Properties

Label 425.2.n.f.49.3
Level $425$
Weight $2$
Character 425.49
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(49,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 49.3
Character \(\chi\) \(=\) 425.49
Dual form 425.2.n.f.399.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.254738 + 0.254738i) q^{2} +(-0.0501087 + 0.0207557i) q^{3} +1.87022i q^{4} +(0.00747733 - 0.0180519i) q^{6} +(0.114315 - 0.275980i) q^{7} +(-0.985893 - 0.985893i) q^{8} +(-2.11924 + 2.11924i) q^{9} +(-1.05900 + 2.55665i) q^{11} +(-0.0388177 - 0.0937141i) q^{12} -1.97956 q^{13} +(0.0411823 + 0.0994229i) q^{14} -3.23814 q^{16} +(3.94094 + 1.21202i) q^{17} -1.07970i q^{18} +(1.99331 + 1.99331i) q^{19} +0.0162017i q^{21} +(-0.381510 - 0.921046i) q^{22} +(-6.22672 - 2.57919i) q^{23} +(0.0698647 + 0.0289389i) q^{24} +(0.504269 - 0.504269i) q^{26} +(0.124473 - 0.300505i) q^{27} +(0.516142 + 0.213793i) q^{28} +(-4.36632 + 1.80859i) q^{29} +(1.15808 + 2.79584i) q^{31} +(2.79667 - 2.79667i) q^{32} -0.150091i q^{33} +(-1.31266 + 0.695159i) q^{34} +(-3.96344 - 3.96344i) q^{36} +(-8.70414 + 3.60537i) q^{37} -1.01554 q^{38} +(0.0991930 - 0.0410871i) q^{39} +(2.87301 + 1.19004i) q^{41} +(-0.00412718 - 0.00412718i) q^{42} +(5.78771 + 5.78771i) q^{43} +(-4.78150 - 1.98056i) q^{44} +(2.24320 - 0.929166i) q^{46} -1.08341 q^{47} +(0.162259 - 0.0672100i) q^{48} +(4.88665 + 4.88665i) q^{49} +(-0.222632 + 0.0210640i) q^{51} -3.70220i q^{52} +(1.89858 - 1.89858i) q^{53} +(0.0448420 + 0.108258i) q^{54} +(-0.384788 + 0.159384i) q^{56} +(-0.141255 - 0.0585096i) q^{57} +(0.651553 - 1.57299i) q^{58} +(6.47310 - 6.47310i) q^{59} +(10.3418 + 4.28372i) q^{61} +(-1.00722 - 0.417202i) q^{62} +(0.342607 + 0.827127i) q^{63} -5.05145i q^{64} +(0.0382339 + 0.0382339i) q^{66} +12.5585i q^{67} +(-2.26675 + 7.37041i) q^{68} +0.365546 q^{69} +(-2.25315 - 5.43960i) q^{71} +4.17869 q^{72} +(-0.0829144 - 0.200173i) q^{73} +(1.29885 - 3.13570i) q^{74} +(-3.72792 + 3.72792i) q^{76} +(0.584525 + 0.584525i) q^{77} +(-0.0148018 + 0.0357347i) q^{78} +(4.07771 - 9.84447i) q^{79} -8.97353i q^{81} +(-1.03501 + 0.428717i) q^{82} +(11.0129 - 11.0129i) q^{83} -0.0303006 q^{84} -2.94870 q^{86} +(0.181252 - 0.181252i) q^{87} +(3.56465 - 1.47653i) q^{88} -1.55264i q^{89} +(-0.226292 + 0.546318i) q^{91} +(4.82365 - 11.6453i) q^{92} +(-0.116059 - 0.116059i) q^{93} +(0.275986 - 0.275986i) q^{94} +(-0.0820905 + 0.198184i) q^{96} +(-3.43280 - 8.28752i) q^{97} -2.48963 q^{98} +(-3.17389 - 7.66244i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{3} - 8 q^{6} + 24 q^{9} - 8 q^{11} - 40 q^{12} - 16 q^{13} - 24 q^{16} + 8 q^{19} + 24 q^{22} - 8 q^{23} + 8 q^{24} + 16 q^{26} - 16 q^{27} + 40 q^{28} + 8 q^{29} - 16 q^{34} - 24 q^{36} + 16 q^{37}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.254738 + 0.254738i −0.180127 + 0.180127i −0.791411 0.611284i \(-0.790653\pi\)
0.611284 + 0.791411i \(0.290653\pi\)
\(3\) −0.0501087 + 0.0207557i −0.0289303 + 0.0119833i −0.397102 0.917775i \(-0.629984\pi\)
0.368171 + 0.929758i \(0.379984\pi\)
\(4\) 1.87022i 0.935108i
\(5\) 0 0
\(6\) 0.00747733 0.0180519i 0.00305261 0.00736965i
\(7\) 0.114315 0.275980i 0.0432068 0.104310i −0.900803 0.434228i \(-0.857021\pi\)
0.944010 + 0.329918i \(0.107021\pi\)
\(8\) −0.985893 0.985893i −0.348566 0.348566i
\(9\) −2.11924 + 2.11924i −0.706413 + 0.706413i
\(10\) 0 0
\(11\) −1.05900 + 2.55665i −0.319301 + 0.770860i 0.679991 + 0.733221i \(0.261984\pi\)
−0.999291 + 0.0376394i \(0.988016\pi\)
\(12\) −0.0388177 0.0937141i −0.0112057 0.0270529i
\(13\) −1.97956 −0.549030 −0.274515 0.961583i \(-0.588517\pi\)
−0.274515 + 0.961583i \(0.588517\pi\)
\(14\) 0.0411823 + 0.0994229i 0.0110064 + 0.0265719i
\(15\) 0 0
\(16\) −3.23814 −0.809536
\(17\) 3.94094 + 1.21202i 0.955818 + 0.293959i
\(18\) 1.07970i 0.254489i
\(19\) 1.99331 + 1.99331i 0.457296 + 0.457296i 0.897767 0.440471i \(-0.145188\pi\)
−0.440471 + 0.897767i \(0.645188\pi\)
\(20\) 0 0
\(21\) 0.0162017i 0.00353549i
\(22\) −0.381510 0.921046i −0.0813382 0.196368i
\(23\) −6.22672 2.57919i −1.29836 0.537799i −0.376895 0.926256i \(-0.623008\pi\)
−0.921467 + 0.388457i \(0.873008\pi\)
\(24\) 0.0698647 + 0.0289389i 0.0142611 + 0.00590713i
\(25\) 0 0
\(26\) 0.504269 0.504269i 0.0988953 0.0988953i
\(27\) 0.124473 0.300505i 0.0239549 0.0578322i
\(28\) 0.516142 + 0.213793i 0.0975416 + 0.0404031i
\(29\) −4.36632 + 1.80859i −0.810806 + 0.335847i −0.749276 0.662258i \(-0.769598\pi\)
−0.0615305 + 0.998105i \(0.519598\pi\)
\(30\) 0 0
\(31\) 1.15808 + 2.79584i 0.207997 + 0.502148i 0.993108 0.117207i \(-0.0373941\pi\)
−0.785111 + 0.619355i \(0.787394\pi\)
\(32\) 2.79667 2.79667i 0.494385 0.494385i
\(33\) 0.150091i 0.0261275i
\(34\) −1.31266 + 0.695159i −0.225119 + 0.119219i
\(35\) 0 0
\(36\) −3.96344 3.96344i −0.660573 0.660573i
\(37\) −8.70414 + 3.60537i −1.43095 + 0.592719i −0.957586 0.288147i \(-0.906961\pi\)
−0.473365 + 0.880866i \(0.656961\pi\)
\(38\) −1.01554 −0.164743
\(39\) 0.0991930 0.0410871i 0.0158836 0.00657920i
\(40\) 0 0
\(41\) 2.87301 + 1.19004i 0.448688 + 0.185853i 0.595574 0.803301i \(-0.296925\pi\)
−0.146885 + 0.989154i \(0.546925\pi\)
\(42\) −0.00412718 0.00412718i −0.000636838 0.000636838i
\(43\) 5.78771 + 5.78771i 0.882617 + 0.882617i 0.993800 0.111183i \(-0.0354638\pi\)
−0.111183 + 0.993800i \(0.535464\pi\)
\(44\) −4.78150 1.98056i −0.720838 0.298581i
\(45\) 0 0
\(46\) 2.24320 0.929166i 0.330742 0.136998i
\(47\) −1.08341 −0.158032 −0.0790159 0.996873i \(-0.525178\pi\)
−0.0790159 + 0.996873i \(0.525178\pi\)
\(48\) 0.162259 0.0672100i 0.0234201 0.00970092i
\(49\) 4.88665 + 4.88665i 0.698093 + 0.698093i
\(50\) 0 0
\(51\) −0.222632 + 0.0210640i −0.0311747 + 0.00294954i
\(52\) 3.70220i 0.513403i
\(53\) 1.89858 1.89858i 0.260790 0.260790i −0.564585 0.825375i \(-0.690964\pi\)
0.825375 + 0.564585i \(0.190964\pi\)
\(54\) 0.0448420 + 0.108258i 0.00610222 + 0.0147321i
\(55\) 0 0
\(56\) −0.384788 + 0.159384i −0.0514195 + 0.0212986i
\(57\) −0.141255 0.0585096i −0.0187096 0.00774979i
\(58\) 0.651553 1.57299i 0.0855531 0.206543i
\(59\) 6.47310 6.47310i 0.842726 0.842726i −0.146487 0.989213i \(-0.546797\pi\)
0.989213 + 0.146487i \(0.0467966\pi\)
\(60\) 0 0
\(61\) 10.3418 + 4.28372i 1.32413 + 0.548474i 0.928976 0.370139i \(-0.120690\pi\)
0.395158 + 0.918613i \(0.370690\pi\)
\(62\) −1.00722 0.417202i −0.127916 0.0529847i
\(63\) 0.342607 + 0.827127i 0.0431645 + 0.104208i
\(64\) 5.05145i 0.631432i
\(65\) 0 0
\(66\) 0.0382339 + 0.0382339i 0.00470627 + 0.00470627i
\(67\) 12.5585i 1.53427i 0.641488 + 0.767133i \(0.278317\pi\)
−0.641488 + 0.767133i \(0.721683\pi\)
\(68\) −2.26675 + 7.37041i −0.274884 + 0.893793i
\(69\) 0.365546 0.0440066
\(70\) 0 0
\(71\) −2.25315 5.43960i −0.267400 0.645561i 0.731959 0.681348i \(-0.238606\pi\)
−0.999359 + 0.0357872i \(0.988606\pi\)
