Properties

Label 150.3.i.a.29.5
Level $150$
Weight $3$
Character 150.29
Analytic conductor $4.087$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,3,Mod(29,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 150.i (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.08720396540\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 29.5
Character \(\chi\) \(=\) 150.29
Dual form 150.3.i.a.119.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.437016 + 1.34500i) q^{2} +(-0.0352727 - 2.99979i) q^{3} +(-1.61803 - 1.17557i) q^{4} +(-4.11716 + 2.83707i) q^{5} +(4.05013 + 1.26352i) q^{6} +2.70868i q^{7} +(2.28825 - 1.66251i) q^{8} +(-8.99751 + 0.211621i) q^{9} +O(q^{10})\) \(q+(-0.437016 + 1.34500i) q^{2} +(-0.0352727 - 2.99979i) q^{3} +(-1.61803 - 1.17557i) q^{4} +(-4.11716 + 2.83707i) q^{5} +(4.05013 + 1.26352i) q^{6} +2.70868i q^{7} +(2.28825 - 1.66251i) q^{8} +(-8.99751 + 0.211621i) q^{9} +(-2.01659 - 6.77742i) q^{10} +(-1.51542 - 0.492390i) q^{11} +(-3.46940 + 4.89523i) q^{12} +(-15.0748 + 4.89810i) q^{13} +(-3.64317 - 1.18374i) q^{14} +(8.65585 + 12.2506i) q^{15} +(1.23607 + 3.80423i) q^{16} +(-18.8231 + 13.6758i) q^{17} +(3.64743 - 12.1941i) q^{18} +(-19.4318 + 14.1180i) q^{19} +(9.99689 + 0.249534i) q^{20} +(8.12549 - 0.0955425i) q^{21} +(1.32453 - 1.82305i) q^{22} +(3.76161 - 11.5770i) q^{23} +(-5.06789 - 6.80562i) q^{24} +(8.90204 - 23.3614i) q^{25} -22.4161i q^{26} +(0.952187 + 26.9832i) q^{27} +(3.18425 - 4.38274i) q^{28} +(21.0025 - 28.9075i) q^{29} +(-20.2597 + 6.28841i) q^{30} +(17.8786 - 12.9896i) q^{31} -5.65685 q^{32} +(-1.42361 + 4.56331i) q^{33} +(-10.1679 - 31.2936i) q^{34} +(-7.68473 - 11.1521i) q^{35} +(14.8071 + 10.2348i) q^{36} +(-13.8928 + 4.51404i) q^{37} +(-10.4967 - 32.3055i) q^{38} +(15.2250 + 45.0485i) q^{39} +(-4.70442 + 13.3367i) q^{40} +(21.4020 - 6.95393i) q^{41} +(-3.42246 + 10.9705i) q^{42} +50.7907i q^{43} +(1.87316 + 2.57819i) q^{44} +(36.4438 - 26.3979i) q^{45} +(13.9272 + 10.1187i) q^{46} +(-37.9194 - 27.5500i) q^{47} +(11.3683 - 3.84213i) q^{48} +41.6630 q^{49} +(27.5306 + 22.1825i) q^{50} +(41.6885 + 55.9831i) q^{51} +(30.1496 + 9.79619i) q^{52} +(-40.8309 - 29.6654i) q^{53} +(-36.7085 - 10.5114i) q^{54} +(7.63617 - 2.27211i) q^{55} +(4.50321 + 6.19813i) q^{56} +(43.0366 + 57.7934i) q^{57} +(29.7020 + 40.8814i) q^{58} +(48.7840 - 15.8509i) q^{59} +(0.395933 - 29.9974i) q^{60} +(-12.9533 + 39.8662i) q^{61} +(9.65770 + 29.7234i) q^{62} +(-0.573216 - 24.3714i) q^{63} +(2.47214 - 7.60845i) q^{64} +(48.1691 - 62.9345i) q^{65} +(-5.51550 - 3.90900i) q^{66} +(29.7675 + 40.9714i) q^{67} +46.5334 q^{68} +(-34.8614 - 10.8757i) q^{69} +(18.3579 - 5.46230i) q^{70} +(-21.0491 + 28.9716i) q^{71} +(-20.2367 + 15.4427i) q^{72} +(-110.786 - 35.9965i) q^{73} -20.6585i q^{74} +(-70.3933 - 25.8803i) q^{75} +48.0381 q^{76} +(1.33373 - 4.10479i) q^{77} +(-67.2436 + 0.790676i) q^{78} +(-96.1429 - 69.8519i) q^{79} +(-15.8820 - 12.1558i) q^{80} +(80.9104 - 3.80813i) q^{81} +31.8246i q^{82} +(-102.618 + 74.5562i) q^{83} +(-13.2596 - 9.39750i) q^{84} +(38.6986 - 109.708i) q^{85} +(-68.3134 - 22.1964i) q^{86} +(-87.4573 - 61.9836i) q^{87} +(-4.28625 + 1.39269i) q^{88} +(101.736 + 33.0560i) q^{89} +(19.5785 + 60.5531i) q^{90} +(-13.2674 - 40.8328i) q^{91} +(-19.6961 + 14.3100i) q^{92} +(-39.5967 - 53.1740i) q^{93} +(53.6261 - 38.9616i) q^{94} +(39.9500 - 113.256i) q^{95} +(0.199532 + 16.9694i) q^{96} +(78.5564 - 108.124i) q^{97} +(-18.2074 + 56.0367i) q^{98} +(13.7392 + 4.10959i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 40 q^{4} + 20 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 80 q - 40 q^{4} + 20 q^{9} + 16 q^{10} + 20 q^{12} + 32 q^{15} - 80 q^{16} + 60 q^{19} - 60 q^{21} + 40 q^{22} + 116 q^{25} - 210 q^{27} - 40 q^{28} - 68 q^{30} + 180 q^{31} - 50 q^{33} - 120 q^{34} + 40 q^{36} - 40 q^{37} + 220 q^{39} + 32 q^{40} + 468 q^{45} + 120 q^{46} - 40 q^{48} - 680 q^{49} + 20 q^{51} - 120 q^{54} - 272 q^{55} - 156 q^{60} - 200 q^{61} - 830 q^{63} - 160 q^{64} + 160 q^{66} + 500 q^{67} - 280 q^{69} - 584 q^{70} + 120 q^{73} - 138 q^{75} - 80 q^{76} + 620 q^{78} + 400 q^{79} - 420 q^{81} + 180 q^{84} + 1632 q^{85} + 750 q^{87} + 160 q^{88} + 472 q^{90} - 340 q^{91} + 160 q^{94} + 20 q^{97} - 260 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.437016 + 1.34500i −0.218508 + 0.672499i
\(3\) −0.0352727 2.99979i −0.0117576 0.999931i
\(4\) −1.61803 1.17557i −0.404508 0.293893i
\(5\) −4.11716 + 2.83707i −0.823432 + 0.567415i
\(6\) 4.05013 + 1.26352i 0.675021 + 0.210586i
\(7\) 2.70868i 0.386955i 0.981105 + 0.193477i \(0.0619766\pi\)
−0.981105 + 0.193477i \(0.938023\pi\)
\(8\) 2.28825 1.66251i 0.286031 0.207813i
\(9\) −8.99751 + 0.211621i −0.999724 + 0.0235135i
\(10\) −2.01659 6.77742i −0.201659 0.677742i
\(11\) −1.51542 0.492390i −0.137765 0.0447627i 0.239323 0.970940i \(-0.423075\pi\)
−0.377088 + 0.926177i \(0.623075\pi\)
\(12\) −3.46940 + 4.89523i −0.289116 + 0.407936i
\(13\) −15.0748 + 4.89810i −1.15960 + 0.376777i −0.824751 0.565495i \(-0.808685\pi\)
−0.334848 + 0.942272i \(0.608685\pi\)
\(14\) −3.64317 1.18374i −0.260227 0.0845527i
\(15\) 8.65585 + 12.2506i 0.577057 + 0.816704i
\(16\) 1.23607 + 3.80423i 0.0772542 + 0.237764i
\(17\) −18.8231 + 13.6758i −1.10724 + 0.804460i −0.982227 0.187695i \(-0.939898\pi\)
−0.125016 + 0.992155i \(0.539898\pi\)
\(18\) 3.64743 12.1941i 0.202635 0.677450i
\(19\) −19.4318 + 14.1180i −1.02273 + 0.743054i −0.966840 0.255383i \(-0.917799\pi\)
−0.0558866 + 0.998437i \(0.517799\pi\)
\(20\) 9.99689 + 0.249534i 0.499844 + 0.0124767i
\(21\) 8.12549 0.0955425i 0.386928 0.00454964i
\(22\) 1.32453 1.82305i 0.0602057 0.0828660i
\(23\) 3.76161 11.5770i 0.163548 0.503350i −0.835378 0.549676i \(-0.814751\pi\)
0.998926 + 0.0463259i \(0.0147513\pi\)
\(24\) −5.06789 6.80562i −0.211162 0.283568i
\(25\) 8.90204 23.3614i 0.356082 0.934455i
\(26\) 22.4161i 0.862158i
\(27\) 0.952187 + 26.9832i 0.0352662 + 0.999378i
\(28\) 3.18425 4.38274i 0.113723 0.156527i
\(29\) 21.0025 28.9075i 0.724225 0.996810i −0.275148 0.961402i \(-0.588727\pi\)
0.999373 0.0354080i \(-0.0112731\pi\)
\(30\) −20.2597 + 6.28841i −0.675324 + 0.209614i
\(31\) 17.8786 12.9896i 0.576730 0.419019i −0.260814 0.965389i \(-0.583991\pi\)
0.837544 + 0.546370i \(0.183991\pi\)
\(32\) −5.65685 −0.176777
\(33\) −1.42361 + 4.56331i −0.0431398 + 0.138282i
\(34\) −10.1679 31.2936i −0.299056 0.920401i
\(35\) −7.68473 11.1521i −0.219564 0.318631i
\(36\) 14.8071 + 10.2348i 0.411307 + 0.284300i
\(37\) −13.8928 + 4.51404i −0.375481 + 0.122001i −0.490677 0.871342i \(-0.663250\pi\)
0.115196 + 0.993343i \(0.463250\pi\)
\(38\) −10.4967 32.3055i −0.276229 0.850145i
\(39\) 15.2250 + 45.0485i 0.390385 + 1.15509i
\(40\) −4.70442 + 13.3367i −0.117611 + 0.333418i
\(41\) 21.4020 6.95393i 0.522000 0.169608i −0.0361530 0.999346i \(-0.511510\pi\)
0.558153 + 0.829738i \(0.311510\pi\)
\(42\) −3.42246 + 10.9705i −0.0814873 + 0.261203i
\(43\) 50.7907i 1.18118i 0.806972 + 0.590590i \(0.201105\pi\)
−0.806972 + 0.590590i \(0.798895\pi\)
\(44\) 1.87316 + 2.57819i 0.0425718 + 0.0585951i
\(45\) 36.4438 26.3979i 0.809863 0.586619i
\(46\) 13.9272 + 10.1187i 0.302765 + 0.219972i
\(47\) −37.9194 27.5500i −0.806795 0.586171i 0.106105 0.994355i \(-0.466162\pi\)
−0.912900 + 0.408184i \(0.866162\pi\)
\(48\) 11.3683 3.84213i 0.236839 0.0800444i
\(49\) 41.6630 0.850266
\(50\) 27.5306 + 22.1825i 0.550613 + 0.443650i
\(51\) 41.6885 + 55.9831i 0.817422 + 1.09771i
\(52\) 30.1496 + 9.79619i 0.579800 + 0.188388i
\(53\) −40.8309 29.6654i −0.770395 0.559725i 0.131686 0.991291i \(-0.457961\pi\)
−0.902081 + 0.431567i \(0.857961\pi\)
\(54\) −36.7085 10.5114i −0.679786 0.194656i
\(55\) 7.63617 2.27211i 0.138839 0.0413110i
\(56\) 4.50321 + 6.19813i 0.0804144 + 0.110681i
\(57\) 43.0366 + 57.7934i 0.755028 + 1.01392i
