Properties

Label 150.3.i.a.119.5
Level $150$
Weight $3$
Character 150.119
Analytic conductor $4.087$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,3,Mod(29,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 150.i (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.08720396540\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 119.5
Character \(\chi\) \(=\) 150.119
Dual form 150.3.i.a.29.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.437016 - 1.34500i) q^{2} +(-0.0352727 + 2.99979i) q^{3} +(-1.61803 + 1.17557i) q^{4} +(-4.11716 - 2.83707i) q^{5} +(4.05013 - 1.26352i) q^{6} -2.70868i q^{7} +(2.28825 + 1.66251i) q^{8} +(-8.99751 - 0.211621i) q^{9} +O(q^{10})\) \(q+(-0.437016 - 1.34500i) q^{2} +(-0.0352727 + 2.99979i) q^{3} +(-1.61803 + 1.17557i) q^{4} +(-4.11716 - 2.83707i) q^{5} +(4.05013 - 1.26352i) q^{6} -2.70868i q^{7} +(2.28825 + 1.66251i) q^{8} +(-8.99751 - 0.211621i) q^{9} +(-2.01659 + 6.77742i) q^{10} +(-1.51542 + 0.492390i) q^{11} +(-3.46940 - 4.89523i) q^{12} +(-15.0748 - 4.89810i) q^{13} +(-3.64317 + 1.18374i) q^{14} +(8.65585 - 12.2506i) q^{15} +(1.23607 - 3.80423i) q^{16} +(-18.8231 - 13.6758i) q^{17} +(3.64743 + 12.1941i) q^{18} +(-19.4318 - 14.1180i) q^{19} +(9.99689 - 0.249534i) q^{20} +(8.12549 + 0.0955425i) q^{21} +(1.32453 + 1.82305i) q^{22} +(3.76161 + 11.5770i) q^{23} +(-5.06789 + 6.80562i) q^{24} +(8.90204 + 23.3614i) q^{25} +22.4161i q^{26} +(0.952187 - 26.9832i) q^{27} +(3.18425 + 4.38274i) q^{28} +(21.0025 + 28.9075i) q^{29} +(-20.2597 - 6.28841i) q^{30} +(17.8786 + 12.9896i) q^{31} -5.65685 q^{32} +(-1.42361 - 4.56331i) q^{33} +(-10.1679 + 31.2936i) q^{34} +(-7.68473 + 11.1521i) q^{35} +(14.8071 - 10.2348i) q^{36} +(-13.8928 - 4.51404i) q^{37} +(-10.4967 + 32.3055i) q^{38} +(15.2250 - 45.0485i) q^{39} +(-4.70442 - 13.3367i) q^{40} +(21.4020 + 6.95393i) q^{41} +(-3.42246 - 10.9705i) q^{42} -50.7907i q^{43} +(1.87316 - 2.57819i) q^{44} +(36.4438 + 26.3979i) q^{45} +(13.9272 - 10.1187i) q^{46} +(-37.9194 + 27.5500i) q^{47} +(11.3683 + 3.84213i) q^{48} +41.6630 q^{49} +(27.5306 - 22.1825i) q^{50} +(41.6885 - 55.9831i) q^{51} +(30.1496 - 9.79619i) q^{52} +(-40.8309 + 29.6654i) q^{53} +(-36.7085 + 10.5114i) q^{54} +(7.63617 + 2.27211i) q^{55} +(4.50321 - 6.19813i) q^{56} +(43.0366 - 57.7934i) q^{57} +(29.7020 - 40.8814i) q^{58} +(48.7840 + 15.8509i) q^{59} +(0.395933 + 29.9974i) q^{60} +(-12.9533 - 39.8662i) q^{61} +(9.65770 - 29.7234i) q^{62} +(-0.573216 + 24.3714i) q^{63} +(2.47214 + 7.60845i) q^{64} +(48.1691 + 62.9345i) q^{65} +(-5.51550 + 3.90900i) q^{66} +(29.7675 - 40.9714i) q^{67} +46.5334 q^{68} +(-34.8614 + 10.8757i) q^{69} +(18.3579 + 5.46230i) q^{70} +(-21.0491 - 28.9716i) q^{71} +(-20.2367 - 15.4427i) q^{72} +(-110.786 + 35.9965i) q^{73} +20.6585i q^{74} +(-70.3933 + 25.8803i) q^{75} +48.0381 q^{76} +(1.33373 + 4.10479i) q^{77} +(-67.2436 - 0.790676i) q^{78} +(-96.1429 + 69.8519i) q^{79} +(-15.8820 + 12.1558i) q^{80} +(80.9104 + 3.80813i) q^{81} -31.8246i q^{82} +(-102.618 - 74.5562i) q^{83} +(-13.2596 + 9.39750i) q^{84} +(38.6986 + 109.708i) q^{85} +(-68.3134 + 22.1964i) q^{86} +(-87.4573 + 61.9836i) q^{87} +(-4.28625 - 1.39269i) q^{88} +(101.736 - 33.0560i) q^{89} +(19.5785 - 60.5531i) q^{90} +(-13.2674 + 40.8328i) q^{91} +(-19.6961 - 14.3100i) q^{92} +(-39.5967 + 53.1740i) q^{93} +(53.6261 + 38.9616i) q^{94} +(39.9500 + 113.256i) q^{95} +(0.199532 - 16.9694i) q^{96} +(78.5564 + 108.124i) q^{97} +(-18.2074 - 56.0367i) q^{98} +(13.7392 - 4.10959i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 40 q^{4} + 20 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 80 q - 40 q^{4} + 20 q^{9} + 16 q^{10} + 20 q^{12} + 32 q^{15} - 80 q^{16} + 60 q^{19} - 60 q^{21} + 40 q^{22} + 116 q^{25} - 210 q^{27} - 40 q^{28} - 68 q^{30} + 180 q^{31} - 50 q^{33} - 120 q^{34} + 40 q^{36} - 40 q^{37} + 220 q^{39} + 32 q^{40} + 468 q^{45} + 120 q^{46} - 40 q^{48} - 680 q^{49} + 20 q^{51} - 120 q^{54} - 272 q^{55} - 156 q^{60} - 200 q^{61} - 830 q^{63} - 160 q^{64} + 160 q^{66} + 500 q^{67} - 280 q^{69} - 584 q^{70} + 120 q^{73} - 138 q^{75} - 80 q^{76} + 620 q^{78} + 400 q^{79} - 420 q^{81} + 180 q^{84} + 1632 q^{85} + 750 q^{87} + 160 q^{88} + 472 q^{90} - 340 q^{91} + 160 q^{94} + 20 q^{97} - 260 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.437016 1.34500i −0.218508 0.672499i
\(3\) −0.0352727 + 2.99979i −0.0117576 + 0.999931i
\(4\) −1.61803 + 1.17557i −0.404508 + 0.293893i
\(5\) −4.11716 2.83707i −0.823432 0.567415i
\(6\) 4.05013 1.26352i 0.675021 0.210586i
\(7\) 2.70868i 0.386955i −0.981105 0.193477i \(-0.938023\pi\)
0.981105 0.193477i \(-0.0619766\pi\)
\(8\) 2.28825 + 1.66251i 0.286031 + 0.207813i
\(9\) −8.99751 0.211621i −0.999724 0.0235135i
\(10\) −2.01659 + 6.77742i −0.201659 + 0.677742i
\(11\) −1.51542 + 0.492390i −0.137765 + 0.0447627i −0.377088 0.926177i \(-0.623075\pi\)
0.239323 + 0.970940i \(0.423075\pi\)
\(12\) −3.46940 4.89523i −0.289116 0.407936i
\(13\) −15.0748 4.89810i −1.15960 0.376777i −0.334848 0.942272i \(-0.608685\pi\)
−0.824751 + 0.565495i \(0.808685\pi\)
\(14\) −3.64317 + 1.18374i −0.260227 + 0.0845527i
\(15\) 8.65585 12.2506i 0.577057 0.816704i
\(16\) 1.23607 3.80423i 0.0772542 0.237764i
\(17\) −18.8231 13.6758i −1.10724 0.804460i −0.125016 0.992155i \(-0.539898\pi\)
−0.982227 + 0.187695i \(0.939898\pi\)
\(18\) 3.64743 + 12.1941i 0.202635 + 0.677450i
\(19\) −19.4318 14.1180i −1.02273 0.743054i −0.0558866 0.998437i \(-0.517799\pi\)
−0.966840 + 0.255383i \(0.917799\pi\)
\(20\) 9.99689 0.249534i 0.499844 0.0124767i
\(21\) 8.12549 + 0.0955425i 0.386928 + 0.00454964i
\(22\) 1.32453 + 1.82305i 0.0602057 + 0.0828660i
\(23\) 3.76161 + 11.5770i 0.163548 + 0.503350i 0.998926 0.0463259i \(-0.0147513\pi\)
−0.835378 + 0.549676i \(0.814751\pi\)
\(24\) −5.06789 + 6.80562i −0.211162 + 0.283568i
\(25\) 8.90204 + 23.3614i 0.356082 + 0.934455i
\(26\) 22.4161i 0.862158i
\(27\) 0.952187 26.9832i 0.0352662 0.999378i
\(28\) 3.18425 + 4.38274i 0.113723 + 0.156527i
\(29\) 21.0025 + 28.9075i 0.724225 + 0.996810i 0.999373 + 0.0354080i \(0.0112731\pi\)
−0.275148 + 0.961402i \(0.588727\pi\)
\(30\) −20.2597 6.28841i −0.675324 0.209614i
\(31\) 17.8786 + 12.9896i 0.576730 + 0.419019i 0.837544 0.546370i \(-0.183991\pi\)
−0.260814 + 0.965389i \(0.583991\pi\)
\(32\) −5.65685 −0.176777
\(33\) −1.42361 4.56331i −0.0431398 0.138282i
\(34\) −10.1679 + 31.2936i −0.299056 + 0.920401i
\(35\) −7.68473 + 11.1521i −0.219564 + 0.318631i
\(36\) 14.8071 10.2348i 0.411307 0.284300i
\(37\) −13.8928 4.51404i −0.375481 0.122001i 0.115196 0.993343i \(-0.463250\pi\)
−0.490677 + 0.871342i \(0.663250\pi\)
\(38\) −10.4967 + 32.3055i −0.276229 + 0.850145i
\(39\) 15.2250 45.0485i 0.390385 1.15509i
\(40\) −4.70442 13.3367i −0.117611 0.333418i
\(41\) 21.4020 + 6.95393i 0.522000 + 0.169608i 0.558153 0.829738i \(-0.311510\pi\)
−0.0361530 + 0.999346i \(0.511510\pi\)
\(42\) −3.42246 10.9705i −0.0814873 0.261203i
\(43\) 50.7907i 1.18118i −0.806972 0.590590i \(-0.798895\pi\)
0.806972 0.590590i \(-0.201105\pi\)
\(44\) 1.87316 2.57819i 0.0425718 0.0585951i
\(45\) 36.4438 + 26.3979i 0.809863 + 0.586619i
\(46\) 13.9272 10.1187i 0.302765 0.219972i
\(47\) −37.9194 + 27.5500i −0.806795 + 0.586171i −0.912900 0.408184i \(-0.866162\pi\)
0.106105 + 0.994355i \(0.466162\pi\)
\(48\) 11.3683 + 3.84213i 0.236839 + 0.0800444i
\(49\) 41.6630 0.850266
\(50\) 27.5306 22.1825i 0.550613 0.443650i
\(51\) 41.6885 55.9831i 0.817422 1.09771i
\(52\) 30.1496 9.79619i 0.579800 0.188388i
\(53\) −40.8309 + 29.6654i −0.770395 + 0.559725i −0.902081 0.431567i \(-0.857961\pi\)
0.131686 + 0.991291i \(0.457961\pi\)
\(54\) −36.7085 + 10.5114i −0.679786 + 0.194656i
\(55\) 7.63617 + 2.27211i 0.138839 + 0.0413110i
\(56\) 4.50321 6.19813i 0.0804144 0.110681i
\(57\) 43.0366 57.7934i 0.755028 1.01392i
\(58\) 29.7020 40.8814i 0.512104 0.704851i
