \(0.495899\pi\)
\(410\) 0 0
\(411\) −0.290050 0.700242i −0.0143071 0.0345404i
\(412\) 24.2458i 1.19451i
\(413\) 2.52641 1.04647i 0.124317 0.0514936i
\(414\) 2.78476 6.72301i 0.136864 0.330418i
\(415\) 0 0
\(416\) −5.53616 + 5.53616i −0.271433 + 0.271433i
\(417\) −0.138856 + 0.138856i −0.00679981 + 0.00679981i
\(418\) 2.59640 + 1.07546i 0.126994 + 0.0526026i
\(419\) 1.74972 4.22419i 0.0854793 0.206365i −0.875360 0.483472i \(-0.839376\pi\)
0.960839 + 0.277107i \(0.0893755\pi\)
\(420\) 0 0
\(421\) 7.55233i 0.368078i −0.982919 0.184039i \(-0.941083\pi\)
0.982919 0.184039i \(-0.0589173\pi\)
\(422\) −0.268856 0.649075i −0.0130877 0.0315965i
\(423\) 2.29601 + 2.29601i 0.111636 + 0.111636i
\(424\) 3.74359 0.181805
\(425\) 0 0
\(426\) −0.115043 −0.00557383
\(427\) −2.36444 2.36444i −0.114423 0.114423i
\(428\) −2.59343 6.26110i −0.125358 0.302642i
\(429\) 0.297114i 0.0143448i
\(430\) 0 0
\(431\) 7.99371 19.2985i 0.385043 0.929577i −0.605930 0.795518i \(-0.707199\pi\)
0.990973 0.134059i \(-0.0428011\pi\)
\(432\) 0.973078 + 0.403062i 0.0468172 + 0.0193923i
\(433\) −23.2292 + 23.2292i −1.11632 + 1.11632i −0.124045 + 0.992277i \(0.539587\pi\)
−0.992277 + 0.124045i \(0.960413\pi\)
\(434\) 0.230279 0.230279i 0.0110537 0.0110537i
\(435\) 0 0
\(436\) −3.68612 + 8.89909i −0.176533 + 0.426189i
\(437\) −17.5529 + 7.27065i −0.839670 + 0.347803i
\(438\) 0.00423348i 0.000202284i
\(439\) 9.19069 + 22.1883i 0.438648 + 1.05899i 0.976416 + 0.215897i \(0.0692674\pi\)
−0.537769 + 0.843093i \(0.680733\pi\)
\(440\) 0 0
\(441\) −20.7120 −0.986284
\(442\) −1.37611 2.59848i −0.0654547 0.123597i
\(443\) −8.36893 −0.397620 −0.198810 0.980038i \(-0.563708\pi\)
−0.198810 + 0.980038i \(0.563708\pi\)
\(444\) −0.675748 0.675748i −0.0320696 0.0320696i
\(445\) 0 0
\(446\) 8.54904i 0.404809i
\(447\) −0.644296 + 0.266876i −0.0304741 + 0.0126228i
\(448\) 0.577454 1.39410i 0.0272821 0.0658649i
\(449\) 22.7241 + 9.41265i 1.07242 + 0.444210i 0.847844 0.530246i \(-0.177901\pi\)
0.224575 + 0.974457i \(0.427901\pi\)
\(450\) 0 0
\(451\) −6.08503 + 6.08503i −0.286533 + 0.286533i
\(452\) 19.0177 + 7.87740i 0.894518 + 0.370522i
\(453\) 0.397766 0.960292i 0.0186887 0.0451184i
\(454\) −6.84296 + 2.83444i −0.321156 + 0.133027i
\(455\) 0 0
\(456\) 0.0815778 + 0.196946i 0.00382023 + 0.00922285i
\(457\) −5.38146 5.38146i −0.251734 0.251734i 0.569947 0.821681i \(-0.306964\pi\)
−0.821681 + 0.569947i \(0.806964\pi\)
\(458\) 9.58151 0.447715
\(459\) −0.854760 + 1.03341i −0.0398968 + 0.0482353i
\(460\) 0 0
\(461\) 5.10577 + 5.10577i 0.237800 + 0.237800i 0.815938 0.578139i \(-0.196221\pi\)
−0.578139 + 0.815938i \(0.696221\pi\)
\(462\) −0.00618109 0.0149225i −0.000287570 0.000694256i
\(463\) 23.0362i 1.07058i 0.844667 + 0.535292i \(0.179798\pi\)
−0.844667 + 0.535292i \(0.820202\pi\)
\(464\) −14.1388 + 5.85648i −0.656377 + 0.271880i
\(465\) 0 0
\(466\) 7.82128 + 3.23968i 0.362314 + 0.150075i
\(467\) 21.1457 21.1457i 0.978506 0.978506i −0.0212676 0.999774i \(-0.506770\pi\)
0.999774 + 0.0212676i \(0.00677021\pi\)
\(468\) −7.84585 + 7.84585i −0.362675 + 0.362675i
\(469\) −3.46589 1.43562i −0.160040 0.0662907i
\(470\) 0 0
\(471\) 0.135405 0.0560865i 0.00623912 0.00258433i
\(472\) 12.7636i 0.587491i
\(473\) −8.66798 20.9264i −0.398554 0.962195i
\(474\) 0.147221 + 0.147221i 0.00676207 + 0.00676207i
\(475\) 0 0
\(476\) 1.77496 + 1.46812i 0.0813552 + 0.0672912i
\(477\) 8.04710 0.368451
\(478\) 1.33925 + 1.33925i 0.0612561 + 0.0612561i
\(479\) 3.69569 + 8.92218i 0.168860 + 0.407665i 0.985544 0.169421i \(-0.0541898\pi\)
−0.816684 + 0.577086i \(0.804190\pi\)
\(480\) 0 0
\(481\) 17.2303 7.13704i 0.785636 0.325421i
\(482\) −0.749855 + 1.81031i −0.0341550 + 0.0824574i
\(483\) 0.100883 + 0.0417872i 0.00459035 + 0.00190138i