\(58\) 29.7020 + 40.8814i 0.512104 + 0.704851i
\(59\) 48.7840 15.8509i 0.826847 0.268659i 0.135130 0.990828i \(-0.456855\pi\)
0.691717 + 0.722169i \(0.256855\pi\)
\(60\) 0.395933 29.9974i 0.00659888 0.499956i
\(61\) −12.9533 + 39.8662i −0.212349 + 0.653544i 0.786982 + 0.616976i \(0.211642\pi\)
−0.999331 + 0.0365677i \(0.988358\pi\)
\(62\) 9.65770 + 29.7234i 0.155769 + 0.479409i
\(63\) −0.573216 24.3714i −0.00909866 0.386848i
\(64\) 2.47214 7.60845i 0.0386271 0.118882i
\(65\) 48.1691 62.9345i 0.741063 0.968224i
\(66\) −5.51550 3.90900i −0.0835682 0.0592272i
\(67\) 29.7675 + 40.9714i 0.444290 + 0.611513i 0.971159 0.238434i \(-0.0766339\pi\)
−0.526868 + 0.849947i \(0.676634\pi\)
\(68\) 46.5334 0.684314
\(69\) −34.8614 10.8757i −0.505238 0.157619i
\(70\) 18.3579 5.46230i 0.262255 0.0780329i
\(71\) −21.0491 + 28.9716i −0.296466 + 0.408050i −0.931101 0.364762i \(-0.881150\pi\)
0.634635 + 0.772812i \(0.281150\pi\)
\(72\) −20.2367 + 15.4427i −0.281065 + 0.214482i
\(73\) −110.786 35.9965i −1.51761 0.493103i −0.572517 0.819893i \(-0.694033\pi\)
−0.945097 + 0.326790i \(0.894033\pi\)
\(74\) 20.6585i 0.279168i
\(75\) −70.3933 25.8803i −0.938577 0.345070i
\(76\) 48.0381 0.632080
\(77\) 1.33373 4.10479i 0.0173211 0.0533090i
\(78\) −67.2436 + 0.790676i −0.862098 + 0.0101369i
\(79\) −96.1429 69.8519i −1.21700 0.884201i −0.221151 0.975240i \(-0.570981\pi\)
−0.995847 + 0.0910382i \(0.970981\pi\)
\(80\) −15.8820 12.1558i −0.198524 0.151947i
\(81\) 80.9104 3.80813i 0.998894 0.0470140i
\(82\) 31.8246i 0.388105i
\(83\) −102.618 + 74.5562i −1.23636 + 0.898267i −0.997350 0.0727503i \(-0.976822\pi\)
−0.239008 + 0.971017i \(0.576822\pi\)
\(84\) −13.2596 9.39750i −0.157853 0.111875i
\(85\) 38.6986 109.708i 0.455278 1.29068i
\(86\) −68.3134 22.1964i −0.794342 0.258097i
\(87\) −87.4573 61.9836i −1.00526 0.712455i
\(88\) −4.28625 + 1.39269i −0.0487074 + 0.0158260i
\(89\) 101.736 + 33.0560i 1.14310 + 0.371416i 0.818540 0.574449i \(-0.194784\pi\)
0.324560 + 0.945865i \(0.394784\pi\)
\(90\) 19.5785 + 60.5531i 0.217539 + 0.672813i
\(91\) −13.2674 40.8328i −0.145796 0.448713i
\(92\) −19.6961 + 14.3100i −0.214088 + 0.155544i
\(93\) −39.5967 53.1740i −0.425771 0.571763i
\(94\) 53.6261 38.9616i 0.570490 0.414485i
\(95\) 39.9500 113.256i 0.420526 1.19216i
\(96\) 0.199532 + 16.9694i 0.00207846 + 0.176764i
\(97\) 78.5564 108.124i 0.809860 1.11468i −0.181485 0.983394i \(-0.558091\pi\)
0.991345 0.131282i \(-0.0419095\pi\)
\(98\) −18.2074 + 56.0367i −0.185790 + 0.571803i
\(99\) 13.7392 + 4.10959i 0.138780 + 0.0415110i
\(100\) −41.8667 + 27.3345i −0.418667 + 0.273345i
\(101\) 151.999i 1.50494i 0.658629 + 0.752468i \(0.271137\pi\)
−0.658629 + 0.752468i \(0.728863\pi\)
\(102\) −93.5157 + 31.6054i −0.916821 + 0.309857i
\(103\) −95.1578 + 130.973i −0.923862 + 1.27159i 0.0383445 + 0.999265i \(0.487792\pi\)
−0.962206 + 0.272322i \(0.912208\pi\)
\(104\) −26.3517 + 36.2700i −0.253382 + 0.348750i
\(105\) −33.1829 + 23.4460i −0.316028 + 0.223295i
\(106\) 57.7436 41.9532i 0.544751 0.395785i
\(107\) −59.9911 −0.560664 −0.280332 0.959903i \(-0.590445\pi\)
−0.280332 + 0.959903i \(0.590445\pi\)
\(108\) 30.1800 44.7791i 0.279444 0.414621i
\(109\) −58.3698 179.644i −0.535503 1.64811i −0.742560 0.669779i \(-0.766389\pi\)
0.207057 0.978329i \(-0.433611\pi\)
\(110\) −0.281152 + 11.2636i −0.00255593 + 0.102396i
\(111\) 14.0312 + 41.5162i 0.126407 + 0.374020i
\(112\) −10.3044 + 3.34812i −0.0920040 + 0.0298939i
\(113\) 29.8088 + 91.7419i 0.263794 + 0.811875i 0.991969 + 0.126484i \(0.0403691\pi\)
−0.728174 + 0.685392i \(0.759631\pi\)
\(114\) −96.5396 + 32.6274i −0.846839 + 0.286206i
\(115\) 17.3578 + 58.3365i 0.150937 + 0.507274i
\(116\) −67.9656 + 22.0834i −0.585910 + 0.190374i
\(117\) 134.599 47.2608i 1.15042 0.403939i
\(118\) 72.5414i 0.614758i
\(119\) −37.0435 50.9859i −0.311290 0.428453i
\(120\) 40.1734 + 13.6419i 0.334778 + 0.113682i
\(121\) −95.8370 69.6297i −0.792041 0.575452i
\(122\) −47.9591 34.8443i −0.393107 0.285609i
\(123\) −21.6152 63.9562i −0.175734 0.519969i
\(124\) −44.1984 −0.356439
\(125\) 29.6268 + 121.438i 0.237014 + 0.971506i
\(126\) 33.0300 + 9.87973i 0.262143 + 0.0784105i
\(127\) 182.392 + 59.2626i 1.43615 + 0.466635i 0.920696 0.390280i \(-0.127622\pi\)
0.515458 + 0.856915i \(0.327622\pi\)
\(128\) 9.15298 + 6.65003i 0.0715077 + 0.0519534i
\(129\) 152.362 1.79153i 1.18110 0.0138878i
\(130\) 63.5961 + 92.2907i 0.489201 + 0.709928i
\(131\) −3.28137 4.51642i −0.0250486 0.0344765i 0.796309 0.604890i \(-0.206783\pi\)
−0.821358 + 0.570414i \(0.806783\pi\)
\(132\) 7.66795 5.71003i 0.0580905 0.0432578i
\(133\) −38.2413 52.6346i −0.287528 0.395749i
\(134\) −68.1153 + 22.1320i −0.508323 + 0.165164i
\(135\) −80.4736 108.393i −0.596101 0.802910i
\(136\) −20.3358 + 62.5872i −0.149528 + 0.460200i
\(137\) 35.5756 + 109.490i 0.259676 + 0.799199i 0.992872 + 0.119183i \(0.0380274\pi\)
−0.733197 + 0.680017i \(0.761973\pi\)
\(138\) 29.8628 42.1357i 0.216397 0.305331i
\(139\) −47.6998 + 146.805i −0.343164 + 1.05615i 0.619395 + 0.785079i \(0.287378\pi\)
−0.962559 + 0.271071i \(0.912622\pi\)
\(140\) −0.675908 + 27.0784i −0.00482792 + 0.193417i
\(141\) −81.3069 + 114.722i −0.576644 + 0.813631i
\(142\) −29.7679 40.9720i −0.209633 0.288535i
\(143\) 25.2564 0.176618
\(144\) −11.9266 33.9670i −0.0828236 0.235882i
\(145\) −4.45812 + 178.602i −0.0307457 + 1.23174i
\(146\) 96.8304 133.276i 0.663222 0.912847i
\(147\) −1.46957 124.980i −0.00999705 0.850207i
\(148\) 27.7856 + 9.02808i 0.187740 + 0.0610005i
\(149\) 58.3792i 0.391807i −0.980623 0.195903i \(-0.937236\pi\)
0.980623 0.195903i \(-0.0627639\pi\)
\(150\) 65.5718 83.3687i 0.437146 0.555791i
\(151\) −189.288 −1.25356 −0.626782 0.779194i \(-0.715628\pi\)
−0.626782 + 0.779194i \(0.715628\pi\)
\(152\) −20.9934 + 64.6111i −0.138115 + 0.425073i
\(153\) 166.467 127.032i 1.08802 0.830272i
\(154\) 4.93807 + 3.58772i 0.0320654 + 0.0232969i
\(155\) −36.7568 + 104.203i −0.237141 + 0.672279i
\(156\) 28.3231 90.7880i 0.181558 0.581975i
\(157\) 76.5160i 0.487363i 0.969855 + 0.243682i \(0.0783552\pi\)
−0.969855 + 0.243682i \(0.921645\pi\)
\(158\) 135.967 98.7855i 0.860548 0.625225i
\(159\) −87.5498 + 123.531i −0.550628 + 0.776923i
\(160\) 23.2902 16.0489i 0.145564 0.100306i
\(161\) 31.3586 + 10.1890i 0.194774 + 0.0632858i
\(162\) −30.2372 + 110.489i −0.186650 + 0.682028i
\(163\) 117.667 38.2322i 0.721882 0.234554i 0.0750430 0.997180i \(-0.476091\pi\)
0.646839 + 0.762627i \(0.276091\pi\)
\(164\) −42.8040 13.9079i −0.261000 0.0848040i
\(165\) −7.08520 22.8268i −0.0429406 0.138344i
\(166\) −55.4322 170.603i −0.333929 1.02773i
\(167\) 142.341 103.417i 0.852340 0.619261i −0.0734503 0.997299i \(-0.523401\pi\)
0.925790 + 0.378038i \(0.123401\pi\)
\(168\) 18.4343 13.7273i 0.109728 0.0817102i
\(169\) 66.5341 48.3399i 0.393693 0.286035i
\(170\) 130.645 + 99.9938i 0.768501 + 0.588199i
\(171\) 171.850 131.139i 1.00497 0.766897i
\(172\) 59.7081 82.1811i 0.347140 0.477797i
\(173\) 2.25010 6.92508i 0.0130063 0.0400294i −0.944343 0.328963i \(-0.893301\pi\)
0.957349 + 0.288934i \(0.0933008\pi\)
\(174\) 121.588 90.5420i 0.698781 0.520356i
\(175\) 63.2786 + 24.1128i 0.361592 + 0.137787i
\(176\) 6.37362i 0.0362138i
\(177\) −49.2701 145.783i −0.278362 0.823631i
\(178\) −88.9205 + 122.389i −0.499553 + 0.687576i
\(179\) −69.5699 + 95.7547i −0.388659 + 0.534943i −0.957852 0.287261i \(-0.907255\pi\)
0.569194 + 0.822203i \(0.307255\pi\)
\(180\) −89.9999 0.129628i −0.499999 0.000720157i
\(181\) −104.425 + 75.8689i −0.576932 + 0.419165i −0.837617 0.546258i \(-0.816052\pi\)
0.260685 + 0.965424i \(0.416052\pi\)
\(182\) 60.7181 0.333616
\(183\) 120.047 + 37.4510i 0.655995 + 0.204650i
\(184\) −10.6394 32.7448i −0.0578231 0.177961i
\(185\) 44.3922 57.9998i 0.239958 0.313513i
\(186\) 88.8233 30.0195i 0.477544 0.161395i
\(187\) 35.2588 11.4563i 0.188550 0.0612635i
