Properties

Label 7225.2.a.bq.1.5
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.360254\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.360254 q^{2} +0.0542373 q^{3} -1.87022 q^{4} -0.0195392 q^{6} +0.298718 q^{7} +1.39426 q^{8} -2.99706 q^{9} -2.76730 q^{11} -0.101435 q^{12} +1.97956 q^{13} -0.107615 q^{14} +3.23814 q^{16} +1.07970 q^{18} +2.81896 q^{19} +0.0162017 q^{21} +0.996933 q^{22} -6.73975 q^{23} +0.0756210 q^{24} -0.713144 q^{26} -0.325264 q^{27} -0.558668 q^{28} +4.72608 q^{29} +3.02620 q^{31} -3.95508 q^{32} -0.150091 q^{33} +5.60515 q^{36} -9.42129 q^{37} -1.01554 q^{38} +0.107366 q^{39} -3.10972 q^{41} -0.00583672 q^{42} +8.18506 q^{43} +5.17546 q^{44} +2.42803 q^{46} -1.08341 q^{47} +0.175628 q^{48} -6.91077 q^{49} -3.70220 q^{52} -2.68500 q^{53} +0.117178 q^{54} +0.416492 q^{56} +0.152893 q^{57} -1.70259 q^{58} -9.15435 q^{59} +11.1939 q^{61} -1.09020 q^{62} -0.895276 q^{63} -5.05145 q^{64} +0.0540709 q^{66} -12.5585 q^{67} -0.365546 q^{69} +5.88778 q^{71} -4.17869 q^{72} -0.216666 q^{73} +3.39406 q^{74} -5.27208 q^{76} -0.826644 q^{77} -0.0386790 q^{78} -10.6556 q^{79} +8.97353 q^{81} +1.12029 q^{82} +15.5747 q^{83} -0.0303006 q^{84} -2.94870 q^{86} +0.256329 q^{87} -3.85835 q^{88} +1.55264 q^{89} +0.591330 q^{91} +12.6048 q^{92} +0.164133 q^{93} +0.390304 q^{94} -0.214513 q^{96} -8.97035 q^{97} +2.48963 q^{98} +8.29377 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} - 8 q^{3} + 12 q^{4} + 8 q^{6} - 16 q^{7} + 12 q^{8} + 12 q^{9} + 16 q^{11} - 16 q^{12} + 8 q^{13} - 16 q^{14} + 12 q^{16} - 4 q^{18} + 16 q^{21} - 16 q^{22} - 16 q^{23} + 16 q^{26} - 32 q^{27}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.360254 −0.254738 −0.127369 0.991855i \(-0.540653\pi\)
−0.127369 + 0.991855i \(0.540653\pi\)
\(3\) 0.0542373 0.0313139 0.0156569 0.999877i \(-0.495016\pi\)
0.0156569 + 0.999877i \(0.495016\pi\)
\(4\) −1.87022 −0.935108
\(5\) 0 0
\(6\) −0.0195392 −0.00797685
\(7\) 0.298718 0.112905 0.0564524 0.998405i \(-0.482021\pi\)
0.0564524 + 0.998405i \(0.482021\pi\)
\(8\) 1.39426 0.492946
\(9\) −2.99706 −0.999019
\(10\) 0 0
\(11\) −2.76730 −0.834373 −0.417187 0.908821i \(-0.636984\pi\)
−0.417187 + 0.908821i \(0.636984\pi\)
\(12\) −0.101435 −0.0292819
\(13\) 1.97956 0.549030 0.274515 0.961583i \(-0.411483\pi\)
0.274515 + 0.961583i \(0.411483\pi\)
\(14\) −0.107615 −0.0287612
\(15\) 0 0
\(16\) 3.23814 0.809536
\(17\) 0 0
\(18\) 1.07970 0.254489
\(19\) 2.81896 0.646715 0.323357 0.946277i \(-0.395188\pi\)
0.323357 + 0.946277i \(0.395188\pi\)
\(20\) 0 0
\(21\) 0.0162017 0.00353549
\(22\) 0.996933 0.212547
\(23\) −6.73975 −1.40534 −0.702668 0.711518i \(-0.748008\pi\)
−0.702668 + 0.711518i \(0.748008\pi\)
\(24\) 0.0756210 0.0154361
\(25\) 0 0
\(26\) −0.713144 −0.139859
\(27\) −0.325264 −0.0625971
\(28\) −0.558668 −0.105578
\(29\) 4.72608 0.877610 0.438805 0.898582i \(-0.355402\pi\)
0.438805 + 0.898582i \(0.355402\pi\)
\(30\) 0 0
\(31\) 3.02620 0.543521 0.271761 0.962365i \(-0.412394\pi\)
0.271761 + 0.962365i \(0.412394\pi\)
\(32\) −3.95508 −0.699166
\(33\) −0.150091 −0.0261275
\(34\) 0 0
\(35\) 0 0
\(36\) 5.60515 0.934191
\(37\) −9.42129 −1.54885 −0.774425 0.632665i \(-0.781961\pi\)
−0.774425 + 0.632665i \(0.781961\pi\)
\(38\) −1.01554 −0.164743
\(39\) 0.107366 0.0171923
\(40\) 0 0
\(41\) −3.10972 −0.485657 −0.242828 0.970069i \(-0.578075\pi\)
−0.242828 + 0.970069i \(0.578075\pi\)
\(42\) −0.00583672 −0.000900625 0
\(43\) 8.18506 1.24821 0.624105 0.781341i \(-0.285464\pi\)
0.624105 + 0.781341i \(0.285464\pi\)
\(44\) 5.17546 0.780229
\(45\) 0 0
\(46\) 2.42803 0.357993
\(47\) −1.08341 −0.158032 −0.0790159 0.996873i \(-0.525178\pi\)
−0.0790159 + 0.996873i \(0.525178\pi\)
\(48\) 0.175628 0.0253497
\(49\) −6.91077 −0.987252
\(50\) 0 0
\(51\) 0 0
\(52\) −3.70220 −0.513403
\(53\) −2.68500 −0.368813 −0.184406 0.982850i \(-0.559036\pi\)
−0.184406 + 0.982850i \(0.559036\pi\)
\(54\) 0.117178 0.0159459
\(55\) 0 0
\(56\) 0.416492 0.0556560
\(57\) 0.152893 0.0202512
\(58\) −1.70259 −0.223561
\(59\) −9.15435 −1.19179 −0.595897 0.803061i \(-0.703203\pi\)
−0.595897 + 0.803061i \(0.703203\pi\)
\(60\) 0 0
\(61\) 11.1939 1.43323 0.716616 0.697468i \(-0.245690\pi\)
0.716616 + 0.697468i \(0.245690\pi\)
\(62\) −1.09020 −0.138456
\(63\) −0.895276 −0.112794
\(64\) −5.05145 −0.631432
\(65\) 0 0
\(66\) 0.0540709 0.00665567
\(67\) −12.5585 −1.53427 −0.767133 0.641488i \(-0.778317\pi\)
−0.767133 + 0.641488i \(0.778317\pi\)
\(68\) 0 0
\(69\) −0.365546 −0.0440066
\(70\) 0 0
\(71\) 5.88778 0.698750 0.349375 0.936983i \(-0.386394\pi\)
0.349375 + 0.936983i \(0.386394\pi\)
\(72\) −4.17869 −0.492463
\(73\) −0.216666 −0.0253588 −0.0126794 0.999920i \(-0.504036\pi\)
−0.0126794 + 0.999920i \(0.504036\pi\)
\(74\) 3.39406 0.394552
\(75\) 0 0
\(76\) −5.27208 −0.604749
\(77\) −0.826644 −0.0942048