\(59\) 48.7840 + 15.8509i 0.826847 + 0.268659i 0.691717 0.722169i \(-0.256855\pi\)
0.135130 + 0.990828i \(0.456855\pi\)
\(60\) 0.395933 + 29.9974i 0.00659888 + 0.499956i
\(61\) −12.9533 39.8662i −0.212349 0.653544i −0.999331 0.0365677i \(-0.988358\pi\)
0.786982 0.616976i \(-0.211642\pi\)
\(62\) 9.65770 29.7234i 0.155769 0.479409i
\(63\) −0.573216 + 24.3714i −0.00909866 + 0.386848i
\(64\) 2.47214 + 7.60845i 0.0386271 + 0.118882i
\(65\) 48.1691 + 62.9345i 0.741063 + 0.968224i
\(66\) −5.51550 + 3.90900i −0.0835682 + 0.0592272i
\(67\) 29.7675 40.9714i 0.444290 0.611513i −0.526868 0.849947i \(-0.676634\pi\)
0.971159 + 0.238434i \(0.0766339\pi\)
\(68\) 46.5334 0.684314
\(69\) −34.8614 + 10.8757i −0.505238 + 0.157619i
\(70\) 18.3579 + 5.46230i 0.262255 + 0.0780329i
\(71\) −21.0491 28.9716i −0.296466 0.408050i 0.634635 0.772812i \(-0.281150\pi\)
−0.931101 + 0.364762i \(0.881150\pi\)
\(72\) −20.2367 15.4427i −0.281065 0.214482i
\(73\) −110.786 + 35.9965i −1.51761 + 0.493103i −0.945097 0.326790i \(-0.894033\pi\)
−0.572517 + 0.819893i \(0.694033\pi\)
\(74\) 20.6585i 0.279168i
\(75\) −70.3933 + 25.8803i −0.938577 + 0.345070i
\(76\) 48.0381 0.632080
\(77\) 1.33373 + 4.10479i 0.0173211 + 0.0533090i
\(78\) −67.2436 0.790676i −0.862098 0.0101369i
\(79\) −96.1429 + 69.8519i −1.21700 + 0.884201i −0.995847 0.0910382i \(-0.970981\pi\)
−0.221151 + 0.975240i \(0.570981\pi\)
\(80\) −15.8820 + 12.1558i −0.198524 + 0.151947i
\(81\) 80.9104 + 3.80813i 0.998894 + 0.0470140i
\(82\) 31.8246i 0.388105i
\(83\) −102.618 74.5562i −1.23636 0.898267i −0.239008 0.971017i \(-0.576822\pi\)
−0.997350 + 0.0727503i \(0.976822\pi\)
\(84\) −13.2596 + 9.39750i −0.157853 + 0.111875i
\(85\) 38.6986 + 109.708i 0.455278 + 1.29068i
\(86\) −68.3134 + 22.1964i −0.794342 + 0.258097i
\(87\) −87.4573 + 61.9836i −1.00526 + 0.712455i
\(88\) −4.28625 1.39269i −0.0487074 0.0158260i
\(89\) 101.736 33.0560i 1.14310 0.371416i 0.324560 0.945865i \(-0.394784\pi\)
0.818540 + 0.574449i \(0.194784\pi\)
\(90\) 19.5785 60.5531i 0.217539 0.672813i
\(91\) −13.2674 + 40.8328i −0.145796 + 0.448713i
\(92\) −19.6961 14.3100i −0.214088 0.155544i
\(93\) −39.5967 + 53.1740i −0.425771 + 0.571763i
\(94\) 53.6261 + 38.9616i 0.570490 + 0.414485i
\(95\) 39.9500 + 113.256i 0.420526 + 1.19216i
\(96\) 0.199532 16.9694i 0.00207846 0.176764i
\(97\) 78.5564 + 108.124i 0.809860 + 1.11468i 0.991345 + 0.131282i \(0.0419095\pi\)
−0.181485 + 0.983394i \(0.558091\pi\)
\(98\) −18.2074 56.0367i −0.185790 0.571803i
\(99\) 13.7392 4.10959i 0.138780 0.0415110i
\(100\) −41.8667 27.3345i −0.418667 0.273345i
\(101\) 151.999i 1.50494i −0.658629 0.752468i \(-0.728863\pi\)
0.658629 0.752468i \(-0.271137\pi\)
\(102\) −93.5157 31.6054i −0.916821 0.309857i
\(103\) −95.1578 130.973i −0.923862 1.27159i −0.962206 0.272322i \(-0.912208\pi\)
0.0383445 0.999265i \(-0.487792\pi\)
\(104\) −26.3517 36.2700i −0.253382 0.348750i
\(105\) −33.1829 23.4460i −0.316028 0.223295i
\(106\) 57.7436 + 41.9532i 0.544751 + 0.395785i
\(107\) −59.9911 −0.560664 −0.280332 0.959903i \(-0.590445\pi\)
−0.280332 + 0.959903i \(0.590445\pi\)
\(108\) 30.1800 + 44.7791i 0.279444 + 0.414621i
\(109\) −58.3698 + 179.644i −0.535503 + 1.64811i 0.207057 + 0.978329i \(0.433611\pi\)
−0.742560 + 0.669779i \(0.766389\pi\)
\(110\) −0.281152 11.2636i −0.00255593 0.102396i
\(111\) 14.0312 41.5162i 0.126407 0.374020i
\(112\) −10.3044 3.34812i −0.0920040 0.0298939i
\(113\) 29.8088 91.7419i 0.263794 0.811875i −0.728174 0.685392i \(-0.759631\pi\)
0.991969 0.126484i \(-0.0403691\pi\)
\(114\) −96.5396 32.6274i −0.846839 0.286206i
\(115\) 17.3578 58.3365i 0.150937 0.507274i
\(116\) −67.9656 22.0834i −0.585910 0.190374i
\(117\) 134.599 + 47.2608i 1.15042 + 0.403939i
\(118\) 72.5414i 0.614758i
\(119\) −37.0435 + 50.9859i −0.311290 + 0.428453i
\(120\) 40.1734 13.6419i 0.334778 0.113682i
\(121\) −95.8370 + 69.6297i −0.792041 + 0.575452i
\(122\) −47.9591 + 34.8443i −0.393107 + 0.285609i
\(123\) −21.6152 + 63.9562i −0.175734 + 0.519969i
\(124\) −44.1984 −0.356439
\(125\) 29.6268 121.438i 0.237014 0.971506i
\(126\) 33.0300 9.87973i 0.262143 0.0784105i
\(127\) 182.392 59.2626i 1.43615 0.466635i 0.515458 0.856915i \(-0.327622\pi\)
0.920696 + 0.390280i \(0.127622\pi\)
\(128\) 9.15298 6.65003i 0.0715077 0.0519534i
\(129\) 152.362 + 1.79153i 1.18110 + 0.0138878i
\(130\) 63.5961 92.2907i 0.489201 0.709928i
\(131\) −3.28137 + 4.51642i −0.0250486 + 0.0344765i −0.821358 0.570414i \(-0.806783\pi\)
0.796309 + 0.604890i \(0.206783\pi\)
\(132\) 7.66795 + 5.71003i 0.0580905 + 0.0432578i
\(133\) −38.2413 + 52.6346i −0.287528 + 0.395749i
\(134\) −68.1153 22.1320i −0.508323 0.165164i
\(135\) −80.4736 + 108.393i −0.596101 + 0.802910i
\(136\) −20.3358 62.5872i −0.149528 0.460200i
\(137\) 35.5756 109.490i 0.259676 0.799199i −0.733197 0.680017i \(-0.761973\pi\)
0.992872 0.119183i \(-0.0380274\pi\)
\(138\) 29.8628 + 42.1357i 0.216397 + 0.305331i
\(139\) −47.6998 146.805i −0.343164 1.05615i −0.962559 0.271071i \(-0.912622\pi\)
0.619395 0.785079i \(-0.287378\pi\)
\(140\) −0.675908 27.0784i −0.00482792 0.193417i
\(141\) −81.3069 114.722i −0.576644 0.813631i
\(142\) −29.7679 + 40.9720i −0.209633 + 0.288535i
\(143\) 25.2564 0.176618
\(144\) −11.9266 + 33.9670i −0.0828236 + 0.235882i
\(145\) −4.45812 178.602i −0.0307457 1.23174i
\(146\) 96.8304 + 133.276i 0.663222 + 0.912847i
\(147\) −1.46957 + 124.980i −0.00999705 + 0.850207i
\(148\) 27.7856 9.02808i 0.187740 0.0610005i
\(149\) 58.3792i 0.391807i 0.980623 + 0.195903i \(0.0627639\pi\)
−0.980623 + 0.195903i \(0.937236\pi\)
\(150\) 65.5718 + 83.3687i 0.437146 + 0.555791i
\(151\) −189.288 −1.25356 −0.626782 0.779194i \(-0.715628\pi\)
−0.626782 + 0.779194i \(0.715628\pi\)
\(152\) −20.9934 64.6111i −0.138115 0.425073i
\(153\) 166.467 + 127.032i 1.08802 + 0.830272i
\(154\) 4.93807 3.58772i 0.0320654 0.0232969i
\(155\) −36.7568 104.203i −0.237141 0.672279i
\(156\) 28.3231 + 90.7880i 0.181558 + 0.581975i
\(157\) 76.5160i 0.487363i −0.969855 0.243682i \(-0.921645\pi\)
0.969855 0.243682i \(-0.0783552\pi\)
\(158\) 135.967 + 98.7855i 0.860548 + 0.625225i
\(159\) −87.5498 123.531i −0.550628 0.776923i
\(160\) 23.2902 + 16.0489i 0.145564 + 0.100306i
\(161\) 31.3586 10.1890i 0.194774 0.0632858i
\(162\) −30.2372 110.489i −0.186650 0.682028i
\(163\) 117.667 + 38.2322i 0.721882 + 0.234554i 0.646839 0.762627i \(-0.276091\pi\)
0.0750430 + 0.997180i \(0.476091\pi\)
\(164\) −42.8040 + 13.9079i −0.261000 + 0.0848040i
\(165\) −7.08520 + 22.8268i −0.0429406 + 0.138344i
\(166\) −55.4322 + 170.603i −0.333929 + 1.02773i
\(167\) 142.341 + 103.417i 0.852340 + 0.619261i 0.925790 0.378038i \(-0.123401\pi\)
−0.0734503 + 0.997299i \(0.523401\pi\)
\(168\) 18.4343 + 13.7273i 0.109728 + 0.0817102i
\(169\) 66.5341 + 48.3399i 0.393693 + 0.286035i
\(170\) 130.645 99.9938i 0.768501 0.588199i
\(171\) 171.850 + 131.139i 1.00497 + 0.766897i
\(172\) 59.7081 + 82.1811i 0.347140 + 0.477797i
\(173\) 2.25010 + 6.92508i 0.0130063 + 0.0400294i 0.957349 0.288934i \(-0.0933008\pi\)
−0.944343 + 0.328963i \(0.893301\pi\)
\(174\) 121.588 + 90.5420i 0.698781 + 0.520356i
\(175\) 63.2786 24.1128i 0.361592 0.137787i
\(176\) 6.37362i 0.0362138i
\(177\) −49.2701 + 145.783i −0.278362 + 0.823631i
\(178\) −88.9205 122.389i −0.499553 0.687576i
\(179\) −69.5699 95.7547i −0.388659 0.534943i 0.569194 0.822203i \(-0.307255\pi\)
−0.957852 + 0.287261i \(0.907255\pi\)
\(180\) −89.9999 + 0.129628i −0.499999 + 0.000720157i
\(181\) −104.425 75.8689i −0.576932 0.419165i 0.260685 0.965424i \(-0.416052\pi\)
−0.837617 + 0.546258i \(0.816052\pi\)
\(182\) 60.7181 0.333616
\(183\) 120.047 37.4510i 0.655995 0.204650i
\(184\) −10.6394 + 32.7448i −0.0578231 + 0.177961i
\(185\) 44.3922 + 57.9998i 0.239958 + 0.313513i
\(186\) 88.8233 + 30.0195i 0.477544 + 0.161395i
\(187\) 35.2588 + 11.4563i 0.188550 + 0.0612635i