\(188\) 28.9678 + 89.1538i 0.154084 + 0.474222i
\(189\) −73.0890 + 2.57917i −0.386714 + 0.0136464i
\(190\) 134.870 + 103.227i 0.709841 + 0.543301i
\(191\) −39.9390 + 12.9770i −0.209105 + 0.0679422i −0.411696 0.911321i \(-0.635064\pi\)
0.202592 + 0.979263i \(0.435064\pi\)
\(192\) −22.9110 7.14752i −0.119328 0.0372267i
\(193\) 124.881i 0.647052i −0.946219 0.323526i \(-0.895132\pi\)
0.946219 0.323526i \(-0.104868\pi\)
\(194\) 111.095 + 152.910i 0.572657 + 0.788195i
\(195\) −190.490 142.277i −0.976870 0.729628i
\(196\) −67.4122 48.9778i −0.343940 0.249887i
\(197\) −200.048 145.344i −1.01547 0.737785i −0.0501237 0.998743i \(-0.515962\pi\)
−0.965350 + 0.260958i \(0.915962\pi\)
\(198\) −11.5316 + 16.6832i −0.0582406 + 0.0842587i
\(199\) 132.790 0.667289 0.333644 0.942699i \(-0.391722\pi\)
0.333644 + 0.942699i \(0.391722\pi\)
\(200\) −18.4684 68.2563i −0.0923421 0.341281i
\(201\) 121.856 90.7414i 0.606247 0.451450i
\(202\) −204.438 66.4258i −1.01207 0.328841i
\(203\) 78.3012 + 56.8892i 0.385720 + 0.280242i
\(204\) −1.64136 139.590i −0.00804586 0.684267i
\(205\) −68.3866 + 89.3494i −0.333593 + 0.435851i
\(206\) −134.573 185.224i −0.653269 0.899147i
\(207\) −31.3952 + 104.961i −0.151668 + 0.507056i
\(208\) −37.2669 51.2935i −0.179168 0.246604i
\(209\) 36.3989 11.8267i 0.174157 0.0565872i
\(210\) −17.0333 54.8772i −0.0811110 0.261320i
\(211\) −96.6511 + 297.461i −0.458062 + 1.40977i 0.409440 + 0.912337i \(0.365724\pi\)
−0.867502 + 0.497433i \(0.834276\pi\)
\(212\) 31.1920 + 95.9993i 0.147132 + 0.452827i
\(213\) 87.6512 + 62.1210i 0.411508 + 0.291648i
\(214\) 26.2171 80.6878i 0.122510 0.377046i
\(215\) −144.097 209.114i −0.670219 0.972622i
\(216\) 47.0386 + 60.1612i 0.217771 + 0.278524i
\(217\) 35.1847 + 48.4276i 0.162141 + 0.223168i
\(218\) 267.129 1.22536
\(219\) −104.074 + 333.604i −0.475225 + 1.52331i
\(220\) −15.0266 5.30051i −0.0683028 0.0240932i
\(221\) 216.769 298.358i 0.980857 1.35003i
\(222\) −61.9711 + 0.728679i −0.279149 + 0.00328234i
\(223\) 135.646 + 44.0739i 0.608276 + 0.197641i 0.596928 0.802295i \(-0.296388\pi\)
0.0113480 + 0.999936i \(0.496388\pi\)
\(224\) 15.3226i 0.0684046i
\(225\) −75.1524 + 212.078i −0.334011 + 0.942569i
\(226\) −136.420 −0.603626
\(227\) −79.3191 + 244.119i −0.349423 + 1.07541i 0.609750 + 0.792594i \(0.291270\pi\)
−0.959173 + 0.282820i \(0.908730\pi\)
\(228\) −1.69443 144.104i −0.00743171 0.632036i
\(229\) 187.232 + 136.032i 0.817609 + 0.594028i 0.916027 0.401117i \(-0.131378\pi\)
−0.0984175 + 0.995145i \(0.531378\pi\)
\(230\) −86.0481 2.14786i −0.374122 0.00933852i
\(231\) −12.3606 3.85612i −0.0535090 0.0166932i
\(232\) 101.064i 0.435622i
\(233\) −268.204 + 194.861i −1.15109 + 0.836315i −0.988625 0.150400i \(-0.951944\pi\)
−0.162463 + 0.986715i \(0.551944\pi\)
\(234\) 4.74373 + 201.689i 0.0202723 + 0.861919i
\(235\) 234.282 + 5.84794i 0.996943 + 0.0248848i
\(236\) −97.5680 31.7018i −0.413424 0.134329i
\(237\) −206.150 + 290.873i −0.869831 + 1.22731i
\(238\) 84.7645 27.5417i 0.356153 0.115721i
\(239\) 154.833 + 50.3083i 0.647837 + 0.210495i 0.614460 0.788948i \(-0.289374\pi\)
0.0333769 + 0.999443i \(0.489374\pi\)
\(240\) −35.9047 + 48.0713i −0.149603 + 0.200297i
\(241\) −79.0724 243.360i −0.328101 1.00979i −0.970021 0.243020i \(-0.921862\pi\)
0.641920 0.766772i \(-0.278138\pi\)
\(242\) 135.534 98.4712i 0.560058 0.406906i
\(243\) −14.2775 242.580i −0.0587553 0.998272i
\(244\) 67.8244 49.2773i 0.277969 0.201956i
\(245\) −171.533 + 118.201i −0.700136 + 0.482453i
\(246\) 95.4672 1.12254i 0.388078 0.00456316i
\(247\) 223.779 308.005i 0.905988 1.24698i
\(248\) 19.3154 59.4467i 0.0778847 0.239705i
\(249\) 227.273 + 305.202i 0.912742 + 1.22571i
\(250\) −176.281 13.2225i −0.705126 0.0528902i
\(251\) 370.225i 1.47500i 0.675346 + 0.737501i \(0.263994\pi\)
−0.675346 + 0.737501i \(0.736006\pi\)
\(252\) −27.7228 + 40.1076i −0.110011 + 0.159157i
\(253\) −11.4008 + 15.6919i −0.0450626 + 0.0620233i
\(254\) −159.416 + 219.417i −0.627622 + 0.863848i
\(255\) −330.467 112.218i −1.29595 0.440071i
\(256\) −12.9443 + 9.40456i −0.0505636 + 0.0367366i
\(257\) 201.413 0.783707 0.391854 0.920028i \(-0.371834\pi\)
0.391854 + 0.920028i \(0.371834\pi\)
\(258\) −64.1749 + 205.709i −0.248740 + 0.797322i
\(259\) −12.2271 37.6312i −0.0472089 0.145294i
\(260\) −151.923 + 45.2040i −0.584320 + 0.173862i
\(261\) −182.853 + 264.540i −0.700586 + 1.01356i
\(262\) 7.50858 2.43968i 0.0286587 0.00931177i
\(263\) −31.2902 96.3012i −0.118974 0.366164i 0.873781 0.486319i \(-0.161661\pi\)
−0.992755 + 0.120155i \(0.961661\pi\)
\(264\) 4.32896 + 12.8087i 0.0163976 + 0.0485180i
\(265\) 252.270 + 6.29696i 0.951964 + 0.0237621i
\(266\) 87.5055 28.4322i 0.328968 0.106888i
\(267\) 95.5727 306.353i 0.357950 1.14739i
\(268\) 101.287i 0.377936i
\(269\) −176.811 243.360i −0.657291 0.904684i 0.342097 0.939665i \(-0.388863\pi\)
−0.999388 + 0.0349809i \(0.988863\pi\)
\(270\) 180.956 60.8674i 0.670208 0.225435i
\(271\) −105.894 76.9364i −0.390752 0.283898i 0.375012 0.927020i \(-0.377639\pi\)
−0.765764 + 0.643122i \(0.777639\pi\)
\(272\) −75.2926 54.7032i −0.276811 0.201115i
\(273\) −122.022 + 41.2397i −0.446967 + 0.151061i
\(274\) −162.811 −0.594201
\(275\) −24.9932 + 31.0190i −0.0908844 + 0.112796i
\(276\) 43.6218 + 58.5793i 0.158050 + 0.212244i
\(277\) −307.000 99.7505i −1.10830 0.360110i −0.303012 0.952987i \(-0.597992\pi\)
−0.805293 + 0.592877i \(0.797992\pi\)
\(278\) −176.607 128.312i −0.635275 0.461555i
\(279\) −158.114 + 120.657i −0.566718 + 0.432464i
\(280\) −36.1250 12.7428i −0.129018 0.0455100i
\(281\) −180.302 248.165i −0.641646 0.883149i 0.357056 0.934083i \(-0.383780\pi\)
−0.998702 + 0.0509334i \(0.983780\pi\)
\(282\) −118.768 159.493i −0.421164 0.565577i
\(283\) 148.721 + 204.697i 0.525517 + 0.723313i 0.986439 0.164128i \(-0.0524811\pi\)
−0.460922 + 0.887441i \(0.652481\pi\)
\(284\) 68.1163 22.1323i 0.239846 0.0779307i
\(285\) −341.153 115.847i −1.19703 0.406480i
\(286\) −11.0375 + 33.9698i −0.0385925 + 0.118775i
\(287\) 18.8360 + 57.9712i 0.0656306 + 0.201990i
\(288\) 50.8976 1.19711i 0.176728 0.00415664i
\(289\) 77.9769 239.988i 0.269816 0.830409i
\(290\) −238.271 84.0483i −0.821626 0.289822i
\(291\) −327.119 231.839i −1.12412 0.796698i
\(292\) 136.939 + 188.480i 0.468969 + 0.645480i
\(293\) −331.150 −1.13020 −0.565102 0.825021i \(-0.691163\pi\)
−0.565102 + 0.825021i \(0.691163\pi\)
\(294\) 168.741 + 52.6419i 0.573947 + 0.179054i
\(295\) −155.881 + 203.664i −0.528412 + 0.690388i
\(296\) −24.2855 + 33.4261i −0.0820455 + 0.112926i
\(297\) 11.8433 41.3597i 0.0398764 0.139258i
\(298\) 78.5199 + 25.5127i 0.263489 + 0.0856129i
\(299\) 192.946i 0.645305i
\(300\) 83.4746 + 124.627i 0.278249 + 0.415425i
\(301\) −137.576 −0.457063
\(302\) 82.7220 254.592i 0.273914 0.843020i
\(303\) 455.964 5.36140i 1.50483 0.0176944i
\(304\) −77.7272 56.4721i −0.255682 0.185764i
\(305\) −59.7724 200.885i −0.195975 0.658639i
\(306\) 98.1083 + 279.413i 0.320615 + 0.913114i
\(307\) 446.812i 1.45541i −0.685888 0.727707i \(-0.740586\pi\)
0.685888 0.727707i \(-0.259414\pi\)
\(308\) −6.98349 + 5.07380i −0.0226737 + 0.0164734i
\(309\) 396.250 + 280.834i 1.28236 + 0.908847i
\(310\) −124.090 94.9763i −0.400289 0.306375i
\(311\) 395.681 + 128.564i 1.27228 + 0.413390i 0.865857 0.500292i \(-0.166774\pi\)
0.406428 + 0.913683i \(0.366774\pi\)
\(312\) 109.732 + 77.7703i 0.351705 + 0.249264i
\(313\) −26.0997 + 8.48032i −0.0833857 + 0.0270937i −0.350413 0.936595i \(-0.613959\pi\)
0.267027 + 0.963689i \(0.413959\pi\)
\(314\) −102.914 33.4387i −0.327751 0.106493i
\(315\) 71.5035 + 98.7148i 0.226995 + 0.313380i
\(316\) 73.4466 + 226.046i 0.232426 + 0.715334i
\(317\) 467.709 339.811i 1.47542 1.07196i 0.496428 0.868078i \(-0.334645\pi\)
0.978996 0.203880i \(-0.0653554\pi\)
\(318\) −127.888 171.739i −0.402163 0.540060i
\(319\) −46.0614 + 33.4655i −0.144393 + 0.104908i