\(78\) −0.0386790 −0.00437953
\(79\) −10.6556 −1.19885 −0.599423 0.800432i \(-0.704603\pi\)
−0.599423 + 0.800432i \(0.704603\pi\)
\(80\) 0 0
\(81\) 8.97353 0.997059
\(82\) 1.12029 0.123715
\(83\) 15.5747 1.70954 0.854770 0.519007i \(-0.173698\pi\)
0.854770 + 0.519007i \(0.173698\pi\)
\(84\) −0.0303006 −0.00330607
\(85\) 0 0
\(86\) −2.94870 −0.317967
\(87\) 0.256329 0.0274814
\(88\) −3.85835 −0.411301
\(89\) 1.55264 0.164579 0.0822897 0.996608i \(-0.473777\pi\)
0.0822897 + 0.996608i \(0.473777\pi\)
\(90\) 0 0
\(91\) 0.591330 0.0619882
\(92\) 12.6048 1.31414
\(93\) 0.164133 0.0170198
\(94\) 0.390304 0.0402568
\(95\) 0 0
\(96\) −0.214513 −0.0218936
\(97\) −8.97035 −0.910801 −0.455401 0.890287i \(-0.650504\pi\)
−0.455401 + 0.890287i \(0.650504\pi\)
\(98\) 2.48963 0.251491
\(99\) 8.29377 0.833555
\(100\) 0 0
\(101\) 6.92132 0.688697 0.344349 0.938842i \(-0.388100\pi\)
0.344349 + 0.938842i \(0.388100\pi\)
\(102\) 0 0
\(103\) −12.9642 −1.27740 −0.638699 0.769457i \(-0.720527\pi\)
−0.638699 + 0.769457i \(0.720527\pi\)
\(104\) 2.76002 0.270643
\(105\) 0 0
\(106\) 0.967283 0.0939508
\(107\) −3.62363 −0.350309 −0.175155 0.984541i \(-0.556043\pi\)
−0.175155 + 0.984541i \(0.556043\pi\)
\(108\) 0.608314 0.0585351
\(109\) 5.15037 0.493316 0.246658 0.969103i \(-0.420668\pi\)
0.246658 + 0.969103i \(0.420668\pi\)
\(110\) 0 0
\(111\) −0.510985 −0.0485005
\(112\) 0.967293 0.0914006
\(113\) −11.0065 −1.03541 −0.517704 0.855560i \(-0.673213\pi\)
−0.517704 + 0.855560i \(0.673213\pi\)
\(114\) −0.0550804 −0.00515875
\(115\) 0 0
\(116\) −8.83879 −0.820661
\(117\) −5.93285 −0.548492
\(118\) 3.29789 0.303596
\(119\) 0 0
\(120\) 0 0
\(121\) −3.34204 −0.303822
\(122\) −4.03265 −0.365099
\(123\) −0.168663 −0.0152078
\(124\) −5.65965 −0.508251
\(125\) 0 0
\(126\) 0.322527 0.0287330
\(127\) −7.33231 −0.650637 −0.325319 0.945604i \(-0.605472\pi\)
−0.325319 + 0.945604i \(0.605472\pi\)
\(128\) 9.72997 0.860016
\(129\) 0.443935 0.0390863
\(130\) 0 0
\(131\) 17.3220 1.51343 0.756716 0.653744i \(-0.226802\pi\)
0.756716 + 0.653744i \(0.226802\pi\)
\(132\) 0.280703 0.0244320
\(133\) 0.842076 0.0730173
\(134\) 4.52426 0.390836
\(135\) 0 0
\(136\) 0 0
\(137\) 13.9745 1.19392 0.596959 0.802272i \(-0.296375\pi\)
0.596959 + 0.802272i \(0.296375\pi\)
\(138\) 0.131690 0.0112102
\(139\) 3.62061 0.307096 0.153548 0.988141i \(-0.450930\pi\)
0.153548 + 0.988141i \(0.450930\pi\)
\(140\) 0 0
\(141\) −0.0587613 −0.00494859
\(142\) −2.12110 −0.177999
\(143\) −5.47803 −0.458096
\(144\) −9.70491 −0.808742
\(145\) 0 0
\(146\) 0.0780548 0.00645986
\(147\) −0.374821 −0.0309147
\(148\) 17.6199 1.44834
\(149\) 12.8580 1.05336 0.526682 0.850062i \(-0.323436\pi\)
0.526682 + 0.850062i \(0.323436\pi\)
\(150\) 0 0
\(151\) 19.1642 1.55956 0.779779 0.626055i \(-0.215331\pi\)
0.779779 + 0.626055i \(0.215331\pi\)
\(152\) 3.93038 0.318796
\(153\) 0 0
\(154\) 0.297802 0.0239976
\(155\) 0 0
\(156\) −0.200797 −0.0160766
\(157\) 2.70222 0.215661 0.107830 0.994169i \(-0.465610\pi\)
0.107830 + 0.994169i \(0.465610\pi\)
\(158\) 3.83872 0.305392
\(159\) −0.145627 −0.0115490
\(160\) 0 0
\(161\) −2.01329 −0.158669
\(162\) −3.23276 −0.253989
\(163\) 17.1057 1.33983 0.669913 0.742440i \(-0.266332\pi\)
0.669913 + 0.742440i \(0.266332\pi\)
\(164\) 5.81585 0.454142
\(165\) 0 0
\(166\) −5.61084 −0.435486
\(167\) −8.85257 −0.685032 −0.342516 0.939512i \(-0.611279\pi\)
−0.342516 + 0.939512i \(0.611279\pi\)
\(168\) 0.0225894 0.00174281
\(169\) −9.08135 −0.698566
\(170\) 0 0
\(171\) −8.44860 −0.646081
\(172\) −15.3078 −1.16721
\(173\) 19.1849 1.45860 0.729301 0.684193i \(-0.239845\pi\)
0.729301 + 0.684193i \(0.239845\pi\)
\(174\) −0.0923438 −0.00700057
\(175\) 0 0
\(176\) −8.96092 −0.675455
\(177\) −0.496507 −0.0373197
\(178\) −0.559345 −0.0419247
\(179\) 4.33533 0.324038 0.162019 0.986788i \(-0.448199\pi\)
0.162019 + 0.986788i \(0.448199\pi\)
\(180\) 0 0
\(181\) −23.7783 −1.76743 −0.883715 0.468025i \(-0.844966\pi\)
−0.883715 + 0.468025i \(0.844966\pi\)
\(182\) −0.213029 −0.0157908
\(183\) 0.607127 0.0448801
\(184\) −9.39699 −0.692755
\(185\) 0 0
\(186\) −0.0591296 −0.00433559
\(187\) 0 0
\(188\) 2.02621 0.147777
\(189\) −0.0971623 −0.00706752
\(190\) 0 0
\(191\) −7.27055 −0.526079 −0.263039 0.964785i \(-0.584725\pi\)
−0.263039 + 0.964785i \(0.584725\pi\)
\(192\) −0.273977 −0.0197726
\(193\) −22.1992 −1.59794 −0.798968 0.601373i \(-0.794620\pi\)
−0.798968 + 0.601373i \(0.794620\pi\)
\(194\) 3.23161 0.232016
\(195\) 0 0
\(196\) 12.9246 0.923188
\(197\) −4.48140 −0.319286 −0.159643 0.987175i \(-0.551034\pi\)
−0.159643 + 0.987175i \(0.551034\pi\)
\(198\) −2.98787 −0.212338
\(199\) −0.399388 −0.0283119 −0.0141559 0.999900i \(-0.504506\pi\)
−0.0141559 + 0.999900i \(0.504506\pi\)
\(200\) 0 0
\(201\) −0.681139 −0.0480438
\(202\) −2.49344 −0.175438
\(203\) 1.41176 0.0990865