\(72\) 4.17869 0.492463
\(73\) −0.0829144 0.200173i −0.00970440 0.0234285i 0.918953 0.394367i \(-0.129036\pi\)
−0.928657 + 0.370938i \(0.879036\pi\)
\(74\) 1.29885 3.13570i 0.150988 0.364518i
\(75\) 0 0
\(76\) −3.72792 + 3.72792i −0.427622 + 0.427622i
\(77\) 0.584525 + 0.584525i 0.0666128 + 0.0666128i
\(78\) −0.0148018 + 0.0357347i −0.00167598 + 0.00404616i
\(79\) 4.07771 9.84447i 0.458779 1.10759i −0.510114 0.860107i \(-0.670397\pi\)
0.968892 0.247482i \(-0.0796032\pi\)
\(80\) 0 0
\(81\) 8.97353i 0.997059i
\(82\) −1.03501 + 0.428717i −0.114298 + 0.0473438i
\(83\) 11.0129 11.0129i 1.20883 1.20883i 0.237421 0.971407i \(-0.423698\pi\)
0.971407 0.237421i \(-0.0763020\pi\)
\(84\) −0.0303006 −0.00330607
\(85\) 0 0
\(86\) −2.94870 −0.317967
\(87\) 0.181252 0.181252i 0.0194323 0.0194323i
\(88\) 3.56465 1.47653i 0.379993 0.157398i
\(89\) 1.55264i 0.164579i −0.996608 0.0822897i \(-0.973777\pi\)
0.996608 0.0822897i \(-0.0262233\pi\)
\(90\) 0 0
\(91\) −0.226292 + 0.546318i −0.0237219 + 0.0572696i
\(92\) 4.82365 11.6453i 0.502900 1.21411i
\(93\) −0.116059 0.116059i −0.0120348 0.0120348i
\(94\) 0.275986 0.275986i 0.0284658 0.0284658i
\(95\) 0 0
\(96\) −0.0820905 + 0.198184i −0.00837833 + 0.0202271i
\(97\) −3.43280 8.28752i −0.348549 0.841471i −0.996792 0.0800373i \(-0.974496\pi\)
0.648243 0.761433i \(-0.275504\pi\)
\(98\) −2.48963 −0.251491
\(99\) −3.17389 7.66244i −0.318988 0.770104i
\(100\) 0 0
\(101\) −6.92132 −0.688697 −0.344349 0.938842i \(-0.611900\pi\)
−0.344349 + 0.938842i \(0.611900\pi\)
\(102\) 0.0513470 0.0620786i 0.00508412 0.00614670i
\(103\) 12.9642i 1.27740i 0.769457 + 0.638699i \(0.220527\pi\)
−0.769457 + 0.638699i \(0.779473\pi\)
\(104\) 1.95163 + 1.95163i 0.191373 + 0.191373i
\(105\) 0 0
\(106\) 0.967283i 0.0939508i
\(107\) 1.38670 + 3.34779i 0.134058 + 0.323643i 0.976626 0.214946i \(-0.0689575\pi\)
−0.842568 + 0.538589i \(0.818957\pi\)
\(108\) 0.562009 + 0.232792i 0.0540793 + 0.0224004i
\(109\) 4.75832 + 1.97096i 0.455764 + 0.188784i 0.598742 0.800942i \(-0.295668\pi\)
−0.142977 + 0.989726i \(0.545668\pi\)
\(110\) 0 0
\(111\) 0.361321 0.361321i 0.0342951 0.0342951i
\(112\) −0.370167 + 0.893662i −0.0349775 + 0.0844431i
\(113\) 10.1687 + 4.21202i 0.956593 + 0.396234i 0.805705 0.592317i \(-0.201787\pi\)
0.150888 + 0.988551i \(0.451787\pi\)
\(114\) 0.0508876 0.0210783i 0.00476606 0.00197417i
\(115\) 0 0
\(116\) −3.38246 8.16597i −0.314053 0.758192i
\(117\) 4.19516 4.19516i 0.387842 0.387842i
\(118\) 3.29789i 0.303596i
\(119\) 0.785001 0.949067i 0.0719609 0.0870008i
\(120\) 0 0
\(121\) 2.36318 + 2.36318i 0.214834 + 0.214834i
\(122\) −3.72569 + 1.54323i −0.337308 + 0.139717i
\(123\) −0.168663 −0.0152078
\(124\) −5.22883 + 2.16585i −0.469563 + 0.194499i
\(125\) 0 0
\(126\) −0.297976 0.123426i −0.0265458 0.0109956i
\(127\) −5.18472 5.18472i −0.460070 0.460070i 0.438608 0.898678i \(-0.355472\pi\)
−0.898678 + 0.438608i \(0.855472\pi\)
\(128\) 6.88013 + 6.88013i 0.608123 + 0.608123i
\(129\) −0.410143 0.169887i −0.0361110 0.0149577i
\(130\) 0 0
\(131\) 16.0035 6.62885i 1.39823 0.579166i 0.448938 0.893563i \(-0.351802\pi\)
0.949291 + 0.314397i \(0.101802\pi\)
\(132\) 0.280703 0.0244320
\(133\) 0.777977 0.322249i 0.0674592 0.0279425i
\(134\) −3.19913 3.19913i −0.276363 0.276363i
\(135\) 0 0
\(136\) −2.69042 5.08027i −0.230701 0.435629i
\(137\) 13.9745i 1.19392i 0.802272 + 0.596959i \(0.203625\pi\)
−0.802272 + 0.596959i \(0.796375\pi\)
\(138\) −0.0931186 + 0.0931186i −0.00792678 + 0.00792678i
\(139\) 1.38555 + 3.34501i 0.117521 + 0.283720i 0.971684 0.236285i \(-0.0759300\pi\)
−0.854163 + 0.520005i \(0.825930\pi\)
\(140\) 0 0
\(141\) 0.0542883 0.0224870i 0.00457190 0.00189374i
\(142\) 1.95964 + 0.811709i 0.164449 + 0.0681171i
\(143\) 2.09635 5.06104i 0.175306 0.423226i
\(144\) 6.86241 6.86241i 0.571867 0.571867i
\(145\) 0 0
\(146\) 0.0721133 + 0.0298703i 0.00596814 + 0.00247208i
\(147\) −0.346290 0.143438i −0.0285615 0.0118306i
\(148\) −6.74283 16.2786i −0.554257 1.33809i
\(149\) 12.8580i 1.05336i 0.850062 + 0.526682i \(0.176564\pi\)
−0.850062 + 0.526682i \(0.823436\pi\)
\(150\) 0 0
\(151\) 13.5511 + 13.5511i 1.10277 + 1.10277i 0.994075 + 0.108700i \(0.0346687\pi\)
0.108700 + 0.994075i \(0.465331\pi\)
\(152\) 3.93038i 0.318796i
\(153\) −10.9204 + 5.78322i −0.882859 + 0.467546i
\(154\) −0.297802 −0.0239976
\(155\) 0 0
\(156\) 0.0768418 + 0.185512i 0.00615227 + 0.0148529i
\(157\) −2.70222 −0.215661 −0.107830 0.994169i \(-0.534390\pi\)
−0.107830 + 0.994169i \(0.534390\pi\)
\(158\) 1.46901 + 3.54651i 0.116868 + 0.282146i
\(159\) −0.0557290 + 0.134542i −0.00441960 + 0.0106699i
\(160\) 0 0
\(161\) −1.42361 + 1.42361i −0.112196 + 0.112196i
\(162\) 2.28590 + 2.28590i 0.179598 + 0.179598i
\(163\) 6.54609 15.8036i 0.512729 1.23784i −0.429561 0.903038i \(-0.641332\pi\)
0.942290 0.334799i \(-0.108668\pi\)
\(164\) −2.22563 + 5.37315i −0.173792 + 0.419572i
\(165\) 0 0
\(166\) 5.61084i 0.435486i
\(167\) 8.17871 3.38773i 0.632887 0.262151i −0.0430919 0.999071i \(-0.513721\pi\)
0.675979 + 0.736921i \(0.263721\pi\)
\(168\) 0.0159731 0.0159731i 0.00123235 0.00123235i
\(169\) −9.08135 −0.698566
\(170\) 0 0
\(171\) −8.44860 −0.646081
\(172\) −10.8243 + 10.8243i −0.825343 + 0.825343i
\(173\) −17.7246 + 7.34175i −1.34757 + 0.558183i −0.935616 0.353020i \(-0.885155\pi\)
−0.411957 + 0.911203i \(0.635155\pi\)
\(174\) 0.0923438i 0.00700057i
\(175\) 0 0
\(176\) 3.42920 8.27881i 0.258485 0.624039i
\(177\) −0.190005 + 0.458712i −0.0142816 + 0.0344789i
\(178\) 0.395517 + 0.395517i 0.0296452 + 0.0296452i
\(179\) 3.06554 3.06554i 0.229129 0.229129i −0.583200 0.812329i \(-0.698199\pi\)
0.812329 + 0.583200i \(0.198199\pi\)
\(180\) 0 0
\(181\) −9.09958 + 21.9683i −0.676366 + 1.63289i 0.0942155 + 0.995552i \(0.469966\pi\)
−0.770582 + 0.637341i \(0.780034\pi\)
\(182\) −0.0815228 0.196813i −0.00604287 0.0145888i
\(183\) −0.607127 −0.0448801
\(184\) 3.59607 + 8.68169i 0.265106 + 0.640022i
\(185\) 0 0
\(186\) 0.0591296 0.00433559
\(187\) −7.27219 + 8.79208i −0.531795 + 0.642941i
\(188\) 2.02621i 0.147777i
\(189\) −0.0687041 0.0687041i −0.00499749 0.00499749i
\(190\) 0 0
\(191\) 7.27055i 0.526079i −0.964785 0.263039i \(-0.915275\pi\)
0.964785 0.263039i \(-0.0847249\pi\)
\(192\) 0.104846 + 0.253122i 0.00756664 + 0.0182675i
\(193\) −20.5094 8.49528i −1.47630 0.611504i −0.508015 0.861348i \(-0.669620\pi\)
−0.968286 + 0.249845i \(0.919620\pi\)
\(194\) 2.98562 + 1.23668i 0.214355 + 0.0887887i
\(195\) 0 0
\(196\) −9.13910 + 9.13910i −0.652793 + 0.652793i
\(197\) 1.71496 4.14027i 0.122186 0.294982i −0.850938 0.525267i \(-0.823966\pi\)
0.973123 + 0.230284i \(0.0739656\pi\)
\(198\) 2.76043 + 1.14341i 0.196175 + 0.0812584i
\(199\) 0.368987 0.152839i 0.0261568 0.0108345i −0.369567 0.929204i \(-0.620494\pi\)
