Properties

Label 1520.2.a.q.1.2
Level $1520$
Weight $2$
Character 1520.1
Self dual yes
Analytic conductor $12.137$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1520,2,Mod(1,1520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1520.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.1372611072\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 760)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.470683\) of defining polynomial
Character \(\chi\) \(=\) 1520.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.470683 q^{3} -1.00000 q^{5} -2.71982 q^{7} -2.77846 q^{9} +5.55691 q^{11} +2.02760 q^{13} -0.470683 q^{15} -3.77846 q^{17} -1.00000 q^{19} -1.28018 q^{21} +5.77846 q^{23} +1.00000 q^{25} -2.71982 q^{27} -5.66119 q^{29} -7.55691 q^{31} +2.61555 q^{33} +2.71982 q^{35} -3.75086 q^{37} +0.954357 q^{39} -12.6155 q^{41} +9.43965 q^{43} +2.77846 q^{45} -11.1138 q^{47} +0.397442 q^{49} -1.77846 q^{51} -8.85170 q^{53} -5.55691 q^{55} -0.470683 q^{57} -11.4526 q^{59} -10.6155 q^{61} +7.55691 q^{63} -2.02760 q^{65} +11.5845 q^{67} +2.71982 q^{69} -9.45264 q^{73} +0.470683 q^{75} -15.1138 q^{77} -8.94137 q^{79} +7.05520 q^{81} +4.94137 q^{83} +3.77846 q^{85} -2.66463 q^{87} +15.4948 q^{89} -5.51471 q^{91} -3.55691 q^{93} +1.00000 q^{95} +10.8647 q^{97} -15.4396 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} - 3 q^{5} + q^{7} - 11 q^{13} - q^{15} - 3 q^{17} - 3 q^{19} - 13 q^{21} + 9 q^{23} + 3 q^{25} + q^{27} - 7 q^{29} - 6 q^{31} - 8 q^{33} - q^{35} - 20 q^{37} - 3 q^{39} - 22 q^{41} + 10 q^{43}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.470683 0.271749 0.135875 0.990726i \(-0.456616\pi\)
0.135875 + 0.990726i \(0.456616\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.71982 −1.02800 −0.513998 0.857791i \(-0.671836\pi\)
−0.513998 + 0.857791i \(0.671836\pi\)
\(8\) 0 0
\(9\) −2.77846 −0.926152
\(10\) 0 0
\(11\) 5.55691 1.67547 0.837736 0.546075i \(-0.183879\pi\)
0.837736 + 0.546075i \(0.183879\pi\)
\(12\) 0 0
\(13\) 2.02760 0.562354 0.281177 0.959656i \(-0.409275\pi\)
0.281177 + 0.959656i \(0.409275\pi\)
\(14\) 0 0
\(15\) −0.470683 −0.121530
\(16\) 0 0
\(17\) −3.77846 −0.916410 −0.458205 0.888846i \(-0.651508\pi\)
−0.458205 + 0.888846i \(0.651508\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −1.28018 −0.279357
\(22\) 0 0
\(23\) 5.77846 1.20489 0.602446 0.798160i \(-0.294193\pi\)
0.602446 + 0.798160i \(0.294193\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −2.71982 −0.523430
\(28\) 0 0
\(29\) −5.66119 −1.05126 −0.525628 0.850714i \(-0.676170\pi\)
−0.525628 + 0.850714i \(0.676170\pi\)
\(30\) 0 0
\(31\) −7.55691 −1.35726 −0.678631 0.734479i \(-0.737426\pi\)
−0.678631 + 0.734479i \(0.737426\pi\)
\(32\) 0 0
\(33\) 2.61555 0.455308
\(34\) 0 0
\(35\) 2.71982 0.459734