\(204\) 0 0
\(205\) 0 0
\(206\) 4.67040 0.325402
\(207\) 20.1994 1.40396
\(208\) 6.41009 0.444460
\(209\) −7.80093 −0.539602
\(210\) 0 0
\(211\) 1.95016 0.134255 0.0671273 0.997744i \(-0.478617\pi\)
0.0671273 + 0.997744i \(0.478617\pi\)
\(212\) 5.02153 0.344880
\(213\) 0.319337 0.0218806
\(214\) 1.30543 0.0892372
\(215\) 0 0
\(216\) −0.453504 −0.0308570
\(217\) 0.903981 0.0613662
\(218\) −1.85544 −0.125666
\(219\) −0.0117514 −0.000794083 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0.184085 0.0123550
\(223\) 23.7306 1.58912 0.794558 0.607188i \(-0.207703\pi\)
0.794558 + 0.607188i \(0.207703\pi\)
\(224\) −1.18145 −0.0789393
\(225\) 0 0
\(226\) 3.96516 0.263758
\(227\) 20.5598 1.36460 0.682301 0.731071i \(-0.260979\pi\)
0.682301 + 0.731071i \(0.260979\pi\)
\(228\) −0.285943 −0.0189370
\(229\) 26.5965 1.75755 0.878773 0.477239i \(-0.158362\pi\)
0.878773 + 0.477239i \(0.158362\pi\)
\(230\) 0 0
\(231\) −0.0448349 −0.00294992
\(232\) 6.58939 0.432615
\(233\) 23.4992 1.53948 0.769741 0.638356i \(-0.220385\pi\)
0.769741 + 0.638356i \(0.220385\pi\)
\(234\) 2.13734 0.139722
\(235\) 0 0
\(236\) 17.1206 1.11446
\(237\) −0.577929 −0.0375405
\(238\) 0 0
\(239\) 5.25737 0.340071 0.170036 0.985438i \(-0.445612\pi\)
0.170036 + 0.985438i \(0.445612\pi\)
\(240\) 0 0
\(241\) −5.43912 −0.350364 −0.175182 0.984536i \(-0.556051\pi\)
−0.175182 + 0.984536i \(0.556051\pi\)
\(242\) 1.20398 0.0773950
\(243\) 1.46249 0.0938189
\(244\) −20.9350 −1.34023
\(245\) 0 0
\(246\) 0.0607615 0.00387401
\(247\) 5.58030 0.355066
\(248\) 4.21932 0.267927
\(249\) 0.844727 0.0535324
\(250\) 0 0
\(251\) 26.3864 1.66550 0.832748 0.553652i \(-0.186766\pi\)
0.832748 + 0.553652i \(0.186766\pi\)
\(252\) 1.67436 0.105475
\(253\) 18.6509 1.17257
\(254\) 2.64150 0.165742
\(255\) 0 0
\(256\) 6.59764 0.412352
\(257\) 18.7509 1.16965 0.584823 0.811161i \(-0.301164\pi\)
0.584823 + 0.811161i \(0.301164\pi\)
\(258\) −0.159930 −0.00995678
\(259\) −2.81431 −0.174873
\(260\) 0 0
\(261\) −14.1643 −0.876750
\(262\) −6.24034 −0.385529
\(263\) −16.0011 −0.986668 −0.493334 0.869840i \(-0.664222\pi\)
−0.493334 + 0.869840i \(0.664222\pi\)
\(264\) −0.209266 −0.0128794
\(265\) 0 0
\(266\) −0.303362 −0.0186003
\(267\) 0.0842109 0.00515362
\(268\) 23.4871 1.43470
\(269\) 1.19638 0.0729447 0.0364724 0.999335i \(-0.488388\pi\)
0.0364724 + 0.999335i \(0.488388\pi\)
\(270\) 0 0
\(271\) 0.888590 0.0539780 0.0269890 0.999636i \(-0.491408\pi\)
0.0269890 + 0.999636i \(0.491408\pi\)
\(272\) 0 0
\(273\) 0.0320721 0.00194109
\(274\) −5.03436 −0.304137
\(275\) 0 0
\(276\) 0.683650 0.0411509
\(277\) −6.17873 −0.371244 −0.185622 0.982621i \(-0.559430\pi\)
−0.185622 + 0.982621i \(0.559430\pi\)
\(278\) −1.30434 −0.0782292
\(279\) −9.06970 −0.542989
\(280\) 0 0
\(281\) 27.8954 1.66410 0.832051 0.554700i \(-0.187167\pi\)
0.832051 + 0.554700i \(0.187167\pi\)
\(282\) 0.0211690 0.00126060
\(283\) −29.7120 −1.76619 −0.883097 0.469190i \(-0.844546\pi\)
−0.883097 + 0.469190i \(0.844546\pi\)
\(284\) −11.0114 −0.653407
\(285\) 0 0
\(286\) 1.97349 0.116695
\(287\) −0.928930 −0.0548330
\(288\) 11.8536 0.698481
\(289\) 0 0
\(290\) 0 0
\(291\) −0.486527 −0.0285207
\(292\) 0.405212 0.0237132
\(293\) −22.4626 −1.31228 −0.656140 0.754639i \(-0.727812\pi\)
−0.656140 + 0.754639i \(0.727812\pi\)
\(294\) 0.135031 0.00787517
\(295\) 0 0
\(296\) −13.1358 −0.763500
\(297\) 0.900104 0.0522293
\(298\) −4.63214 −0.268332
\(299\) −13.3417 −0.771572
\(300\) 0 0
\(301\) 2.44503 0.140929
\(302\) −6.90398 −0.397279
\(303\) 0.375394 0.0215658
\(304\) 9.12821 0.523539
\(305\) 0 0
\(306\) 0 0
\(307\) −5.53854 −0.316101 −0.158050 0.987431i \(-0.550521\pi\)
−0.158050 + 0.987431i \(0.550521\pi\)
\(308\) 1.54600 0.0880917
\(309\) −0.703141 −0.0400003
\(310\) 0 0
\(311\) 22.5689 1.27977 0.639883 0.768473i \(-0.278983\pi\)
0.639883 + 0.768473i \(0.278983\pi\)
\(312\) 0.149696 0.00847487
\(313\) −12.1857 −0.688775 −0.344387 0.938828i \(-0.611913\pi\)
−0.344387 + 0.938828i \(0.611913\pi\)
\(314\) −0.973486 −0.0549370
\(315\) 0 0
\(316\) 19.9282 1.12105
\(317\) 21.9772 1.23436 0.617181 0.786821i \(-0.288275\pi\)
0.617181 + 0.786821i \(0.288275\pi\)
\(318\) 0.0524628 0.00294197
\(319\) −13.0785 −0.732254
\(320\) 0 0
\(321\) −0.196536 −0.0109695
\(322\) 0.725296 0.0404192
\(323\) 0 0
\(324\) −16.7825 −0.932358
\(325\) 0 0
\(326\) −6.16242 −0.341305
\(327\) 0.279342 0.0154476
\(328\) −4.33577 −0.239403
\(329\) −0.323635 −0.0178426
\(330\) 0 0
\(331\) 14.4620 0.794905 0.397452 0.917623i \(-0.369894\pi\)
0.397452 + 0.917623i \(0.369894\pi\)
\(332\) −29.1280 −1.59861
\(333\) 28.2362 1.54733
\(334\) 3.18918 0.174504
\(335\) 0 0
\(336\) 0.0524633 0.00286211
\(337\) 24.2460 1.32076 0.660381 0.750931i \(-0.270395\pi\)
0.660381 + 0.750931i \(0.270395\pi\)
\(338\) 3.27160 0.177951
\(339\) −0.596965 −0.0324227