\(484\) 4.41965 4.41965i 0.200893 0.200893i
\(485\) 0 0
\(486\) −0.486764 0.201624i −0.0220801 0.00914586i
\(487\) 1.84840 4.46244i 0.0837591 0.202212i −0.876451 0.481491i \(-0.840095\pi\)
0.960210 + 0.279279i \(0.0900954\pi\)
\(488\) 14.4192 5.97263i 0.652727 0.270368i
\(489\) 0.927769i 0.0419552i
\(490\) 0 0
\(491\) 15.1849 + 15.1849i 0.685287 + 0.685287i 0.961186 0.275900i \(-0.0889758\pi\)
−0.275900 + 0.961186i \(0.588976\pi\)
\(492\) −0.315436 −0.0142209
\(493\) −1.83545 19.3995i −0.0826646 0.873708i
\(494\) −2.01033 −0.0904490
\(495\) 0 0
\(496\) −3.75002 9.05334i −0.168381 0.406507i
\(497\) 1.75879i 0.0788923i
\(498\) 0.281152 0.116457i 0.0125987 0.00521856i
\(499\) −7.13250 + 17.2194i −0.319295 + 0.770845i 0.679997 + 0.733215i \(0.261981\pi\)
−0.999292 + 0.0376305i \(0.988019\pi\)
\(500\) 0 0
\(501\) −0.339510 + 0.339510i −0.0151682 + 0.0151682i
\(502\) 6.72164 6.72164i 0.300001 0.300001i
\(503\) 17.1646 + 7.10981i 0.765332 + 0.317011i 0.730980 0.682399i \(-0.239063\pi\)
0.0343519 + 0.999410i \(0.489063\pi\)
\(504\) −0.477685 + 1.15323i −0.0212778 + 0.0513691i
\(505\) 0 0
\(506\) 6.71908i 0.298700i
\(507\) −0.188490 0.455055i −0.00837113 0.0202097i
\(508\) 9.69656 + 9.69656i 0.430215 + 0.430215i
\(509\) −28.4343 −1.26033 −0.630163 0.776463i \(-0.717012\pi\)
−0.630163 + 0.776463i \(0.717012\pi\)
\(510\) 0 0
\(511\) −0.0647220 −0.00286313
\(512\) 15.4409 + 15.4409i 0.682399 + 0.682399i
\(513\) 0.350885 + 0.847112i 0.0154920 + 0.0374009i
\(514\) 6.75508i 0.297954i
\(515\) 0 0
\(516\) 0.317725 0.767056i 0.0139871 0.0337677i
\(517\) −2.76991 1.14733i −0.121820 0.0504597i
\(518\) 0.716913 0.716913i 0.0314993 0.0314993i
\(519\) −0.735771 + 0.735771i −0.0322968 + 0.0322968i
\(520\) 0 0
\(521\) −7.26078 + 17.5291i −0.318100 + 0.767962i 0.681254 + 0.732047i \(0.261435\pi\)
−0.999355 + 0.0359155i \(0.988565\pi\)
\(522\) 4.71434 1.95274i 0.206341 0.0854692i
\(523\) 24.4504i 1.06914i −0.845124 0.534571i \(-0.820473\pi\)
0.845124 0.534571i \(-0.179527\pi\)
\(524\) −12.3974 29.9299i −0.541583 1.30750i
\(525\) 0 0
\(526\) −5.76445 −0.251342
\(527\) 12.4219 1.17528i 0.541105 0.0511958i
\(528\) −0.486016 −0.0211511
\(529\) −15.8564 15.8564i −0.689407 0.689407i
\(530\) 0 0
\(531\) 27.4361i 1.19063i
\(532\) 1.45499 0.602675i 0.0630816 0.0261293i
\(533\) 2.35575 5.68728i 0.102039 0.246344i
\(534\) 0.0280281 + 0.0116096i 0.00121289 + 0.000502397i
\(535\) 0 0
\(536\) 12.3813 12.3813i 0.534792 0.534792i
\(537\) 0.217238 + 0.0899828i 0.00937450 + 0.00388305i
\(538\) −0.164937 + 0.398194i −0.00711096 + 0.0171674i
\(539\) 17.6684 7.31851i 0.761034 0.315230i
\(540\) 0 0
\(541\) −4.13701 9.98762i −0.177864 0.429401i 0.809654 0.586907i \(-0.199655\pi\)
−0.987518 + 0.157506i \(0.949655\pi\)
\(542\) −0.226358 0.226358i −0.00972291 0.00972291i
\(543\) 1.28967 0.0553451
\(544\) −14.4111 + 7.63186i −0.617871 + 0.327213i
\(545\) 0 0
\(546\) 0.00817000 + 0.00817000i 0.000349644 + 0.000349644i
\(547\) 2.78305 + 6.71889i 0.118995 + 0.287279i 0.972143 0.234391i \(-0.0753094\pi\)
−0.853148 + 0.521669i \(0.825309\pi\)
\(548\) 26.1353i 1.11644i
\(549\) 30.9950 12.8386i 1.32284 0.547937i
\(550\) 0 0
\(551\) −12.3085 5.09835i −0.524360 0.217197i
\(552\) −0.360389 + 0.360389i −0.0153392 + 0.0153392i
\(553\) 2.25073 2.25073i 0.0957108 0.0957108i
\(554\) 2.05648 + 0.851821i 0.0873714 + 0.0361904i
\(555\) 0 0
\(556\) −6.25589 + 2.59128i −0.265309 + 0.109895i
\(557\) 18.3930i 0.779335i −0.920956 0.389667i \(-0.872590\pi\)
0.920956 0.389667i \(-0.127410\pi\)
\(558\) 1.25038 + 3.01868i 0.0529328 + 0.127791i
\(559\) 11.4571 + 11.4571i 0.484584 + 0.484584i
\(560\) 0 0
\(561\) 0.181914 0.591499i 0.00768041 0.0249731i
\(562\) −10.0495 −0.423911
\(563\) −0.317586 0.317586i −0.0133847 0.0133847i 0.700383 0.713767i \(-0.253013\pi\)