\(36\) 0 0
\(37\) −3.75086 −0.616637 −0.308319 0.951283i \(-0.599766\pi\)
−0.308319 + 0.951283i \(0.599766\pi\)
\(38\) 0 0
\(39\) 0.954357 0.152819
\(40\) 0 0
\(41\) −12.6155 −1.97022 −0.985109 0.171932i \(-0.944999\pi\)
−0.985109 + 0.171932i \(0.944999\pi\)
\(42\) 0 0
\(43\) 9.43965 1.43953 0.719766 0.694216i \(-0.244249\pi\)
0.719766 + 0.694216i \(0.244249\pi\)
\(44\) 0 0
\(45\) 2.77846 0.414188
\(46\) 0 0
\(47\) −11.1138 −1.62112 −0.810559 0.585657i \(-0.800837\pi\)
−0.810559 + 0.585657i \(0.800837\pi\)
\(48\) 0 0
\(49\) 0.397442 0.0567775
\(50\) 0 0
\(51\) −1.77846 −0.249034
\(52\) 0 0
\(53\) −8.85170 −1.21587 −0.607937 0.793985i \(-0.708003\pi\)
−0.607937 + 0.793985i \(0.708003\pi\)
\(54\) 0 0
\(55\) −5.55691 −0.749294
\(56\) 0 0
\(57\) −0.470683 −0.0623435
\(58\) 0 0
\(59\) −11.4526 −1.49101 −0.745503 0.666502i \(-0.767791\pi\)
−0.745503 + 0.666502i \(0.767791\pi\)
\(60\) 0 0
\(61\) −10.6155 −1.35918 −0.679591 0.733591i \(-0.737843\pi\)
−0.679591 + 0.733591i \(0.737843\pi\)
\(62\) 0 0
\(63\) 7.55691 0.952082
\(64\) 0 0
\(65\) −2.02760 −0.251493
\(66\) 0 0
\(67\) 11.5845 1.41527 0.707637 0.706576i \(-0.249761\pi\)
0.707637 + 0.706576i \(0.249761\pi\)
\(68\) 0 0
\(69\) 2.71982 0.327428
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −9.45264 −1.10635 −0.553174 0.833066i \(-0.686583\pi\)
−0.553174 + 0.833066i \(0.686583\pi\)
\(74\) 0 0
\(75\) 0.470683 0.0543498
\(76\) 0 0
\(77\) −15.1138 −1.72238
\(78\) 0 0
\(79\) −8.94137 −1.00598 −0.502991 0.864292i \(-0.667767\pi\)
−0.502991 + 0.864292i \(0.667767\pi\)
\(80\) 0 0
\(81\) 7.05520 0.783911
\(82\) 0 0
\(83\) 4.94137 0.542385 0.271193 0.962525i \(-0.412582\pi\)
0.271193 + 0.962525i \(0.412582\pi\)
\(84\) 0 0
\(85\) 3.77846 0.409831
\(86\) 0 0
\(87\) −2.66463 −0.285678
\(88\) 0 0
\(89\) 15.4948 1.64245 0.821225 0.570604i \(-0.193291\pi\)
0.821225 + 0.570604i \(0.193291\pi\)
\(90\) 0 0
\(91\) −5.51471 −0.578099
\(92\) 0 0
\(93\) −3.55691 −0.368835
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 10.8647 1.10314 0.551571 0.834128i \(-0.314029\pi\)
0.551571 + 0.834128i \(0.314029\pi\)
\(98\) 0 0
\(99\) −15.4396 −1.55174
\(100\) 0 0
\(101\) 4.49828 0.447596 0.223798 0.974636i \(-0.428154\pi\)
0.223798 + 0.974636i \(0.428154\pi\)
\(102\) 0 0
\(103\) −4.36641 −0.430235 −0.215117 0.976588i \(-0.569013\pi\)
−0.215117 + 0.976588i \(0.569013\pi\)
\(104\) 0 0
\(105\) 1.28018 0.124932
\(106\) 0 0
\(107\) 1.64658 0.159181 0.0795906 0.996828i \(-0.474639\pi\)
0.0795906 + 0.996828i \(0.474639\pi\)
\(108\) 0 0
\(109\) −0.954357 −0.0914108 −0.0457054 0.998955i \(-0.514554\pi\)
−0.0457054 + 0.998955i \(0.514554\pi\)
\(110\) 0 0
\(111\) −1.76547 −0.167571
\(112\) 0 0
\(113\) 5.68879 0.535156 0.267578 0.963536i \(-0.413777\pi\)
0.267578 + 0.963536i \(0.413777\pi\)