\(320\) 11.4075 + 38.3389i 0.0356486 + 0.119809i
\(321\) 2.11605 + 179.961i 0.00659204 + 0.560626i
\(322\) −27.4084 + 37.7244i −0.0851192 + 0.117157i
\(323\) 172.692 531.491i 0.534650 1.64548i
\(324\) −135.393 88.9542i −0.417878 0.274550i
\(325\) −19.7701 + 395.771i −0.0608311 + 1.21776i
\(326\) 174.970i 0.536716i
\(327\) −536.835 + 181.434i −1.64170 + 0.554844i
\(328\) 37.4120 51.4933i 0.114061 0.156992i
\(329\) 74.6243 102.712i 0.226822 0.312193i
\(330\) 33.7983 + 0.446101i 0.102419 + 0.00135182i
\(331\) 256.384 186.274i 0.774575 0.562762i −0.128771 0.991674i \(-0.541103\pi\)
0.903346 + 0.428913i \(0.141103\pi\)
\(332\) 253.685 0.764112
\(333\) 124.045 43.5551i 0.372508 0.130796i
\(334\) 76.8898 + 236.643i 0.230209 + 0.708511i
\(335\) −238.796 84.2334i −0.712825 0.251443i
\(336\) 10.4071 + 30.7931i 0.0309736 + 0.0916461i
\(337\) 27.3492 8.88630i 0.0811550 0.0263689i −0.268158 0.963375i \(-0.586415\pi\)
0.349313 + 0.937006i \(0.386415\pi\)
\(338\) 35.9405 + 110.613i 0.106333 + 0.327259i
\(339\) 274.155 92.6561i 0.808718 0.273322i
\(340\) −191.585 + 132.019i −0.563486 + 0.388290i
\(341\) −33.4896 + 10.8814i −0.0982098 + 0.0319103i
\(342\) 101.281 + 288.448i 0.296143 + 0.843415i
\(343\) 245.577i 0.715969i
\(344\) 84.4400 + 116.222i 0.245465 + 0.337854i
\(345\) 174.385 54.1274i 0.505465 0.156891i
\(346\) 8.33089 + 6.05274i 0.0240777 + 0.0174935i
\(347\) −182.296 132.446i −0.525349 0.381688i 0.293266 0.956031i \(-0.405258\pi\)
−0.818615 + 0.574343i \(0.805258\pi\)
\(348\) 68.6428 + 203.104i 0.197249 + 0.583631i
\(349\) −155.674 −0.446058 −0.223029 0.974812i \(-0.571594\pi\)
−0.223029 + 0.974812i \(0.571594\pi\)
\(350\) −60.0854 + 74.5718i −0.171673 + 0.213062i
\(351\) −146.520 402.102i −0.417437 1.14559i
\(352\) 8.57251 + 2.78538i 0.0243537 + 0.00791300i
\(353\) −51.2709 37.2505i −0.145243 0.105525i 0.512791 0.858514i \(-0.328612\pi\)
−0.658034 + 0.752988i \(0.728612\pi\)
\(354\) 217.609 2.55873i 0.614715 0.00722805i
\(355\) 4.46801 178.998i 0.0125859 0.504221i
\(356\) −125.753 173.084i −0.353237 0.486190i
\(357\) −151.641 + 112.921i −0.424764 + 0.316306i
\(358\) −98.3867 135.418i −0.274823 0.378262i
\(359\) 38.8547 12.6247i 0.108230 0.0351662i −0.254401 0.967099i \(-0.581878\pi\)
0.362632 + 0.931933i \(0.381878\pi\)
\(360\) 39.5058 120.993i 0.109738 0.336092i
\(361\) 66.7211 205.346i 0.184823 0.568826i
\(362\) −56.4083 173.607i −0.155824 0.479577i
\(363\) −205.494 + 289.947i −0.566100 + 0.798753i
\(364\) −26.5348 + 81.6657i −0.0728978 + 0.224356i
\(365\) 558.248 166.104i 1.52945 0.455080i
\(366\) −102.834 + 145.096i −0.280967 + 0.396438i
\(367\) 204.108 + 280.930i 0.556152 + 0.765478i 0.990831 0.135108i \(-0.0431381\pi\)
−0.434679 + 0.900586i \(0.643138\pi\)
\(368\) 48.6913 0.132313
\(369\) −191.093 + 67.0972i −0.517867 + 0.181835i
\(370\) 58.6095 + 85.0542i 0.158404 + 0.229876i
\(371\) 80.3542 110.598i 0.216588 0.298108i
\(372\) 1.55900 + 132.586i 0.00419085 + 0.356414i
\(373\) −180.806 58.7475i −0.484735 0.157500i 0.0564465 0.998406i \(-0.482023\pi\)
−0.541182 + 0.840906i \(0.682023\pi\)
\(374\) 52.4295i 0.140186i
\(375\) 363.245 93.1576i 0.968652 0.248420i
\(376\) −132.571 −0.352582
\(377\) −175.017 + 538.647i −0.464236 + 1.42877i
\(378\) 28.4721 99.4316i 0.0753229 0.263047i
\(379\) 194.948 + 141.638i 0.514374 + 0.373715i 0.814480 0.580191i \(-0.197022\pi\)
−0.300106 + 0.953906i \(0.597022\pi\)
\(380\) −197.780 + 136.287i −0.520475 + 0.358651i
\(381\) 171.342 549.227i 0.449717 1.44154i
\(382\) 59.3890i 0.155469i
\(383\) 343.680 249.698i 0.897337 0.651953i −0.0404440 0.999182i \(-0.512877\pi\)
0.937780 + 0.347229i \(0.112877\pi\)
\(384\) 19.6259 27.6916i 0.0511090 0.0721136i
\(385\) 6.15442 + 20.6840i 0.0159855 + 0.0537246i
\(386\) 167.965 + 54.5750i 0.435142 + 0.141386i
\(387\) −10.7484 456.990i −0.0277737 1.18085i
\(388\) −254.214 + 82.5991i −0.655190 + 0.212884i
\(389\) −559.973 181.946i −1.43952 0.467728i −0.517771 0.855519i \(-0.673238\pi\)
−0.921747 + 0.387791i \(0.873238\pi\)
\(390\) 274.610 194.030i 0.704128 0.497514i
\(391\) 87.5202 + 269.359i 0.223837 + 0.688899i
\(392\) 95.3352 69.2651i 0.243202 0.176697i
\(393\) −13.4326 + 10.0027i −0.0341796 + 0.0254522i
\(394\) 282.911 205.547i 0.718048 0.521693i
\(395\) 594.011 + 14.8272i 1.50382 + 0.0375372i
\(396\) −17.3994 22.8009i −0.0439379 0.0575779i
\(397\) 45.1315 62.1182i 0.113681 0.156469i −0.748385 0.663265i \(-0.769170\pi\)
0.862066 + 0.506796i \(0.169170\pi\)
\(398\) −58.0316 + 178.603i −0.145808 + 0.448751i
\(399\) −156.544 + 116.573i −0.392341 + 0.292162i
\(400\) 99.8755 + 4.98912i 0.249689 + 0.0124728i
\(401\) 220.661i 0.550276i 0.961405 + 0.275138i \(0.0887235\pi\)
−0.961405 + 0.275138i \(0.911276\pi\)
\(402\) 68.7940 + 203.551i 0.171129 + 0.506346i
\(403\) −205.892 + 283.387i −0.510899 + 0.703192i
\(404\) 178.685 245.939i 0.442290 0.608759i
\(405\) −322.317 + 245.227i −0.795845 + 0.605500i
\(406\) −110.735 + 80.4535i −0.272746 + 0.198161i
\(407\) 23.2761 0.0571893
\(408\) 188.466 + 58.7956i 0.461927 + 0.144107i
\(409\) −32.8392 101.069i −0.0802914 0.247111i 0.902851 0.429954i \(-0.141470\pi\)
−0.983142 + 0.182842i \(0.941470\pi\)
\(410\) −90.2887 131.027i −0.220216 0.319578i
\(411\) 327.193 110.581i 0.796091 0.269054i
\(412\) 307.937 100.055i 0.747420 0.242851i
\(413\) 42.9350 + 132.140i 0.103959 + 0.319953i
\(414\) −127.452 88.0959i −0.307854 0.212792i
\(415\) 210.973 598.094i 0.508368 1.44119i
\(416\) 85.2759 27.7078i 0.204990 0.0666053i
\(417\) 442.067 + 137.911i 1.06011 + 0.330723i
\(418\) 54.1249i 0.129485i
\(419\) −388.137 534.225i −0.926342 1.27500i −0.961269 0.275611i \(-0.911120\pi\)
0.0349274 0.999390i \(-0.488880\pi\)
\(420\) 81.2534 + 1.07246i 0.193461 + 0.00255347i
\(421\) 319.900 + 232.421i 0.759857 + 0.552068i 0.898866 0.438223i \(-0.144392\pi\)
−0.139010 + 0.990291i \(0.544392\pi\)
\(422\) −357.847 259.991i −0.847978 0.616092i
\(423\) 347.010 + 239.857i 0.820355 + 0.567038i
\(424\) −142.750 −0.336675
\(425\) 151.921 + 561.477i 0.357462 + 1.32112i
\(426\) −121.858 + 90.7427i −0.286051 + 0.213011i
\(427\) −107.985 35.0864i −0.252892 0.0821696i
\(428\) 97.0676 + 70.5237i 0.226793 + 0.164775i
\(429\) −0.890861 75.7640i −0.00207660 0.176606i
\(430\) 344.230 102.424i 0.800535 0.238195i
\(431\) 91.4244 + 125.835i 0.212122 + 0.291960i 0.901798 0.432157i \(-0.142247\pi\)
−0.689677 + 0.724117i \(0.742247\pi\)
\(432\) −101.473 + 36.9754i −0.234892 + 0.0855912i
\(433\) −315.463 434.197i −0.728551 1.00276i −0.999196 0.0400854i \(-0.987237\pi\)
0.270645 0.962679i \(-0.412763\pi\)
\(434\) −80.5112 + 26.1597i −0.185510 + 0.0602757i
\(435\) 535.928 + 7.07366i 1.23202 + 0.0162613i
\(436\) −116.740 + 359.288i −0.267751 + 0.824054i
\(437\) 90.3503 + 278.069i 0.206751 + 0.636315i
\(438\) −403.215 285.770i −0.920581 0.652443i
\(439\) 177.231 545.460i 0.403714 1.24251i −0.518249 0.855230i \(-0.673416\pi\)
0.921964 0.387276i \(-0.126584\pi\)
\(440\) 13.6960 17.8943i 0.0311274 0.0406689i
\(441\) −374.864 + 8.81679i −0.850031 + 0.0199927i
\(442\) 306.558 + 421.941i 0.693571 + 0.954618i
\(443\) 339.491 0.766344 0.383172 0.923677i \(-0.374832\pi\)
0.383172 + 0.923677i \(0.374832\pi\)
\(444\) 26.1023 83.6694i 0.0587889 0.188445i
\(445\) −512.646 + 152.535i −1.15201 + 0.342776i
\(446\) −118.559 + 163.182i −0.265826 + 0.365879i
\(447\) −175.126 + 2.05919i −0.391780 + 0.00460669i
\(448\) 20.6089 + 6.69623i 0.0460020 + 0.0149470i
\(449\) 283.865i 0.632216i −0.948723 0.316108i \(-0.897624\pi\)
0.948723 0.316108i \(-0.102376\pi\)
\(450\) −252.402 193.761i −0.560892 0.430581i
\(451\) −35.8570 −0.0795056
\(452\) 59.6175 183.484i 0.131897 0.405938i
\(453\) 6.67670 + 567.826i 0.0147389 + 1.25348i
\(454\) −293.676 213.368i −0.646863 0.469973i
\(455\) 170.470 + 130.475i 0.374659 + 0.286758i
\(456\) 194.560 + 60.6969i 0.426667 + 0.133107i