−0.713767 + 0.700383i \(0.753013\pi\)
\(564\) −0.0420555 0.101531i −0.00177086 0.00427522i
\(565\) 0 0
\(566\) −9.88909 + 4.09620i −0.415670 + 0.172176i
\(567\) −1.02581 + 2.47651i −0.0430798 + 0.104004i
\(568\) −7.58423 3.14149i −0.318227 0.131814i
\(569\) 10.1299 10.1299i 0.424669 0.424669i −0.462138 0.886808i \(-0.652918\pi\)
0.886808 + 0.462138i \(0.152918\pi\)
\(570\) 0 0
\(571\) 25.8617 + 10.7123i 1.08228 + 0.448294i 0.851307 0.524667i \(-0.175810\pi\)
0.230970 + 0.972961i \(0.425810\pi\)
\(572\) 3.92063 9.46525i 0.163930 0.395762i
\(573\) −0.364318 + 0.150905i −0.0152196 + 0.00630417i
\(574\) 0.334651i 0.0139681i
\(575\) 0 0
\(576\) 10.7052 + 10.7052i 0.446052 + 0.446052i
\(577\) 6.76924 0.281807 0.140904 0.990023i \(-0.454999\pi\)
0.140904 + 0.990023i \(0.454999\pi\)
\(578\) −1.14861 6.01565i −0.0477757 0.250218i
\(579\) −1.20403 −0.0500376
\(580\) 0 0
\(581\) −1.78041 4.29829i −0.0738638 0.178323i
\(582\) 0.175274i 0.00726533i
\(583\) −6.86461 + 2.84342i −0.284303 + 0.117762i
\(584\) 0.115605 0.279094i 0.00478375 0.0115490i
\(585\) 0 0
\(586\) 5.72209 5.72209i 0.236377 0.236377i
\(587\) −17.4713 + 17.4713i −0.721117 + 0.721117i −0.968833 0.247715i \(-0.920320\pi\)
0.247715 + 0.968833i \(0.420320\pi\)
\(588\) 0.647637 + 0.268260i 0.0267081 + 0.0110628i
\(589\) 3.26458 7.88139i 0.134515 0.324747i
\(590\) 0 0
\(591\) 0.243059i 0.00999810i
\(592\) −11.6747 28.1852i −0.479828 1.15841i
\(593\) 15.8749 + 15.8749i 0.651905 + 0.651905i 0.953451 0.301547i \(-0.0975029\pi\)
−0.301547 + 0.953451i \(0.597503\pi\)
\(594\) 0.324266 0.0133048
\(595\) 0 0
\(596\) −24.0472 −0.985010
\(597\) 0.0153172 + 0.0153172i 0.000626889 + 0.000626889i
\(598\) −1.83934 4.44055i −0.0752161 0.181588i
\(599\) 19.1639i 0.783018i −0.920174 0.391509i \(-0.871953\pi\)
0.920174 0.391509i \(-0.128047\pi\)
\(600\) 0 0
\(601\) −8.87947 + 21.4369i −0.362201 + 0.874431i 0.632777 + 0.774334i \(0.281915\pi\)
−0.994978 + 0.100096i \(0.968085\pi\)
\(602\) 0.813782 + 0.337080i 0.0331673 + 0.0137383i
\(603\) 26.6145 26.6145i 1.08383 1.08383i
\(604\) 25.3435 25.3435i 1.03121 1.03121i
\(605\) 0 0
\(606\) −0.0517530 + 0.124943i −0.00210232 + 0.00507546i
\(607\) −1.72244 + 0.713459i −0.0699118 + 0.0289584i −0.417365 0.908739i \(-0.637046\pi\)
0.347454 + 0.937697i \(0.387046\pi\)
\(608\) 11.1492i 0.452161i
\(609\) 0.0293022 + 0.0707417i 0.00118738 + 0.00286660i
\(610\) 0 0
\(611\) 2.14468 0.0867643
\(612\) −20.4235 + 10.8159i −0.825569 + 0.437206i
\(613\) 0.383092 0.0154729 0.00773647 0.999970i \(-0.497537\pi\)
0.00773647 + 0.999970i \(0.497537\pi\)
\(614\) −1.41088 1.41088i −0.0569384 0.0569384i
\(615\) 0 0
\(616\) 1.15256i 0.0464379i
\(617\) −10.7794 + 4.46499i −0.433964 + 0.179754i −0.588962 0.808161i \(-0.700463\pi\)
0.154997 + 0.987915i \(0.450463\pi\)
\(618\) −0.0969375 + 0.234028i −0.00389940 + 0.00941398i
\(619\) −12.4590 5.16070i −0.500771 0.207426i 0.117976 0.993016i \(-0.462359\pi\)
−0.618747 + 0.785590i \(0.712359\pi\)
\(620\) 0 0
\(621\) −1.55012 + 1.55012i −0.0622041 + 0.0622041i
\(622\) −7.51165 3.11143i −0.301190 0.124757i
\(623\) 0.177489 0.428497i 0.00711096 0.0171674i
\(624\) 0.321201 0.133046i 0.0128583 0.00532610i
\(625\) 0 0
\(626\) 1.67996 + 4.05578i 0.0671446 + 0.162101i
\(627\) −0.299178 0.299178i −0.0119480 0.0119480i
\(628\) 5.05373 0.201666
\(629\) 38.6723 3.65892i 1.54196 0.145891i
\(630\) 0 0
\(631\) −33.1913 33.1913i −1.32132 1.32132i −0.912706 0.408617i \(-0.866011\pi\)
−0.408617 0.912706i \(-0.633989\pi\)
\(632\) 5.68540 + 13.7258i 0.226153 + 0.545982i
\(633\) 0.105771i 0.00420403i
\(634\) 7.31470 3.02985i 0.290504 0.120331i
\(635\) 0 0
\(636\) −0.251622 0.104225i −0.00997747 0.00413280i
\(637\) −9.67341 + 9.67341i −0.383274 + 0.383274i