\(188\) 28.9678 89.1538i 0.154084 0.474222i
\(189\) −73.0890 2.57917i −0.386714 0.0136464i
\(190\) 134.870 103.227i 0.709841 0.543301i
\(191\) −39.9390 12.9770i −0.209105 0.0679422i 0.202592 0.979263i \(-0.435064\pi\)
−0.411696 + 0.911321i \(0.635064\pi\)
\(192\) −22.9110 + 7.14752i −0.119328 + 0.0372267i
\(193\) 124.881i 0.647052i 0.946219 + 0.323526i \(0.104868\pi\)
−0.946219 + 0.323526i \(0.895132\pi\)
\(194\) 111.095 152.910i 0.572657 0.788195i
\(195\) −190.490 + 142.277i −0.976870 + 0.729628i
\(196\) −67.4122 + 48.9778i −0.343940 + 0.249887i
\(197\) −200.048 + 145.344i −1.01547 + 0.737785i −0.965350 0.260958i \(-0.915962\pi\)
−0.0501237 + 0.998743i \(0.515962\pi\)
\(198\) −11.5316 16.6832i −0.0582406 0.0842587i
\(199\) 132.790 0.667289 0.333644 0.942699i \(-0.391722\pi\)
0.333644 + 0.942699i \(0.391722\pi\)
\(200\) −18.4684 + 68.2563i −0.0923421 + 0.341281i
\(201\) 121.856 + 90.7414i 0.606247 + 0.451450i
\(202\) −204.438 + 66.4258i −1.01207 + 0.328841i
\(203\) 78.3012 56.8892i 0.385720 0.280242i
\(204\) −1.64136 + 139.590i −0.00804586 + 0.684267i
\(205\) −68.3866 89.3494i −0.333593 0.435851i
\(206\) −134.573 + 185.224i −0.653269 + 0.899147i
\(207\) −31.3952 104.961i −0.151668 0.507056i
\(208\) −37.2669 + 51.2935i −0.179168 + 0.246604i
\(209\) 36.3989 + 11.8267i 0.174157 + 0.0565872i
\(210\) −17.0333 + 54.8772i −0.0811110 + 0.261320i
\(211\) −96.6511 297.461i −0.458062 1.40977i −0.867502 0.497433i \(-0.834276\pi\)
0.409440 0.912337i \(-0.365724\pi\)
\(212\) 31.1920 95.9993i 0.147132 0.452827i
\(213\) 87.6512 62.1210i 0.411508 0.291648i
\(214\) 26.2171 + 80.6878i 0.122510 + 0.377046i
\(215\) −144.097 + 209.114i −0.670219 + 0.972622i
\(216\) 47.0386 60.1612i 0.217771 0.278524i
\(217\) 35.1847 48.4276i 0.162141 0.223168i
\(218\) 267.129 1.22536
\(219\) −104.074 333.604i −0.475225 1.52331i
\(220\) −15.0266 + 5.30051i −0.0683028 + 0.0240932i
\(221\) 216.769 + 298.358i 0.980857 + 1.35003i
\(222\) −61.9711 0.728679i −0.279149 0.00328234i
\(223\) 135.646 44.0739i 0.608276 0.197641i 0.0113480 0.999936i \(-0.496388\pi\)
0.596928 + 0.802295i \(0.296388\pi\)
\(224\) 15.3226i 0.0684046i
\(225\) −75.1524 212.078i −0.334011 0.942569i
\(226\) −136.420 −0.603626
\(227\) −79.3191 244.119i −0.349423 1.07541i −0.959173 0.282820i \(-0.908730\pi\)
0.609750 0.792594i \(-0.291270\pi\)
\(228\) −1.69443 + 144.104i −0.00743171 + 0.632036i
\(229\) 187.232 136.032i 0.817609 0.594028i −0.0984175 0.995145i \(-0.531378\pi\)
0.916027 + 0.401117i \(0.131378\pi\)
\(230\) −86.0481 + 2.14786i −0.374122 + 0.00933852i
\(231\) −12.3606 + 3.85612i −0.0535090 + 0.0166932i
\(232\) 101.064i 0.435622i
\(233\) −268.204 194.861i −1.15109 0.836315i −0.162463 0.986715i \(-0.551944\pi\)
−0.988625 + 0.150400i \(0.951944\pi\)
\(234\) 4.74373 201.689i 0.0202723 0.861919i
\(235\) 234.282 5.84794i 0.996943 0.0248848i
\(236\) −97.5680 + 31.7018i −0.413424 + 0.134329i
\(237\) −206.150 290.873i −0.869831 1.22731i
\(238\) 84.7645 + 27.5417i 0.356153 + 0.115721i
\(239\) 154.833 50.3083i 0.647837 0.210495i 0.0333769 0.999443i \(-0.489374\pi\)
0.614460 + 0.788948i \(0.289374\pi\)
\(240\) −35.9047 48.0713i −0.149603 0.200297i
\(241\) −79.0724 + 243.360i −0.328101 + 1.00979i 0.641920 + 0.766772i \(0.278138\pi\)
−0.970021 + 0.243020i \(0.921862\pi\)
\(242\) 135.534 + 98.4712i 0.560058 + 0.406906i
\(243\) −14.2775 + 242.580i −0.0587553 + 0.998272i
\(244\) 67.8244 + 49.2773i 0.277969 + 0.201956i
\(245\) −171.533 118.201i −0.700136 0.482453i
\(246\) 95.4672 + 1.12254i 0.388078 + 0.00456316i
\(247\) 223.779 + 308.005i 0.905988 + 1.24698i
\(248\) 19.3154 + 59.4467i 0.0778847 + 0.239705i
\(249\) 227.273 305.202i 0.912742 1.22571i
\(250\) −176.281 + 13.2225i −0.705126 + 0.0528902i
\(251\) 370.225i 1.47500i −0.675346 0.737501i \(-0.736006\pi\)
0.675346 0.737501i \(-0.263994\pi\)
\(252\) −27.7228 40.1076i −0.110011 0.159157i
\(253\) −11.4008 15.6919i −0.0450626 0.0620233i
\(254\) −159.416 219.417i −0.627622 0.863848i
\(255\) −330.467 + 112.218i −1.29595 + 0.440071i
\(256\) −12.9443 9.40456i −0.0505636 0.0367366i
\(257\) 201.413 0.783707 0.391854 0.920028i \(-0.371834\pi\)
0.391854 + 0.920028i \(0.371834\pi\)
\(258\) −64.1749 205.709i −0.248740 0.797322i
\(259\) −12.2271 + 37.6312i −0.0472089 + 0.145294i
\(260\) −151.923 45.2040i −0.584320 0.173862i
\(261\) −182.853 264.540i −0.700586 1.01356i
\(262\) 7.50858 + 2.43968i 0.0286587 + 0.00931177i
\(263\) −31.2902 + 96.3012i −0.118974 + 0.366164i −0.992755 0.120155i \(-0.961661\pi\)
0.873781 + 0.486319i \(0.161661\pi\)
\(264\) 4.32896 12.8087i 0.0163976 0.0485180i
\(265\) 252.270 6.29696i 0.951964 0.0237621i
\(266\) 87.5055 + 28.4322i 0.328968 + 0.106888i
\(267\) 95.5727 + 306.353i 0.357950 + 1.14739i
\(268\) 101.287i 0.377936i
\(269\) −176.811 + 243.360i −0.657291 + 0.904684i −0.999388 0.0349809i \(-0.988863\pi\)
0.342097 + 0.939665i \(0.388863\pi\)
\(270\) 180.956 + 60.8674i 0.670208 + 0.225435i
\(271\) −105.894 + 76.9364i −0.390752 + 0.283898i −0.765764 0.643122i \(-0.777639\pi\)
0.375012 + 0.927020i \(0.377639\pi\)
\(272\) −75.2926 + 54.7032i −0.276811 + 0.201115i
\(273\) −122.022 41.2397i −0.446967 0.151061i
\(274\) −162.811 −0.594201
\(275\) −24.9932 31.0190i −0.0908844 0.112796i
\(276\) 43.6218 58.5793i 0.158050 0.212244i
\(277\) −307.000 + 99.7505i −1.10830 + 0.360110i −0.805293 0.592877i \(-0.797992\pi\)
−0.303012 + 0.952987i \(0.597992\pi\)
\(278\) −176.607 + 128.312i −0.635275 + 0.461555i
\(279\) −158.114 120.657i −0.566718 0.432464i
\(280\) −36.1250 + 12.7428i −0.129018 + 0.0455100i
\(281\) −180.302 + 248.165i −0.641646 + 0.883149i −0.998702 0.0509334i \(-0.983780\pi\)
0.357056 + 0.934083i \(0.383780\pi\)
\(282\) −118.768 + 159.493i −0.421164 + 0.565577i
\(283\) 148.721 204.697i 0.525517 0.723313i −0.460922 0.887441i \(-0.652481\pi\)
0.986439 + 0.164128i \(0.0524811\pi\)
\(284\) 68.1163 + 22.1323i 0.239846 + 0.0779307i
\(285\) −341.153 + 115.847i −1.19703 + 0.406480i
\(286\) −11.0375 33.9698i −0.0385925 0.118775i
\(287\) 18.8360 57.9712i 0.0656306 0.201990i
\(288\) 50.8976 + 1.19711i 0.176728 + 0.00415664i
\(289\) 77.9769 + 239.988i 0.269816 + 0.830409i
\(290\) −238.271 + 84.0483i −0.821626 + 0.289822i
\(291\) −327.119 + 231.839i −1.12412 + 0.796698i
\(292\) 136.939 188.480i 0.468969 0.645480i
\(293\) −331.150 −1.13020 −0.565102 0.825021i \(-0.691163\pi\)
−0.565102 + 0.825021i \(0.691163\pi\)
\(294\) 168.741 52.6419i 0.573947 0.179054i
\(295\) −155.881 203.664i −0.528412 0.690388i
\(296\) −24.2855 33.4261i −0.0820455 0.112926i
\(297\) 11.8433 + 41.3597i 0.0398764 + 0.139258i
\(298\) 78.5199 25.5127i 0.263489 0.0856129i
\(299\) 192.946i 0.645305i
\(300\) 83.4746 124.627i 0.278249 0.415425i
\(301\) −137.576 −0.457063
\(302\) 82.7220 + 254.592i 0.273914 + 0.843020i
\(303\) 455.964 + 5.36140i 1.50483 + 0.0176944i
\(304\) −77.7272 + 56.4721i −0.255682 + 0.185764i
\(305\) −59.7724 + 200.885i −0.195975 + 0.658639i
\(306\) 98.1083 279.413i 0.320615 0.913114i
\(307\) 446.812i 1.45541i 0.685888 + 0.727707i \(0.259414\pi\)
−0.685888 + 0.727707i \(0.740586\pi\)
\(308\) −6.98349 5.07380i −0.0226737 0.0164734i
\(309\) 396.250 280.834i 1.28236 0.908847i
\(310\) −124.090 + 94.9763i −0.400289 + 0.306375i
\(311\) 395.681 128.564i 1.27228 0.413390i 0.406428 0.913683i \(-0.366774\pi\)
0.865857 + 0.500292i \(0.166774\pi\)
\(312\) 109.732 77.7703i 0.351705 0.249264i
\(313\) −26.0997 8.48032i −0.0833857 0.0270937i 0.267027 0.963689i \(-0.413959\pi\)
−0.350413 + 0.936595i \(0.613959\pi\)
\(314\) −102.914 + 33.4387i −0.327751 + 0.106493i
\(315\) 71.5035 98.7148i 0.226995 0.313380i
\(316\) 73.4466 226.046i 0.232426 0.715334i
\(317\) 467.709 + 339.811i 1.47542 + 1.07196i 0.978996 + 0.203880i \(0.0653554\pi\)
0.496428 + 0.868078i \(0.334645\pi\)
\(318\) −127.888 + 171.739i −0.402163 + 0.540060i
\(319\) −46.0614 33.4655i −0.144393 0.104908i