\(457\) 628.493i 1.37526i 0.726062 + 0.687630i \(0.241349\pi\)
−0.726062 + 0.687630i \(0.758651\pi\)
\(458\) −264.787 + 192.379i −0.578137 + 0.420041i
\(459\) −386.940 494.887i −0.843007 1.07818i
\(460\) 40.4933 114.796i 0.0880288 0.249556i
\(461\) −462.891 150.402i −1.00410 0.326252i −0.239598 0.970872i \(-0.577016\pi\)
−0.764503 + 0.644620i \(0.777016\pi\)
\(462\) 10.5882 14.9397i 0.0229183 0.0323371i
\(463\) 394.728 128.255i 0.852545 0.277009i 0.150033 0.988681i \(-0.452062\pi\)
0.702512 + 0.711672i \(0.252062\pi\)
\(464\) 135.931 + 44.1667i 0.292955 + 0.0951869i
\(465\) 313.884 + 106.587i 0.675020 + 0.229220i
\(466\) −144.879 445.890i −0.310898 0.956847i
\(467\) −642.975 + 467.149i −1.37682 + 1.00032i −0.379651 + 0.925130i \(0.623956\pi\)
−0.997169 + 0.0751884i \(0.976044\pi\)
\(468\) −273.344 81.7611i −0.584069 0.174703i
\(469\) −110.979 + 80.6306i −0.236628 + 0.171920i
\(470\) −110.250 + 312.552i −0.234575 + 0.665005i
\(471\) 229.532 2.69892i 0.487329 0.00573020i
\(472\) 85.2775 117.374i 0.180673 0.248675i
\(473\) 25.0088 76.9693i 0.0528728 0.162726i
\(474\) −301.132 404.387i −0.635299 0.853137i
\(475\) 156.834 + 579.633i 0.330177 + 1.22028i
\(476\) 126.044i 0.264799i
\(477\) 373.655 + 258.274i 0.783343 + 0.541455i
\(478\) −135.329 + 186.265i −0.283115 + 0.389675i
\(479\) −177.966 + 244.949i −0.371536 + 0.511376i −0.953318 0.301970i \(-0.902356\pi\)
0.581781 + 0.813345i \(0.302356\pi\)
\(480\) −48.9649 69.2996i −0.102010 0.144374i
\(481\) 187.321 136.096i 0.389440 0.282945i
\(482\) 361.874 0.750776
\(483\) 29.4588 94.4286i 0.0609914 0.195504i
\(484\) 73.2130 + 225.326i 0.151266 + 0.465550i
\(485\) −16.6749 + 668.032i −0.0343812 + 1.37739i
\(486\) 332.509 + 86.8082i 0.684175 + 0.178618i
\(487\) −768.396 + 249.667i −1.57781 + 0.512663i −0.961493 0.274831i \(-0.911378\pi\)
−0.616322 + 0.787494i \(0.711378\pi\)
\(488\) 36.6375 + 112.759i 0.0750768 + 0.231063i
\(489\) −118.839 351.627i −0.243025 0.719074i
\(490\) −84.0172 282.368i −0.171464 0.576261i
\(491\) 341.484 110.955i 0.695486 0.225977i 0.0601234 0.998191i \(-0.480851\pi\)
0.635363 + 0.772214i \(0.280851\pi\)
\(492\) −40.2109 + 128.894i −0.0817294 + 0.261979i
\(493\) 831.356i 1.68632i
\(494\) 316.471 + 435.585i 0.640630 + 0.881751i
\(495\) −68.2257 + 22.0593i −0.137830 + 0.0445642i
\(496\) 71.5145 + 51.9583i 0.144182 + 0.104755i
\(497\) −78.4749 57.0153i −0.157897 0.114719i
\(498\) −509.818 + 172.303i −1.02373 + 0.345990i
\(499\) −688.464 −1.37969 −0.689844 0.723958i \(-0.742321\pi\)
−0.689844 + 0.723958i \(0.742321\pi\)
\(500\) 94.8221 231.320i 0.189644 0.462639i
\(501\) −315.249 423.345i −0.629240 0.845000i
\(502\) −497.952 161.794i −0.991937 0.322300i
\(503\) −596.829 433.621i −1.18654 0.862071i −0.193644 0.981072i \(-0.562031\pi\)
−0.992894 + 0.119001i \(0.962031\pi\)
\(504\) −41.8293 54.8148i −0.0829947 0.108760i
\(505\) −431.231 625.803i −0.853923 1.23921i
\(506\) −16.1232 22.1917i −0.0318641 0.0438571i
\(507\) −147.356 197.883i −0.290644 0.390303i
\(508\) −225.448 310.303i −0.443796 0.610833i
\(509\) 91.6916 29.7924i 0.180141 0.0585313i −0.217558 0.976047i \(-0.569809\pi\)
0.397698 + 0.917516i \(0.369809\pi\)
\(510\) 295.352 395.436i 0.579122 0.775364i
\(511\) 97.5032 300.084i 0.190809 0.587248i
\(512\) −6.99226 21.5200i −0.0136568 0.0420312i
\(513\) −399.452 510.889i −0.778660 0.995886i
\(514\) −88.0206 + 270.900i −0.171246 + 0.527042i
\(515\) 20.1988 809.208i 0.0392209 1.57128i
\(516\) −248.632 176.213i −0.481846 0.341498i
\(517\) 43.8984 + 60.4209i 0.0849098 + 0.116868i
\(518\) 55.9572 0.108026
\(519\) −20.8532 6.50555i −0.0401795 0.0125348i
\(520\) 5.59357 224.091i 0.0107569 0.430945i
\(521\) −406.508 + 559.510i −0.780246 + 1.07392i 0.215009 + 0.976612i \(0.431022\pi\)
−0.995255 + 0.0973043i \(0.968978\pi\)
\(522\) −275.896 361.545i −0.528536 0.692615i
\(523\) −194.437 63.1763i −0.371772 0.120796i 0.117171 0.993112i \(-0.462617\pi\)
−0.488943 + 0.872316i \(0.662617\pi\)
\(524\) 11.1652i 0.0213076i
\(525\) 70.1014 190.673i 0.133527 0.363187i
\(526\) 143.199 0.272242
\(527\) −158.889 + 489.010i −0.301497 + 0.927912i
\(528\) −19.1196 + 0.224815i −0.0362113 + 0.000425786i
\(529\) 308.092 + 223.842i 0.582404 + 0.423141i
\(530\) −118.716 + 336.551i −0.223992 + 0.635002i
\(531\) −435.580 + 152.942i −0.820302 + 0.288027i
\(532\) 130.120i 0.244586i
\(533\) −288.569 + 209.658i −0.541406 + 0.393355i
\(534\) 370.277 + 262.426i 0.693402 + 0.491435i
\(535\) 246.993 170.199i 0.461669 0.318129i
\(536\) 136.231 + 44.2640i 0.254161 + 0.0825821i
\(537\) 289.698 + 205.318i 0.539475 + 0.382342i
\(538\) 404.588 131.459i 0.752022 0.244347i
\(539\) −63.1370 20.5144i −0.117137 0.0380602i
\(540\) 2.78568 + 269.986i 0.00515867 + 0.499973i
\(541\) −123.230 379.264i −0.227782 0.701042i −0.997997 0.0632575i \(-0.979851\pi\)
0.770215 0.637784i \(-0.220149\pi\)
\(542\) 149.756 108.804i 0.276303 0.200746i
\(543\) 231.274 + 310.576i 0.425920 + 0.571964i
\(544\) 106.480 77.3621i 0.195735 0.142210i
\(545\) 749.980 + 574.023i 1.37611 + 1.05325i
\(546\) −2.14169 182.142i −0.00392251 0.333593i
\(547\) 98.1369 135.074i 0.179409 0.246936i −0.709835 0.704368i \(-0.751231\pi\)
0.889245 + 0.457432i \(0.151231\pi\)
\(548\) 71.1511 218.981i 0.129838 0.399600i
\(549\) 108.111 361.438i 0.196923 0.658356i
\(550\) −30.7980 47.1716i −0.0559964 0.0857666i
\(551\) 858.239i 1.55760i
\(552\) −97.8524 + 33.0711i −0.177269 + 0.0599114i
\(553\) 189.207 260.421i 0.342146 0.470924i
\(554\) 268.328 369.322i 0.484347 0.666646i
\(555\) −175.553 131.121i −0.316312 0.236255i
\(556\) 249.759 181.461i 0.449208 0.326368i
\(557\) −939.086 −1.68597 −0.842985 0.537936i \(-0.819204\pi\)
−0.842985 + 0.537936i \(0.819204\pi\)
\(558\) −93.1854 265.392i −0.166999 0.475614i
\(559\) −248.778 765.660i −0.445041 1.36970i
\(560\) 32.9262 43.0192i 0.0587968 0.0768200i
\(561\) −35.6101 105.365i −0.0634761 0.187816i
\(562\) 412.576 134.054i 0.734121 0.238530i
\(563\) 2.66316 + 8.19635i 0.00473030 + 0.0145584i 0.953394 0.301729i \(-0.0975637\pi\)
−0.948664 + 0.316287i \(0.897564\pi\)
\(564\) 266.421 90.0421i 0.472378 0.159649i
\(565\) −383.006 293.147i −0.677887 0.518844i
\(566\) −340.311 + 110.574i −0.601256 + 0.195360i
\(567\) 10.3150 + 219.161i 0.0181923 + 0.386527i
\(568\) 101.288i 0.178325i
\(569\) 130.006 + 178.937i 0.228481 + 0.314477i 0.907830 0.419338i \(-0.137738\pi\)
−0.679349 + 0.733815i \(0.737738\pi\)
\(570\) 304.903 408.222i 0.534917 0.716180i
\(571\) 804.112 + 584.222i 1.40825 + 1.02316i 0.993574 + 0.113187i \(0.0361059\pi\)
0.414678 + 0.909968i \(0.363894\pi\)
\(572\) −40.8657 29.6907i −0.0714436 0.0519068i
\(573\) 40.3370 + 119.351i 0.0703961 + 0.208291i
\(574\) −86.2027 −0.150179
\(575\) −236.970 190.936i −0.412121 0.332062i
\(576\) −20.6330 + 68.9803i −0.0358211 + 0.119757i
\(577\) 599.210 + 194.695i 1.03849 + 0.337426i 0.778142 0.628088i \(-0.216162\pi\)
0.260350 + 0.965514i \(0.416162\pi\)
\(578\) 288.706 + 209.757i 0.499492 + 0.362902i
\(579\) −374.617 + 4.40489i −0.647008 + 0.00760776i
\(580\) 217.173 283.744i 0.374437 0.489214i
\(581\) −201.949 277.959i −0.347589 0.478415i
\(582\) 454.779 338.657i 0.781407 0.581885i
\(583\) 47.2690 + 65.0602i 0.0810790 + 0.111596i
\(584\) −313.350 + 101.813i −0.536558 + 0.174338i
\(585\) −420.084 + 576.448i −0.718092 + 0.985381i
\(586\) 144.718 445.396i 0.246959 0.760061i
\(587\) 60.7330 + 186.917i 0.103463 + 0.318428i 0.989367 0.145442i \(-0.0464605\pi\)
−0.885903 + 0.463870i \(0.846461\pi\)
\(588\) −144.546 + 203.950i −0.245826 + 0.346854i
\(589\) −164.027 + 504.822i −0.278483 + 0.857083i
\(590\) −205.805 298.665i −0.348822 0.506211i
\(591\) −428.945 + 605.230i −0.725794 + 1.02408i
\(592\) −34.3448 47.2716i −0.0580149 0.0798507i
\(593\) −424.765 −0.716298 −0.358149 0.933664i \(-0.616592\pi\)
−0.358149 + 0.933664i \(0.616592\pi\)