\(638\) −3.33159 + 3.33159i −0.131899 + 0.131899i
\(639\) −16.3028 6.75284i −0.644928 0.267138i
\(640\) 0 0
\(641\) 36.5657 15.1460i 1.44426 0.598232i 0.483433 0.875382i \(-0.339390\pi\)
0.960827 + 0.277150i \(0.0893898\pi\)
\(642\) 0.0708028i 0.00279436i
\(643\) −6.78010 16.3686i −0.267381 0.645515i 0.731978 0.681329i \(-0.238598\pi\)
−0.999358 + 0.0358141i \(0.988598\pi\)
\(644\) 2.66246 + 2.66246i 0.104916 + 0.104916i
\(645\) 0 0
\(646\) −4.00220 1.23087i −0.157464 0.0484278i
\(647\) 14.8304 0.583045 0.291522 0.956564i \(-0.405838\pi\)
0.291522 + 0.956564i \(0.405838\pi\)
\(648\) −8.84694 8.84694i −0.347541 0.347541i
\(649\) −9.69446 23.4045i −0.380541 0.918707i
\(650\) 0 0
\(651\) −0.0452973 + 0.0187628i −0.00177534 + 0.000735370i
\(652\) 12.2426 29.5562i 0.479457 1.15751i
\(653\) −9.42227 3.90283i −0.368722 0.152730i 0.190626 0.981663i \(-0.438948\pi\)
−0.559348 + 0.828933i \(0.688948\pi\)
\(654\) −0.0711591 + 0.0711591i −0.00278254 + 0.00278254i
\(655\) 0 0
\(656\) −9.30321 3.85352i −0.363229 0.150455i
\(657\) 0.248499 0.599931i 0.00969488 0.0234055i
\(658\) 0.107716 0.0446174i 0.00419920 0.00173937i
\(659\) 45.4453i 1.77030i −0.465309 0.885148i \(-0.654057\pi\)
0.465309 0.885148i \(-0.345943\pi\)
\(660\) 0 0
\(661\) −5.62214 5.62214i −0.218676 0.218676i 0.589264 0.807940i \(-0.299418\pi\)
−0.807940 + 0.589264i \(0.799418\pi\)
\(662\) 5.21001 0.202493
\(663\) 0.0416973 + 0.440712i 0.00161939 + 0.0171158i
\(664\) 21.7152 0.842712
\(665\) 0 0
\(666\) 3.89273 + 9.39789i 0.150840 + 0.364161i
\(667\) 31.8526i 1.23334i
\(668\) −15.2960 + 6.33579i −0.591818 + 0.245139i
\(669\) −0.492545 + 1.18911i −0.0190429 + 0.0459736i
\(670\) 0 0
\(671\) −21.9040 + 21.9040i −0.845594 + 0.845594i
\(672\) 0.0453106 0.0453106i 0.00174789 0.00174789i
\(673\) −20.3139 8.41428i −0.783042 0.324347i −0.0448994 0.998992i \(-0.514297\pi\)
−0.738142 + 0.674645i \(0.764297\pi\)
\(674\) −3.34263 + 8.06983i −0.128753 + 0.310838i
\(675\) 0 0
\(676\) 16.9841i 0.653234i
\(677\) 6.97899 + 16.8488i 0.268224 + 0.647551i 0.999400 0.0346387i \(-0.0110280\pi\)
−0.731176 + 0.682189i \(0.761028\pi\)
\(678\) 0.152070 + 0.152070i 0.00584021 + 0.00584021i
\(679\) 2.67961 0.102834
\(680\) 0 0
\(681\) 1.11511 0.0427310
\(682\) −2.13328 2.13328i −0.0816876 0.0816876i
\(683\) 6.96604 + 16.8175i 0.266548 + 0.643504i 0.999316 0.0369746i \(-0.0117721\pi\)
−0.732768 + 0.680478i \(0.761772\pi\)
\(684\) 15.8007i 0.604156i
\(685\) 0 0
\(686\) −0.572878 + 1.38305i −0.0218726 + 0.0528051i
\(687\) −1.33272 0.552029i −0.0508463 0.0210612i
\(688\) 18.7414 18.7414i 0.714511 0.714511i
\(689\) 3.75835 3.75835i 0.143182 0.143182i
\(690\) 0 0
\(691\) 5.95556 14.3780i 0.226560 0.546965i −0.769194 0.639015i \(-0.779342\pi\)
0.995754 + 0.0920503i \(0.0293421\pi\)
\(692\) −33.1488 + 13.7307i −1.26013 + 0.521962i
\(693\) 2.47750i 0.0941124i
\(694\) 2.96354 + 7.15462i 0.112494 + 0.271586i
\(695\) 0 0
\(696\) −0.357391 −0.0135469
\(697\) 8.17202 9.87999i 0.309537 0.374231i
\(698\) −8.69519 −0.329118
\(699\) −0.901230 0.901230i −0.0340876 0.0340876i
\(700\) 0 0
\(701\) 8.07561i 0.305011i 0.988303 + 0.152506i \(0.0487342\pi\)
−0.988303 + 0.152506i \(0.951266\pi\)
\(702\) −0.214303 + 0.0887673i −0.00808836 + 0.00335031i
\(703\) 10.1634 24.5367i 0.383320 0.925417i
\(704\) −12.9148 5.34949i −0.486745 0.201617i
\(705\) 0 0
\(706\) 1.84544 1.84544i 0.0694540 0.0694540i
\(707\) 1.91014 + 0.791208i 0.0718384 + 0.0297564i
\(708\) 0.355350 0.857891i 0.0133549 0.0322415i
\(709\) −4.88749 + 2.02447i −0.183554 + 0.0760304i −0.472567 0.881295i \(-0.656673\pi\)
0.289014 + 0.957325i \(0.406673\pi\)
\(710\) 0 0
\(711\) 12.2211 + 29.5044i 0.458329 + 1.10650i
\(712\) 1.53074 + 1.53074i 0.0573668 + 0.0573668i
\(713\) 20.3958 0.763830