\(340\) 0 0
\(341\) −8.37441 −0.453500
\(342\) 3.04365 0.164582
\(343\) −4.15540 −0.224370
\(344\) 11.4121 0.615300
\(345\) 0 0
\(346\) −6.91145 −0.371562
\(347\) −21.4962 −1.15398 −0.576989 0.816752i \(-0.695772\pi\)
−0.576989 + 0.816752i \(0.695772\pi\)
\(348\) −0.479392 −0.0256981
\(349\) 24.1362 1.29198 0.645991 0.763345i \(-0.276444\pi\)
0.645991 + 0.763345i \(0.276444\pi\)
\(350\) 0 0
\(351\) −0.643879 −0.0343677
\(352\) 10.9449 0.583366
\(353\) 7.24444 0.385583 0.192791 0.981240i \(-0.438246\pi\)
0.192791 + 0.981240i \(0.438246\pi\)
\(354\) 0.178869 0.00950677
\(355\) 0 0
\(356\) −2.90377 −0.153900
\(357\) 0 0
\(358\) −1.56182 −0.0825449
\(359\) −17.2646 −0.911189 −0.455595 0.890187i \(-0.650573\pi\)
−0.455595 + 0.890187i \(0.650573\pi\)
\(360\) 0 0
\(361\) −11.0534 −0.581760
\(362\) 8.56626 0.450232
\(363\) −0.181263 −0.00951384
\(364\) −1.10591 −0.0579657
\(365\) 0 0
\(366\) −0.218720 −0.0114327
\(367\) −37.4432 −1.95452 −0.977261 0.212042i \(-0.931989\pi\)
−0.977261 + 0.212042i \(0.931989\pi\)
\(368\) −21.8243 −1.13767
\(369\) 9.32001 0.485180
\(370\) 0 0
\(371\) −0.802058 −0.0416408
\(372\) −0.306964 −0.0159153
\(373\) 29.8887 1.54758 0.773789 0.633443i \(-0.218359\pi\)
0.773789 + 0.633443i \(0.218359\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −1.51056 −0.0779012
\(377\) 9.35554 0.481835
\(378\) 0.0350031 0.00180037
\(379\) 30.0204 1.54205 0.771023 0.636807i \(-0.219745\pi\)
0.771023 + 0.636807i \(0.219745\pi\)
\(380\) 0 0
\(381\) −0.397684 −0.0203740
\(382\) 2.61925 0.134012
\(383\) 19.7234 1.00782 0.503908 0.863757i \(-0.331895\pi\)
0.503908 + 0.863757i \(0.331895\pi\)
\(384\) 0.527727 0.0269305
\(385\) 0 0
\(386\) 7.99738 0.407056
\(387\) −24.5311 −1.24699
\(388\) 16.7765 0.851698
\(389\) 3.71513 0.188364 0.0941822 0.995555i \(-0.469976\pi\)
0.0941822 + 0.995555i \(0.469976\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −9.63543 −0.486663
\(393\) 0.939499 0.0473915
\(394\) 1.61444 0.0813345
\(395\) 0 0
\(396\) −15.5111 −0.779464
\(397\) −5.17180 −0.259565 −0.129783 0.991542i \(-0.541428\pi\)
−0.129783 + 0.991542i \(0.541428\pi\)
\(398\) 0.143881 0.00721212
\(399\) 0.0456719 0.00228646
\(400\) 0 0
\(401\) 0.394746 0.0197127 0.00985635 0.999951i \(-0.496863\pi\)
0.00985635 + 0.999951i \(0.496863\pi\)
\(402\) 0.245383 0.0122386
\(403\) 5.99054 0.298410
\(404\) −12.9444 −0.644007
\(405\) 0 0
\(406\) −0.508595 −0.0252411
\(407\) 26.0716 1.29232
\(408\) 0 0
\(409\) 0.521080 0.0257657 0.0128829 0.999917i \(-0.495899\pi\)
0.0128829 + 0.999917i \(0.495899\pi\)
\(410\) 0 0
\(411\) 0.757936 0.0373862
\(412\) 24.2458 1.19451
\(413\) −2.73457 −0.134559
\(414\) −7.27694 −0.357642
\(415\) 0 0
\(416\) −7.82931 −0.383864
\(417\) 0.196372 0.00961638
\(418\) 2.81032 0.137457
\(419\) 4.57224 0.223368 0.111684 0.993744i \(-0.464376\pi\)
0.111684 + 0.993744i \(0.464376\pi\)
\(420\) 0 0
\(421\) 7.55233 0.368078 0.184039 0.982919i \(-0.441083\pi\)
0.184039 + 0.982919i \(0.441083\pi\)
\(422\) −0.702554 −0.0341998
\(423\) 3.24705 0.157877
\(424\) −3.74359 −0.181805
\(425\) 0 0
\(426\) −0.115043 −0.00557383
\(427\) 3.34382 0.161819
\(428\) 6.77697 0.327577
\(429\) −0.297114 −0.0143448
\(430\) 0 0
\(431\) −20.8886 −1.00617 −0.503083 0.864238i \(-0.667801\pi\)
−0.503083 + 0.864238i \(0.667801\pi\)
\(432\) −1.05325 −0.0506746
\(433\) −32.8510 −1.57872 −0.789359 0.613932i \(-0.789587\pi\)
−0.789359 + 0.613932i \(0.789587\pi\)
\(434\) −0.325663 −0.0156323
\(435\) 0 0
\(436\) −9.63230 −0.461304
\(437\) −18.9991 −0.908852
\(438\) 0.00423348 0.000202284 0
\(439\) 24.0164 1.14624 0.573121 0.819471i \(-0.305733\pi\)
0.573121 + 0.819471i \(0.305733\pi\)
\(440\) 0 0
\(441\) 20.7120 0.986284
\(442\) 0 0
\(443\) −8.36893 −0.397620 −0.198810 0.980038i \(-0.563708\pi\)
−0.198810 + 0.980038i \(0.563708\pi\)
\(444\) 0.955653 0.0453533
\(445\) 0 0
\(446\) −8.54904 −0.404809
\(447\) 0.697380 0.0329850
\(448\) −1.50896 −0.0712917
\(449\) −24.5964 −1.16078 −0.580389 0.814339i \(-0.697099\pi\)
−0.580389 + 0.814339i \(0.697099\pi\)
\(450\) 0 0
\(451\) 8.60554 0.405219
\(452\) 20.5846 0.968219
\(453\) 1.03941 0.0488359
\(454\) −7.40676 −0.347617
\(455\) 0 0
\(456\) 0.213173 0.00998274
\(457\) −7.61053 −0.356005 −0.178003 0.984030i \(-0.556964\pi\)
−0.178003 + 0.984030i \(0.556964\pi\)
\(458\) −9.58151 −0.447715
\(459\) 0 0
\(460\) 0 0
\(461\) −7.22066 −0.336299 −0.168150 0.985761i \(-0.553779\pi\)
−0.168150 + 0.985761i \(0.553779\pi\)
\(462\) 0.0161520 0.000751458 0
\(463\) 23.0362 1.07058 0.535292 0.844667i \(-0.320202\pi\)
0.535292 + 0.844667i \(0.320202\pi\)
\(464\) 15.3037 0.710457
\(465\) 0 0
\(466\) −8.46569 −0.392165
\(467\) 29.9045 1.38382 0.691908 0.721985i \(-0.256770\pi\)
0.691908 + 0.721985i \(0.256770\pi\)
\(468\) 11.0957 0.512900
\(469\) −3.75145 −0.173226
\(470\) 0 0