\(594\) 50.4530 + 34.0040i 0.0849377 + 0.0572459i
\(595\) 297.165 + 104.822i 0.499436 + 0.176172i
\(596\) −68.6289 + 94.4596i −0.115149 + 0.158489i
\(597\) −4.68388 398.344i −0.00784569 0.667243i
\(598\) −259.512 84.3206i −0.433967 0.141004i
\(599\) 334.573i 0.558552i 0.960211 + 0.279276i \(0.0900945\pi\)
−0.960211 + 0.279276i \(0.909906\pi\)
\(600\) −204.103 + 57.8090i −0.340172 + 0.0963483i
\(601\) 893.199 1.48619 0.743094 0.669187i \(-0.233358\pi\)
0.743094 + 0.669187i \(0.233358\pi\)
\(602\) 60.1229 185.039i 0.0998720 0.307374i
\(603\) −276.504 362.341i −0.458546 0.600897i
\(604\) 306.275 + 222.522i 0.507078 + 0.368413i
\(605\) 592.121 + 14.7800i 0.978712 + 0.0244298i
\(606\) −192.053 + 615.613i −0.316918 + 1.01586i
\(607\) 361.640i 0.595783i 0.954600 + 0.297891i \(0.0962833\pi\)
−0.954600 + 0.297891i \(0.903717\pi\)
\(608\) 109.923 79.8637i 0.180794 0.131355i
\(609\) 167.894 236.894i 0.275688 0.388989i
\(610\) 296.311 + 7.39627i 0.485756 + 0.0121250i
\(611\) 706.569 + 229.578i 1.15641 + 0.375742i
\(612\) −418.684 + 9.84746i −0.684125 + 0.0160906i
\(613\) −150.413 + 48.8722i −0.245372 + 0.0797263i −0.429121 0.903247i \(-0.641177\pi\)
0.183749 + 0.982973i \(0.441177\pi\)
\(614\) 600.961 + 195.264i 0.978764 + 0.318020i
\(615\) 270.442 + 201.994i 0.439743 + 0.328446i
\(616\) −3.77235 11.6101i −0.00612395 0.0188476i
\(617\) 902.981 656.054i 1.46350 1.06330i 0.481069 0.876683i \(-0.340249\pi\)
0.982433 0.186614i \(-0.0597514\pi\)
\(618\) −550.888 + 410.226i −0.891404 + 0.663795i
\(619\) −422.883 + 307.242i −0.683171 + 0.496353i −0.874408 0.485191i \(-0.838750\pi\)
0.191237 + 0.981544i \(0.438750\pi\)
\(620\) 181.972 125.394i 0.293503 0.202249i
\(621\) 315.968 + 90.4768i 0.508805 + 0.145695i
\(622\) −345.838 + 476.005i −0.556009 + 0.765281i
\(623\) −89.5383 + 275.571i −0.143721 + 0.442328i
\(624\) −152.555 + 113.602i −0.244480 + 0.182055i
\(625\) −466.507 415.928i −0.746412 0.665484i
\(626\) 38.8101i 0.0619969i
\(627\) −36.7616 108.772i −0.0586309 0.173480i
\(628\) 89.9500 123.805i 0.143232 0.197143i
\(629\) 199.773 274.963i 0.317604 0.437144i
\(630\) −164.019 + 53.0320i −0.260348 + 0.0841778i
\(631\) −307.273 + 223.247i −0.486963 + 0.353799i −0.804015 0.594609i \(-0.797307\pi\)
0.317052 + 0.948408i \(0.397307\pi\)
\(632\) −336.128 −0.531848
\(633\) 895.732 + 279.441i 1.41506 + 0.441455i
\(634\) 252.648 + 777.570i 0.398498 + 1.22645i
\(635\) −919.068 + 273.464i −1.44735 + 0.430653i
\(636\) 286.878 96.9558i 0.451065 0.152446i
\(637\) −628.062 + 204.070i −0.985968 + 0.320360i
\(638\) −24.8815 76.5774i −0.0389992 0.120027i
\(639\) 183.258 265.127i 0.286789 0.414909i
\(640\) −56.5509 1.41158i −0.0883608 0.00220559i
\(641\) 978.556 317.952i 1.52661 0.496025i 0.578964 0.815353i \(-0.303457\pi\)
0.947644 + 0.319328i \(0.103457\pi\)
\(642\) −242.971 75.7997i −0.378460 0.118068i
\(643\) 664.252i 1.03305i −0.856272 0.516526i \(-0.827225\pi\)
0.856272 0.516526i \(-0.172775\pi\)
\(644\) −38.7613 53.3504i −0.0601884 0.0828422i
\(645\) −622.215 + 439.637i −0.964674 + 0.681608i
\(646\) 639.385 + 464.541i 0.989760 + 0.719103i
\(647\) 534.360 + 388.235i 0.825904 + 0.600054i 0.918397 0.395659i \(-0.129484\pi\)
−0.0924936 + 0.995713i \(0.529484\pi\)
\(648\) 178.812 143.228i 0.275944 0.221031i
\(649\) −81.7330 −0.125937
\(650\) −523.671 199.549i −0.805647 0.306998i
\(651\) 144.032 107.255i 0.221247 0.164754i
\(652\) −235.334 76.4645i −0.360941 0.117277i
\(653\) −344.343 250.180i −0.527325 0.383124i 0.292031 0.956409i \(-0.405669\pi\)
−0.819356 + 0.573285i \(0.805669\pi\)
\(654\) −9.42235 801.331i −0.0144073 1.22528i
\(655\) 26.3233 + 9.28534i 0.0401883 + 0.0141761i
\(656\) 52.9086 + 72.8225i 0.0806534 + 0.111010i
\(657\) 1004.41 + 300.434i 1.52879 + 0.457282i
\(658\) 105.535 + 145.256i 0.160387 + 0.220754i
\(659\) 567.227 184.303i 0.860738 0.279671i 0.154802 0.987946i \(-0.450526\pi\)
0.705937 + 0.708275i \(0.250526\pi\)
\(660\) −15.3704 + 45.2637i −0.0232885 + 0.0685813i
\(661\) 104.063 320.274i 0.157433 0.484529i −0.840966 0.541088i \(-0.818013\pi\)
0.998399 + 0.0565584i \(0.0180127\pi\)
\(662\) 138.494 + 426.241i 0.209206 + 0.643868i
\(663\) −902.657 639.740i −1.36147 0.964916i
\(664\) −110.864 + 341.206i −0.166965 + 0.513864i
\(665\) 306.774 + 108.212i 0.461314 + 0.162725i
\(666\) 4.37177 + 185.875i 0.00656422 + 0.279091i
\(667\) −255.660 351.886i −0.383298 0.527565i
\(668\) −351.886 −0.526775
\(669\) 127.428 408.463i 0.190475 0.610558i
\(670\) 217.651 284.369i 0.324853 0.424431i
\(671\) 39.2594 54.0359i 0.0585088 0.0805304i
\(672\) −45.9647 + 0.540470i −0.0683999 + 0.000804271i
\(673\) 1113.47 + 361.788i 1.65449 + 0.537576i 0.979706 0.200442i \(-0.0642377\pi\)
0.674782 + 0.738017i \(0.264238\pi\)
\(674\) 40.6681i 0.0603384i
\(675\) 638.841 + 217.961i 0.946431 + 0.322905i
\(676\) −164.481 −0.243316
\(677\) −17.9307 + 55.1849i −0.0264855 + 0.0815139i −0.963426 0.267976i \(-0.913645\pi\)
0.936940 + 0.349490i \(0.113645\pi\)
\(678\) 4.81188 + 409.230i 0.00709717 + 0.603584i
\(679\) 292.873 + 212.784i 0.431329 + 0.313379i
\(680\) −93.8386 315.376i −0.137998 0.463788i
\(681\) 735.104 + 229.330i 1.07945 + 0.336755i
\(682\) 49.7987i 0.0730186i
\(683\) 241.858 175.720i 0.354111 0.257277i −0.396481 0.918043i \(-0.629769\pi\)
0.750592 + 0.660766i \(0.229769\pi\)
\(684\) −432.223 + 10.1659i −0.631905 + 0.0148624i
\(685\) −457.102 349.859i −0.667302 0.510743i
\(686\) −330.301 107.321i −0.481488 0.156445i
\(687\) 401.465 566.457i 0.584374 0.824537i
\(688\) −193.219 + 62.7808i −0.280842 + 0.0912512i
\(689\) 760.822 + 247.206i 1.10424 + 0.358789i
\(690\) −3.40799 + 258.202i −0.00493911 + 0.374206i
\(691\) 357.640 + 1100.70i 0.517568 + 1.59291i 0.778560 + 0.627570i \(0.215950\pi\)
−0.260992 + 0.965341i \(0.584050\pi\)
\(692\) −11.7817 + 8.55987i −0.0170255 + 0.0123698i
\(693\) −11.1316 + 37.2152i −0.0160629 + 0.0537015i
\(694\) 257.806 187.307i 0.371478 0.269894i
\(695\) −220.108 739.747i −0.316703 1.06438i
\(696\) −303.172 + 3.56481i −0.435592 + 0.00512185i
\(697\) −307.752 + 423.584i −0.441538 + 0.607725i
\(698\) 68.0321 209.381i 0.0974672 0.299973i
\(699\) 594.004 + 797.682i 0.849791 + 1.14118i
\(700\) −74.0406 113.404i −0.105772 0.162005i
\(701\) 309.274i 0.441190i −0.975366 0.220595i \(-0.929200\pi\)
0.975366 0.220595i \(-0.0707998\pi\)
\(702\) 604.858 21.3443i 0.861621 0.0304050i
\(703\) 206.232 283.855i 0.293361 0.403776i
\(704\) −7.49265 + 10.3127i −0.0106430 + 0.0146488i
\(705\) 9.27886 703.002i 0.0131615 0.997166i
\(706\) 72.5080 52.6801i 0.102703 0.0746178i
\(707\) −411.716 −0.582342
\(708\) −91.6572 + 293.802i −0.129459 + 0.414974i
\(709\) −152.491 469.319i −0.215079 0.661944i −0.999148 0.0412710i \(-0.986859\pi\)
0.784069 0.620673i \(-0.213141\pi\)
\(710\) 238.800 + 84.2347i 0.336338 + 0.118640i
\(711\) 879.829 + 608.147i 1.23745 + 0.855341i
\(712\) 287.753 93.4965i 0.404147 0.131315i
\(713\) −83.1286 255.844i −0.116590 0.358827i
\(714\) −85.6091 253.305i −0.119901 0.354768i
\(715\) −103.985 + 71.6542i −0.145433 + 0.100216i
\(716\) 225.133 73.1501i 0.314431 0.102165i
\(717\) 145.453 466.242i 0.202864 0.650267i
\(718\) 57.7767i 0.0804689i
\(719\) −249.465 343.359i −0.346961 0.477550i 0.599498 0.800377i \(-0.295367\pi\)
−0.946458 + 0.322826i \(0.895367\pi\)
\(720\) 145.471 + 106.011i 0.202042 + 0.147237i
\(721\) −354.766 257.752i −0.492047 0.357493i
\(722\) 247.032 + 179.479i 0.342150 + 0.248586i
\(723\) −727.240 + 245.785i −1.00586 + 0.339951i
\(724\) 258.152 0.356563
\(725\) −488.353 747.983i −0.673591 1.03170i
\(726\) −300.174 403.101i −0.413463 0.555235i
\(727\) −651.165 211.576i −0.895688 0.291027i −0.175232 0.984527i \(-0.556067\pi\)
−0.720456 + 0.693501i \(0.756067\pi\)
\(728\) −98.2440 71.3784i −0.134951 0.0980473i
\(729\) −727.187 + 51.3861i −0.997513 + 0.0704885i
\(730\) −20.5538 + 823.432i −0.0281559 + 1.12799i