\(714\) 0.0112627 + 0.0212672i 0.000421497 + 0.000795906i
\(715\) 0 0
\(716\) 5.73323 + 5.73323i 0.214261 + 0.214261i
\(717\) −0.109120 0.263440i −0.00407518 0.00983835i
\(718\) 6.21964i 0.232115i
\(719\) −8.27731 + 3.42857i −0.308691 + 0.127864i −0.531651 0.846964i \(-0.678428\pi\)
0.222960 + 0.974828i \(0.428428\pi\)
\(720\) 0 0
\(721\) 3.57785 + 1.48199i 0.133246 + 0.0551923i
\(722\) 2.81573 2.81573i 0.104791 0.104791i
\(723\) 0.208598 0.208598i 0.00775786 0.00775786i
\(724\) 41.0855 + 17.0182i 1.52693 + 0.632476i
\(725\) 0 0
\(726\) 0.0603301 0.0249895i 0.00223906 0.000927449i
\(727\) 29.9868i 1.11215i −0.831133 0.556074i \(-0.812307\pi\)
0.831133 0.556074i \(-0.187693\pi\)
\(728\) 0.315511 + 0.761710i 0.0116936 + 0.0282309i
\(729\) −18.9797 18.9797i −0.702950 0.702950i
\(730\) 0 0
\(731\) 15.7942 + 29.8239i 0.584168 + 1.10308i
\(732\) −1.13546 −0.0419678
\(733\) 19.0696 + 19.0696i 0.704352 + 0.704352i 0.965342 0.260990i \(-0.0840488\pi\)
−0.260990 + 0.965342i \(0.584049\pi\)
\(734\) −5.16205 12.4623i −0.190535 0.459992i
\(735\) 0 0
\(736\) −24.6272 + 10.2009i −0.907770 + 0.376011i
\(737\) −13.2995 + 32.1078i −0.489892 + 1.18270i
\(738\) 3.10200 + 1.28489i 0.114186 + 0.0472974i
\(739\) −24.6401 + 24.6401i −0.906400 + 0.906400i −0.995980 0.0895798i \(-0.971448\pi\)
0.0895798 + 0.995980i \(0.471448\pi\)
\(740\) 0 0
\(741\) 0.279622 + 0.115823i 0.0102722 + 0.00425487i
\(742\) 0.110574 0.266950i 0.00405932 0.00980006i
\(743\) 15.7918 6.54116i 0.579344 0.239972i −0.0737150 0.997279i \(-0.523486\pi\)
0.653059 + 0.757307i \(0.273486\pi\)
\(744\) 0.228844i 0.00838984i
\(745\) 0 0
\(746\) −7.61380 7.61380i −0.278761 0.278761i
\(747\) 46.6781 1.70786
\(748\) 13.6006 16.4431i 0.497286 0.601219i
\(749\) −1.08244 −0.0395516
\(750\) 0 0
\(751\) −12.5831 30.3783i −0.459165 1.10852i −0.968736 0.248093i \(-0.920196\pi\)
0.509572 0.860428i \(-0.329804\pi\)
\(752\) 3.50824i 0.127932i
\(753\) −1.32219 + 0.547669i −0.0481833 + 0.0199582i
\(754\) 1.28979 3.11382i 0.0469713 0.113399i
\(755\) 0 0
\(756\) 0.128492 0.128492i 0.00467319 0.00467319i
\(757\) −12.3728 + 12.3728i −0.449698 + 0.449698i −0.895254 0.445556i \(-0.853006\pi\)
0.445556 + 0.895254i \(0.353006\pi\)
\(758\) −9.99176 4.13872i −0.362917 0.150325i
\(759\) 0.387113 0.934574i 0.0140513 0.0339229i
\(760\) 0 0
\(761\) 10.8439i 0.393092i 0.980495 + 0.196546i \(0.0629724\pi\)
−0.980495 + 0.196546i \(0.937028\pi\)
\(762\) 0.0548261 + 0.132362i 0.00198614 + 0.00479497i
\(763\) 1.08789 + 1.08789i 0.0393843 + 0.0393843i
\(764\) −13.5975 −0.491941
\(765\) 0 0
\(766\) −7.10543 −0.256730
\(767\) 12.8139 + 12.8139i 0.462682 + 0.462682i
\(768\) −0.136939 0.330599i −0.00494135 0.0119295i
\(769\) 14.8775i 0.536497i 0.963350 + 0.268248i \(0.0864448\pi\)
−0.963350 + 0.268248i \(0.913555\pi\)
\(770\) 0 0
\(771\) −0.389187 + 0.939581i −0.0140162 + 0.0338382i
\(772\) −38.3571 15.8880i −1.38050 0.571822i
\(773\) −5.45537 + 5.45537i −0.196216 + 0.196216i −0.798376 0.602160i \(-0.794307\pi\)
0.602160 + 0.798376i \(0.294307\pi\)
\(774\) −6.24901 + 6.24901i −0.224616 + 0.224616i
\(775\) 0 0
\(776\) −4.78623 + 11.5550i −0.171816 + 0.414800i
\(777\) −0.141021 + 0.0584130i −0.00505912 + 0.00209555i
\(778\) 1.33839i 0.0479836i
\(779\) −3.35468 8.09891i −0.120194 0.290173i
\(780\) 0 0
\(781\) 16.2933 0.583019
\(782\) −0.942965 9.96650i −0.0337204 0.356401i
\(783\) −1.53722 −0.0549358
\(784\) 15.8237 + 15.8237i 0.565131 + 0.565131i
\(785\) 0 0
\(786\) 0.338459i 0.0120724i
\(787\) 35.3404 14.6385i 1.25975 0.521805i 0.349917 0.936781i \(-0.386210\pi\)
0.909833 + 0.414975i \(0.136210\pi\)
\(788\) −3.20734 + 7.74321i −0.114257 + 0.275840i
\(789\) 0.801792 + 0.332113i 0.0285446 + 0.0118235i
\(790\) 0 0
\(791\) 2.32487 2.32487i 0.0826627 0.0826627i
\(792\) 10.6835 + 4.42523i 0.379620 + 0.157244i