0.395723 + 0.918370i \(0.370494\pi\)
\(200\) 0 0
\(201\) −0.260661 0.629290i −0.0183856 0.0443867i
\(202\) 1.76313 1.76313i 0.124053 0.124053i
\(203\) 1.41176i 0.0990865i
\(204\) −0.0393942 0.416370i −0.00275814 0.0291517i
\(205\) 0 0
\(206\) −3.30247 3.30247i −0.230094 0.230094i
\(207\) 18.6618 7.72999i 1.29709 0.537271i
\(208\) 6.41009 0.444460
\(209\) −7.20712 + 2.98529i −0.498527 + 0.206497i
\(210\) 0 0
\(211\) −1.80171 0.746294i −0.124035 0.0513770i 0.319803 0.947484i \(-0.396383\pi\)
−0.443838 + 0.896107i \(0.646383\pi\)
\(212\) 3.55076 + 3.55076i 0.243867 + 0.243867i
\(213\) 0.225805 + 0.225805i 0.0154719 + 0.0154719i
\(214\) −1.20606 0.499566i −0.0824444 0.0341496i
\(215\) 0 0
\(216\) −0.418983 + 0.173548i −0.0285082 + 0.0118085i
\(217\) 0.903981 0.0613662
\(218\) −1.71421 + 0.710047i −0.116101 + 0.0480905i
\(219\) 0.00830947 + 0.00830947i 0.000561502 + 0.000561502i
\(220\) 0 0
\(221\) −7.80131 2.39927i −0.524773 0.161393i
\(222\) 0.184085i 0.0123550i
\(223\) −16.7800 + 16.7800i −1.12367 + 1.12367i −0.132491 + 0.991184i \(0.542297\pi\)
−0.991184 + 0.132491i \(0.957703\pi\)
\(224\) −0.452123 1.09152i −0.0302088 0.0729304i
\(225\) 0 0
\(226\) −3.66333 + 1.51740i −0.243681 + 0.100936i
\(227\) −18.9948 7.86790i −1.26073 0.522211i −0.350595 0.936527i \(-0.614021\pi\)
−0.910133 + 0.414316i \(0.864021\pi\)
\(228\) 0.109426 0.264177i 0.00724689 0.0174955i
\(229\) −18.8066 + 18.8066i −1.24277 + 1.24277i −0.283928 + 0.958846i \(0.591638\pi\)
−0.958846 + 0.283928i \(0.908362\pi\)
\(230\) 0 0
\(231\) −0.0414220 0.0171576i −0.00272537 0.00112889i
\(232\) 6.08780 + 2.52165i 0.399684 + 0.165554i
\(233\) −8.99275 21.7104i −0.589135 1.42230i −0.884331 0.466860i \(-0.845385\pi\)
0.295196 0.955437i \(-0.404615\pi\)
\(234\) 2.13734i 0.139722i
\(235\) 0 0
\(236\) 12.1061 + 12.1061i 0.788040 + 0.788040i
\(237\) 0.577929i 0.0375405i
\(238\) 0.0417939 + 0.441734i 0.00270910 + 0.0286333i
\(239\) −5.25737 −0.340071 −0.170036 0.985438i \(-0.554388\pi\)
−0.170036 + 0.985438i \(0.554388\pi\)
\(240\) 0 0
\(241\) 2.08146 + 5.02509i 0.134079 + 0.323694i 0.976632 0.214918i \(-0.0689486\pi\)
−0.842553 + 0.538613i \(0.818949\pi\)
\(242\) −1.20398 −0.0773950
\(243\) 0.559671 + 1.35117i 0.0359029 + 0.0866774i
\(244\) −8.01149 + 19.3414i −0.512883 + 1.23821i
\(245\) 0 0
\(246\) 0.0429649 0.0429649i 0.00273934 0.00273934i
\(247\) −3.94587 3.94587i −0.251070 0.251070i
\(248\) 1.61466 3.89814i 0.102531 0.247532i
\(249\) −0.323263 + 0.780426i −0.0204860 + 0.0494575i
\(250\) 0 0
\(251\) 26.3864i 1.66550i −0.553652 0.832748i \(-0.686766\pi\)
0.553652 0.832748i \(-0.313234\pi\)
\(252\) −1.54691 + 0.640750i −0.0974460 + 0.0403634i
\(253\) 13.1882 13.1882i 0.829135 0.829135i
\(254\) 2.64150 0.165742
\(255\) 0 0
\(256\) 6.59764 0.412352
\(257\) 13.2589 13.2589i 0.827065 0.827065i −0.160045 0.987110i \(-0.551164\pi\)
0.987110 + 0.160045i \(0.0511639\pi\)
\(258\) 0.147756 0.0612024i 0.00919887 0.00381030i
\(259\) 2.81431i 0.174873i
\(260\) 0 0
\(261\) 5.42045 13.0861i 0.335518 0.810011i
\(262\) −2.38807 + 5.76532i −0.147536 + 0.356183i
\(263\) 11.3145 + 11.3145i 0.697680 + 0.697680i 0.963910 0.266230i \(-0.0857781\pi\)
−0.266230 + 0.963910i \(0.585778\pi\)
\(264\) −0.147974 + 0.147974i −0.00910714 + 0.00910714i
\(265\) 0 0
\(266\) −0.116091 + 0.280270i −0.00711803 + 0.0171844i
\(267\) 0.0322261 + 0.0778007i 0.00197221 + 0.00476133i
\(268\) −23.4871 −1.43470
\(269\) −0.457836 1.10531i −0.0279147 0.0673922i 0.909307 0.416125i \(-0.136612\pi\)
−0.937222 + 0.348733i \(0.886612\pi\)
\(270\) 0 0
\(271\) −0.888590 −0.0539780 −0.0269890 0.999636i \(-0.508592\pi\)
−0.0269890 + 0.999636i \(0.508592\pi\)
\(272\) −12.7613 3.92471i −0.773769 0.237971i
\(273\) 0.0320721i 0.00194109i
\(274\) −3.55983 3.55983i −0.215057 0.215057i
\(275\) 0 0
\(276\) 0.683650i 0.0411509i
\(277\) 2.36450 + 5.70841i 0.142069 + 0.342985i 0.978858 0.204540i \(-0.0655700\pi\)
−0.836789 + 0.547525i \(0.815570\pi\)
\(278\) −1.20505 0.499150i −0.0722744 0.0299370i
\(279\) −8.37931 3.47082i −0.501656 0.207793i
\(280\) 0 0
\(281\) −19.7250 + 19.7250i −1.17670 + 1.17670i −0.196117 + 0.980581i \(0.562833\pi\)
−0.980581 + 0.196117i \(0.937167\pi\)
\(282\) −0.00810103 + 0.0195576i −0.000482409 + 0.00116464i
\(283\) 27.4503 + 11.3703i 1.63175 + 0.675893i 0.995427 0.0955282i \(-0.0304540\pi\)
0.636324 + 0.771422i \(0.280454\pi\)
\(284\) 10.1732 4.21389i 0.603670 0.250048i
\(285\) 0 0
\(286\) 0.755221 + 1.82326i 0.0446571 + 0.107812i
\(287\) 0.656853 0.656853i 0.0387728 0.0387728i
\(288\) 11.8536i 0.698481i
\(289\) 14.0620 + 9.55303i 0.827176 + 0.561943i
\(290\) 0 0
\(291\) 0.344027 + 0.344027i 0.0201672 + 0.0201672i
\(292\) 0.374367 0.155068i 0.0219082 0.00907466i
\(293\) −22.4626 −1.31228 −0.656140 0.754639i \(-0.727812\pi\)
−0.656140 + 0.754639i \(0.727812\pi\)
\(294\) 0.124752 0.0516741i 0.00727571 0.00301370i
\(295\) 0 0
\(296\) 12.1359 + 5.02684i 0.705382 + 0.292179i
\(297\) 0.636470 + 0.636470i 0.0369317 + 0.0369317i
\(298\) −3.27542 3.27542i −0.189740 0.189740i
\(299\) 12.3262 + 5.10566i 0.712840 + 0.295268i
\(300\) 0 0
\(301\) 2.25891 0.935671i 0.130201 0.0539312i
\(302\) −6.90398 −0.397279
\(303\) 0.346818 0.143657i 0.0199242 0.00825287i
\(304\) −6.45462 6.45462i −0.370198 0.370198i
\(305\) 0 0
\(306\) 1.30863 4.25505i 0.0748093 0.243245i
\(307\) 5.53854i 0.316101i −0.987431 0.158050i \(-0.949479\pi\)
0.987431 0.158050i \(-0.0505209\pi\)
\(308\) −1.09319 + 1.09319i −0.0622902 + 0.0622902i
\(309\) −0.269080 0.649618i −0.0153075 0.0369555i
\(310\) 0 0
\(311\) −20.8510 + 8.63675i −1.18235 + 0.489745i −0.885256 0.465104i \(-0.846017\pi\)
−0.297093 + 0.954849i \(0.596017\pi\)
\(312\) −0.138301 0.0572862i −0.00782976 0.00324319i
\(313\) 4.66325 11.2581i 0.263583 0.636345i −0.735572 0.677446i \(-0.763087\pi\)
0.999155 + 0.0411013i \(0.0130866\pi\)
\(314\) 0.688359 0.688359i 0.0388463 0.0388463i
\(315\) 0 0
\(316\) 18.4113 + 7.62621i 1.03572 + 0.429008i
\(317\) 20.3043 + 8.41030i 1.14040 + 0.472370i 0.871304 0.490743i \(-0.163275\pi\)
0.269097 + 0.963113i \(0.413275\pi\)
\(318\) −0.0200766 0.0484693i −0.00112584 0.00271802i
\(319\) 13.0785i 0.732254i
\(320\) 0 0
\(321\) −0.138972 0.138972i −0.00775664 0.00775664i
\(322\) 0.725296i 0.0404192i
\(323\) 5.43957 + 10.2714i 0.302666 + 0.571519i
\(324\) 16.7825 0.932358
\(325\) 0 0
\(326\) 2.35826 + 5.69333i 0.130612 + 0.315325i
\(327\) −0.279342 −0.0154476
\(328\) −1.65923 4.00573i −0.0916155 0.221179i
\(329\) −0.123850 + 0.298999i −0.00682805 + 0.0164844i
\(330\) 0 0
\(331\) 10.2262 10.2262i 0.562083 0.562083i −0.367816 0.929899i \(-0.619894\pi\)
0.929899 + 0.367816i \(0.119894\pi\)
\(332\) 20.5966 + 20.5966i 1.13038 + 1.13038i
\(333\) 10.8055 26.0868i 0.592138 1.42955i
\(334\) −1.22045 + 2.94642i −0.0667798 + 0.161221i
\(335\) 0 0