\(471\) 0.146561 0.00675317
\(472\) −12.7636 −0.587491
\(473\) −22.6505 −1.04147
\(474\) 0.208202 0.00956302
\(475\) 0 0
\(476\) 0 0
\(477\) 8.04710 0.368451
\(478\) −1.89399 −0.0866292
\(479\) −9.65729 −0.441253 −0.220627 0.975358i \(-0.570810\pi\)
−0.220627 + 0.975358i \(0.570810\pi\)
\(480\) 0 0
\(481\) −18.6500 −0.850366
\(482\) 1.95947 0.0892512
\(483\) −0.109195 −0.00496855
\(484\) 6.25033 0.284106
\(485\) 0 0
\(486\) −0.526869 −0.0238993
\(487\) 4.83011 0.218873 0.109436 0.993994i \(-0.465095\pi\)
0.109436 + 0.993994i \(0.465095\pi\)
\(488\) 15.6072 0.706507
\(489\) 0.927769 0.0419552
\(490\) 0 0
\(491\) 21.4747 0.969142 0.484571 0.874752i \(-0.338976\pi\)
0.484571 + 0.874752i \(0.338976\pi\)
\(492\) 0.315436 0.0142209
\(493\) 0 0
\(494\) −2.01033 −0.0904490
\(495\) 0 0
\(496\) 9.79927 0.440000
\(497\) 1.75879 0.0788923
\(498\) −0.304317 −0.0136368
\(499\) 18.6381 0.834357 0.417178 0.908825i \(-0.363019\pi\)
0.417178 + 0.908825i \(0.363019\pi\)
\(500\) 0 0
\(501\) −0.480139 −0.0214510
\(502\) −9.50583 −0.424266
\(503\) 18.5788 0.828389 0.414195 0.910188i \(-0.364063\pi\)
0.414195 + 0.910188i \(0.364063\pi\)
\(504\) −1.24825 −0.0556015
\(505\) 0 0
\(506\) −6.71908 −0.298700
\(507\) −0.492548 −0.0218748
\(508\) 13.7130 0.608416
\(509\) 28.4343 1.26033 0.630163 0.776463i \(-0.282988\pi\)
0.630163 + 0.776463i \(0.282988\pi\)
\(510\) 0 0
\(511\) −0.0647220 −0.00286313
\(512\) −21.8368 −0.965058
\(513\) −0.916908 −0.0404825
\(514\) −6.75508 −0.297954
\(515\) 0 0
\(516\) −0.830255 −0.0365499
\(517\) 2.99813 0.131857
\(518\) 1.01387 0.0445468
\(519\) 1.04054 0.0456745
\(520\) 0 0
\(521\) −18.9733 −0.831236 −0.415618 0.909539i \(-0.636435\pi\)
−0.415618 + 0.909539i \(0.636435\pi\)
\(522\) 5.10276 0.223342
\(523\) 24.4504 1.06914 0.534571 0.845124i \(-0.320473\pi\)
0.534571 + 0.845124i \(0.320473\pi\)
\(524\) −32.3959 −1.41522
\(525\) 0 0
\(526\) 5.76445 0.251342
\(527\) 0 0
\(528\) −0.486016 −0.0211511
\(529\) 22.4243 0.974969
\(530\) 0 0
\(531\) 27.4361 1.19063
\(532\) −1.57486 −0.0682791
\(533\) −6.15587 −0.266640
\(534\) −0.0303374 −0.00131283
\(535\) 0 0
\(536\) −17.5099 −0.756311
\(537\) 0.235136 0.0101469
\(538\) −0.431002 −0.0185818
\(539\) 19.1242 0.823737
\(540\) 0 0
\(541\) −10.8105 −0.464780 −0.232390 0.972623i \(-0.574655\pi\)
−0.232390 + 0.972623i \(0.574655\pi\)
\(542\) −0.320119 −0.0137503
\(543\) −1.28967 −0.0553451
\(544\) 0 0
\(545\) 0 0
\(546\) −0.0115541 −0.000494471 0
\(547\) −7.27247 −0.310948 −0.155474 0.987840i \(-0.549691\pi\)
−0.155474 + 0.987840i \(0.549691\pi\)
\(548\) −26.1353 −1.11644
\(549\) −33.5488 −1.43183
\(550\) 0 0
\(551\) 13.3226 0.567564
\(552\) −0.509667 −0.0216929
\(553\) −3.18301 −0.135356
\(554\) 2.22592 0.0945701
\(555\) 0 0
\(556\) −6.77133 −0.287168
\(557\) 18.3930 0.779335 0.389667 0.920956i \(-0.372590\pi\)
0.389667 + 0.920956i \(0.372590\pi\)
\(558\) 3.26740 0.138320
\(559\) 16.2028 0.685305
\(560\) 0 0
\(561\) 0 0
\(562\) −10.0495 −0.423911
\(563\) 0.449134 0.0189288 0.00946438 0.999955i \(-0.496987\pi\)
0.00946438 + 0.999955i \(0.496987\pi\)
\(564\) 0.109896 0.00462747
\(565\) 0 0
\(566\) 10.7039 0.449918
\(567\) 2.68056 0.112573
\(568\) 8.20911 0.344447
\(569\) 14.3259 0.600573 0.300287 0.953849i \(-0.402918\pi\)
0.300287 + 0.953849i \(0.402918\pi\)
\(570\) 0 0
\(571\) 27.9925 1.17145 0.585724 0.810510i \(-0.300810\pi\)
0.585724 + 0.810510i \(0.300810\pi\)
\(572\) 10.2451 0.428370
\(573\) −0.394335 −0.0164736
\(574\) 0.334651 0.0139681
\(575\) 0 0
\(576\) 15.1395 0.630812
\(577\) −6.76924 −0.281807 −0.140904 0.990023i \(-0.545001\pi\)
−0.140904 + 0.990023i \(0.545001\pi\)
\(578\) 0 0
\(579\) −1.20403 −0.0500376
\(580\) 0 0
\(581\) 4.65243 0.193015
\(582\) 0.175274 0.00726533
\(583\) 7.43020 0.307728
\(584\) −0.302089 −0.0125005
\(585\) 0 0
\(586\) 8.09226 0.334288
\(587\) 24.7081 1.01981 0.509907 0.860230i \(-0.329680\pi\)
0.509907 + 0.860230i \(0.329680\pi\)
\(588\) 0.700997 0.0289086
\(589\) 8.53075 0.351503
\(590\) 0 0
\(591\) −0.243059 −0.00999810
\(592\) −30.5075 −1.25385
\(593\) 22.4505 0.921932 0.460966 0.887418i \(-0.347503\pi\)
0.460966 + 0.887418i \(0.347503\pi\)
\(594\) −0.324266 −0.0133048
\(595\) 0 0
\(596\) −24.0472 −0.985010
\(597\) −0.0216617 −0.000886555 0
\(598\) 4.80642 0.196549
\(599\) −19.1639 −0.783018 −0.391509 0.920174i \(-0.628047\pi\)
−0.391509 + 0.920174i \(0.628047\pi\)
\(600\) 0 0
\(601\) 23.2032 0.946477 0.473239 0.880934i \(-0.343085\pi\)
0.473239 + 0.880934i \(0.343085\pi\)
\(602\) −0.880832 −0.0359000
\(603\) 37.6386 1.53276
\(604\) −35.8412 −1.45836
\(605\) 0 0
\(606\) −0.135237 −0.00549364
\(607\) −1.86436 −0.0756720 −0.0378360 0.999284i \(-0.512046\pi\)
−0.0378360 + 0.999284i \(0.512046\pi\)
\(608\) −11.1492 −0.452161
\(609\) 0.0765703 0.00310278
\(610\) 0 0
\(611\) −2.14468 −0.0867643
\(612\) 0 0