\(320\) 11.4075 38.3389i 0.0356486 0.119809i
\(321\) 2.11605 179.961i 0.00659204 0.560626i
\(322\) −27.4084 37.7244i −0.0851192 0.117157i
\(323\) 172.692 + 531.491i 0.534650 + 1.64548i
\(324\) −135.393 + 88.9542i −0.417878 + 0.274550i
\(325\) −19.7701 395.771i −0.0608311 1.21776i
\(326\) 174.970i 0.536716i
\(327\) −536.835 181.434i −1.64170 0.554844i
\(328\) 37.4120 + 51.4933i 0.114061 + 0.156992i
\(329\) 74.6243 + 102.712i 0.226822 + 0.312193i
\(330\) 33.7983 0.446101i 0.102419 0.00135182i
\(331\) 256.384 + 186.274i 0.774575 + 0.562762i 0.903346 0.428913i \(-0.141103\pi\)
−0.128771 + 0.991674i \(0.541103\pi\)
\(332\) 253.685 0.764112
\(333\) 124.045 + 43.5551i 0.372508 + 0.130796i
\(334\) 76.8898 236.643i 0.230209 0.708511i
\(335\) −238.796 + 84.2334i −0.712825 + 0.251443i
\(336\) 10.4071 30.7931i 0.0309736 0.0916461i
\(337\) 27.3492 + 8.88630i 0.0811550 + 0.0263689i 0.349313 0.937006i \(-0.386415\pi\)
−0.268158 + 0.963375i \(0.586415\pi\)
\(338\) 35.9405 110.613i 0.106333 0.327259i
\(339\) 274.155 + 92.6561i 0.808718 + 0.273322i
\(340\) −191.585 132.019i −0.563486 0.388290i
\(341\) −33.4896 10.8814i −0.0982098 0.0319103i
\(342\) 101.281 288.448i 0.296143 0.843415i
\(343\) 245.577i 0.715969i
\(344\) 84.4400 116.222i 0.245465 0.337854i
\(345\) 174.385 + 54.1274i 0.505465 + 0.156891i
\(346\) 8.33089 6.05274i 0.0240777 0.0174935i
\(347\) −182.296 + 132.446i −0.525349 + 0.381688i −0.818615 0.574343i \(-0.805258\pi\)
0.293266 + 0.956031i \(0.405258\pi\)
\(348\) 68.6428 203.104i 0.197249 0.583631i
\(349\) −155.674 −0.446058 −0.223029 0.974812i \(-0.571594\pi\)
−0.223029 + 0.974812i \(0.571594\pi\)
\(350\) −60.0854 74.5718i −0.171673 0.213062i
\(351\) −146.520 + 402.102i −0.417437 + 1.14559i
\(352\) 8.57251 2.78538i 0.0243537 0.00791300i
\(353\) −51.2709 + 37.2505i −0.145243 + 0.105525i −0.658034 0.752988i \(-0.728612\pi\)
0.512791 + 0.858514i \(0.328612\pi\)
\(354\) 217.609 + 2.55873i 0.614715 + 0.00722805i
\(355\) 4.46801 + 178.998i 0.0125859 + 0.504221i
\(356\) −125.753 + 173.084i −0.353237 + 0.486190i
\(357\) −151.641 112.921i −0.424764 0.316306i
\(358\) −98.3867 + 135.418i −0.274823 + 0.378262i
\(359\) 38.8547 + 12.6247i 0.108230 + 0.0351662i 0.362632 0.931933i \(-0.381878\pi\)
−0.254401 + 0.967099i \(0.581878\pi\)
\(360\) 39.5058 + 120.993i 0.109738 + 0.336092i
\(361\) 66.7211 + 205.346i 0.184823 + 0.568826i
\(362\) −56.4083 + 173.607i −0.155824 + 0.479577i
\(363\) −205.494 289.947i −0.566100 0.798753i
\(364\) −26.5348 81.6657i −0.0728978 0.224356i
\(365\) 558.248 + 166.104i 1.52945 + 0.455080i
\(366\) −102.834 145.096i −0.280967 0.396438i
\(367\) 204.108 280.930i 0.556152 0.765478i −0.434679 0.900586i \(-0.643138\pi\)
0.990831 + 0.135108i \(0.0431381\pi\)
\(368\) 48.6913 0.132313
\(369\) −191.093 67.0972i −0.517867 0.181835i
\(370\) 58.6095 85.0542i 0.158404 0.229876i
\(371\) 80.3542 + 110.598i 0.216588 + 0.298108i
\(372\) 1.55900 132.586i 0.00419085 0.356414i
\(373\) −180.806 + 58.7475i −0.484735 + 0.157500i −0.541182 0.840906i \(-0.682023\pi\)
0.0564465 + 0.998406i \(0.482023\pi\)
\(374\) 52.4295i 0.140186i
\(375\) 363.245 + 93.1576i 0.968652 + 0.248420i
\(376\) −132.571 −0.352582
\(377\) −175.017 538.647i −0.464236 1.42877i
\(378\) 28.4721 + 99.4316i 0.0753229 + 0.263047i
\(379\) 194.948 141.638i 0.514374 0.373715i −0.300106 0.953906i \(-0.597022\pi\)
0.814480 + 0.580191i \(0.197022\pi\)
\(380\) −197.780 136.287i −0.520475 0.358651i
\(381\) 171.342 + 549.227i 0.449717 + 1.44154i
\(382\) 59.3890i 0.155469i
\(383\) 343.680 + 249.698i 0.897337 + 0.651953i 0.937780 0.347229i \(-0.112877\pi\)
−0.0404440 + 0.999182i \(0.512877\pi\)
\(384\) 19.6259 + 27.6916i 0.0511090 + 0.0721136i
\(385\) 6.15442 20.6840i 0.0159855 0.0537246i
\(386\) 167.965 54.5750i 0.435142 0.141386i
\(387\) −10.7484 + 456.990i −0.0277737 + 1.18085i
\(388\) −254.214 82.5991i −0.655190 0.212884i
\(389\) −559.973 + 181.946i −1.43952 + 0.467728i −0.921747 0.387791i \(-0.873238\pi\)
−0.517771 + 0.855519i \(0.673238\pi\)
\(390\) 274.610 + 194.030i 0.704128 + 0.497514i
\(391\) 87.5202 269.359i 0.223837 0.688899i
\(392\) 95.3352 + 69.2651i 0.243202 + 0.176697i
\(393\) −13.4326 10.0027i −0.0341796 0.0254522i
\(394\) 282.911 + 205.547i 0.718048 + 0.521693i
\(395\) 594.011 14.8272i 1.50382 0.0375372i
\(396\) −17.3994 + 22.8009i −0.0439379 + 0.0575779i
\(397\) 45.1315 + 62.1182i 0.113681 + 0.156469i 0.862066 0.506796i \(-0.169170\pi\)
−0.748385 + 0.663265i \(0.769170\pi\)
\(398\) −58.0316 178.603i −0.145808 0.448751i
\(399\) −156.544 116.573i −0.392341 0.292162i
\(400\) 99.8755 4.98912i 0.249689 0.0124728i
\(401\) 220.661i 0.550276i −0.961405 0.275138i \(-0.911276\pi\)
0.961405 0.275138i \(-0.0887235\pi\)
\(402\) 68.7940 203.551i 0.171129 0.506346i
\(403\) −205.892 283.387i −0.510899 0.703192i
\(404\) 178.685 + 245.939i 0.442290 + 0.608759i
\(405\) −322.317 245.227i −0.795845 0.605500i
\(406\) −110.735 80.4535i −0.272746 0.198161i
\(407\) 23.2761 0.0571893
\(408\) 188.466 58.7956i 0.461927 0.144107i
\(409\) −32.8392 + 101.069i −0.0802914 + 0.247111i −0.983142 0.182842i \(-0.941470\pi\)
0.902851 + 0.429954i \(0.141470\pi\)
\(410\) −90.2887 + 131.027i −0.220216 + 0.319578i
\(411\) 327.193 + 110.581i 0.796091 + 0.269054i
\(412\) 307.937 + 100.055i 0.747420 + 0.242851i
\(413\) 42.9350 132.140i 0.103959 0.319953i
\(414\) −127.452 + 88.0959i −0.307854 + 0.212792i
\(415\) 210.973 + 598.094i 0.508368 + 1.44119i
\(416\) 85.2759 + 27.7078i 0.204990 + 0.0666053i
\(417\) 442.067 137.911i 1.06011 0.330723i
\(418\) 54.1249i 0.129485i
\(419\) −388.137 + 534.225i −0.926342 + 1.27500i 0.0349274 + 0.999390i \(0.488880\pi\)
−0.961269 + 0.275611i \(0.911120\pi\)
\(420\) 81.2534 1.07246i 0.193461 0.00255347i
\(421\) 319.900 232.421i 0.759857 0.552068i −0.139010 0.990291i \(-0.544392\pi\)
0.898866 + 0.438223i \(0.144392\pi\)
\(422\) −357.847 + 259.991i −0.847978 + 0.616092i
\(423\) 347.010 239.857i 0.820355 0.567038i
\(424\) −142.750 −0.336675
\(425\) 151.921 561.477i 0.357462 1.32112i
\(426\) −121.858 90.7427i −0.286051 0.213011i
\(427\) −107.985 + 35.0864i −0.252892 + 0.0821696i
\(428\) 97.0676 70.5237i 0.226793 0.164775i
\(429\) −0.890861 + 75.7640i −0.00207660 + 0.176606i
\(430\) 344.230 + 102.424i 0.800535 + 0.238195i
\(431\) 91.4244 125.835i 0.212122 0.291960i −0.689677 0.724117i \(-0.742247\pi\)
0.901798 + 0.432157i \(0.142247\pi\)
\(432\) −101.473 36.9754i −0.234892 0.0855912i
\(433\) −315.463 + 434.197i −0.728551 + 1.00276i 0.270645 + 0.962679i \(0.412763\pi\)
−0.999196 + 0.0400854i \(0.987237\pi\)
\(434\) −80.5112 26.1597i −0.185510 0.0602757i
\(435\) 535.928 7.07366i 1.23202 0.0162613i
\(436\) −116.740 359.288i −0.267751 0.824054i
\(437\) 90.3503 278.069i 0.206751 0.636315i
\(438\) −403.215 + 285.770i −0.920581 + 0.652443i
\(439\) 177.231 + 545.460i 0.403714 + 1.24251i 0.921964 + 0.387276i \(0.126584\pi\)
−0.518249 + 0.855230i \(0.673416\pi\)
\(440\) 13.6960 + 17.8943i 0.0311274 + 0.0406689i
\(441\) −374.864 8.81679i −0.850031 0.0199927i
\(442\) 306.558 421.941i 0.693571 0.954618i
\(443\) 339.491 0.766344 0.383172 0.923677i \(-0.374832\pi\)
0.383172 + 0.923677i \(0.374832\pi\)
\(444\) 26.1023 + 83.6694i 0.0587889 + 0.188445i
\(445\) −512.646 152.535i −1.15201 0.342776i
\(446\) −118.559 163.182i −0.265826 0.365879i
\(447\) −175.126 2.05919i −0.391780 0.00460669i
\(448\) 20.6089 6.69623i 0.0460020 0.0149470i
\(449\) 283.865i 0.632216i 0.948723 + 0.316108i \(0.102376\pi\)
−0.948723 + 0.316108i \(0.897624\pi\)
\(450\) −252.402 + 193.761i −0.560892 + 0.430581i
\(451\) −35.8570 −0.0795056
\(452\) 59.6175 + 183.484i 0.131897 + 0.405938i
\(453\) 6.67670 567.826i 0.0147389 1.25348i
\(454\) −293.676 + 213.368i −0.646863 + 0.469973i
\(455\) 170.470 130.475i 0.374659 0.286758i
\(456\) 194.560 60.6969i 0.426667 0.133107i