\(336\) 0.0524633i 0.00286211i
\(337\) −22.4004 + 9.27853i −1.22023 + 0.505434i −0.897481 0.441052i \(-0.854605\pi\)
−0.322744 + 0.946486i \(0.604605\pi\)
\(338\) 2.31337 2.31337i 0.125831 0.125831i
\(339\) −0.596965 −0.0324227
\(340\) 0 0
\(341\) −8.37441 −0.453500
\(342\) 2.15218 2.15218i 0.116377 0.116377i
\(343\) 3.83909 1.59020i 0.207291 0.0858629i
\(344\) 11.4121i 0.615300i
\(345\) 0 0
\(346\) 2.64490 6.38535i 0.142191 0.343279i
\(347\) −8.22624 + 19.8599i −0.441608 + 1.06614i 0.533777 + 0.845625i \(0.320772\pi\)
−0.975385 + 0.220510i \(0.929228\pi\)
\(348\) 0.338981 + 0.338981i 0.0181713 + 0.0181713i
\(349\) 17.0669 17.0669i 0.913570 0.913570i −0.0829813 0.996551i \(-0.526444\pi\)
0.996551 + 0.0829813i \(0.0264442\pi\)
\(350\) 0 0
\(351\) −0.246402 + 0.594866i −0.0131520 + 0.0317516i
\(352\) 4.18843 + 10.1118i 0.223244 + 0.538959i
\(353\) −7.24444 −0.385583 −0.192791 0.981240i \(-0.561754\pi\)
−0.192791 + 0.981240i \(0.561754\pi\)
\(354\) −0.0684501 0.165253i −0.00363808 0.00878311i
\(355\) 0 0
\(356\) 2.90377 0.153900
\(357\) −0.0196368 + 0.0638497i −0.00103929 + 0.00337929i
\(358\) 1.56182i 0.0825449i
\(359\) −12.2079 12.2079i −0.644308 0.644308i 0.307303 0.951612i \(-0.400573\pi\)
−0.951612 + 0.307303i \(0.900573\pi\)
\(360\) 0 0
\(361\) 11.0534i 0.581760i
\(362\) −3.27816 7.91419i −0.172296 0.415960i
\(363\) −0.167465 0.0693663i −0.00878964 0.00364079i
\(364\) −1.02173 0.423215i −0.0535533 0.0221825i
\(365\) 0 0
\(366\) 0.154658 0.154658i 0.00808413 0.00808413i
\(367\) 14.3289 34.5930i 0.747963 1.80574i 0.178080 0.984016i \(-0.443011\pi\)
0.569883 0.821726i \(-0.306989\pi\)
\(368\) 20.1630 + 8.35180i 1.05107 + 0.435368i
\(369\) −8.61057 + 3.56661i −0.448248 + 0.185671i
\(370\) 0 0
\(371\) −0.306934 0.741005i −0.0159352 0.0384711i
\(372\) 0.217056 0.217056i 0.0112538 0.0112538i
\(373\) 29.8887i 1.54758i 0.633443 + 0.773789i \(0.281641\pi\)
−0.633443 + 0.773789i \(0.718359\pi\)
\(374\) −0.387176 4.09219i −0.0200204 0.211602i
\(375\) 0 0
\(376\) 1.06813 + 1.06813i 0.0550845 + 0.0550845i
\(377\) 8.64339 3.58021i 0.445157 0.184390i
\(378\) 0.0350031 0.00180037
\(379\) 27.7353 11.4883i 1.42467 0.590116i 0.468637 0.883391i \(-0.344745\pi\)
0.956028 + 0.293275i \(0.0947452\pi\)
\(380\) 0 0
\(381\) 0.367412 + 0.152187i 0.0188231 + 0.00779679i
\(382\) 1.85209 + 1.85209i 0.0947611 + 0.0947611i
\(383\) 13.9465 + 13.9465i 0.712634 + 0.712634i 0.967086 0.254451i \(-0.0818949\pi\)
−0.254451 + 0.967086i \(0.581895\pi\)
\(384\) −0.487556 0.201952i −0.0248805 0.0103058i
\(385\) 0 0
\(386\) 7.38861 3.06046i 0.376070 0.155773i
\(387\) −24.5311 −1.24699
\(388\) 15.4995 6.42009i 0.786866 0.325931i
\(389\) −2.62699 2.62699i −0.133194 0.133194i 0.637367 0.770561i \(-0.280024\pi\)
−0.770561 + 0.637367i \(0.780024\pi\)
\(390\) 0 0
\(391\) −21.4131 17.7114i −1.08291 0.895703i
\(392\) 9.63543i 0.486663i
\(393\) −0.664326 + 0.664326i −0.0335108 + 0.0335108i
\(394\) 0.617821 + 1.49155i 0.0311254 + 0.0751433i
\(395\) 0 0
\(396\) 14.3304 5.93586i 0.720131 0.298288i
\(397\) 4.77812 + 1.97916i 0.239807 + 0.0993314i 0.499350 0.866400i \(-0.333572\pi\)
−0.259543 + 0.965731i \(0.583572\pi\)
\(398\) −0.0550610 + 0.132929i −0.00275996 + 0.00666313i
\(399\) −0.0322949 + 0.0322949i −0.00161677 + 0.00161677i
\(400\) 0 0
\(401\) 0.364698 + 0.151063i 0.0182122 + 0.00754372i 0.391771 0.920063i \(-0.371863\pi\)
−0.373559 + 0.927607i \(0.621863\pi\)
\(402\) 0.226705 + 0.0939042i 0.0113070 + 0.00468351i
\(403\) −2.29248 5.53453i −0.114196 0.275695i
\(404\) 12.9444i 0.644007i
\(405\) 0 0
\(406\) −0.359631 0.359631i −0.0178482 0.0178482i
\(407\) 26.0716i 1.29232i
\(408\) 0.240258 + 0.198724i 0.0118945 + 0.00983831i
\(409\) −0.521080 −0.0257657 −0.0128829 0.999917i \(-0.504101\pi\)
−0.0128829 + 0.999917i \(0.504101\pi\)
\(410\) 0 0
\(411\) −0.290050 0.700242i −0.0143071 0.0345404i
\(412\) −24.2458 −1.19451
\(413\) −1.04647 2.52641i −0.0514936 0.124317i
\(414\) −2.78476 + 6.72301i −0.136864 + 0.330418i
\(415\) 0 0
\(416\) −5.53616 + 5.53616i −0.271433 + 0.271433i
\(417\) −0.138856 0.138856i −0.00679981 0.00679981i
\(418\) 1.07546 2.59640i 0.0526026 0.126994i
\(419\) −1.74972 + 4.22419i −0.0854793 + 0.206365i −0.960839 0.277107i \(-0.910624\pi\)
0.875360 + 0.483472i \(0.160624\pi\)
\(420\) 0 0
\(421\) 7.55233i 0.368078i −0.982919 0.184039i \(-0.941083\pi\)
0.982919 0.184039i \(-0.0589173\pi\)
\(422\) 0.649075 0.268856i 0.0315965 0.0130877i
\(423\) 2.29601 2.29601i 0.111636 0.111636i
\(424\) −3.74359 −0.181805
\(425\) 0 0
\(426\) −0.115043 −0.00557383
\(427\) 2.36444 2.36444i 0.114423 0.114423i
\(428\) −6.26110 + 2.59343i −0.302642 + 0.125358i
\(429\) 0.297114i 0.0143448i
\(430\) 0 0
\(431\) 7.99371 19.2985i 0.385043 0.929577i −0.605930 0.795518i \(-0.707199\pi\)
0.990973 0.134059i \(-0.0428011\pi\)
\(432\) −0.403062 + 0.973078i −0.0193923 + 0.0468172i
\(433\) 23.2292 + 23.2292i 1.11632 + 1.11632i 0.992277 + 0.124045i \(0.0395868\pi\)
0.124045 + 0.992277i \(0.460413\pi\)
\(434\) −0.230279 + 0.230279i −0.0110537 + 0.0110537i
\(435\) 0 0
\(436\) −3.68612 + 8.89909i −0.176533 + 0.426189i
\(437\) −7.27065 17.5529i −0.347803 0.839670i
\(438\) −0.00423348 −0.000202284
\(439\) −9.19069 22.1883i −0.438648 1.05899i −0.976416 0.215897i \(-0.930733\pi\)
0.537769 0.843093i \(-0.319267\pi\)
\(440\) 0 0
\(441\) −20.7120 −0.986284
\(442\) 2.59848 1.37611i 0.123597 0.0654547i
\(443\) 8.36893i 0.397620i 0.980038 + 0.198810i \(0.0637077\pi\)
−0.980038 + 0.198810i \(0.936292\pi\)
\(444\) 0.675748 + 0.675748i 0.0320696 + 0.0320696i
\(445\) 0 0
\(446\) 8.54904i 0.404809i
\(447\) −0.266876 0.644296i −0.0126228 0.0304741i
\(448\) −1.39410 0.577454i −0.0658649 0.0272821i
\(449\) −22.7241 9.41265i −1.07242 0.444210i −0.224575 0.974457i \(-0.572099\pi\)
−0.847844 + 0.530246i \(0.822099\pi\)
\(450\) 0 0
\(451\) −6.08503 + 6.08503i −0.286533 + 0.286533i
\(452\) −7.87740 + 19.0177i −0.370522 + 0.894518i
\(453\) −0.960292 0.397766i −0.0451184 0.0186887i
\(454\) 6.84296 2.83444i 0.321156 0.133027i
\(455\) 0 0
\(456\) 0.0815778 + 0.196946i 0.00382023 + 0.00922285i
\(457\) 5.38146 5.38146i 0.251734 0.251734i −0.569947 0.821681i \(-0.693036\pi\)
0.821681 + 0.569947i \(0.193036\pi\)
\(458\) 9.58151i 0.447715i
\(459\) 0.854760 1.03341i 0.0398968 0.0482353i
\(460\) 0 0
\(461\) 5.10577 + 5.10577i 0.237800 + 0.237800i 0.815938 0.578139i \(-0.196221\pi\)
−0.578139 + 0.815938i \(0.696221\pi\)
\(462\) 0.0149225 0.00618109i 0.000694256 0.000287570i
\(463\) 23.0362 1.07058 0.535292 0.844667i \(-0.320202\pi\)
0.535292 + 0.844667i \(0.320202\pi\)
\(464\) 14.1388 5.85648i 0.656377 0.271880i
\(465\) 0 0
\(466\) 7.82128 + 3.23968i 0.362314 + 0.150075i
\(467\) 21.1457 + 21.1457i 0.978506 + 0.978506i 0.999774 0.0212676i \(-0.00677021\pi\)
−0.0212676 + 0.999774i \(0.506770\pi\)