\(613\) 0.383092 0.0154729 0.00773647 0.999970i \(-0.497537\pi\)
0.00773647 + 0.999970i \(0.497537\pi\)
\(614\) 1.99528 0.0805230
\(615\) 0 0
\(616\) −1.15256 −0.0464379
\(617\) 11.6676 0.469719 0.234860 0.972029i \(-0.424537\pi\)
0.234860 + 0.972029i \(0.424537\pi\)
\(618\) 0.253310 0.0101896
\(619\) 13.4856 0.542030 0.271015 0.962575i \(-0.412641\pi\)
0.271015 + 0.962575i \(0.412641\pi\)
\(620\) 0 0
\(621\) 2.19220 0.0879699
\(622\) −8.13055 −0.326005
\(623\) 0.463802 0.0185818
\(624\) 0.347666 0.0139178
\(625\) 0 0
\(626\) 4.38994 0.175457
\(627\) −0.423101 −0.0168970
\(628\) −5.05373 −0.201666
\(629\) 0 0
\(630\) 0 0
\(631\) 46.9395 1.86863 0.934316 0.356445i \(-0.116011\pi\)
0.934316 + 0.356445i \(0.116011\pi\)
\(632\) −14.8567 −0.590967
\(633\) 0.105771 0.00420403
\(634\) −7.91738 −0.314439
\(635\) 0 0
\(636\) 0.272354 0.0107995
\(637\) −13.6803 −0.542032
\(638\) 4.71158 0.186533
\(639\) −17.6460 −0.698065
\(640\) 0 0
\(641\) 39.5785 1.56326 0.781628 0.623745i \(-0.214390\pi\)
0.781628 + 0.623745i \(0.214390\pi\)
\(642\) 0.0708028 0.00279436
\(643\) −17.7172 −0.698700 −0.349350 0.936992i \(-0.613598\pi\)
−0.349350 + 0.936992i \(0.613598\pi\)
\(644\) 3.76528 0.148373
\(645\) 0 0
\(646\) 0 0
\(647\) 14.8304 0.583045 0.291522 0.956564i \(-0.405838\pi\)
0.291522 + 0.956564i \(0.405838\pi\)
\(648\) 12.5115 0.491497
\(649\) 25.3328 0.994401
\(650\) 0 0
\(651\) 0.0490294 0.00192162
\(652\) −31.9915 −1.25288
\(653\) 10.1986 0.399102 0.199551 0.979887i \(-0.436052\pi\)
0.199551 + 0.979887i \(0.436052\pi\)
\(654\) −0.100634 −0.00393511
\(655\) 0 0
\(656\) −10.0697 −0.393157
\(657\) 0.649360 0.0253340
\(658\) 0.116591 0.00454518
\(659\) 45.4453 1.77030 0.885148 0.465309i \(-0.154057\pi\)
0.885148 + 0.465309i \(0.154057\pi\)
\(660\) 0 0
\(661\) −7.95091 −0.309254 −0.154627 0.987973i \(-0.549418\pi\)
−0.154627 + 0.987973i \(0.549418\pi\)
\(662\) −5.21001 −0.202493
\(663\) 0 0
\(664\) 21.7152 0.842712
\(665\) 0 0
\(666\) −10.1722 −0.394165
\(667\) −31.8526 −1.23334
\(668\) 16.5562 0.640580
\(669\) 1.28708 0.0497614
\(670\) 0 0
\(671\) −30.9769 −1.19585
\(672\) −0.0640789 −0.00247190
\(673\) −21.9876 −0.847558 −0.423779 0.905766i \(-0.639297\pi\)
−0.423779 + 0.905766i \(0.639297\pi\)
\(674\) −8.73472 −0.336449
\(675\) 0 0
\(676\) 16.9841 0.653234
\(677\) 18.2370 0.700904 0.350452 0.936581i \(-0.386028\pi\)
0.350452 + 0.936581i \(0.386028\pi\)
\(678\) 0.215059 0.00825930
\(679\) −2.67961 −0.102834
\(680\) 0 0
\(681\) 1.11511 0.0427310
\(682\) 3.01692 0.115524
\(683\) −18.2031 −0.696523 −0.348262 0.937397i \(-0.613228\pi\)
−0.348262 + 0.937397i \(0.613228\pi\)
\(684\) 15.8007 0.604156
\(685\) 0 0
\(686\) 1.49700 0.0571558
\(687\) 1.44252 0.0550356
\(688\) 26.5044 1.01047
\(689\) −5.31511 −0.202490
\(690\) 0 0
\(691\) 15.5626 0.592031 0.296015 0.955183i \(-0.404342\pi\)
0.296015 + 0.955183i \(0.404342\pi\)
\(692\) −35.8800 −1.36395
\(693\) 2.47750 0.0941124
\(694\) 7.74411 0.293962
\(695\) 0 0
\(696\) 0.357391 0.0135469
\(697\) 0 0
\(698\) −8.69519 −0.329118
\(699\) 1.27453 0.0482072
\(700\) 0 0
\(701\) 8.07561 0.305011 0.152506 0.988303i \(-0.451266\pi\)
0.152506 + 0.988303i \(0.451266\pi\)
\(702\) 0.231960 0.00875477
\(703\) −26.5583 −1.00166
\(704\) 13.9789 0.526849
\(705\) 0 0
\(706\) −2.60984 −0.0982227
\(707\) 2.06753 0.0777573
\(708\) 0.928575 0.0348980
\(709\) −5.29018 −0.198677 −0.0993385 0.995054i \(-0.531673\pi\)
−0.0993385 + 0.995054i \(0.531673\pi\)
\(710\) 0 0
\(711\) 31.9354 1.19767
\(712\) 2.16479 0.0811289
\(713\) −20.3958 −0.763830
\(714\) 0 0
\(715\) 0 0
\(716\) −8.10801 −0.303010
\(717\) 0.285146 0.0106490
\(718\) 6.21964 0.232115
\(719\) 8.95929 0.334125 0.167063 0.985946i \(-0.446572\pi\)
0.167063 + 0.985946i \(0.446572\pi\)
\(720\) 0 0
\(721\) −3.87263 −0.144224
\(722\) 3.98205 0.148197
\(723\) −0.295003 −0.0109713
\(724\) 44.4707 1.65274
\(725\) 0 0
\(726\) 0.0653008 0.00242354
\(727\) 29.9868 1.11215 0.556074 0.831133i \(-0.312307\pi\)
0.556074 + 0.831133i \(0.312307\pi\)
\(728\) 0.824469 0.0305569
\(729\) −26.8413 −0.994121
\(730\) 0 0
\(731\) 0 0
\(732\) −1.13546 −0.0419678
\(733\) −26.9685 −0.996104 −0.498052 0.867147i \(-0.665951\pi\)
−0.498052 + 0.867147i \(0.665951\pi\)
\(734\) 13.4891 0.497892
\(735\) 0 0
\(736\) 26.6563 0.982564
\(737\) 34.7532 1.28015
\(738\) −3.35758 −0.123594
\(739\) −34.8463 −1.28184 −0.640922 0.767606i \(-0.721448\pi\)
−0.640922 + 0.767606i \(0.721448\pi\)
\(740\) 0 0
\(741\) 0.302660 0.0111185
\(742\) 0.288945 0.0106075
\(743\) 17.0929 0.627077 0.313539 0.949575i \(-0.398486\pi\)
0.313539 + 0.949575i \(0.398486\pi\)
\(744\) 0.228844 0.00838984
\(745\) 0 0
\(746\) −10.7675 −0.394228
\(747\) −46.6781 −1.70786
\(748\) 0 0
\(749\) −1.08244 −0.0395516
\(750\) 0 0
\(751\) 32.8813 1.19985 0.599927 0.800054i \(-0.295196\pi\)