\(457\) 628.493i 1.37526i −0.726062 0.687630i \(-0.758651\pi\)
0.726062 0.687630i \(-0.241349\pi\)
\(458\) −264.787 192.379i −0.578137 0.420041i
\(459\) −386.940 + 494.887i −0.843007 + 1.07818i
\(460\) 40.4933 + 114.796i 0.0880288 + 0.249556i
\(461\) −462.891 + 150.402i −1.00410 + 0.326252i −0.764503 0.644620i \(-0.777016\pi\)
−0.239598 + 0.970872i \(0.577016\pi\)
\(462\) 10.5882 + 14.9397i 0.0229183 + 0.0323371i
\(463\) 394.728 + 128.255i 0.852545 + 0.277009i 0.702512 0.711672i \(-0.252062\pi\)
0.150033 + 0.988681i \(0.452062\pi\)
\(464\) 135.931 44.1667i 0.292955 0.0951869i
\(465\) 313.884 106.587i 0.675020 0.229220i
\(466\) −144.879 + 445.890i −0.310898 + 0.956847i
\(467\) −642.975 467.149i −1.37682 1.00032i −0.997169 0.0751884i \(-0.976044\pi\)
−0.379651 0.925130i \(-0.623956\pi\)
\(468\) −273.344 + 81.7611i −0.584069 + 0.174703i
\(469\) −110.979 80.6306i −0.236628 0.171920i
\(470\) −110.250 312.552i −0.234575 0.665005i
\(471\) 229.532 + 2.69892i 0.487329 + 0.00573020i
\(472\) 85.2775 + 117.374i 0.180673 + 0.248675i
\(473\) 25.0088 + 76.9693i 0.0528728 + 0.162726i
\(474\) −301.132 + 404.387i −0.635299 + 0.853137i
\(475\) 156.834 579.633i 0.330177 1.22028i
\(476\) 126.044i 0.264799i
\(477\) 373.655 258.274i 0.783343 0.541455i
\(478\) −135.329 186.265i −0.283115 0.389675i
\(479\) −177.966 244.949i −0.371536 0.511376i 0.581781 0.813345i \(-0.302356\pi\)
−0.953318 + 0.301970i \(0.902356\pi\)
\(480\) −48.9649 + 69.2996i −0.102010 + 0.144374i
\(481\) 187.321 + 136.096i 0.389440 + 0.282945i
\(482\) 361.874 0.750776
\(483\) 29.4588 + 94.4286i 0.0609914 + 0.195504i
\(484\) 73.2130 225.326i 0.151266 0.465550i
\(485\) −16.6749 668.032i −0.0343812 1.37739i
\(486\) 332.509 86.8082i 0.684175 0.178618i
\(487\) −768.396 249.667i −1.57781 0.512663i −0.616322 0.787494i \(-0.711378\pi\)
−0.961493 + 0.274831i \(0.911378\pi\)
\(488\) 36.6375 112.759i 0.0750768 0.231063i
\(489\) −118.839 + 351.627i −0.243025 + 0.719074i
\(490\) −84.0172 + 282.368i −0.171464 + 0.576261i
\(491\) 341.484 + 110.955i 0.695486 + 0.225977i 0.635363 0.772214i \(-0.280851\pi\)
0.0601234 + 0.998191i \(0.480851\pi\)
\(492\) −40.2109 128.894i −0.0817294 0.261979i
\(493\) 831.356i 1.68632i
\(494\) 316.471 435.585i 0.640630 0.881751i
\(495\) −68.2257 22.0593i −0.137830 0.0445642i
\(496\) 71.5145 51.9583i 0.144182 0.104755i
\(497\) −78.4749 + 57.0153i −0.157897 + 0.114719i
\(498\) −509.818 172.303i −1.02373 0.345990i
\(499\) −688.464 −1.37969 −0.689844 0.723958i \(-0.742321\pi\)
−0.689844 + 0.723958i \(0.742321\pi\)
\(500\) 94.8221 + 231.320i 0.189644 + 0.462639i
\(501\) −315.249 + 423.345i −0.629240 + 0.845000i
\(502\) −497.952 + 161.794i −0.991937 + 0.322300i
\(503\) −596.829 + 433.621i −1.18654 + 0.862071i −0.992894 0.119001i \(-0.962031\pi\)
−0.193644 + 0.981072i \(0.562031\pi\)
\(504\) −41.8293 + 54.8148i −0.0829947 + 0.108760i
\(505\) −431.231 + 625.803i −0.853923 + 1.23921i
\(506\) −16.1232 + 22.1917i −0.0318641 + 0.0438571i
\(507\) −147.356 + 197.883i −0.290644 + 0.390303i
\(508\) −225.448 + 310.303i −0.443796 + 0.610833i
\(509\) 91.6916 + 29.7924i 0.180141 + 0.0585313i 0.397698 0.917516i \(-0.369809\pi\)
−0.217558 + 0.976047i \(0.569809\pi\)
\(510\) 295.352 + 395.436i 0.579122 + 0.775364i
\(511\) 97.5032 + 300.084i 0.190809 + 0.587248i
\(512\) −6.99226 + 21.5200i −0.0136568 + 0.0420312i
\(513\) −399.452 + 510.889i −0.778660 + 0.995886i
\(514\) −88.0206 270.900i −0.171246 0.527042i
\(515\) 20.1988 + 809.208i 0.0392209 + 1.57128i
\(516\) −248.632 + 176.213i −0.481846 + 0.341498i
\(517\) 43.8984 60.4209i 0.0849098 0.116868i
\(518\) 55.9572 0.108026
\(519\) −20.8532 + 6.50555i −0.0401795 + 0.0125348i
\(520\) 5.59357 + 224.091i 0.0107569 + 0.430945i
\(521\) −406.508 559.510i −0.780246 1.07392i −0.995255 0.0973043i \(-0.968978\pi\)
0.215009 0.976612i \(-0.431022\pi\)
\(522\) −275.896 + 361.545i −0.528536 + 0.692615i
\(523\) −194.437 + 63.1763i −0.371772 + 0.120796i −0.488943 0.872316i \(-0.662617\pi\)
0.117171 + 0.993112i \(0.462617\pi\)
\(524\) 11.1652i 0.0213076i
\(525\) 70.1014 + 190.673i 0.133527 + 0.363187i
\(526\) 143.199 0.272242
\(527\) −158.889 489.010i −0.301497 0.927912i
\(528\) −19.1196 0.224815i −0.0362113 0.000425786i
\(529\) 308.092 223.842i 0.582404 0.423141i
\(530\) −118.716 336.551i −0.223992 0.635002i
\(531\) −435.580 152.942i −0.820302 0.288027i
\(532\) 130.120i 0.244586i
\(533\) −288.569 209.658i −0.541406 0.393355i
\(534\) 370.277 262.426i 0.693402 0.491435i
\(535\) 246.993 + 170.199i 0.461669 + 0.318129i
\(536\) 136.231 44.2640i 0.254161 0.0825821i
\(537\) 289.698 205.318i 0.539475 0.382342i
\(538\) 404.588 + 131.459i 0.752022 + 0.244347i
\(539\) −63.1370 + 20.5144i −0.117137 + 0.0380602i
\(540\) 2.78568 269.986i 0.00515867 0.499973i
\(541\) −123.230 + 379.264i −0.227782 + 0.701042i 0.770215 + 0.637784i \(0.220149\pi\)
−0.997997 + 0.0632575i \(0.979851\pi\)
\(542\) 149.756 + 108.804i 0.276303 + 0.200746i
\(543\) 231.274 310.576i 0.425920 0.571964i
\(544\) 106.480 + 77.3621i 0.195735 + 0.142210i
\(545\) 749.980 574.023i 1.37611 1.05325i
\(546\) −2.14169 + 182.142i −0.00392251 + 0.333593i
\(547\) 98.1369 + 135.074i 0.179409 + 0.246936i 0.889245 0.457432i \(-0.151231\pi\)
−0.709835 + 0.704368i \(0.751231\pi\)
\(548\) 71.1511 + 218.981i 0.129838 + 0.399600i
\(549\) 108.111 + 361.438i 0.196923 + 0.658356i
\(550\) −30.7980 + 47.1716i −0.0559964 + 0.0857666i
\(551\) 858.239i 1.55760i
\(552\) −97.8524 33.0711i −0.177269 0.0599114i
\(553\) 189.207 + 260.421i 0.342146 + 0.470924i
\(554\) 268.328 + 369.322i 0.484347 + 0.666646i
\(555\) −175.553 + 131.121i −0.316312 + 0.236255i
\(556\) 249.759 + 181.461i 0.449208 + 0.326368i
\(557\) −939.086 −1.68597 −0.842985 0.537936i \(-0.819204\pi\)
−0.842985 + 0.537936i \(0.819204\pi\)
\(558\) −93.1854 + 265.392i −0.166999 + 0.475614i
\(559\) −248.778 + 765.660i −0.445041 + 1.36970i
\(560\) 32.9262 + 43.0192i 0.0587968 + 0.0768200i
\(561\) −35.6101 + 105.365i −0.0634761 + 0.187816i
\(562\) 412.576 + 134.054i 0.734121 + 0.238530i
\(563\) 2.66316 8.19635i 0.00473030 0.0145584i −0.948664 0.316287i \(-0.897564\pi\)
0.953394 + 0.301729i \(0.0975637\pi\)
\(564\) 266.421 + 90.0421i 0.472378 + 0.159649i
\(565\) −383.006 + 293.147i −0.677887 + 0.518844i
\(566\) −340.311 110.574i −0.601256 0.195360i
\(567\) 10.3150 219.161i 0.0181923 0.386527i
\(568\) 101.288i 0.178325i
\(569\) 130.006 178.937i 0.228481 0.314477i −0.679349 0.733815i \(-0.737738\pi\)
0.907830 + 0.419338i \(0.137738\pi\)
\(570\) 304.903 + 408.222i 0.534917 + 0.716180i
\(571\) 804.112 584.222i 1.40825 1.02316i 0.414678 0.909968i \(-0.363894\pi\)
0.993574 0.113187i \(-0.0361059\pi\)
\(572\) −40.8657 + 29.6907i −0.0714436 + 0.0519068i
\(573\) 40.3370 119.351i 0.0703961 0.208291i
\(574\) −86.2027 −0.150179
\(575\) −236.970 + 190.936i −0.412121 + 0.332062i
\(576\) −20.6330 68.9803i −0.0358211 0.119757i
\(577\) 599.210 194.695i 1.03849 0.337426i 0.260350 0.965514i \(-0.416162\pi\)
0.778142 + 0.628088i \(0.216162\pi\)
\(578\) 288.706 209.757i 0.499492 0.362902i
\(579\) −374.617 4.40489i −0.647008 0.00760776i
\(580\) 217.173 + 283.744i 0.374437 + 0.489214i
\(581\) −201.949 + 277.959i −0.347589 + 0.478415i
\(582\) 454.779 + 338.657i 0.781407 + 0.581885i
\(583\) 47.2690 65.0602i 0.0810790 0.111596i
\(584\) −313.350 101.813i −0.536558 0.174338i
\(585\) −420.084 576.448i −0.718092 0.985381i
\(586\) 144.718 + 445.396i 0.246959 + 0.760061i
\(587\) 60.7330 186.917i 0.103463 0.318428i −0.885903 0.463870i \(-0.846461\pi\)
0.989367 + 0.145442i \(0.0464605\pi\)
\(588\) −144.546 203.950i −0.245826 0.346854i
\(589\) −164.027 504.822i −0.278483 0.857083i
\(590\) −205.805 + 298.665i −0.348822 + 0.506211i
\(591\) −428.945 605.230i −0.725794 1.02408i
\(592\) −34.3448 + 47.2716i −0.0580149 + 0.0798507i
\(593\) −424.765 −0.716298 −0.358149 0.933664i \(-0.616592\pi\)