\(793\) 8.47987 20.4722i 0.301129 0.726990i
\(794\) 1.72134 0.713003i 0.0610881 0.0253035i
\(795\) 0 0
\(796\) 0.285843 + 0.690085i 0.0101314 + 0.0244594i
\(797\) 18.8205 + 18.8205i 0.666657 + 0.666657i 0.956941 0.290284i \(-0.0937496\pi\)
−0.290284 + 0.956941i \(0.593750\pi\)
\(798\) 0.0164535 0.000582448
\(799\) 4.26966 + 1.31312i 0.151050 + 0.0464549i
\(800\) 0 0
\(801\) 3.29042 + 3.29042i 0.116261 + 0.116261i
\(802\) 0.0544211 + 0.131384i 0.00192168 + 0.00463934i
\(803\) 0.599580i 0.0211587i
\(804\) −1.17691 + 0.487492i −0.0415064 + 0.0171925i
\(805\) 0 0
\(806\) 1.99384 + 0.825876i 0.0702300 + 0.0290902i
\(807\) 0.0458831 0.0458831i 0.00161516 0.00161516i
\(808\) −6.82368 + 6.82368i −0.240056 + 0.240056i
\(809\) 15.1856 + 6.29009i 0.533898 + 0.221148i 0.633309 0.773899i \(-0.281696\pi\)
−0.0994117 + 0.995046i \(0.531696\pi\)
\(810\) 0 0
\(811\) −3.36428 + 1.39353i −0.118136 + 0.0489335i −0.440968 0.897523i \(-0.645365\pi\)
0.322833 + 0.946456i \(0.395365\pi\)
\(812\) 2.64031i 0.0926566i
\(813\) 0.0184433 + 0.0445261i 0.000646835 + 0.00156160i
\(814\) −6.64143 6.64143i −0.232782 0.232782i
\(815\) 0 0
\(816\) 0.720914 0.0682081i 0.0252370 0.00238776i
\(817\) 23.0734 0.807236
\(818\) 0.132739 + 0.132739i 0.00464111 + 0.00464111i
\(819\) 0.678211 + 1.63735i 0.0236986 + 0.0572135i
\(820\) 0 0
\(821\) 32.8228 13.5957i 1.14552 0.474492i 0.272494 0.962158i \(-0.412152\pi\)
0.873030 + 0.487666i \(0.162152\pi\)
\(822\) 0.104492 0.252265i 0.00364457 0.00879876i
\(823\) −4.63438 1.91962i −0.161544 0.0669138i 0.300446 0.953799i \(-0.402864\pi\)
−0.461990 + 0.886885i \(0.652864\pi\)
\(824\) −12.7813 + 12.7813i −0.445257 + 0.445257i
\(825\) 0 0
\(826\) 0.910152 + 0.376997i 0.0316682 + 0.0131174i
\(827\) −14.9585 + 36.1131i −0.520159 + 1.25578i 0.417645 + 0.908610i \(0.362856\pi\)
−0.937804 + 0.347165i \(0.887144\pi\)
\(828\) −34.9017 + 14.4568i −1.21292 + 0.502407i
\(829\) 16.3998i 0.569587i 0.958589 + 0.284794i \(0.0919250\pi\)
−0.958589 + 0.284794i \(0.908075\pi\)
\(830\) 0 0
\(831\) −0.236964 0.236964i −0.00822019 0.00822019i
\(832\) 9.99964 0.346675
\(833\) −25.1807 + 13.3352i −0.872461 + 0.462039i
\(834\) −0.0707439 −0.00244966
\(835\) 0 0
\(836\) −5.58313 13.4789i −0.193097 0.466177i
\(837\) 0.984314i 0.0340229i
\(838\) 1.52178 0.630344i 0.0525692 0.0217749i
\(839\) −11.4471 + 27.6357i −0.395197 + 0.954090i 0.593591 + 0.804767i \(0.297710\pi\)
−0.988788 + 0.149324i \(0.952290\pi\)
\(840\) 0 0
\(841\) −4.71231 + 4.71231i −0.162493 + 0.162493i
\(842\) 1.92387 1.92387i 0.0663009 0.0663009i
\(843\) 1.39780 + 0.578989i 0.0481429 + 0.0199414i
\(844\) −1.39573 + 3.36959i −0.0480431 + 0.115986i
\(845\) 0 0
\(846\) 1.16976i 0.0402173i
\(847\) −0.382043 0.922334i −0.0131272 0.0316918i
\(848\) −6.14788 6.14788i −0.211119 0.211119i
\(849\) 1.61150 0.0553064
\(850\) 0 0
\(851\) 63.4972 2.17666
\(852\) 0.422305 + 0.422305i 0.0144679 + 0.0144679i
\(853\) 13.7430 + 33.1784i 0.470550 + 1.13601i 0.963921 + 0.266189i \(0.0857646\pi\)
−0.493371 + 0.869819i \(0.664235\pi\)
\(854\) 1.20463i 0.0412215i
\(855\) 0 0
\(856\) 1.93343 4.66771i 0.0660832 0.159539i
\(857\) −19.4676 8.06374i −0.665000 0.275452i 0.0245406 0.999699i \(-0.492188\pi\)
−0.689541 + 0.724247i \(0.742188\pi\)
\(858\) 0.0756862 0.0756862i 0.00258389 0.00258389i
\(859\) −11.2104 + 11.2104i −0.382494 + 0.382494i −0.872000 0.489506i \(-0.837177\pi\)
0.489506 + 0.872000i \(0.337177\pi\)
\(860\) 0 0
\(861\) −0.0192806 + 0.0465475i −0.000657081 + 0.00158633i
\(862\) 6.95238 2.87977i 0.236799 0.0980853i
\(863\) 23.8125i 0.810587i 0.914187 + 0.405294i \(0.132831\pi\)
−0.914187 + 0.405294i \(0.867169\pi\)
\(864\) 0.492301 + 1.18852i 0.0167484 + 0.0404343i
\(865\) 0 0
\(866\) −11.8347 −0.402160