\(731\) −694.605 956.041i −0.950212 1.30785i
\(732\) −150.214 201.721i −0.205210 0.275575i
\(733\) −736.608 1013.85i −1.00492 1.38316i −0.922256 0.386579i \(-0.873656\pi\)
−0.0826661 0.996577i \(-0.526344\pi\)
\(734\) −467.049 + 151.753i −0.636306 + 0.206748i
\(735\) 360.629 + 510.395i 0.490652 + 0.694416i
\(736\) −21.2789 + 65.4897i −0.0289115 + 0.0889805i
\(737\) −24.9363 76.7460i −0.0338349 0.104133i
\(738\) −6.73476 286.342i −0.00912570 0.387997i
\(739\) −332.312 + 1022.75i −0.449677 + 1.38397i 0.427594 + 0.903971i \(0.359361\pi\)
−0.877272 + 0.479994i \(0.840639\pi\)
\(740\) −140.011 + 41.6596i −0.189204 + 0.0562968i
\(741\) −931.845 660.426i −1.25755 0.891263i
\(742\) 113.638 + 156.409i 0.153151 + 0.210794i
\(743\) 1177.21 1.58440 0.792202 0.610258i \(-0.208934\pi\)
0.792202 + 0.610258i \(0.208934\pi\)
\(744\) −179.009 55.8454i −0.240604 0.0750610i
\(745\) 165.626 + 240.357i 0.222317 + 0.322626i
\(746\) 158.030 217.510i 0.211837 0.291569i
\(747\) 907.527 692.536i 1.21490 0.927090i
\(748\) −70.5176 22.9125i −0.0942748 0.0306317i
\(749\) 162.497i 0.216952i
\(750\) −33.4470 + 529.274i −0.0445960 + 0.705699i
\(751\) −1113.51 −1.48270 −0.741349 0.671119i \(-0.765814\pi\)
−0.741349 + 0.671119i \(0.765814\pi\)
\(752\) 57.9356 178.308i 0.0770421 0.237111i
\(753\) 1110.60 13.0588i 1.47490 0.0173424i
\(754\) −647.993 470.794i −0.859407 0.624396i
\(755\) 779.330 537.025i 1.03223 0.711291i
\(756\) 121.292 + 81.7481i 0.160440 + 0.108132i
\(757\) 390.313i 0.515606i −0.966198 0.257803i \(-0.917002\pi\)
0.966198 0.257803i \(-0.0829985\pi\)
\(758\) −275.698 + 200.306i −0.363718 + 0.264256i
\(759\) 47.4746 + 33.6466i 0.0625489 + 0.0443302i
\(760\) −96.8730 325.574i −0.127464 0.428387i
\(761\) −1070.12 347.702i −1.40620 0.456901i −0.495008 0.868889i \(-0.664835\pi\)
−0.911190 + 0.411987i \(0.864835\pi\)
\(762\) 663.830 + 470.476i 0.871168 + 0.617422i
\(763\) 486.598 158.105i 0.637743 0.207215i
\(764\) 79.8780 + 25.9539i 0.104552 + 0.0339711i
\(765\) −324.975 + 995.290i −0.424804 + 1.30103i
\(766\) 185.650 + 571.370i 0.242362 + 0.745914i
\(767\) −657.769 + 477.897i −0.857587 + 0.623073i
\(768\) 28.6683 + 38.4984i 0.0373285 + 0.0501281i
\(769\) −532.417 + 386.824i −0.692350 + 0.503022i −0.877432 0.479701i \(-0.840745\pi\)
0.185082 + 0.982723i \(0.440745\pi\)
\(770\) −30.5095 0.761551i −0.0396227 0.000989028i
\(771\) −7.10437 604.196i −0.00921448 0.783653i
\(772\) −146.807 + 202.062i −0.190164 + 0.261738i
\(773\) −184.504 + 567.843i −0.238685 + 0.734597i 0.757926 + 0.652340i \(0.226213\pi\)
−0.996611 + 0.0822566i \(0.973787\pi\)
\(774\) 619.348 + 185.256i 0.800191 + 0.239348i
\(775\) −144.298 533.303i −0.186191 0.688133i
\(776\) 378.014i 0.487131i
\(777\) −112.454 + 38.0061i −0.144729 + 0.0489139i
\(778\) 489.434 673.648i 0.629092 0.865872i
\(779\) −317.703 + 437.281i −0.407835 + 0.561337i
\(780\) 140.961 + 454.144i 0.180720 + 0.582235i
\(781\) 46.1635 33.5397i 0.0591082 0.0429446i
\(782\) −400.535 −0.512194
\(783\) 800.015 + 539.190i 1.02173 + 0.688621i
\(784\) 51.4983 + 158.496i 0.0656867 + 0.202163i
\(785\) −217.081 315.029i −0.276537 0.401310i
\(786\) −7.58340 22.4381i −0.00964809 0.0285472i
\(787\) −892.259 + 289.913i −1.13375 + 0.368377i −0.814999 0.579463i \(-0.803262\pi\)
−0.318748 + 0.947839i \(0.603262\pi\)
\(788\) 152.823 + 470.342i 0.193938 + 0.596881i
\(789\) −287.780 + 97.2608i −0.364740 + 0.123271i
\(790\) −279.535 + 792.463i −0.353841 + 1.00312i
\(791\) −248.500 + 80.7425i −0.314159 + 0.102076i
\(792\) 38.2709 13.4378i 0.0483218 0.0169669i
\(793\) 664.421i 0.837857i
\(794\) 63.8256 + 87.8484i 0.0803848 + 0.110640i
\(795\) 9.99132 756.981i 0.0125677 0.952177i
\(796\) −214.860 156.105i −0.269924 0.196111i
\(797\) −128.891 93.6449i −0.161720 0.117497i 0.503982 0.863714i \(-0.331868\pi\)
−0.665702 + 0.746218i \(0.731868\pi\)
\(798\) −88.3774 261.495i −0.110749 0.327688i
\(799\) 1090.53 1.36487
\(800\) −50.3575 + 132.152i −0.0629469 + 0.165190i
\(801\) −922.366 275.892i −1.15152 0.344435i
\(802\) −296.788 96.4322i −0.370060 0.120240i
\(803\) 150.163 + 109.100i 0.187002 + 0.135865i
\(804\) −303.840 + 3.57266i −0.377910 + 0.00444360i
\(805\) −158.015 + 47.0167i −0.196292 + 0.0584058i
\(806\) −291.176 400.769i −0.361260 0.497232i
\(807\) −723.793 + 538.981i −0.896893 + 0.667883i
\(808\) 252.699 + 347.810i 0.312746 + 0.430458i
\(809\) 264.577 85.9661i 0.327042 0.106262i −0.140894 0.990025i \(-0.544998\pi\)
0.467936 + 0.883762i \(0.344998\pi\)
\(810\) −188.972 540.684i −0.233299 0.667511i
\(811\) 163.579 503.443i 0.201700 0.620769i −0.798133 0.602482i \(-0.794179\pi\)
0.999833 0.0182871i \(-0.00582130\pi\)
\(812\) −59.8168 184.097i −0.0736660 0.226721i
\(813\) −227.058 + 320.373i −0.279284 + 0.394063i
\(814\) −10.1720 + 31.3062i −0.0124963 + 0.0384597i
\(815\) −375.985 + 491.237i −0.461332 + 0.602745i
\(816\) −161.443 + 227.792i −0.197846 + 0.279156i
\(817\) −717.065 986.956i −0.877681 1.20802i
\(818\) 150.288 0.183726
\(819\) 128.015 + 364.586i 0.156306 + 0.445160i
\(820\) 215.688 64.1771i 0.263035 0.0782648i
\(821\) 341.419 469.923i 0.415858 0.572379i −0.548777 0.835969i \(-0.684906\pi\)
0.964635 + 0.263590i \(0.0849065\pi\)
\(822\) 5.74279 + 488.400i 0.00698636 + 0.594160i
\(823\) 369.062 + 119.916i 0.448435 + 0.145705i 0.524524 0.851396i \(-0.324243\pi\)
−0.0760888 + 0.997101i \(0.524243\pi\)
\(824\) 457.900i 0.555704i
\(825\) 93.9322 + 73.8803i 0.113857 + 0.0895519i
\(826\) −196.492 −0.237883
\(827\) 120.659 371.350i 0.145900 0.449032i −0.851226 0.524799i \(-0.824140\pi\)
0.997126 + 0.0757667i \(0.0241404\pi\)
\(828\) 174.187 132.923i 0.210371 0.160535i
\(829\) 838.932 + 609.519i 1.01198 + 0.735247i 0.964623 0.263631i \(-0.0849203\pi\)
0.0473567 + 0.998878i \(0.484920\pi\)
\(830\) 712.236 + 545.134i 0.858116 + 0.656788i
\(831\) −288.402 + 924.456i −0.347054 + 1.11246i
\(832\) 126.805i 0.152409i
\(833\) −784.229 + 569.776i −0.941452 + 0.684005i
\(834\) −378.681 + 534.309i −0.454053 + 0.640658i
\(835\) −292.639 + 829.614i −0.350466 + 0.993550i
\(836\) −72.7978 23.6534i −0.0870787 0.0282936i
\(837\) 367.524 + 470.054i 0.439097 + 0.561594i
\(838\) 888.153 288.579i 1.05985 0.344366i
\(839\) −677.194 220.034i −0.807144 0.262257i −0.123756 0.992313i \(-0.539494\pi\)
−0.683388 + 0.730056i \(0.739494\pi\)
\(840\) −36.9515 + 108.817i −0.0439899 + 0.129544i
\(841\) −134.654 414.421i −0.160111 0.492772i
\(842\) −452.407 + 328.693i −0.537300 + 0.390371i
\(843\) −738.084 + 549.623i −0.875544 + 0.651985i
\(844\) 506.072 367.683i 0.599611 0.435643i
\(845\) −136.788 + 387.785i −0.161879 + 0.458917i
\(846\) −474.256 + 361.906i −0.560586 + 0.427785i
\(847\) 188.605 259.592i 0.222674 0.306484i
\(848\) 62.3841 191.999i 0.0735662 0.226413i
\(849\) 608.804 453.354i 0.717084 0.533985i
\(850\) −821.577 41.0406i −0.966561 0.0482830i
\(851\) 177.817i 0.208951i
\(852\) −68.7950 203.554i −0.0807453 0.238913i
\(853\) 116.328 160.112i 0.136375 0.187704i −0.735367 0.677669i \(-0.762990\pi\)
0.871742 + 0.489965i \(0.162990\pi\)
\(854\) 94.3822 129.906i 0.110518 0.152115i
\(855\) −335.483 + 1027.47i −0.392378 + 1.20172i
\(856\) −137.274 + 99.7356i −0.160367 + 0.116514i
\(857\) 584.566 0.682107 0.341054 0.940044i \(-0.389216\pi\)
0.341054 + 0.940044i \(0.389216\pi\)
\(858\) 102.292 + 31.9119i 0.119221 + 0.0371933i
\(859\) 186.893 + 575.198i 0.217571 + 0.669614i 0.998961 + 0.0455712i \(0.0145108\pi\)
−0.781390 + 0.624042i \(0.785489\pi\)
\(860\) −12.6740 + 507.749i −0.0147372 + 0.590406i
\(861\) 173.237 58.5489i 0.201205 0.0680010i
\(862\) −209.202 + 67.9737i −0.242693 + 0.0788558i
\(863\) 263.066 + 809.635i 0.304828 + 0.938164i 0.979741 + 0.200267i \(0.0641809\pi\)
−0.674914 + 0.737897i \(0.735819\pi\)
\(864\) −5.38638 152.640i −0.00623424 0.176667i
\(865\) 10.3830 + 34.8954i 0.0120034 + 0.0403415i
\(866\) 721.856 234.545i 0.833552 0.270837i