\(468\) 7.84585 + 7.84585i 0.362675 + 0.362675i
\(469\) 3.46589 + 1.43562i 0.160040 + 0.0662907i
\(470\) 0 0
\(471\) 0.135405 0.0560865i 0.00623912 0.00258433i
\(472\) −12.7636 −0.587491
\(473\) −20.9264 + 8.66798i −0.962195 + 0.398554i
\(474\) −0.147221 0.147221i −0.00676207 0.00676207i
\(475\) 0 0
\(476\) 1.77496 + 1.46812i 0.0813552 + 0.0672912i
\(477\) 8.04710i 0.368451i
\(478\) 1.33925 1.33925i 0.0612561 0.0612561i
\(479\) −3.69569 8.92218i −0.168860 0.407665i 0.816684 0.577086i \(-0.195810\pi\)
−0.985544 + 0.169421i \(0.945810\pi\)
\(480\) 0 0
\(481\) 17.2303 7.13704i 0.785636 0.325421i
\(482\) −1.81031 0.749855i −0.0824574 0.0341550i
\(483\) 0.0417872 0.100883i 0.00190138 0.00459035i
\(484\) −4.41965 + 4.41965i −0.200893 + 0.200893i
\(485\) 0 0
\(486\) −0.486764 0.201624i −0.0220801 0.00914586i
\(487\) 4.46244 + 1.84840i 0.202212 + 0.0837591i 0.481491 0.876451i \(-0.340095\pi\)
−0.279279 + 0.960210i \(0.590095\pi\)
\(488\) −5.97263 14.4192i −0.270368 0.652727i
\(489\) 0.927769i 0.0419552i
\(490\) 0 0
\(491\) 15.1849 + 15.1849i 0.685287 + 0.685287i 0.961186 0.275900i \(-0.0889758\pi\)
−0.275900 + 0.961186i \(0.588976\pi\)
\(492\) 0.315436i 0.0142209i
\(493\) −19.3995 + 1.83545i −0.873708 + 0.0826646i
\(494\) 2.01033 0.0904490
\(495\) 0 0
\(496\) −3.75002 9.05334i −0.168381 0.406507i
\(497\) −1.75879 −0.0788923
\(498\) −0.116457 0.281152i −0.00521856 0.0125987i
\(499\) 7.13250 17.2194i 0.319295 0.770845i −0.679997 0.733215i \(-0.738019\pi\)
0.999292 0.0376305i \(-0.0119810\pi\)
\(500\) 0 0
\(501\) −0.339510 + 0.339510i −0.0151682 + 0.0151682i
\(502\) 6.72164 + 6.72164i 0.300001 + 0.300001i
\(503\) 7.10981 17.1646i 0.317011 0.765332i −0.682399 0.730980i \(-0.739063\pi\)
0.999410 0.0343519i \(-0.0109367\pi\)
\(504\) 0.477685 1.15323i 0.0212778 0.0513691i
\(505\) 0 0
\(506\) 6.71908i 0.298700i
\(507\) 0.455055 0.188490i 0.0202097 0.00837113i
\(508\) 9.69656 9.69656i 0.430215 0.430215i
\(509\) 28.4343 1.26033 0.630163 0.776463i \(-0.282988\pi\)
0.630163 + 0.776463i \(0.282988\pi\)
\(510\) 0 0
\(511\) −0.0647220 −0.00286313
\(512\) −15.4409 + 15.4409i −0.682399 + 0.682399i
\(513\) 0.847112 0.350885i 0.0374009 0.0154920i
\(514\) 6.75508i 0.297954i
\(515\) 0 0
\(516\) 0.317725 0.767056i 0.0139871 0.0337677i
\(517\) 1.14733 2.76991i 0.0504597 0.121820i
\(518\) −0.716913 0.716913i −0.0314993 0.0314993i
\(519\) 0.735771 0.735771i 0.0322968 0.0322968i
\(520\) 0 0
\(521\) −7.26078 + 17.5291i −0.318100 + 0.767962i 0.681254 + 0.732047i \(0.261435\pi\)
−0.999355 + 0.0359155i \(0.988565\pi\)
\(522\) 1.95274 + 4.71434i 0.0854692 + 0.206341i
\(523\) −24.4504 −1.06914 −0.534571 0.845124i \(-0.679527\pi\)
−0.534571 + 0.845124i \(0.679527\pi\)
\(524\) 12.3974 + 29.9299i 0.541583 + 1.30750i
\(525\) 0 0
\(526\) −5.76445 −0.251342
\(527\) 1.17528 + 12.4219i 0.0511958 + 0.541105i
\(528\) 0.486016i 0.0211511i
\(529\) 15.8564 + 15.8564i 0.689407 + 0.689407i
\(530\) 0 0
\(531\) 27.4361i 1.19063i
\(532\) 0.602675 + 1.45499i 0.0261293 + 0.0630816i
\(533\) −5.68728 2.35575i −0.246344 0.102039i
\(534\) −0.0280281 0.0116096i −0.00121289 0.000502397i
\(535\) 0 0
\(536\) 12.3813 12.3813i 0.534792 0.534792i
\(537\) −0.0899828 + 0.217238i −0.00388305 + 0.00937450i
\(538\) 0.398194 + 0.164937i 0.0171674 + 0.00711096i
\(539\) −17.6684 + 7.31851i −0.761034 + 0.315230i
\(540\) 0 0
\(541\) −4.13701 9.98762i −0.177864 0.429401i 0.809654 0.586907i \(-0.199655\pi\)
−0.987518 + 0.157506i \(0.949655\pi\)
\(542\) 0.226358 0.226358i 0.00972291 0.00972291i
\(543\) 1.28967i 0.0553451i
\(544\) 14.4111 7.63186i 0.617871 0.327213i
\(545\) 0 0
\(546\) 0.00817000 + 0.00817000i 0.000349644 + 0.000349644i
\(547\) −6.71889 + 2.78305i −0.287279 + 0.118995i −0.521669 0.853148i \(-0.674691\pi\)
0.234391 + 0.972143i \(0.424691\pi\)
\(548\) −26.1353 −1.11644
\(549\) −30.9950 + 12.8386i −1.32284 + 0.547937i
\(550\) 0 0
\(551\) −12.3085 5.09835i −0.524360 0.217197i
\(552\) −0.360389 0.360389i −0.0153392 0.0153392i
\(553\) −2.25073 2.25073i −0.0957108 0.0957108i
\(554\) −2.05648 0.851821i −0.0873714 0.0361904i
\(555\) 0 0
\(556\) −6.25589 + 2.59128i −0.265309 + 0.109895i
\(557\) 18.3930 0.779335 0.389667 0.920956i \(-0.372590\pi\)
0.389667 + 0.920956i \(0.372590\pi\)
\(558\) 3.01868 1.25038i 0.127791 0.0529328i
\(559\) −11.4571 11.4571i −0.484584 0.484584i
\(560\) 0 0
\(561\) 0.181914 0.591499i 0.00768041 0.0249731i
\(562\) 10.0495i 0.423911i
\(563\) −0.317586 + 0.317586i −0.0133847 + 0.0133847i −0.713767 0.700383i \(-0.753013\pi\)
0.700383 + 0.713767i \(0.253013\pi\)
\(564\) 0.0420555 + 0.101531i 0.00177086 + 0.00427522i
\(565\) 0 0
\(566\) −9.88909 + 4.09620i −0.415670 + 0.172176i
\(567\) −2.47651 1.02581i −0.104004 0.0430798i
\(568\) −3.14149 + 7.58423i −0.131814 + 0.318227i
\(569\) −10.1299 + 10.1299i −0.424669 + 0.424669i −0.886808 0.462138i \(-0.847082\pi\)
0.462138 + 0.886808i \(0.347082\pi\)
\(570\) 0 0
\(571\) 25.8617 + 10.7123i 1.08228 + 0.448294i 0.851307 0.524667i \(-0.175810\pi\)
0.230970 + 0.972961i \(0.425810\pi\)
\(572\) 9.46525 + 3.92063i 0.395762 + 0.163930i
\(573\) 0.150905 + 0.364318i 0.00630417 + 0.0152196i
\(574\) 0.334651i 0.0139681i
\(575\) 0 0
\(576\) 10.7052 + 10.7052i 0.446052 + 0.446052i
\(577\) 6.76924i 0.281807i 0.990023 + 0.140904i \(0.0450008\pi\)
−0.990023 + 0.140904i \(0.954999\pi\)
\(578\) −6.01565 + 1.14861i −0.250218 + 0.0477757i
\(579\) 1.20403 0.0500376
\(580\) 0 0
\(581\) −1.78041 4.29829i −0.0738638 0.178323i
\(582\) −0.175274 −0.00726533
\(583\) 2.84342 + 6.86461i 0.117762 + 0.284303i
\(584\) −0.115605 + 0.279094i −0.00478375 + 0.0115490i
\(585\) 0 0
\(586\) 5.72209 5.72209i 0.236377 0.236377i
\(587\) −17.4713 17.4713i −0.721117 0.721117i 0.247715 0.968833i \(-0.420320\pi\)
−0.968833 + 0.247715i \(0.920320\pi\)
\(588\) 0.268260 0.647637i 0.0110628 0.0267081i
\(589\) −3.26458 + 7.88139i −0.134515 + 0.324747i
\(590\) 0 0
\(591\) 0.243059i 0.00999810i
\(592\) 28.1852 11.6747i 1.15841 0.479828i
\(593\) 15.8749 15.8749i 0.651905 0.651905i −0.301547 0.953451i \(-0.597503\pi\)
0.953451 + 0.301547i \(0.0975029\pi\)
\(594\) −0.324266 −0.0133048
\(595\) 0 0
\(596\) −24.0472 −0.985010
\(597\) −0.0153172 + 0.0153172i −0.000626889 + 0.000626889i
\(598\) −4.44055 + 1.83934i −0.181588 + 0.0752161i
\(599\) 19.1639i 0.783018i 0.920174 + 0.391509i \(0.128047\pi\)
−0.920174 + 0.391509i \(0.871953\pi\)
\(600\) 0 0
\(601\) −8.87947 + 21.4369i −0.362201 + 0.874431i 0.632777 + 0.774334i \(0.281915\pi\)
−0.994978 + 0.100096i \(0.968085\pi\)
\(602\) −0.337080 + 0.813782i −0.0137383 + 0.0331673i
\(603\) −26.6145 26.6145i −1.08383 1.08383i
\(604\) −25.3435 + 25.3435i −1.03121 + 1.03121i
\(605\) 0 0
\(606\) −0.0517530 + 0.124943i −0.00210232 + 0.00507546i
\(607\) −0.713459 1.72244i −0.0289584 0.0699118i 0.908739 0.417365i \(-0.137046\pi\)