−0.358149 + 0.933664i \(0.616592\pi\)
\(594\) 50.4530 34.0040i 0.0849377 0.0572459i
\(595\) 297.165 104.822i 0.499436 0.176172i
\(596\) −68.6289 94.4596i −0.115149 0.158489i
\(597\) −4.68388 + 398.344i −0.00784569 + 0.667243i
\(598\) −259.512 + 84.3206i −0.433967 + 0.141004i
\(599\) 334.573i 0.558552i −0.960211 0.279276i \(-0.909906\pi\)
0.960211 0.279276i \(-0.0900945\pi\)
\(600\) −204.103 57.8090i −0.340172 0.0963483i
\(601\) 893.199 1.48619 0.743094 0.669187i \(-0.233358\pi\)
0.743094 + 0.669187i \(0.233358\pi\)
\(602\) 60.1229 + 185.039i 0.0998720 + 0.307374i
\(603\) −276.504 + 362.341i −0.458546 + 0.600897i
\(604\) 306.275 222.522i 0.507078 0.368413i
\(605\) 592.121 14.7800i 0.978712 0.0244298i
\(606\) −192.053 615.613i −0.316918 1.01586i
\(607\) 361.640i 0.595783i −0.954600 0.297891i \(-0.903717\pi\)
0.954600 0.297891i \(-0.0962833\pi\)
\(608\) 109.923 + 79.8637i 0.180794 + 0.131355i
\(609\) 167.894 + 236.894i 0.275688 + 0.388989i
\(610\) 296.311 7.39627i 0.485756 0.0121250i
\(611\) 706.569 229.578i 1.15641 0.375742i
\(612\) −418.684 9.84746i −0.684125 0.0160906i
\(613\) −150.413 48.8722i −0.245372 0.0797263i 0.183749 0.982973i \(-0.441177\pi\)
−0.429121 + 0.903247i \(0.641177\pi\)
\(614\) 600.961 195.264i 0.978764 0.318020i
\(615\) 270.442 201.994i 0.439743 0.328446i
\(616\) −3.77235 + 11.6101i −0.00612395 + 0.0188476i
\(617\) 902.981 + 656.054i 1.46350 + 1.06330i 0.982433 + 0.186614i \(0.0597514\pi\)
0.481069 + 0.876683i \(0.340249\pi\)
\(618\) −550.888 410.226i −0.891404 0.663795i
\(619\) −422.883 307.242i −0.683171 0.496353i 0.191237 0.981544i \(-0.438750\pi\)
−0.874408 + 0.485191i \(0.838750\pi\)
\(620\) 181.972 + 125.394i 0.293503 + 0.202249i
\(621\) 315.968 90.4768i 0.508805 0.145695i
\(622\) −345.838 476.005i −0.556009 0.765281i
\(623\) −89.5383 275.571i −0.143721 0.442328i
\(624\) −152.555 113.602i −0.244480 0.182055i
\(625\) −466.507 + 415.928i −0.746412 + 0.665484i
\(626\) 38.8101i 0.0619969i
\(627\) −36.7616 + 108.772i −0.0586309 + 0.173480i
\(628\) 89.9500 + 123.805i 0.143232 + 0.197143i
\(629\) 199.773 + 274.963i 0.317604 + 0.437144i
\(630\) −164.019 53.0320i −0.260348 0.0841778i
\(631\) −307.273 223.247i −0.486963 0.353799i 0.317052 0.948408i \(-0.397307\pi\)
−0.804015 + 0.594609i \(0.797307\pi\)
\(632\) −336.128 −0.531848
\(633\) 895.732 279.441i 1.41506 0.441455i
\(634\) 252.648 777.570i 0.398498 1.22645i
\(635\) −919.068 273.464i −1.44735 0.430653i
\(636\) 286.878 + 96.9558i 0.451065 + 0.152446i
\(637\) −628.062 204.070i −0.985968 0.320360i
\(638\) −24.8815 + 76.5774i −0.0389992 + 0.120027i
\(639\) 183.258 + 265.127i 0.286789 + 0.414909i
\(640\) −56.5509 + 1.41158i −0.0883608 + 0.00220559i
\(641\) 978.556 + 317.952i 1.52661 + 0.496025i 0.947644 0.319328i \(-0.103457\pi\)
0.578964 + 0.815353i \(0.303457\pi\)
\(642\) −242.971 + 75.7997i −0.378460 + 0.118068i
\(643\) 664.252i 1.03305i 0.856272 + 0.516526i \(0.172775\pi\)
−0.856272 + 0.516526i \(0.827225\pi\)
\(644\) −38.7613 + 53.3504i −0.0601884 + 0.0828422i
\(645\) −622.215 439.637i −0.964674 0.681608i
\(646\) 639.385 464.541i 0.989760 0.719103i
\(647\) 534.360 388.235i 0.825904 0.600054i −0.0924936 0.995713i \(-0.529484\pi\)
0.918397 + 0.395659i \(0.129484\pi\)
\(648\) 178.812 + 143.228i 0.275944 + 0.221031i
\(649\) −81.7330 −0.125937
\(650\) −523.671 + 199.549i −0.805647 + 0.306998i
\(651\) 144.032 + 107.255i 0.221247 + 0.164754i
\(652\) −235.334 + 76.4645i −0.360941 + 0.117277i
\(653\) −344.343 + 250.180i −0.527325 + 0.383124i −0.819356 0.573285i \(-0.805669\pi\)
0.292031 + 0.956409i \(0.405669\pi\)
\(654\) −9.42235 + 801.331i −0.0144073 + 1.22528i
\(655\) 26.3233 9.28534i 0.0401883 0.0141761i
\(656\) 52.9086 72.8225i 0.0806534 0.111010i
\(657\) 1004.41 300.434i 1.52879 0.457282i
\(658\) 105.535 145.256i 0.160387 0.220754i
\(659\) 567.227 + 184.303i 0.860738 + 0.279671i 0.705937 0.708275i \(-0.250526\pi\)
0.154802 + 0.987946i \(0.450526\pi\)
\(660\) −15.3704 45.2637i −0.0232885 0.0685813i
\(661\) 104.063 + 320.274i 0.157433 + 0.484529i 0.998399 0.0565584i \(-0.0180127\pi\)
−0.840966 + 0.541088i \(0.818013\pi\)
\(662\) 138.494 426.241i 0.209206 0.643868i
\(663\) −902.657 + 639.740i −1.36147 + 0.964916i
\(664\) −110.864 341.206i −0.166965 0.513864i
\(665\) 306.774 108.212i 0.461314 0.162725i
\(666\) 4.37177 185.875i 0.00656422 0.279091i
\(667\) −255.660 + 351.886i −0.383298 + 0.527565i
\(668\) −351.886 −0.526775
\(669\) 127.428 + 408.463i 0.190475 + 0.610558i
\(670\) 217.651 + 284.369i 0.324853 + 0.424431i
\(671\) 39.2594 + 54.0359i 0.0585088 + 0.0805304i
\(672\) −45.9647 0.540470i −0.0683999 0.000804271i
\(673\) 1113.47 361.788i 1.65449 0.537576i 0.674782 0.738017i \(-0.264238\pi\)
0.979706 + 0.200442i \(0.0642377\pi\)
\(674\) 40.6681i 0.0603384i
\(675\) 638.841 217.961i 0.946431 0.322905i
\(676\) −164.481 −0.243316
\(677\) −17.9307 55.1849i −0.0264855 0.0815139i 0.936940 0.349490i \(-0.113645\pi\)
−0.963426 + 0.267976i \(0.913645\pi\)
\(678\) 4.81188 409.230i 0.00709717 0.603584i
\(679\) 292.873 212.784i 0.431329 0.313379i
\(680\) −93.8386 + 315.376i −0.137998 + 0.463788i
\(681\) 735.104 229.330i 1.07945 0.336755i
\(682\) 49.7987i 0.0730186i
\(683\) 241.858 + 175.720i 0.354111 + 0.257277i 0.750592 0.660766i \(-0.229769\pi\)
−0.396481 + 0.918043i \(0.629769\pi\)
\(684\) −432.223 10.1659i −0.631905 0.0148624i
\(685\) −457.102 + 349.859i −0.667302 + 0.510743i
\(686\) −330.301 + 107.321i −0.481488 + 0.156445i
\(687\) 401.465 + 566.457i 0.584374 + 0.824537i
\(688\) −193.219 62.7808i −0.280842 0.0912512i
\(689\) 760.822 247.206i 1.10424 0.358789i
\(690\) −3.40799 258.202i −0.00493911 0.374206i
\(691\) 357.640 1100.70i 0.517568 1.59291i −0.260992 0.965341i \(-0.584050\pi\)
0.778560 0.627570i \(-0.215950\pi\)
\(692\) −11.7817 8.55987i −0.0170255 0.0123698i
\(693\) −11.1316 37.2152i −0.0160629 0.0537015i
\(694\) 257.806 + 187.307i 0.371478 + 0.269894i
\(695\) −220.108 + 739.747i −0.316703 + 1.06438i
\(696\) −303.172 3.56481i −0.435592 0.00512185i
\(697\) −307.752 423.584i −0.441538 0.607725i
\(698\) 68.0321 + 209.381i 0.0974672 + 0.299973i
\(699\) 594.004 797.682i 0.849791 1.14118i
\(700\) −74.0406 + 113.404i −0.105772 + 0.162005i
\(701\) 309.274i 0.441190i 0.975366 + 0.220595i \(0.0707998\pi\)
−0.975366 + 0.220595i \(0.929200\pi\)
\(702\) 604.858 + 21.3443i 0.861621 + 0.0304050i
\(703\) 206.232 + 283.855i 0.293361 + 0.403776i
\(704\) −7.49265 10.3127i −0.0106430 0.0146488i
\(705\) 9.27886 + 703.002i 0.0131615 + 0.997166i
\(706\) 72.5080 + 52.6801i 0.102703 + 0.0746178i
\(707\) −411.716 −0.582342
\(708\) −91.6572 293.802i −0.129459 0.414974i
\(709\) −152.491 + 469.319i −0.215079 + 0.661944i 0.784069 + 0.620673i \(0.213141\pi\)
−0.999148 + 0.0412710i \(0.986859\pi\)
\(710\) 238.800 84.2347i 0.336338 0.118640i
\(711\) 879.829 608.147i 1.23745 0.855341i
\(712\) 287.753 + 93.4965i 0.404147 + 0.131315i
\(713\) −83.1286 + 255.844i −0.116590 + 0.358827i
\(714\) −85.6091 + 253.305i −0.119901 + 0.354768i
\(715\) −103.985 71.6542i −0.145433 0.100216i
\(716\) 225.133 + 73.1501i 0.314431 + 0.102165i
\(717\) 145.453 + 466.242i 0.202864 + 0.650267i
\(718\) 57.7767i 0.0804689i
\(719\) −249.465 + 343.359i −0.346961 + 0.477550i −0.946458 0.322826i \(-0.895367\pi\)
0.599498 + 0.800377i \(0.295367\pi\)
\(720\) 145.471 106.011i 0.202042 0.147237i
\(721\) −354.766 + 257.752i −0.492047 + 0.357493i
\(722\) 247.032 179.479i 0.342150 0.248586i
\(723\) −727.240 245.785i −1.00586 0.339951i
\(724\) 258.152 0.356563
\(725\) −488.353 + 747.983i −0.673591 + 1.03170i
\(726\) −300.174 + 403.101i −0.413463 + 0.555235i
\(727\) −651.165 + 211.576i −0.895688 + 0.291027i −0.720456 0.693501i \(-0.756067\pi\)
−0.175232 + 0.984527i \(0.556067\pi\)
\(728\) −98.2440 + 71.3784i −0.134951 + 0.0980473i
\(729\) −727.187 51.3861i −0.997513 0.0704885i
\(730\) −20.5538 823.432i −0.0281559 1.12799i