\(867\) −722.665 225.449i −0.833524 0.260034i
\(868\) 119.720i 0.137926i
\(869\) 111.302 + 153.195i 0.128081 + 0.176288i
\(870\) −243.723 + 717.730i −0.280141 + 0.824977i
\(871\) −649.420 471.831i −0.745603 0.541712i
\(872\) −432.224 314.029i −0.495669 0.360125i
\(873\) −683.931 + 989.467i −0.783426 + 1.13341i
\(874\) −413.487 −0.473097
\(875\) −328.938 + 80.2496i −0.375929 + 0.0917138i
\(876\) 560.571 417.436i 0.639921 0.476525i
\(877\) 1245.95 + 404.834i 1.42070 + 0.461612i 0.915824 0.401581i \(-0.131539\pi\)
0.504873 + 0.863193i \(0.331539\pi\)
\(878\) 656.189 + 476.749i 0.747368 + 0.542995i
\(879\) 11.6805 + 993.381i 0.0132884 + 1.13013i
\(880\) 18.0824 + 26.2412i 0.0205482 + 0.0298196i
\(881\) −348.486 479.650i −0.395558 0.544438i 0.564065 0.825731i \(-0.309237\pi\)
−0.959622 + 0.281292i \(0.909237\pi\)
\(882\) 151.963 508.044i 0.172293 0.576013i
\(883\) −393.287 541.314i −0.445399 0.613039i 0.526002 0.850483i \(-0.323690\pi\)
−0.971401 + 0.237444i \(0.923690\pi\)
\(884\) −701.481 + 227.925i −0.793530 + 0.257834i
\(885\) 616.449 + 460.428i 0.696553 + 0.520258i
\(886\) −148.363 + 456.614i −0.167452 + 0.515365i
\(887\) −384.779 1184.23i −0.433798 1.33509i −0.894313 0.447442i \(-0.852335\pi\)
0.460515 0.887652i \(-0.347665\pi\)
\(888\) 101.128 + 71.6723i 0.113883 + 0.0807121i
\(889\) −160.524 + 494.041i −0.180567 + 0.555727i
\(890\) 18.8748 756.167i 0.0212076 0.849626i
\(891\) −124.488 34.0685i −0.139718 0.0382363i
\(892\) −167.667 230.774i −0.187968 0.258715i
\(893\) 1125.79 1.26069
\(894\) 73.7631 236.443i 0.0825090 0.264478i
\(895\) 14.7673 591.612i 0.0164998 0.661019i
\(896\) −18.0128 + 24.7925i −0.0201036 + 0.0276702i
\(897\) 578.799 6.80573i 0.645261 0.00758722i
\(898\) 381.798 + 124.054i 0.425165 + 0.138144i
\(899\) 789.640i 0.878354i
\(900\) 370.912 254.803i 0.412124 0.283114i
\(901\) 1174.26 1.30329
\(902\) 15.6701 48.2276i 0.0173726 0.0534674i
\(903\) 4.85268 + 412.700i 0.00537395 + 0.457032i
\(904\) 220.731 + 160.371i 0.244172 + 0.177401i
\(905\) 214.687 608.625i 0.237224 0.672514i
\(906\) −766.641 239.169i −0.846183 0.263983i
\(907\) 60.8076i 0.0670425i −0.999438 0.0335213i \(-0.989328\pi\)
0.999438 0.0335213i \(-0.0106721\pi\)
\(908\) 415.320 301.748i 0.457401 0.332321i
\(909\) −32.1661 1367.61i −0.0353863 1.50452i
\(910\) −249.986 + 172.262i −0.274710 + 0.189299i
\(911\) −288.931 93.8793i −0.317158 0.103051i 0.146112 0.989268i \(-0.453324\pi\)
−0.463270 + 0.886217i \(0.653324\pi\)
\(912\) −166.663 + 235.157i −0.182745 + 0.257848i
\(913\) 192.220 62.4559i 0.210536 0.0684074i
\(914\) −845.322 274.662i −0.924860 0.300505i
\(915\) −600.505 + 186.390i −0.656289 + 0.203705i
\(916\) −143.033 440.210i −0.156149 0.480579i
\(917\) 12.2335 8.88819i 0.0133408 0.00969268i
\(918\) 834.720 304.160i 0.909281 0.331329i
\(919\) 72.1242 52.4013i 0.0784812 0.0570199i −0.547853 0.836575i \(-0.684555\pi\)
0.626334 + 0.779555i \(0.284555\pi\)
\(920\) 136.704 + 104.631i 0.148591 + 0.113729i
\(921\) −1340.34 + 15.7603i −1.45531 + 0.0171121i
\(922\) 404.581 556.859i 0.438808 0.603968i
\(923\) 175.405 539.841i 0.190038 0.584876i
\(924\) 15.4667 + 20.7701i 0.0167388 + 0.0224784i
\(925\) −18.2199 + 364.739i −0.0196972 + 0.394312i
\(926\) 586.958i 0.633864i
\(927\) 828.466 1198.57i 0.893707 1.29296i
\(928\) −118.808 + 163.525i −0.128026 + 0.176213i
\(929\) −576.140 + 792.988i −0.620172 + 0.853594i −0.997365 0.0725410i \(-0.976889\pi\)
0.377193 + 0.926135i \(0.376889\pi\)
\(930\) −280.532 + 375.593i −0.301647 + 0.403864i
\(931\) −809.588 + 588.200i −0.869590 + 0.631794i
\(932\) 663.036 0.711412
\(933\) 371.710 1191.49i 0.398403 1.27706i
\(934\) −347.323 1068.95i −0.371866 1.14449i
\(935\) −112.664 + 147.199i −0.120496 + 0.157432i
\(936\) 229.424 331.916i 0.245111 0.354612i
\(937\) 511.887 166.322i 0.546304 0.177505i −0.0228455 0.999739i \(-0.507273\pi\)
0.569149 + 0.822234i \(0.307273\pi\)
\(938\) −59.9486 184.503i −0.0639111 0.196698i
\(939\) 26.3598 + 77.9946i 0.0280722 + 0.0830614i
\(940\) −372.201 284.877i −0.395958 0.303060i
\(941\) 1460.60 474.577i 1.55218 0.504333i 0.597473 0.801889i \(-0.296171\pi\)
0.954704 + 0.297556i \(0.0961714\pi\)
\(942\) −96.6792 + 309.900i −0.102632 + 0.328980i
\(943\) 273.930i 0.290488i
\(944\) 120.601 + 165.993i 0.127755 + 0.175840i
\(945\) 293.602 217.978i 0.310690 0.230664i
\(946\) 92.5942 + 67.2736i 0.0978797 + 0.0711138i
\(947\) 627.137 + 455.641i 0.662235 + 0.481142i 0.867417 0.497582i \(-0.165779\pi\)
−0.205182 + 0.978724i \(0.565779\pi\)
\(948\) 675.499 228.298i 0.712552 0.240821i
\(949\) 1846.39 1.94561
\(950\) −848.143 42.3677i −0.892783 0.0445976i
\(951\) −1035.86 1391.05i −1.08923 1.46272i
\(952\) −169.529 55.0833i −0.178077 0.0578606i
\(953\) −340.354 247.282i −0.357140 0.259477i 0.394718 0.918802i \(-0.370842\pi\)
−0.751858 + 0.659325i \(0.770842\pi\)
\(954\) −510.671 + 389.694i −0.535294 + 0.408485i
\(955\) 127.619 166.738i 0.133632 0.174595i
\(956\) −191.384 263.418i −0.200193 0.275542i
\(957\) 102.014 + 136.994i 0.106598 + 0.143150i
\(958\) −251.682 346.410i −0.262716 0.361597i
\(959\) −296.575 + 96.3629i −0.309254 + 0.100483i
\(960\) 114.606 35.5726i 0.119382 0.0370548i
\(961\) −146.049 + 449.493i −0.151976 + 0.467735i
\(962\) 101.187 + 311.422i 0.105184 + 0.323723i
\(963\) 539.770 12.6954i 0.560509 0.0131832i
\(964\) −158.145 + 486.720i −0.164051 + 0.504896i
\(965\) 354.297 + 514.156i 0.367147 + 0.532804i
\(966\) 114.132 + 80.8888i 0.118149 + 0.0837359i
\(967\) −466.301 641.808i −0.482214 0.663710i 0.496715 0.867914i \(-0.334540\pi\)
−0.978928 + 0.204204i \(0.934540\pi\)
\(968\) −335.058 −0.346135
\(969\) −1600.46 499.293i −1.65166 0.515266i
\(970\) −891.214 314.368i −0.918778 0.324091i
\(971\) −792.099 + 1090.23i −0.815756 + 1.12279i 0.174653 + 0.984630i \(0.444120\pi\)
−0.990410 + 0.138162i \(0.955880\pi\)
\(972\) −262.069 + 409.287i −0.269618 + 0.421077i
\(973\) −397.648 129.204i −0.408683 0.132789i
\(974\) 1142.60i 1.17310i
\(975\) 1187.93 + 45.3463i 1.21839 + 0.0465091i
\(976\) −167.671 −0.171794
\(977\) 298.849 919.762i 0.305884 0.941414i −0.673462 0.739222i \(-0.735193\pi\)
0.979346 0.202192i \(-0.0648066\pi\)
\(978\) 524.872 6.17164i 0.536679 0.00631047i
\(979\) −137.896 100.187i −0.140854 0.102337i
\(980\) 416.501 + 10.3963i 0.425001 + 0.0106085i
\(981\) 563.199 + 1603.99i 0.574108 + 1.63506i
\(982\) 507.784i 0.517091i
\(983\) −633.042 + 459.932i −0.643990 + 0.467886i −0.861219 0.508234i \(-0.830298\pi\)
0.217229 + 0.976121i \(0.430298\pi\)
\(984\) −155.789 110.412i −0.158322 0.112207i
\(985\) 1235.98 + 30.8515i 1.25480 + 0.0313214i
\(986\) −1118.17 363.316i −1.13405 0.368475i
\(987\) −310.746 220.235i −0.314838 0.223135i
\(988\) −724.164 + 235.295i −0.732959 + 0.238153i
\(989\) 588.007 + 191.055i 0.594547 + 0.193180i
\(990\) 0.146053 101.404i 0.000147529 0.102428i
\(991\) 146.977 + 452.348i 0.148312 + 0.456456i 0.997422 0.0717592i \(-0.0228613\pi\)
−0.849110 + 0.528216i \(0.822861\pi\)
\(992\) −101.137 + 73.4802i −0.101952 + 0.0740728i
\(993\) −567.827 762.529i −0.571830 0.767905i
\(994\) 110.980 80.6318i 0.111650 0.0811186i
\(995\) −546.720 + 376.736i −0.549467 + 0.378629i
\(996\) −8.94815 761.003i −0.00898409 0.764059i
\(997\) −408.159 + 561.782i −0.409387 + 0.563473i −0.963069 0.269256i \(-0.913222\pi\)
0.553682 + 0.832728i \(0.313222\pi\)
\(998\) 300.870 925.982i 0.301473 0.927838i
\(999\) −135.032 370.574i −0.135167 0.370944i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.3.i.a.29.5 80
3.2 odd 2 inner 150.3.i.a.29.20 yes 80
25.19 even 10 inner 150.3.i.a.119.20 yes 80
75.44 odd 10 inner 150.3.i.a.119.5 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.3.i.a.29.5 80 1.1 even 1 trivial
150.3.i.a.29.20 yes 80 3.2 odd 2 inner
150.3.i.a.119.5 yes 80 75.44 odd 10 inner
150.3.i.a.119.20 yes 80 25.19 even 10 inner