0.599927 + 0.800054i \(0.295196\pi\)
\(752\) −3.50824 −0.127932
\(753\) 1.43113 0.0521532
\(754\) −3.37037 −0.122742
\(755\) 0 0
\(756\) 0.181715 0.00660889
\(757\) 17.4978 0.635968 0.317984 0.948096i \(-0.396994\pi\)
0.317984 + 0.948096i \(0.396994\pi\)
\(758\) −10.8150 −0.392818
\(759\) 1.01158 0.0367179
\(760\) 0 0
\(761\) −10.8439 −0.393092 −0.196546 0.980495i \(-0.562972\pi\)
−0.196546 + 0.980495i \(0.562972\pi\)
\(762\) 0.143268 0.00519004
\(763\) 1.53851 0.0556978
\(764\) 13.5975 0.491941
\(765\) 0 0
\(766\) −7.10543 −0.256730
\(767\) −18.1216 −0.654331
\(768\) 0.357838 0.0129124
\(769\) 14.8775 0.536497 0.268248 0.963350i \(-0.413555\pi\)
0.268248 + 0.963350i \(0.413555\pi\)
\(770\) 0 0
\(771\) 1.01699 0.0366262
\(772\) 41.5174 1.49424
\(773\) −7.71506 −0.277491 −0.138746 0.990328i \(-0.544307\pi\)
−0.138746 + 0.990328i \(0.544307\pi\)
\(774\) 8.83744 0.317655
\(775\) 0 0
\(776\) −12.5070 −0.448976
\(777\) −0.152641 −0.00547595
\(778\) −1.33839 −0.0479836
\(779\) −8.76619 −0.314081
\(780\) 0 0
\(781\) −16.2933 −0.583019
\(782\) 0 0
\(783\) −1.53722 −0.0549358
\(784\) −22.3781 −0.799216
\(785\) 0 0
\(786\) −0.338459 −0.0120724
\(787\) −38.2522 −1.36354 −0.681772 0.731565i \(-0.738790\pi\)
−0.681772 + 0.731565i \(0.738790\pi\)
\(788\) 8.38119 0.298567
\(789\) −0.867854 −0.0308964
\(790\) 0 0
\(791\) −3.28786 −0.116903
\(792\) 11.5637 0.410898
\(793\) 22.1590 0.786888
\(794\) 1.86317 0.0661213
\(795\) 0 0
\(796\) 0.746943 0.0264747
\(797\) 26.6162 0.942796 0.471398 0.881921i \(-0.343750\pi\)
0.471398 + 0.881921i \(0.343750\pi\)
\(798\) −0.0164535 −0.000582448 0
\(799\) 0 0
\(800\) 0 0
\(801\) −4.65335 −0.164418
\(802\) −0.142209 −0.00502158
\(803\) 0.599580 0.0211587
\(804\) 1.27388 0.0449262
\(805\) 0 0
\(806\) −2.15812 −0.0760164
\(807\) 0.0648885 0.00228418
\(808\) 9.65014 0.339491
\(809\) 16.4368 0.577887 0.288943 0.957346i \(-0.406696\pi\)
0.288943 + 0.957346i \(0.406696\pi\)
\(810\) 0 0
\(811\) −3.64147 −0.127869 −0.0639347 0.997954i \(-0.520365\pi\)
−0.0639347 + 0.997954i \(0.520365\pi\)
\(812\) −2.64031 −0.0926566
\(813\) 0.0481947 0.00169026
\(814\) −9.39240 −0.329203
\(815\) 0 0
\(816\) 0 0
\(817\) 23.0734 0.807236
\(818\) −0.187721 −0.00656352
\(819\) −1.77225 −0.0619274
\(820\) 0 0
\(821\) −35.5272 −1.23991 −0.619953 0.784639i \(-0.712848\pi\)
−0.619953 + 0.784639i \(0.712848\pi\)
\(822\) −0.273050 −0.00952371
\(823\) 5.01622 0.174854 0.0874271 0.996171i \(-0.472136\pi\)
0.0874271 + 0.996171i \(0.472136\pi\)
\(824\) −18.0755 −0.629689
\(825\) 0 0
\(826\) 0.985141 0.0342774
\(827\) −39.0885 −1.35924 −0.679621 0.733564i \(-0.737856\pi\)
−0.679621 + 0.733564i \(0.737856\pi\)
\(828\) −37.7773 −1.31285
\(829\) −16.3998 −0.569587 −0.284794 0.958589i \(-0.591925\pi\)
−0.284794 + 0.958589i \(0.591925\pi\)
\(830\) 0 0
\(831\) −0.335118 −0.0116251
\(832\) −9.99964 −0.346675
\(833\) 0 0
\(834\) −0.0707439 −0.00244966
\(835\) 0 0
\(836\) 14.5894 0.504586
\(837\) −0.984314 −0.0340229
\(838\) −1.64717 −0.0569005
\(839\) 29.9127 1.03270 0.516350 0.856378i \(-0.327290\pi\)
0.516350 + 0.856378i \(0.327290\pi\)
\(840\) 0 0
\(841\) −6.66421 −0.229800
\(842\) −2.72076 −0.0937636
\(843\) 1.51297 0.0521095
\(844\) −3.64722 −0.125543
\(845\) 0 0
\(846\) −1.16976 −0.0402173
\(847\) −0.998327 −0.0343029
\(848\) −8.69441 −0.298567
\(849\) −1.61150 −0.0553064
\(850\) 0 0
\(851\) 63.4972 2.17666
\(852\) −0.597229 −0.0204607
\(853\) −35.9121 −1.22961 −0.614803 0.788680i \(-0.710765\pi\)
−0.614803 + 0.788680i \(0.710765\pi\)
\(854\) −1.20463 −0.0412215
\(855\) 0 0
\(856\) −5.05229 −0.172684
\(857\) 21.0716 0.719791 0.359896 0.932993i \(-0.382812\pi\)
0.359896 + 0.932993i \(0.382812\pi\)
\(858\) 0.107036 0.00365417
\(859\) 15.8539 0.540928 0.270464 0.962730i \(-0.412823\pi\)
0.270464 + 0.962730i \(0.412823\pi\)
\(860\) 0 0
\(861\) −0.0503826 −0.00171704
\(862\) 7.52520 0.256309
\(863\) −23.8125 −0.810587 −0.405294 0.914187i \(-0.632831\pi\)
−0.405294 + 0.914187i \(0.632831\pi\)
\(864\) 1.28645 0.0437658
\(865\) 0 0
\(866\) 11.8347 0.402160
\(867\) 0 0
\(868\) −1.69064 −0.0573841
\(869\) 29.4872 1.00028
\(870\) 0 0
\(871\) −24.8603 −0.842359
\(872\) 7.18097 0.243178
\(873\) 26.8847 0.909908
\(874\) 6.84452 0.231519
\(875\) 0 0
\(876\) 0.0219776 0.000742554 0
\(877\) −17.9197 −0.605107 −0.302553 0.953132i \(-0.597839\pi\)
−0.302553 + 0.953132i \(0.597839\pi\)
\(878\) −8.65203 −0.291992
\(879\) −1.21831 −0.0410926
\(880\) 0 0
\(881\) −33.7879 −1.13834 −0.569171 0.822219i \(-0.692736\pi\)
−0.569171 + 0.822219i \(0.692736\pi\)
\(882\) −7.46158 −0.251245
\(883\) 26.0211 0.875680 0.437840 0.899053i \(-0.355744\pi\)
0.437840 + 0.899053i \(0.355744\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 3.01495 0.101289
\(887\) −29.6531 −0.995652 −0.497826 0.867277i \(-0.665868\pi\)
−0.497826 + 0.867277i \(0.665868\pi\)