\(731\) −694.605 + 956.041i −0.950212 + 1.30785i
\(732\) −150.214 + 201.721i −0.205210 + 0.275575i
\(733\) −736.608 + 1013.85i −1.00492 + 1.38316i −0.0826661 + 0.996577i \(0.526344\pi\)
−0.922256 + 0.386579i \(0.873656\pi\)
\(734\) −467.049 151.753i −0.636306 0.206748i
\(735\) 360.629 510.395i 0.490652 0.694416i
\(736\) −21.2789 65.4897i −0.0289115 0.0889805i
\(737\) −24.9363 + 76.7460i −0.0338349 + 0.104133i
\(738\) −6.73476 + 286.342i −0.00912570 + 0.387997i
\(739\) −332.312 1022.75i −0.449677 1.38397i −0.877272 0.479994i \(-0.840639\pi\)
0.427594 0.903971i \(-0.359361\pi\)
\(740\) −140.011 41.6596i −0.189204 0.0562968i
\(741\) −931.845 + 660.426i −1.25755 + 0.891263i
\(742\) 113.638 156.409i 0.153151 0.210794i
\(743\) 1177.21 1.58440 0.792202 0.610258i \(-0.208934\pi\)
0.792202 + 0.610258i \(0.208934\pi\)
\(744\) −179.009 + 55.8454i −0.240604 + 0.0750610i
\(745\) 165.626 240.357i 0.222317 0.322626i
\(746\) 158.030 + 217.510i 0.211837 + 0.291569i
\(747\) 907.527 + 692.536i 1.21490 + 0.927090i
\(748\) −70.5176 + 22.9125i −0.0942748 + 0.0306317i
\(749\) 162.497i 0.216952i
\(750\) −33.4470 529.274i −0.0445960 0.705699i
\(751\) −1113.51 −1.48270 −0.741349 0.671119i \(-0.765814\pi\)
−0.741349 + 0.671119i \(0.765814\pi\)
\(752\) 57.9356 + 178.308i 0.0770421 + 0.237111i
\(753\) 1110.60 + 13.0588i 1.47490 + 0.0173424i
\(754\) −647.993 + 470.794i −0.859407 + 0.624396i
\(755\) 779.330 + 537.025i 1.03223 + 0.711291i
\(756\) 121.292 81.7481i 0.160440 0.108132i
\(757\) 390.313i 0.515606i 0.966198 + 0.257803i \(0.0829985\pi\)
−0.966198 + 0.257803i \(0.917002\pi\)
\(758\) −275.698 200.306i −0.363718 0.264256i
\(759\) 47.4746 33.6466i 0.0625489 0.0443302i
\(760\) −96.8730 + 325.574i −0.127464 + 0.428387i
\(761\) −1070.12 + 347.702i −1.40620 + 0.456901i −0.911190 0.411987i \(-0.864835\pi\)
−0.495008 + 0.868889i \(0.664835\pi\)
\(762\) 663.830 470.476i 0.871168 0.617422i
\(763\) 486.598 + 158.105i 0.637743 + 0.207215i
\(764\) 79.8780 25.9539i 0.104552 0.0339711i
\(765\) −324.975 995.290i −0.424804 1.30103i
\(766\) 185.650 571.370i 0.242362 0.745914i
\(767\) −657.769 477.897i −0.857587 0.623073i
\(768\) 28.6683 38.4984i 0.0373285 0.0501281i
\(769\) −532.417 386.824i −0.692350 0.503022i 0.185082 0.982723i \(-0.440745\pi\)
−0.877432 + 0.479701i \(0.840745\pi\)
\(770\) −30.5095 + 0.761551i −0.0396227 + 0.000989028i
\(771\) −7.10437 + 604.196i −0.00921448 + 0.783653i
\(772\) −146.807 202.062i −0.190164 0.261738i
\(773\) −184.504 567.843i −0.238685 0.734597i −0.996611 0.0822566i \(-0.973787\pi\)
0.757926 0.652340i \(-0.226213\pi\)
\(774\) 619.348 185.256i 0.800191 0.239348i
\(775\) −144.298 + 533.303i −0.186191 + 0.688133i
\(776\) 378.014i 0.487131i
\(777\) −112.454 38.0061i −0.144729 0.0489139i
\(778\) 489.434 + 673.648i 0.629092 + 0.865872i
\(779\) −317.703 437.281i −0.407835 0.561337i
\(780\) 140.961 454.144i 0.180720 0.582235i
\(781\) 46.1635 + 33.5397i 0.0591082 + 0.0429446i
\(782\) −400.535 −0.512194
\(783\) 800.015 539.190i 1.02173 0.688621i
\(784\) 51.4983 158.496i 0.0656867 0.202163i
\(785\) −217.081 + 315.029i −0.276537 + 0.401310i
\(786\) −7.58340 + 22.4381i −0.00964809 + 0.0285472i
\(787\) −892.259 289.913i −1.13375 0.368377i −0.318748 0.947839i \(-0.603262\pi\)
−0.814999 + 0.579463i \(0.803262\pi\)
\(788\) 152.823 470.342i 0.193938 0.596881i
\(789\) −287.780 97.2608i −0.364740 0.123271i
\(790\) −279.535 792.463i −0.353841 1.00312i
\(791\) −248.500 80.7425i −0.314159 0.102076i
\(792\) 38.2709 + 13.4378i 0.0483218 + 0.0169669i
\(793\) 664.421i 0.837857i
\(794\) 63.8256 87.8484i 0.0803848 0.110640i
\(795\) 9.99132 + 756.981i 0.0125677 + 0.952177i
\(796\) −214.860 + 156.105i −0.269924 + 0.196111i
\(797\) −128.891 + 93.6449i −0.161720 + 0.117497i −0.665702 0.746218i \(-0.731868\pi\)
0.503982 + 0.863714i \(0.331868\pi\)
\(798\) −88.3774 + 261.495i −0.110749 + 0.327688i
\(799\) 1090.53 1.36487
\(800\) −50.3575 132.152i −0.0629469 0.165190i
\(801\) −922.366 + 275.892i −1.15152 + 0.344435i
\(802\) −296.788 + 96.4322i −0.370060 + 0.120240i
\(803\) 150.163 109.100i 0.187002 0.135865i
\(804\) −303.840 3.57266i −0.377910 0.00444360i
\(805\) −158.015 47.0167i −0.196292 0.0584058i
\(806\) −291.176 + 400.769i −0.361260 + 0.497232i
\(807\) −723.793 538.981i −0.896893 0.667883i
\(808\) 252.699 347.810i 0.312746 0.430458i
\(809\) 264.577 + 85.9661i 0.327042 + 0.106262i 0.467936 0.883762i \(-0.344998\pi\)
−0.140894 + 0.990025i \(0.544998\pi\)
\(810\) −188.972 + 540.684i −0.233299 + 0.667511i
\(811\) 163.579 + 503.443i 0.201700 + 0.620769i 0.999833 + 0.0182871i \(0.00582130\pi\)
−0.798133 + 0.602482i \(0.794179\pi\)
\(812\) −59.8168 + 184.097i −0.0736660 + 0.226721i
\(813\) −227.058 320.373i −0.279284 0.394063i
\(814\) −10.1720 31.3062i −0.0124963 0.0384597i
\(815\) −375.985 491.237i −0.461332 0.602745i
\(816\) −161.443 227.792i −0.197846 0.279156i
\(817\) −717.065 + 986.956i −0.877681 + 1.20802i
\(818\) 150.288 0.183726
\(819\) 128.015 364.586i 0.156306 0.445160i
\(820\) 215.688 + 64.1771i 0.263035 + 0.0782648i
\(821\) 341.419 + 469.923i 0.415858 + 0.572379i 0.964635 0.263590i \(-0.0849065\pi\)
−0.548777 + 0.835969i \(0.684906\pi\)
\(822\) 5.74279 488.400i 0.00698636 0.594160i
\(823\) 369.062 119.916i 0.448435 0.145705i −0.0760888 0.997101i \(-0.524243\pi\)
0.524524 + 0.851396i \(0.324243\pi\)
\(824\) 457.900i 0.555704i
\(825\) 93.9322 73.8803i 0.113857 0.0895519i
\(826\) −196.492 −0.237883
\(827\) 120.659 + 371.350i 0.145900 + 0.449032i 0.997126 0.0757667i \(-0.0241404\pi\)
−0.851226 + 0.524799i \(0.824140\pi\)
\(828\) 174.187 + 132.923i 0.210371 + 0.160535i
\(829\) 838.932 609.519i 1.01198 0.735247i 0.0473567 0.998878i \(-0.484920\pi\)
0.964623 + 0.263631i \(0.0849203\pi\)
\(830\) 712.236 545.134i 0.858116 0.656788i
\(831\) −288.402 924.456i −0.347054 1.11246i
\(832\) 126.805i 0.152409i
\(833\) −784.229 569.776i −0.941452 0.684005i
\(834\) −378.681 534.309i −0.454053 0.640658i
\(835\) −292.639 829.614i −0.350466 0.993550i
\(836\) −72.7978 + 23.6534i −0.0870787 + 0.0282936i
\(837\) 367.524 470.054i 0.439097 0.561594i
\(838\) 888.153 + 288.579i 1.05985 + 0.344366i
\(839\) −677.194 + 220.034i −0.807144 + 0.262257i −0.683388 0.730056i \(-0.739494\pi\)
−0.123756 + 0.992313i \(0.539494\pi\)
\(840\) −36.9515 108.817i −0.0439899 0.129544i
\(841\) −134.654 + 414.421i −0.160111 + 0.492772i
\(842\) −452.407 328.693i −0.537300 0.390371i
\(843\) −738.084 549.623i −0.875544 0.651985i
\(844\) 506.072 + 367.683i 0.599611 + 0.435643i
\(845\) −136.788 387.785i −0.161879 0.458917i
\(846\) −474.256 361.906i −0.560586 0.427785i
\(847\) 188.605 + 259.592i 0.222674 + 0.306484i
\(848\) 62.3841 + 191.999i 0.0735662 + 0.226413i
\(849\) 608.804 + 453.354i 0.717084 + 0.533985i
\(850\) −821.577 + 41.0406i −0.966561 + 0.0482830i
\(851\) 177.817i 0.208951i
\(852\) −68.7950 + 203.554i −0.0807453 + 0.238913i
\(853\) 116.328 + 160.112i 0.136375 + 0.187704i 0.871742 0.489965i \(-0.162990\pi\)
−0.735367 + 0.677669i \(0.762990\pi\)
\(854\) 94.3822 + 129.906i 0.110518 + 0.152115i
\(855\) −335.483 1027.47i −0.392378 1.20172i
\(856\) −137.274 99.7356i −0.160367 0.116514i
\(857\) 584.566 0.682107 0.341054 0.940044i \(-0.389216\pi\)
0.341054 + 0.940044i \(0.389216\pi\)
\(858\) 102.292 31.9119i 0.119221 0.0371933i
\(859\) 186.893 575.198i 0.217571 0.669614i −0.781390 0.624042i \(-0.785489\pi\)
0.998961 0.0455712i \(-0.0145108\pi\)
\(860\) −12.6740 507.749i −0.0147372 0.590406i
\(861\) 173.237 + 58.5489i 0.201205 + 0.0680010i
\(862\) −209.202 67.9737i −0.242693 0.0788558i
\(863\) 263.066 809.635i 0.304828 0.938164i −0.674914 0.737897i \(-0.735819\pi\)
0.979741 0.200267i \(-0.0641809\pi\)
\(864\) −5.38638 + 152.640i −0.00623424 + 0.176667i
\(865\) 10.3830 34.8954i 0.0120034 0.0403415i
\(866\) 721.856 + 234.545i 0.833552 + 0.270837i