−0.937697 + 0.347454i \(0.887046\pi\)
\(608\) 11.1492 0.452161
\(609\) −0.0293022 0.0707417i −0.00118738 0.00286660i
\(610\) 0 0
\(611\) 2.14468 0.0867643
\(612\) −10.8159 20.4235i −0.437206 0.825569i
\(613\) 0.383092i 0.0154729i −0.999970 0.00773647i \(-0.997537\pi\)
0.999970 0.00773647i \(-0.00246262\pi\)
\(614\) 1.41088 + 1.41088i 0.0569384 + 0.0569384i
\(615\) 0 0
\(616\) 1.15256i 0.0464379i
\(617\) −4.46499 10.7794i −0.179754 0.433964i 0.808161 0.588962i \(-0.200463\pi\)
−0.987915 + 0.154997i \(0.950463\pi\)
\(618\) 0.234028 + 0.0969375i 0.00941398 + 0.00389940i
\(619\) 12.4590 + 5.16070i 0.500771 + 0.207426i 0.618747 0.785590i \(-0.287641\pi\)
−0.117976 + 0.993016i \(0.537641\pi\)
\(620\) 0 0
\(621\) −1.55012 + 1.55012i −0.0622041 + 0.0622041i
\(622\) 3.11143 7.51165i 0.124757 0.301190i
\(623\) −0.428497 0.177489i −0.0171674 0.00711096i
\(624\) −0.321201 + 0.133046i −0.0128583 + 0.00532610i
\(625\) 0 0
\(626\) 1.67996 + 4.05578i 0.0671446 + 0.162101i
\(627\) 0.299178 0.299178i 0.0119480 0.0119480i
\(628\) 5.05373i 0.201666i
\(629\) −38.6723 + 3.65892i −1.54196 + 0.145891i
\(630\) 0 0
\(631\) −33.1913 33.1913i −1.32132 1.32132i −0.912706 0.408617i \(-0.866011\pi\)
−0.408617 0.912706i \(-0.633989\pi\)
\(632\) −13.7258 + 5.68540i −0.545982 + 0.226153i
\(633\) 0.105771 0.00420403
\(634\) −7.31470 + 3.02985i −0.290504 + 0.120331i
\(635\) 0 0
\(636\) −0.251622 0.104225i −0.00997747 0.00413280i
\(637\) −9.67341 9.67341i −0.383274 0.383274i
\(638\) 3.33159 + 3.33159i 0.131899 + 0.131899i
\(639\) 16.3028 + 6.75284i 0.644928 + 0.267138i
\(640\) 0 0
\(641\) 36.5657 15.1460i 1.44426 0.598232i 0.483433 0.875382i \(-0.339390\pi\)
0.960827 + 0.277150i \(0.0893898\pi\)
\(642\) 0.0708028 0.00279436
\(643\) −16.3686 + 6.78010i −0.645515 + 0.267381i −0.681329 0.731978i \(-0.738598\pi\)
0.0358141 + 0.999358i \(0.488598\pi\)
\(644\) −2.66246 2.66246i −0.104916 0.104916i
\(645\) 0 0
\(646\) −4.00220 1.23087i −0.157464 0.0484278i
\(647\) 14.8304i 0.583045i 0.956564 + 0.291522i \(0.0941618\pi\)
−0.956564 + 0.291522i \(0.905838\pi\)
\(648\) −8.84694 + 8.84694i −0.347541 + 0.347541i
\(649\) 9.69446 + 23.4045i 0.380541 + 0.918707i
\(650\) 0 0
\(651\) −0.0452973 + 0.0187628i −0.00177534 + 0.000735370i
\(652\) 29.5562 + 12.2426i 1.15751 + 0.479457i
\(653\) −3.90283 + 9.42227i −0.152730 + 0.368722i −0.981663 0.190626i \(-0.938948\pi\)
0.828933 + 0.559348i \(0.188948\pi\)
\(654\) 0.0711591 0.0711591i 0.00278254 0.00278254i
\(655\) 0 0
\(656\) −9.30321 3.85352i −0.363229 0.150455i
\(657\) 0.599931 + 0.248499i 0.0234055 + 0.00969488i
\(658\) −0.0446174 0.107716i −0.00173937 0.00419920i
\(659\) 45.4453i 1.77030i 0.465309 + 0.885148i \(0.345943\pi\)
−0.465309 + 0.885148i \(0.654057\pi\)
\(660\) 0 0
\(661\) −5.62214 5.62214i −0.218676 0.218676i 0.589264 0.807940i \(-0.299418\pi\)
−0.807940 + 0.589264i \(0.799418\pi\)
\(662\) 5.21001i 0.202493i
\(663\) 0.440712 0.0416973i 0.0171158 0.00161939i
\(664\) −21.7152 −0.842712
\(665\) 0 0
\(666\) 3.89273 + 9.39789i 0.150840 + 0.364161i
\(667\) 31.8526 1.23334
\(668\) 6.33579 + 15.2960i 0.245139 + 0.591818i
\(669\) 0.492545 1.18911i 0.0190429 0.0459736i
\(670\) 0 0
\(671\) −21.9040 + 21.9040i −0.845594 + 0.845594i
\(672\) 0.0453106 + 0.0453106i 0.00174789 + 0.00174789i
\(673\) −8.41428 + 20.3139i −0.324347 + 0.783042i 0.674645 + 0.738142i \(0.264297\pi\)
−0.998992 + 0.0448994i \(0.985703\pi\)
\(674\) 3.34263 8.06983i 0.128753 0.310838i
\(675\) 0 0
\(676\) 16.9841i 0.653234i
\(677\) −16.8488 + 6.97899i −0.647551 + 0.268224i −0.682189 0.731176i \(-0.738972\pi\)
0.0346387 + 0.999400i \(0.488972\pi\)
\(678\) 0.152070 0.152070i 0.00584021 0.00584021i
\(679\) −2.67961 −0.102834
\(680\) 0 0
\(681\) 1.11511 0.0427310
\(682\) 2.13328 2.13328i 0.0816876 0.0816876i
\(683\) 16.8175 6.96604i 0.643504 0.266548i −0.0369746 0.999316i \(-0.511772\pi\)
0.680478 + 0.732768i \(0.261772\pi\)
\(684\) 15.8007i 0.604156i
\(685\) 0 0
\(686\) −0.572878 + 1.38305i −0.0218726 + 0.0528051i
\(687\) 0.552029 1.33272i 0.0210612 0.0508463i
\(688\) −18.7414 18.7414i −0.714511 0.714511i
\(689\) −3.75835 + 3.75835i −0.143182 + 0.143182i
\(690\) 0 0
\(691\) 5.95556 14.3780i 0.226560 0.546965i −0.769194 0.639015i \(-0.779342\pi\)
0.995754 + 0.0920503i \(0.0293421\pi\)
\(692\) −13.7307 33.1488i −0.521962 1.26013i
\(693\) −2.47750 −0.0941124
\(694\) −2.96354 7.15462i −0.112494 0.271586i
\(695\) 0 0
\(696\) −0.357391 −0.0135469
\(697\) 9.87999 + 8.17202i 0.374231 + 0.309537i
\(698\) 8.69519i 0.329118i
\(699\) 0.901230 + 0.901230i 0.0340876 + 0.0340876i
\(700\) 0 0
\(701\) 8.07561i 0.305011i 0.988303 + 0.152506i \(0.0487342\pi\)
−0.988303 + 0.152506i \(0.951266\pi\)
\(702\) −0.0887673 0.214303i −0.00335031 0.00808836i
\(703\) −24.5367 10.1634i −0.925417 0.383320i
\(704\) 12.9148 + 5.34949i 0.486745 + 0.201617i
\(705\) 0 0
\(706\) 1.84544 1.84544i 0.0694540 0.0694540i
\(707\) −0.791208 + 1.91014i −0.0297564 + 0.0718384i
\(708\) −0.857891 0.355350i −0.0322415 0.0133549i
\(709\) 4.88749 2.02447i 0.183554 0.0760304i −0.289014 0.957325i \(-0.593327\pi\)
0.472567 + 0.881295i \(0.343327\pi\)
\(710\) 0 0
\(711\) 12.2211 + 29.5044i 0.458329 + 1.10650i
\(712\) −1.53074 + 1.53074i −0.0573668 + 0.0573668i
\(713\) 20.3958i 0.763830i
\(714\) −0.0112627 0.0212672i −0.000421497 0.000795906i
\(715\) 0 0
\(716\) 5.73323 + 5.73323i 0.214261 + 0.214261i
\(717\) 0.263440 0.109120i 0.00983835 0.00407518i
\(718\) 6.21964 0.232115
\(719\) 8.27731 3.42857i 0.308691 0.127864i −0.222960 0.974828i \(-0.571572\pi\)
0.531651 + 0.846964i \(0.321572\pi\)
\(720\) 0 0
\(721\) 3.57785 + 1.48199i 0.133246 + 0.0551923i
\(722\) 2.81573 + 2.81573i 0.104791 + 0.104791i
\(723\) −0.208598 0.208598i −0.00775786 0.00775786i
\(724\) −41.0855 17.0182i −1.52693 0.632476i
\(725\) 0 0
\(726\) 0.0603301 0.0249895i 0.00223906 0.000927449i
\(727\) 29.9868 1.11215 0.556074 0.831133i \(-0.312307\pi\)
0.556074 + 0.831133i \(0.312307\pi\)
\(728\) 0.761710 0.315511i 0.0282309 0.0116936i
\(729\) 18.9797 + 18.9797i 0.702950 + 0.702950i
\(730\) 0 0
\(731\) 15.7942 + 29.8239i 0.584168 + 1.10308i
\(732\) 1.13546i 0.0419678i
\(733\) 19.0696 19.0696i 0.704352 0.704352i −0.260990 0.965342i \(-0.584049\pi\)
0.965342 + 0.260990i \(0.0840488\pi\)
\(734\) 5.16205 + 12.4623i 0.190535 + 0.459992i
\(735\) 0 0
\(736\) −24.6272 + 10.2009i −0.907770 + 0.376011i
\(737\) −32.1078 13.2995i −1.18270 0.489892i
\(738\) 1.28489 3.10200i 0.0472974 0.114186i
\(739\) 24.6401 24.6401i 0.906400 0.906400i −0.0895798 0.995980i \(-0.528552\pi\)
0.995980 + 0.0895798i \(0.0285524\pi\)
\(740\) 0 0
\(741\) 0.279622 + 0.115823i 0.0102722 + 0.00425487i
\(742\) 0.266950 + 0.110574i 0.00980006 + 0.00405932i
\(743\) −6.54116 15.7918i −0.239972 0.579344i 0.757307 0.653059i \(-0.226514\pi\)