\(867\) −0.186823 + 0.902908i −0.00634486 + 0.0306644i
\(868\) −1.69064 −0.0573841
\(869\) −20.8506 20.8506i −0.707308 0.707308i
\(870\) 0 0
\(871\) 24.8603i 0.842359i
\(872\) −6.63435 + 2.74804i −0.224667 + 0.0930603i
\(873\) −10.2883 + 24.8382i −0.348207 + 0.840645i
\(874\) −6.32351 2.61929i −0.213896 0.0885987i
\(875\) 0 0
\(876\) −0.0155405 + 0.0155405i −0.000525065 + 0.000525065i
\(877\) −16.5557 6.85759i −0.559046 0.231564i 0.0852252 0.996362i \(-0.472839\pi\)
−0.644271 + 0.764797i \(0.722839\pi\)
\(878\) −3.31099 + 7.99343i −0.111740 + 0.269765i
\(879\) −1.12557 + 0.466228i −0.0379646 + 0.0157255i
\(880\) 0 0
\(881\) −12.9301 31.2159i −0.435625 1.05169i −0.977444 0.211196i \(-0.932264\pi\)
0.541819 0.840495i \(-0.317736\pi\)
\(882\) −5.27613 5.27613i −0.177657 0.177657i
\(883\) −26.0211 −0.875680 −0.437840 0.899053i \(-0.644256\pi\)
−0.437840 + 0.899053i \(0.644256\pi\)
\(884\) −4.48716 + 14.5901i −0.150920 + 0.490720i
\(885\) 0 0
\(886\) −2.13189 2.13189i −0.0716222 0.0716222i
\(887\) 11.3477 + 27.3959i 0.381020 + 0.919863i 0.991769 + 0.128039i \(0.0408683\pi\)
−0.610749 + 0.791824i \(0.709132\pi\)
\(888\) 0.712447i 0.0239082i
\(889\) 2.02357 0.838189i 0.0678683 0.0281120i
\(890\) 0 0
\(891\) 22.9422 + 9.50298i 0.768593 + 0.318362i
\(892\) −31.3823 + 31.3823i −1.05076 + 1.05076i
\(893\) 2.15957 2.15957i 0.0722674 0.0722674i
\(894\) −0.232110 0.0961433i −0.00776293 0.00321551i
\(895\) 0 0
\(896\) 2.68527 1.11228i 0.0897087 0.0371586i
\(897\) 0.723619i 0.0241609i
\(898\) 3.39095 + 8.18648i 0.113157 + 0.273186i
\(899\) 10.1131 + 10.1131i 0.337290 + 0.337290i
\(900\) 0 0
\(901\) 9.78332 5.18106i 0.325930 0.172606i
\(902\) −3.10018 −0.103225
\(903\) −0.0937705 0.0937705i −0.00312049 0.00312049i
\(904\) 5.87267 + 14.1779i 0.195322 + 0.471549i
\(905\) 0 0
\(906\) 0.345949 0.143297i 0.0114934 0.00476072i
\(907\) 2.30095 5.55499i 0.0764018 0.184450i −0.881064 0.472997i \(-0.843172\pi\)
0.957466 + 0.288547i \(0.0931721\pi\)
\(908\) 35.5244 + 14.7147i 1.17892 + 0.488324i
\(909\) −14.6679 + 14.6679i −0.486505 + 0.486505i
\(910\) 0 0
\(911\) −33.5802 13.9094i −1.11256 0.460839i −0.250744 0.968054i \(-0.580675\pi\)
−0.861820 + 0.507215i \(0.830675\pi\)
\(912\) 0.189462 0.457403i 0.00627373 0.0151461i
\(913\) −39.8190 + 16.4936i −1.31782 + 0.545858i
\(914\) 2.74173i 0.0906883i
\(915\) 0 0
\(916\) −35.1724 35.1724i −1.16213 1.16213i
\(917\) −5.17440 −0.170874
\(918\) −0.480989 + 0.0455080i −0.0158750 + 0.00150199i
\(919\) 31.4827 1.03852 0.519259 0.854617i \(-0.326208\pi\)
0.519259 + 0.854617i \(0.326208\pi\)
\(920\) 0 0
\(921\) 0.114956 + 0.277529i 0.00378794 + 0.00914489i
\(922\) 2.60127i 0.0856684i
\(923\) −10.7680 + 4.46025i −0.354433 + 0.146811i
\(924\) −0.0320884 + 0.0774682i −0.00105563 + 0.00254852i
\(925\) 0 0
\(926\) −5.86821 + 5.86821i −0.192841 + 0.192841i
\(927\) −27.4742 + 27.4742i −0.902371 + 0.902371i
\(928\) −17.2692 7.15312i −0.566888 0.234813i
\(929\) −16.5321 + 39.9121i −0.542402 + 1.30947i 0.380622 + 0.924731i \(0.375710\pi\)
−0.923024 + 0.384743i \(0.874290\pi\)
\(930\) 0 0
\(931\) 19.4812i 0.638471i
\(932\) −16.8184 40.6032i −0.550905 1.33000i
\(933\) 0.865552 + 0.865552i 0.0283369 + 0.0283369i
\(934\) 10.7732 0.352511
\(935\) 0 0
\(936\) −8.27195 −0.270377
\(937\) −8.15745 8.15745i −0.266492 0.266492i 0.561193 0.827685i \(-0.310343\pi\)
−0.827685 + 0.561193i \(0.810343\pi\)
\(938\) −0.517188 1.24860i −0.0168868 0.0407683i
\(939\) 0.660917i 0.0215682i
\(940\) 0 0
\(941\) −10.4367 + 25.1965i −0.340227 + 0.821382i 0.657465 + 0.753485i \(0.271629\pi\)
−0.997692 + 0.0678965i \(0.978371\pi\)
\(942\) 0.0487801 + 0.0202054i 0.00158934 + 0.000658327i
\(943\) 14.8201 14.8201i 0.482608 0.482608i
\(944\) 20.9608 20.9608i 0.682217 0.682217i
\(945\) 0 0