\(867\) −722.665 + 225.449i −0.833524 + 0.260034i
\(868\) 119.720i 0.137926i
\(869\) 111.302 153.195i 0.128081 0.176288i
\(870\) −243.723 717.730i −0.280141 0.824977i
\(871\) −649.420 + 471.831i −0.745603 + 0.541712i
\(872\) −432.224 + 314.029i −0.495669 + 0.360125i
\(873\) −683.931 989.467i −0.783426 1.13341i
\(874\) −413.487 −0.473097
\(875\) −328.938 80.2496i −0.375929 0.0917138i
\(876\) 560.571 + 417.436i 0.639921 + 0.476525i
\(877\) 1245.95 404.834i 1.42070 0.461612i 0.504873 0.863193i \(-0.331539\pi\)
0.915824 + 0.401581i \(0.131539\pi\)
\(878\) 656.189 476.749i 0.747368 0.542995i
\(879\) 11.6805 993.381i 0.0132884 1.13013i
\(880\) 18.0824 26.2412i 0.0205482 0.0298196i
\(881\) −348.486 + 479.650i −0.395558 + 0.544438i −0.959622 0.281292i \(-0.909237\pi\)
0.564065 + 0.825731i \(0.309237\pi\)
\(882\) 151.963 + 508.044i 0.172293 + 0.576013i
\(883\) −393.287 + 541.314i −0.445399 + 0.613039i −0.971401 0.237444i \(-0.923690\pi\)
0.526002 + 0.850483i \(0.323690\pi\)
\(884\) −701.481 227.925i −0.793530 0.257834i
\(885\) 616.449 460.428i 0.696553 0.520258i
\(886\) −148.363 456.614i −0.167452 0.515365i
\(887\) −384.779 + 1184.23i −0.433798 + 1.33509i 0.460515 + 0.887652i \(0.347665\pi\)
−0.894313 + 0.447442i \(0.852335\pi\)
\(888\) 101.128 71.6723i 0.113883 0.0807121i
\(889\) −160.524 494.041i −0.180567 0.555727i
\(890\) 18.8748 + 756.167i 0.0212076 + 0.849626i
\(891\) −124.488 + 34.0685i −0.139718 + 0.0382363i
\(892\) −167.667 + 230.774i −0.187968 + 0.258715i
\(893\) 1125.79 1.26069
\(894\) 73.7631 + 236.443i 0.0825090 + 0.264478i
\(895\) 14.7673 + 591.612i 0.0164998 + 0.661019i
\(896\) −18.0128 24.7925i −0.0201036 0.0276702i
\(897\) 578.799 + 6.80573i 0.645261 + 0.00758722i
\(898\) 381.798 124.054i 0.425165 0.138144i
\(899\) 789.640i 0.878354i
\(900\) 370.912 + 254.803i 0.412124 + 0.283114i
\(901\) 1174.26 1.30329
\(902\) 15.6701 + 48.2276i 0.0173726 + 0.0534674i
\(903\) 4.85268 412.700i 0.00537395 0.457032i
\(904\) 220.731 160.371i 0.244172 0.177401i
\(905\) 214.687 + 608.625i 0.237224 + 0.672514i
\(906\) −766.641 + 239.169i −0.846183 + 0.263983i
\(907\) 60.8076i 0.0670425i 0.999438 + 0.0335213i \(0.0106721\pi\)
−0.999438 + 0.0335213i \(0.989328\pi\)
\(908\) 415.320 + 301.748i 0.457401 + 0.332321i
\(909\) −32.1661 + 1367.61i −0.0353863 + 1.50452i
\(910\) −249.986 172.262i −0.274710 0.189299i
\(911\) −288.931 + 93.8793i −0.317158 + 0.103051i −0.463270 0.886217i \(-0.653324\pi\)
0.146112 + 0.989268i \(0.453324\pi\)
\(912\) −166.663 235.157i −0.182745 0.257848i
\(913\) 192.220 + 62.4559i 0.210536 + 0.0684074i
\(914\) −845.322 + 274.662i −0.924860 + 0.300505i
\(915\) −600.505 186.390i −0.656289 0.203705i
\(916\) −143.033 + 440.210i −0.156149 + 0.480579i
\(917\) 12.2335 + 8.88819i 0.0133408 + 0.00969268i
\(918\) 834.720 + 304.160i 0.909281 + 0.331329i
\(919\) 72.1242 + 52.4013i 0.0784812 + 0.0570199i 0.626334 0.779555i \(-0.284555\pi\)
−0.547853 + 0.836575i \(0.684555\pi\)
\(920\) 136.704 104.631i 0.148591 0.113729i
\(921\) −1340.34 15.7603i −1.45531 0.0171121i
\(922\) 404.581 + 556.859i 0.438808 + 0.603968i
\(923\) 175.405 + 539.841i 0.190038 + 0.584876i
\(924\) 15.4667 20.7701i 0.0167388 0.0224784i
\(925\) −18.2199 364.739i −0.0196972 0.394312i
\(926\) 586.958i 0.633864i
\(927\) 828.466 + 1198.57i 0.893707 + 1.29296i
\(928\) −118.808 163.525i −0.128026 0.176213i
\(929\) −576.140 792.988i −0.620172 0.853594i 0.377193 0.926135i \(-0.376889\pi\)
−0.997365 + 0.0725410i \(0.976889\pi\)
\(930\) −280.532 375.593i −0.301647 0.403864i
\(931\) −809.588 588.200i −0.869590 0.631794i
\(932\) 663.036 0.711412
\(933\) 371.710 + 1191.49i 0.398403 + 1.27706i
\(934\) −347.323 + 1068.95i −0.371866 + 1.14449i
\(935\) −112.664 147.199i −0.120496 0.157432i
\(936\) 229.424 + 331.916i 0.245111 + 0.354612i
\(937\) 511.887 + 166.322i 0.546304 + 0.177505i 0.569149 0.822234i \(-0.307273\pi\)
−0.0228455 + 0.999739i \(0.507273\pi\)
\(938\) −59.9486 + 184.503i −0.0639111 + 0.196698i
\(939\) 26.3598 77.9946i 0.0280722 0.0830614i
\(940\) −372.201 + 284.877i −0.395958 + 0.303060i
\(941\) 1460.60 + 474.577i 1.55218 + 0.504333i 0.954704 0.297556i \(-0.0961714\pi\)
0.597473 + 0.801889i \(0.296171\pi\)
\(942\) −96.6792 309.900i −0.102632 0.328980i
\(943\) 273.930i 0.290488i
\(944\) 120.601 165.993i 0.127755 0.175840i
\(945\) 293.602 + 217.978i 0.310690 + 0.230664i
\(946\) 92.5942 67.2736i 0.0978797 0.0711138i
\(947\) 627.137 455.641i 0.662235 0.481142i −0.205182 0.978724i \(-0.565779\pi\)
0.867417 + 0.497582i \(0.165779\pi\)
\(948\) 675.499 + 228.298i 0.712552 + 0.240821i
\(949\) 1846.39 1.94561
\(950\) −848.143 + 42.3677i −0.892783 + 0.0445976i
\(951\) −1035.86 + 1391.05i −1.08923 + 1.46272i
\(952\) −169.529 + 55.0833i −0.178077 + 0.0578606i
\(953\) −340.354 + 247.282i −0.357140 + 0.259477i −0.751858 0.659325i \(-0.770842\pi\)
0.394718 + 0.918802i \(0.370842\pi\)
\(954\) −510.671 389.694i −0.535294 0.408485i
\(955\) 127.619 + 166.738i 0.133632 + 0.174595i
\(956\) −191.384 + 263.418i −0.200193 + 0.275542i
\(957\) 102.014 136.994i 0.106598 0.143150i
\(958\) −251.682 + 346.410i −0.262716 + 0.361597i
\(959\) −296.575 96.3629i −0.309254 0.100483i
\(960\) 114.606 + 35.5726i 0.119382 + 0.0370548i
\(961\) −146.049 449.493i −0.151976 0.467735i
\(962\) 101.187 311.422i 0.105184 0.323723i
\(963\) 539.770 + 12.6954i 0.560509 + 0.0131832i
\(964\) −158.145 486.720i −0.164051 0.504896i
\(965\) 354.297 514.156i 0.367147 0.532804i
\(966\) 114.132 80.8888i 0.118149 0.0837359i
\(967\) −466.301 + 641.808i −0.482214 + 0.663710i −0.978928 0.204204i \(-0.934540\pi\)
0.496715 + 0.867914i \(0.334540\pi\)
\(968\) −335.058 −0.346135
\(969\) −1600.46 + 499.293i −1.65166 + 0.515266i
\(970\) −891.214 + 314.368i −0.918778 + 0.324091i
\(971\) −792.099 1090.23i −0.815756 1.12279i −0.990410 0.138162i \(-0.955880\pi\)
0.174653 0.984630i \(-0.444120\pi\)
\(972\) −262.069 409.287i −0.269618 0.421077i
\(973\) −397.648 + 129.204i −0.408683 + 0.132789i
\(974\) 1142.60i 1.17310i
\(975\) 1187.93 45.3463i 1.21839 0.0465091i
\(976\) −167.671 −0.171794
\(977\) 298.849 + 919.762i 0.305884 + 0.941414i 0.979346 + 0.202192i \(0.0648066\pi\)
−0.673462 + 0.739222i \(0.735193\pi\)
\(978\) 524.872 + 6.17164i 0.536679 + 0.00631047i
\(979\) −137.896 + 100.187i −0.140854 + 0.102337i
\(980\) 416.501 10.3963i 0.425001 0.0106085i
\(981\) 563.199 1603.99i 0.574108 1.63506i
\(982\) 507.784i 0.517091i
\(983\) −633.042 459.932i −0.643990 0.467886i 0.217229 0.976121i \(-0.430298\pi\)
−0.861219 + 0.508234i \(0.830298\pi\)
\(984\) −155.789 + 110.412i −0.158322 + 0.112207i
\(985\) 1235.98 30.8515i 1.25480 0.0313214i
\(986\) −1118.17 + 363.316i −1.13405 + 0.368475i
\(987\) −310.746 + 220.235i −0.314838 + 0.223135i
\(988\) −724.164 235.295i −0.732959 0.238153i
\(989\) 588.007 191.055i 0.594547 0.193180i
\(990\) 0.146053 + 101.404i 0.000147529 + 0.102428i
\(991\) 146.977 452.348i 0.148312 0.456456i −0.849110 0.528216i \(-0.822861\pi\)
0.997422 + 0.0717592i \(0.0228613\pi\)
\(992\) −101.137 73.4802i −0.101952 0.0740728i
\(993\) −567.827 + 762.529i −0.571830 + 0.767905i
\(994\) 110.980 + 80.6318i 0.111650 + 0.0811186i
\(995\) −546.720 376.736i −0.549467 0.378629i
\(996\) −8.94815 + 761.003i −0.00898409 + 0.764059i
\(997\) −408.159 561.782i −0.409387 0.563473i 0.553682 0.832728i \(-0.313222\pi\)
−0.963069 + 0.269256i \(0.913222\pi\)
\(998\) 300.870 + 925.982i 0.301473 + 0.927838i
\(999\) −135.032 + 370.574i −0.135167 + 0.370944i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.3.i.a.119.5 yes 80
3.2 odd 2 inner 150.3.i.a.119.20 yes 80
25.4 even 10 inner 150.3.i.a.29.20 yes 80
75.29 odd 10 inner 150.3.i.a.29.5 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.3.i.a.29.5 80 75.29 odd 10 inner
150.3.i.a.29.20 yes 80 25.4 even 10 inner
150.3.i.a.119.5 yes 80 1.1 even 1 trivial
150.3.i.a.119.20 yes 80 3.2 odd 2 inner