−0.997279 + 0.0737150i \(0.976514\pi\)
\(744\) 0.228844i 0.00838984i
\(745\) 0 0
\(746\) −7.61380 7.61380i −0.278761 0.278761i
\(747\) 46.6781i 1.70786i
\(748\) −16.4431 13.6006i −0.601219 0.497286i
\(749\) 1.08244 0.0395516
\(750\) 0 0
\(751\) −12.5831 30.3783i −0.459165 1.10852i −0.968736 0.248093i \(-0.920196\pi\)
0.509572 0.860428i \(-0.329804\pi\)
\(752\) 3.50824 0.127932
\(753\) 0.547669 + 1.32219i 0.0199582 + 0.0481833i
\(754\) −1.28979 + 3.11382i −0.0469713 + 0.113399i
\(755\) 0 0
\(756\) 0.128492 0.128492i 0.00467319 0.00467319i
\(757\) −12.3728 12.3728i −0.449698 0.449698i 0.445556 0.895254i \(-0.353006\pi\)
−0.895254 + 0.445556i \(0.853006\pi\)
\(758\) −4.13872 + 9.99176i −0.150325 + 0.362917i
\(759\) −0.387113 + 0.934574i −0.0140513 + 0.0339229i
\(760\) 0 0
\(761\) 10.8439i 0.393092i 0.980495 + 0.196546i \(0.0629724\pi\)
−0.980495 + 0.196546i \(0.937028\pi\)
\(762\) −0.132362 + 0.0548261i −0.00479497 + 0.00198614i
\(763\) 1.08789 1.08789i 0.0393843 0.0393843i
\(764\) 13.5975 0.491941
\(765\) 0 0
\(766\) −7.10543 −0.256730
\(767\) −12.8139 + 12.8139i −0.462682 + 0.462682i
\(768\) −0.330599 + 0.136939i −0.0119295 + 0.00494135i
\(769\) 14.8775i 0.536497i −0.963350 0.268248i \(-0.913555\pi\)
0.963350 0.268248i \(-0.0864448\pi\)
\(770\) 0 0
\(771\) −0.389187 + 0.939581i −0.0140162 + 0.0338382i
\(772\) 15.8880 38.3571i 0.571822 1.38050i
\(773\) 5.45537 + 5.45537i 0.196216 + 0.196216i 0.798376 0.602160i \(-0.205693\pi\)
−0.602160 + 0.798376i \(0.705693\pi\)
\(774\) 6.24901 6.24901i 0.224616 0.224616i
\(775\) 0 0
\(776\) −4.78623 + 11.5550i −0.171816 + 0.414800i
\(777\) −0.0584130 0.141021i −0.00209555 0.00505912i
\(778\) 1.33839 0.0479836
\(779\) 3.35468 + 8.09891i 0.120194 + 0.290173i
\(780\) 0 0
\(781\) 16.2933 0.583019
\(782\) 9.96650 0.942965i 0.356401 0.0337204i
\(783\) 1.53722i 0.0549358i
\(784\) −15.8237 15.8237i −0.565131 0.565131i
\(785\) 0 0
\(786\) 0.338459i 0.0120724i
\(787\) 14.6385 + 35.3404i 0.521805 + 1.25975i 0.936781 + 0.349917i \(0.113790\pi\)
−0.414975 + 0.909833i \(0.636210\pi\)
\(788\) 7.74321 + 3.20734i 0.275840 + 0.114257i
\(789\) −0.801792 0.332113i −0.0285446 0.0118235i
\(790\) 0 0
\(791\) 2.32487 2.32487i 0.0826627 0.0826627i
\(792\) −4.42523 + 10.6835i −0.157244 + 0.379620i
\(793\) −20.4722 8.47987i −0.726990 0.301129i
\(794\) −1.72134 + 0.713003i −0.0610881 + 0.0253035i
\(795\) 0 0
\(796\) 0.285843 + 0.690085i 0.0101314 + 0.0244594i
\(797\) −18.8205 + 18.8205i −0.666657 + 0.666657i −0.956941 0.290284i \(-0.906250\pi\)
0.290284 + 0.956941i \(0.406250\pi\)
\(798\) 0.0164535i 0.000582448i
\(799\) −4.26966 1.31312i −0.151050 0.0464549i
\(800\) 0 0
\(801\) 3.29042 + 3.29042i 0.116261 + 0.116261i
\(802\) −0.131384 + 0.0544211i −0.00463934 + 0.00192168i
\(803\) 0.599580 0.0211587
\(804\) 1.17691 0.487492i 0.0415064 0.0171925i
\(805\) 0 0
\(806\) 1.99384 + 0.825876i 0.0702300 + 0.0290902i
\(807\) 0.0458831 + 0.0458831i 0.00161516 + 0.00161516i
\(808\) 6.82368 + 6.82368i 0.240056 + 0.240056i
\(809\) −15.1856 6.29009i −0.533898 0.221148i 0.0994117 0.995046i \(-0.468304\pi\)
−0.633309 + 0.773899i \(0.718304\pi\)
\(810\) 0 0
\(811\) −3.36428 + 1.39353i −0.118136 + 0.0489335i −0.440968 0.897523i \(-0.645365\pi\)
0.322833 + 0.946456i \(0.395365\pi\)
\(812\) −2.64031 −0.0926566
\(813\) 0.0445261 0.0184433i 0.00156160 0.000646835i
\(814\) 6.64143 + 6.64143i 0.232782 + 0.232782i
\(815\) 0 0
\(816\) 0.720914 0.0682081i 0.0252370 0.00238776i
\(817\) 23.0734i 0.807236i
\(818\) 0.132739 0.132739i 0.00464111 0.00464111i
\(819\) −0.678211 1.63735i −0.0236986 0.0572135i
\(820\) 0 0
\(821\) 32.8228 13.5957i 1.14552 0.474492i 0.272494 0.962158i \(-0.412152\pi\)
0.873030 + 0.487666i \(0.162152\pi\)
\(822\) 0.252265 + 0.104492i 0.00879876 + 0.00364457i
\(823\) −1.91962 + 4.63438i −0.0669138 + 0.161544i −0.953799 0.300446i \(-0.902864\pi\)
0.886885 + 0.461990i \(0.152864\pi\)
\(824\) 12.7813 12.7813i 0.445257 0.445257i
\(825\) 0 0
\(826\) 0.910152 + 0.376997i 0.0316682 + 0.0131174i
\(827\) −36.1131 14.9585i −1.25578 0.520159i −0.347165 0.937804i \(-0.612856\pi\)
−0.908610 + 0.417645i \(0.862856\pi\)
\(828\) 14.4568 + 34.9017i 0.502407 + 1.21292i
\(829\) 16.3998i 0.569587i −0.958589 0.284794i \(-0.908075\pi\)
0.958589 0.284794i \(-0.0919250\pi\)
\(830\) 0 0
\(831\) −0.236964 0.236964i −0.00822019 0.00822019i
\(832\) 9.99964i 0.346675i
\(833\) 13.3352 + 25.1807i 0.462039 + 0.872461i
\(834\) 0.0707439 0.00244966
\(835\) 0 0
\(836\) −5.58313 13.4789i −0.193097 0.466177i
\(837\) 0.984314 0.0340229
\(838\) −0.630344 1.52178i −0.0217749 0.0525692i
\(839\) 11.4471 27.6357i 0.395197 0.954090i −0.593591 0.804767i \(-0.702290\pi\)
0.988788 0.149324i \(-0.0477096\pi\)
\(840\) 0 0
\(841\) −4.71231 + 4.71231i −0.162493 + 0.162493i
\(842\) 1.92387 + 1.92387i 0.0663009 + 0.0663009i
\(843\) 0.578989 1.39780i 0.0199414 0.0481429i
\(844\) 1.39573 3.36959i 0.0480431 0.115986i
\(845\) 0 0
\(846\) 1.16976i 0.0402173i
\(847\) 0.922334 0.382043i 0.0316918 0.0131272i
\(848\) −6.14788 + 6.14788i −0.211119 + 0.211119i
\(849\) −1.61150 −0.0553064
\(850\) 0 0
\(851\) 63.4972 2.17666
\(852\) −0.422305 + 0.422305i −0.0144679 + 0.0144679i
\(853\) 33.1784 13.7430i 1.13601 0.470550i 0.266189 0.963921i \(-0.414235\pi\)
0.869819 + 0.493371i \(0.164235\pi\)
\(854\) 1.20463i 0.0412215i
\(855\) 0 0
\(856\) 1.93343 4.66771i 0.0660832 0.159539i
\(857\) 8.06374 19.4676i 0.275452 0.665000i −0.724247 0.689541i \(-0.757812\pi\)
0.999699 + 0.0245406i \(0.00781230\pi\)
\(858\) −0.0756862 0.0756862i −0.00258389 0.00258389i
\(859\) 11.2104 11.2104i 0.382494 0.382494i −0.489506 0.872000i \(-0.662823\pi\)
0.872000 + 0.489506i \(0.162823\pi\)
\(860\) 0 0
\(861\) −0.0192806 + 0.0465475i −0.000657081 + 0.00158633i
\(862\) 2.87977 + 6.95238i 0.0980853 + 0.236799i
\(863\) 23.8125 0.810587 0.405294 0.914187i \(-0.367169\pi\)
0.405294 + 0.914187i \(0.367169\pi\)
\(864\) −0.492301 1.18852i −0.0167484 0.0404343i
\(865\) 0 0
\(866\) −11.8347 −0.402160
\(867\) −0.902908 0.186823i −0.0306644 0.00634486i
\(868\) 1.69064i 0.0573841i
\(869\) 20.8506 + 20.8506i 0.707308 + 0.707308i
\(870\) 0 0
\(871\) 24.8603i 0.842359i
\(872\) −2.74804 6.63435i −0.0930603 0.224667i
\(873\) 24.8382 + 10.2883i 0.840645 + 0.348207i
\(874\) 6.32351 + 2.61929i 0.213896 + 0.0885987i
\(875\) 0 0
\(876\) −0.0155405 + 0.0155405i −0.000525065 + 0.000525065i
\(877\) 6.85759 16.5557i 0.231564 0.559046i −0.764797 0.644271i \(-0.777161\pi\)
0.996362 + 0.0852252i \(0.0271610\pi\)
\(878\) 7.99343 + 3.31099i 0.269765 + 0.111740i
\(879\) 1.12557 0.466228i 0.0379646 0.0157255i
\(880\) 0 0
\(881\) −12.9301 31.2159i −0.435625 1.05169i −0.977444 0.211196i \(-0.932264\pi\)
0.541819 0.840495i \(-0.317736\pi\)
\(882\) 5.27613 5.27613i 0.177657 0.177657i