\(946\) 3.12268 7.53882i 0.101527 0.245108i
\(947\) 21.0575 8.72231i 0.684278 0.283437i −0.0133362 0.999911i \(-0.504245\pi\)
0.697614 + 0.716474i \(0.254245\pi\)
\(948\) 1.08085i 0.0351045i
\(949\) −0.164134 0.396254i −0.00532801 0.0128630i
\(950\) 0 0
\(951\) −1.19198 −0.0386527
\(952\) 0.161752 + 1.70960i 0.00524240 + 0.0554086i
\(953\) 28.9548 0.937938 0.468969 0.883215i \(-0.344626\pi\)
0.468969 + 0.883215i \(0.344626\pi\)
\(954\) 2.04990 + 2.04990i 0.0663681 + 0.0663681i
\(955\) 0 0
\(956\) 9.83243i 0.318003i
\(957\) 0.655346 0.271453i 0.0211843 0.00877483i
\(958\) −1.33139 + 3.21425i −0.0430152 + 0.103848i
\(959\) −3.85667 1.59748i −0.124538 0.0515854i
\(960\) 0 0
\(961\) 15.4447 15.4447i 0.498216 0.498216i
\(962\) 6.20731 + 2.57115i 0.200132 + 0.0828972i
\(963\) 4.15603 10.0335i 0.133926 0.323326i
\(964\) 9.39800 3.89278i 0.302689 0.125378i
\(965\) 0 0
\(966\) 0.0150540 + 0.0363436i 0.000484355 + 0.00116934i
\(967\) −35.7870 35.7870i −1.15083 1.15083i −0.986386 0.164447i \(-0.947416\pi\)
−0.164447 0.986386i \(-0.552584\pi\)
\(968\) 4.65968 0.149768
\(969\) 0.485761 + 0.401787i 0.0156049 + 0.0129073i
\(970\) 0 0
\(971\) 23.2222 + 23.2222i 0.745236 + 0.745236i 0.973580 0.228344i \(-0.0733312\pi\)
−0.228344 + 0.973580i \(0.573331\pi\)
\(972\) 1.04671 + 2.52697i 0.0335731 + 0.0810527i
\(973\) 1.08154i 0.0346727i
\(974\) 1.60761 0.665895i 0.0515112 0.0213366i
\(975\) 0 0
\(976\) −33.4883 13.8713i −1.07193 0.444010i
\(977\) 15.2966 15.2966i 0.489381 0.489381i −0.418730 0.908111i \(-0.637525\pi\)
0.908111 + 0.418730i \(0.137525\pi\)
\(978\) 0.236338 0.236338i 0.00755727 0.00755727i
\(979\) −3.96956 1.64425i −0.126868 0.0525503i
\(980\) 0 0
\(981\) −14.2610 + 5.90708i −0.455317 + 0.188599i
\(982\) 7.73637i 0.246878i
\(983\) −1.95570 4.72148i −0.0623771 0.150592i 0.889618 0.456706i \(-0.150971\pi\)
−0.951995 + 0.306115i \(0.900971\pi\)
\(984\) −0.166283 0.166283i −0.00530092 0.00530092i
\(985\) 0 0
\(986\) 4.47423 5.40935i 0.142489 0.172269i
\(987\) −0.0175531 −0.000558720
\(988\) 7.37963 + 7.37963i 0.234777 + 0.234777i
\(989\) 21.1108 + 50.9661i 0.671286 + 1.62063i
\(990\) 0 0
\(991\) 2.32187 0.961750i 0.0737566 0.0305510i −0.345500 0.938419i \(-0.612291\pi\)
0.419257 + 0.907868i \(0.362291\pi\)
\(992\) 4.58029 11.0578i 0.145424 0.351085i
\(993\) −0.724673 0.300170i −0.0229968 0.00952559i
\(994\) −0.448030 + 0.448030i −0.0142107 + 0.0142107i
\(995\) 0 0
\(996\) −1.45957 0.604572i −0.0462481 0.0191566i
\(997\) −13.7947 + 33.3033i −0.436882 + 1.05473i 0.540138 + 0.841576i \(0.318372\pi\)
−0.977020 + 0.213149i \(0.931628\pi\)
\(998\) −6.20336 + 2.56951i −0.196364 + 0.0813366i
\(999\) 3.06441i 0.0969535i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.b.151.4 24
5.2 odd 4 425.2.n.f.49.3 24
5.3 odd 4 425.2.n.c.49.4 24
5.4 even 2 85.2.l.a.66.3 24
15.14 odd 2 765.2.be.b.406.4 24
17.5 odd 16 7225.2.a.bq.1.5 12
17.8 even 8 inner 425.2.m.b.76.4 24
17.12 odd 16 7225.2.a.bs.1.5 12
85.8 odd 8 425.2.n.f.399.3 24
85.14 odd 16 1445.2.d.j.866.9 24
85.29 odd 16 1445.2.a.p.1.8 12
85.39 odd 16 1445.2.a.q.1.8 12
85.42 odd 8 425.2.n.c.399.4 24
85.54 odd 16 1445.2.d.j.866.10 24
85.59 even 8 85.2.l.a.76.3 yes 24
255.59 odd 8 765.2.be.b.586.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.3 24 5.4 even 2
85.2.l.a.76.3 yes 24 85.59 even 8
425.2.m.b.76.4 24 17.8 even 8 inner
425.2.m.b.151.4 24 1.1 even 1 trivial
425.2.n.c.49.4 24 5.3 odd 4
425.2.n.c.399.4 24 85.42 odd 8
425.2.n.f.49.3 24 5.2 odd 4
425.2.n.f.399.3 24 85.8 odd 8
765.2.be.b.406.4 24 15.14 odd 2
765.2.be.b.586.4 24 255.59 odd 8
1445.2.a.p.1.8 12 85.29 odd 16
1445.2.a.q.1.8 12 85.39 odd 16
1445.2.d.j.866.9 24 85.14 odd 16
1445.2.d.j.866.10 24 85.54 odd 16
7225.2.a.bq.1.5 12 17.5 odd 16
7225.2.a.bs.1.5 12 17.12 odd 16