\(888\) −0.712447 −0.0239082
\(889\) −2.19029 −0.0734601
\(890\) 0 0
\(891\) −24.8325 −0.831919
\(892\) −44.3813 −1.48600
\(893\) −3.05410 −0.102202
\(894\) −0.251234 −0.00840254
\(895\) 0 0
\(896\) 2.90652 0.0971000
\(897\) −0.723619 −0.0241609
\(898\) 8.86098 0.295695
\(899\) 14.3020 0.477000
\(900\) 0 0
\(901\) 0 0
\(902\) −3.10018 −0.103225
\(903\) 0.132612 0.00441303
\(904\) −15.3460 −0.510401
\(905\) 0 0
\(906\) −0.374453 −0.0124404
\(907\) −6.01268 −0.199648 −0.0998238 0.995005i \(-0.531828\pi\)
−0.0998238 + 0.995005i \(0.531828\pi\)
\(908\) −38.4513 −1.27605
\(909\) −20.7436 −0.688022
\(910\) 0 0
\(911\) −36.3470 −1.20423 −0.602115 0.798409i \(-0.705675\pi\)
−0.602115 + 0.798409i \(0.705675\pi\)
\(912\) 0.495089 0.0163940
\(913\) −43.0998 −1.42639
\(914\) 2.74173 0.0906883
\(915\) 0 0
\(916\) −49.7412 −1.64350
\(917\) 5.17440 0.170874
\(918\) 0 0
\(919\) 31.4827 1.03852 0.519259 0.854617i \(-0.326208\pi\)
0.519259 + 0.854617i \(0.326208\pi\)
\(920\) 0 0
\(921\) −0.300395 −0.00989835
\(922\) 2.60127 0.0856684
\(923\) 11.6552 0.383635
\(924\) 0.0838510 0.00275849
\(925\) 0 0
\(926\) −8.29890 −0.272719
\(927\) 38.8544 1.27615
\(928\) −18.6920 −0.613595
\(929\) −43.2005 −1.41736 −0.708682 0.705528i \(-0.750710\pi\)
−0.708682 + 0.705528i \(0.750710\pi\)
\(930\) 0 0
\(931\) −19.4812 −0.638471
\(932\) −43.9486 −1.43958
\(933\) 1.22408 0.0400744
\(934\) −10.7732 −0.352511
\(935\) 0 0
\(936\) −8.27195 −0.270377
\(937\) 11.5364 0.376877 0.188439 0.982085i \(-0.439657\pi\)
0.188439 + 0.982085i \(0.439657\pi\)
\(938\) 1.35148 0.0441273
\(939\) −0.660917 −0.0215682
\(940\) 0 0
\(941\) 27.2725 0.889057 0.444528 0.895765i \(-0.353371\pi\)
0.444528 + 0.895765i \(0.353371\pi\)
\(942\) −0.0527992 −0.00172029
\(943\) 20.9588 0.682511
\(944\) −29.6431 −0.964800
\(945\) 0 0
\(946\) 8.15996 0.265303
\(947\) 22.7925 0.740657 0.370328 0.928901i \(-0.379245\pi\)
0.370328 + 0.928901i \(0.379245\pi\)
\(948\) 1.08085 0.0351045
\(949\) −0.428902 −0.0139228
\(950\) 0 0
\(951\) 1.19198 0.0386527
\(952\) 0 0
\(953\) 28.9548 0.937938 0.468969 0.883215i \(-0.344626\pi\)
0.468969 + 0.883215i \(0.344626\pi\)
\(954\) −2.89900 −0.0938587
\(955\) 0 0
\(956\) −9.83243 −0.318003
\(957\) −0.709341 −0.0229297
\(958\) 3.47908 0.112404
\(959\) 4.17443 0.134799
\(960\) 0 0
\(961\) −21.8421 −0.704584
\(962\) 6.71874 0.216621
\(963\) 10.8602 0.349966
\(964\) 10.1723 0.327629
\(965\) 0 0
\(966\) 0.0393381 0.00126568
\(967\) −50.6105 −1.62752 −0.813762 0.581198i \(-0.802584\pi\)
−0.813762 + 0.581198i \(0.802584\pi\)
\(968\) −4.65968 −0.149768
\(969\) 0 0
\(970\) 0 0
\(971\) −32.8412 −1.05392 −0.526962 0.849889i \(-0.676669\pi\)
−0.526962 + 0.849889i \(0.676669\pi\)
\(972\) −2.73518 −0.0877308
\(973\) 1.08154 0.0346727
\(974\) −1.74007 −0.0557553
\(975\) 0 0
\(976\) 36.2475 1.16025
\(977\) 21.6326 0.692089 0.346044 0.938218i \(-0.387525\pi\)
0.346044 + 0.938218i \(0.387525\pi\)
\(978\) −0.334233 −0.0106876
\(979\) −4.29662 −0.137321
\(980\) 0 0
\(981\) −15.4360 −0.492832
\(982\) −7.73637 −0.246878
\(983\) −5.11049 −0.162999 −0.0814996 0.996673i \(-0.525971\pi\)
−0.0814996 + 0.996673i \(0.525971\pi\)
\(984\) −0.235160 −0.00749663
\(985\) 0 0
\(986\) 0 0
\(987\) −0.0175531 −0.000558720 0
\(988\) −10.4364 −0.332025
\(989\) −55.1653 −1.75415
\(990\) 0 0
\(991\) −2.51317 −0.0798336 −0.0399168 0.999203i \(-0.512709\pi\)
−0.0399168 + 0.999203i \(0.512709\pi\)
\(992\) −11.9689 −0.380012
\(993\) 0.784381 0.0248916
\(994\) −0.633611 −0.0200969
\(995\) 0 0
\(996\) −1.57982 −0.0500586
\(997\) −36.0472 −1.14163 −0.570813 0.821080i \(-0.693372\pi\)
−0.570813 + 0.821080i \(0.693372\pi\)
\(998\) −6.71447 −0.212543
\(999\) 3.06441 0.0969535
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bq.1.5 12
5.4 even 2 1445.2.a.q.1.8 12
17.5 odd 16 425.2.m.b.76.4 24
17.7 odd 16 425.2.m.b.151.4 24
17.16 even 2 7225.2.a.bs.1.5 12
85.4 even 4 1445.2.d.j.866.10 24
85.7 even 16 425.2.n.f.49.3 24
85.22 even 16 425.2.n.c.399.4 24
85.24 odd 16 85.2.l.a.66.3 24
85.39 odd 16 85.2.l.a.76.3 yes 24
85.58 even 16 425.2.n.c.49.4 24
85.64 even 4 1445.2.d.j.866.9 24
85.73 even 16 425.2.n.f.399.3 24
85.84 even 2 1445.2.a.p.1.8 12
255.194 even 16 765.2.be.b.406.4 24
255.209 even 16 765.2.be.b.586.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.3 24 85.24 odd 16
85.2.l.a.76.3 yes 24 85.39 odd 16
425.2.m.b.76.4 24 17.5 odd 16
425.2.m.b.151.4 24 17.7 odd 16
425.2.n.c.49.4 24 85.58 even 16
425.2.n.c.399.4 24 85.22 even 16
425.2.n.f.49.3 24 85.7 even 16
425.2.n.f.399.3 24 85.73 even 16
765.2.be.b.406.4 24 255.194 even 16
765.2.be.b.586.4 24 255.209 even 16
1445.2.a.p.1.8 12 85.84 even 2
1445.2.a.q.1.8 12 5.4 even 2
1445.2.d.j.866.9 24 85.64 even 4
1445.2.d.j.866.10 24 85.4 even 4
7225.2.a.bq.1.5 12 1.1 even 1 trivial
7225.2.a.bs.1.5 12 17.16 even 2