\(883\) 26.0211i 0.875680i 0.899053 + 0.437840i \(0.144256\pi\)
−0.899053 + 0.437840i \(0.855744\pi\)
\(884\) 4.48716 14.5901i 0.150920 0.490720i
\(885\) 0 0
\(886\) −2.13189 2.13189i −0.0716222 0.0716222i
\(887\) −27.3959 + 11.3477i −0.919863 + 0.381020i −0.791824 0.610749i \(-0.790868\pi\)
−0.128039 + 0.991769i \(0.540868\pi\)
\(888\) −0.712447 −0.0239082
\(889\) −2.02357 + 0.838189i −0.0678683 + 0.0281120i
\(890\) 0 0
\(891\) 22.9422 + 9.50298i 0.768593 + 0.318362i
\(892\) −31.3823 31.3823i −1.05076 1.05076i
\(893\) −2.15957 2.15957i −0.0722674 0.0722674i
\(894\) 0.232110 + 0.0961433i 0.00776293 + 0.00321551i
\(895\) 0 0
\(896\) 2.68527 1.11228i 0.0897087 0.0371586i
\(897\) −0.723619 −0.0241609
\(898\) 8.18648 3.39095i 0.273186 0.113157i
\(899\) −10.1131 10.1131i −0.337290 0.337290i
\(900\) 0 0
\(901\) 9.78332 5.18106i 0.325930 0.172606i
\(902\) 3.10018i 0.103225i
\(903\) −0.0937705 + 0.0937705i −0.00312049 + 0.00312049i
\(904\) −5.87267 14.1779i −0.195322 0.471549i
\(905\) 0 0
\(906\) 0.345949 0.143297i 0.0114934 0.00476072i
\(907\) 5.55499 + 2.30095i 0.184450 + 0.0764018i 0.472997 0.881064i \(-0.343172\pi\)
−0.288547 + 0.957466i \(0.593172\pi\)
\(908\) 14.7147 35.5244i 0.488324 1.17892i
\(909\) 14.6679 14.6679i 0.486505 0.486505i
\(910\) 0 0
\(911\) −33.5802 13.9094i −1.11256 0.460839i −0.250744 0.968054i \(-0.580675\pi\)
−0.861820 + 0.507215i \(0.830675\pi\)
\(912\) 0.457403 + 0.189462i 0.0151461 + 0.00627373i
\(913\) 16.4936 + 39.8190i 0.545858 + 1.31782i
\(914\) 2.74173i 0.0906883i
\(915\) 0 0
\(916\) −35.1724 35.1724i −1.16213 1.16213i
\(917\) 5.17440i 0.170874i
\(918\) 0.0455080 + 0.480989i 0.00150199 + 0.0158750i
\(919\) −31.4827 −1.03852 −0.519259 0.854617i \(-0.673792\pi\)
−0.519259 + 0.854617i \(0.673792\pi\)
\(920\) 0 0
\(921\) 0.114956 + 0.277529i 0.00378794 + 0.00914489i
\(922\) −2.60127 −0.0856684
\(923\) 4.46025 + 10.7680i 0.146811 + 0.354433i
\(924\) 0.0320884 0.0774682i 0.00105563 0.00254852i
\(925\) 0 0
\(926\) −5.86821 + 5.86821i −0.192841 + 0.192841i
\(927\) −27.4742 27.4742i −0.902371 0.902371i
\(928\) −7.15312 + 17.2692i −0.234813 + 0.566888i
\(929\) 16.5321 39.9121i 0.542402 1.30947i −0.380622 0.924731i \(-0.624290\pi\)
0.923024 0.384743i \(-0.125710\pi\)
\(930\) 0 0
\(931\) 19.4812i 0.638471i
\(932\) 40.6032 16.8184i 1.33000 0.550905i
\(933\) 0.865552 0.865552i 0.0283369 0.0283369i
\(934\) −10.7732 −0.352511
\(935\) 0 0
\(936\) −8.27195 −0.270377
\(937\) 8.15745 8.15745i 0.266492 0.266492i −0.561193 0.827685i \(-0.689657\pi\)
0.827685 + 0.561193i \(0.189657\pi\)
\(938\) −1.24860 + 0.517188i −0.0407683 + 0.0168868i
\(939\) 0.660917i 0.0215682i
\(940\) 0 0
\(941\) −10.4367 + 25.1965i −0.340227 + 0.821382i 0.657465 + 0.753485i \(0.271629\pi\)
−0.997692 + 0.0678965i \(0.978371\pi\)
\(942\) −0.0202054 + 0.0487801i −0.000658327 + 0.00158934i
\(943\) −14.8201 14.8201i −0.482608 0.482608i
\(944\) −20.9608 + 20.9608i −0.682217 + 0.682217i
\(945\) 0 0
\(946\) 3.12268 7.53882i 0.101527 0.245108i
\(947\) 8.72231 + 21.0575i 0.283437 + 0.684278i 0.999911 0.0133362i \(-0.00424516\pi\)
−0.716474 + 0.697614i \(0.754245\pi\)
\(948\) −1.08085 −0.0351045
\(949\) 0.164134 + 0.396254i 0.00532801 + 0.0128630i
\(950\) 0 0
\(951\) −1.19198 −0.0386527
\(952\) −1.70960 + 0.161752i −0.0554086 + 0.00524240i
\(953\) 28.9548i 0.937938i −0.883215 0.468969i \(-0.844626\pi\)
0.883215 0.468969i \(-0.155374\pi\)
\(954\) −2.04990 2.04990i −0.0663681 0.0663681i
\(955\) 0 0
\(956\) 9.83243i 0.318003i
\(957\) 0.271453 + 0.655346i 0.00877483 + 0.0211843i
\(958\) 3.21425 + 1.33139i 0.103848 + 0.0430152i
\(959\) 3.85667 + 1.59748i 0.124538 + 0.0515854i
\(960\) 0 0
\(961\) 15.4447 15.4447i 0.498216 0.498216i
\(962\) −2.57115 + 6.20731i −0.0828972 + 0.200132i
\(963\) −10.0335 4.15603i −0.323326 0.133926i
\(964\) −9.39800 + 3.89278i −0.302689 + 0.125378i
\(965\) 0 0
\(966\) 0.0150540 + 0.0363436i 0.000484355 + 0.00116934i
\(967\) 35.7870 35.7870i 1.15083 1.15083i 0.164447 0.986386i \(-0.447416\pi\)
0.986386 0.164447i \(-0.0525841\pi\)
\(968\) 4.65968i 0.149768i
\(969\) −0.485761 0.401787i −0.0156049 0.0129073i
\(970\) 0 0
\(971\) 23.2222 + 23.2222i 0.745236 + 0.745236i 0.973580 0.228344i \(-0.0733312\pi\)
−0.228344 + 0.973580i \(0.573331\pi\)
\(972\) −2.52697 + 1.04671i −0.0810527 + 0.0335731i
\(973\) 1.08154 0.0346727
\(974\) −1.60761 + 0.665895i −0.0515112 + 0.0213366i
\(975\) 0 0
\(976\) −33.4883 13.8713i −1.07193 0.444010i
\(977\) 15.2966 + 15.2966i 0.489381 + 0.489381i 0.908111 0.418730i \(-0.137525\pi\)
−0.418730 + 0.908111i \(0.637525\pi\)
\(978\) −0.236338 0.236338i −0.00755727 0.00755727i
\(979\) 3.96956 + 1.64425i 0.126868 + 0.0525503i
\(980\) 0 0
\(981\) −14.2610 + 5.90708i −0.455317 + 0.188599i
\(982\) −7.73637 −0.246878
\(983\) −4.72148 + 1.95570i −0.150592 + 0.0623771i −0.456706 0.889618i \(-0.650971\pi\)
0.306115 + 0.951995i \(0.400971\pi\)
\(984\) 0.166283 + 0.166283i 0.00530092 + 0.00530092i
\(985\) 0 0
\(986\) 4.47423 5.40935i 0.142489 0.172269i
\(987\) 0.0175531i 0.000558720i
\(988\) 7.37963 7.37963i 0.234777 0.234777i
\(989\) −21.1108 50.9661i −0.671286 1.62063i
\(990\) 0 0
\(991\) 2.32187 0.961750i 0.0737566 0.0305510i −0.345500 0.938419i \(-0.612291\pi\)
0.419257 + 0.907868i \(0.362291\pi\)
\(992\) 11.0578 + 4.58029i 0.351085 + 0.145424i
\(993\) −0.300170 + 0.724673i −0.00952559 + 0.0229968i
\(994\) 0.448030 0.448030i 0.0142107 0.0142107i
\(995\) 0 0
\(996\) −1.45957 0.604572i −0.0462481 0.0191566i
\(997\) −33.3033 13.7947i −1.05473 0.436882i −0.213149 0.977020i \(-0.568372\pi\)
−0.841576 + 0.540138i \(0.818372\pi\)
\(998\) 2.56951 + 6.20336i 0.0813366 + 0.196364i
\(999\) 3.06441i 0.0969535i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.n.f.49.3 24
5.2 odd 4 85.2.l.a.66.3 24
5.3 odd 4 425.2.m.b.151.4 24
5.4 even 2 425.2.n.c.49.4 24
15.2 even 4 765.2.be.b.406.4 24
17.8 even 8 425.2.n.c.399.4 24
85.8 odd 8 425.2.m.b.76.4 24
85.12 even 16 1445.2.a.p.1.8 12
85.22 even 16 1445.2.a.q.1.8 12
85.37 even 16 1445.2.d.j.866.10 24
85.42 odd 8 85.2.l.a.76.3 yes 24
85.59 even 8 inner 425.2.n.f.399.3 24
85.63 even 16 7225.2.a.bs.1.5 12
85.73 even 16 7225.2.a.bq.1.5 12
85.82 even 16 1445.2.d.j.866.9 24
255.212 even 8 765.2.be.b.586.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.3 24 5.2 odd 4
85.2.l.a.76.3 yes 24 85.42 odd 8
425.2.m.b.76.4 24 85.8 odd 8
425.2.m.b.151.4 24 5.3 odd 4
425.2.n.c.49.4 24 5.4 even 2
425.2.n.c.399.4 24 17.8 even 8
425.2.n.f.49.3 24 1.1 even 1 trivial
425.2.n.f.399.3 24 85.59 even 8 inner
765.2.be.b.406.4 24 15.2 even 4
765.2.be.b.586.4 24 255.212 even 8
1445.2.a.p.1.8 12 85.12 even 16
1445.2.a.q.1.8 12 85.22 even 16
1445.2.d.j.866.9 24 85.82 even 16
1445.2.d.j.866.10 24 85.37 even 16
7225.2.a.bq.1.5 12 85.73 even 16
7225.2.a.bs.1.5 12 85.63 even 16