\(114\) 0 0
\(115\) −5.77846 −0.538844
\(116\) 0 0
\(117\) −5.63359 −0.520826
\(118\) 0 0
\(119\) 10.2767 0.942067
\(120\) 0 0
\(121\) 19.8793 1.80721
\(122\) 0 0
\(123\) −5.93793 −0.535405
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 10.3043 0.914362 0.457181 0.889374i \(-0.348859\pi\)
0.457181 + 0.889374i \(0.348859\pi\)
\(128\) 0 0
\(129\) 4.44309 0.391192
\(130\) 0 0
\(131\) −3.11383 −0.272056 −0.136028 0.990705i \(-0.543434\pi\)
−0.136028 + 0.990705i \(0.543434\pi\)
\(132\) 0 0
\(133\) 2.71982 0.235839
\(134\) 0 0
\(135\) 2.71982 0.234085
\(136\) 0 0
\(137\) 13.4526 1.14934 0.574668 0.818386i \(-0.305131\pi\)
0.574668 + 0.818386i \(0.305131\pi\)
\(138\) 0 0
\(139\) −9.55691 −0.810607 −0.405303 0.914182i \(-0.632834\pi\)
−0.405303 + 0.914182i \(0.632834\pi\)
\(140\) 0 0
\(141\) −5.23109 −0.440538
\(142\) 0 0
\(143\) 11.2672 0.942209
\(144\) 0 0
\(145\) 5.66119 0.470136
\(146\) 0 0
\(147\) 0.187070 0.0154292
\(148\) 0 0
\(149\) 19.6121 1.60669 0.803343 0.595516i \(-0.203052\pi\)
0.803343 + 0.595516i \(0.203052\pi\)
\(150\) 0 0
\(151\) 17.0518 1.38765 0.693826 0.720143i \(-0.255924\pi\)
0.693826 + 0.720143i \(0.255924\pi\)
\(152\) 0 0
\(153\) 10.4983 0.848736
\(154\) 0 0
\(155\) 7.55691 0.606986
\(156\) 0 0
\(157\) −22.4983 −1.79556 −0.897779 0.440446i \(-0.854820\pi\)
−0.897779 + 0.440446i \(0.854820\pi\)
\(158\) 0 0
\(159\) −4.16635 −0.330413
\(160\) 0 0
\(161\) −15.7164 −1.23862
\(162\) 0 0
\(163\) −22.4362 −1.75734 −0.878670 0.477430i \(-0.841568\pi\)
−0.878670 + 0.477430i \(0.841568\pi\)
\(164\) 0 0
\(165\) −2.61555 −0.203620
\(166\) 0 0
\(167\) 6.69223 0.517860 0.258930 0.965896i \(-0.416630\pi\)
0.258930 + 0.965896i \(0.416630\pi\)
\(168\) 0 0
\(169\) −8.88885 −0.683758
\(170\) 0 0
\(171\) 2.77846 0.212474
\(172\) 0 0
\(173\) −2.86469 −0.217798 −0.108899 0.994053i \(-0.534733\pi\)
−0.108899 + 0.994053i \(0.534733\pi\)
\(174\) 0 0
\(175\) −2.71982 −0.205599
\(176\) 0 0
\(177\) −5.39057 −0.405180
\(178\) 0 0
\(179\) −1.38445 −0.103479 −0.0517394 0.998661i \(-0.516477\pi\)
−0.0517394 + 0.998661i \(0.516477\pi\)
\(180\) 0 0
\(181\) −20.8793 −1.55195 −0.775973 0.630766i \(-0.782741\pi\)
−0.775973 + 0.630766i \(0.782741\pi\)
\(182\) 0 0
\(183\) −4.99656 −0.369357
\(184\) 0 0
\(185\) 3.75086 0.275769
\(186\) 0 0
\(187\) −20.9966 −1.53542
\(188\) 0 0
\(189\) 7.39744 0.538085
\(190\) 0 0
\(191\) −19.2733 −1.39457 −0.697284 0.716795i \(-0.745608\pi\)
−0.697284 + 0.716795i \(0.745608\pi\)
\(192\) 0 0
\(193\) −8.01461 −0.576904 −0.288452 0.957494i \(-0.593141\pi\)
−0.288452 + 0.957494i \(0.593141\pi\)
\(194\) 0 0
\(195\) −0.954357 −0.0683429
\(196\) 0 0
\(197\) 16.8793 1.20260 0.601300 0.799023i \(-0.294650\pi\)
0.601300 + 0.799023i \(0.294650\pi\)
\(198\) 0 0
\(199\) −1.28018 −0.0907493 −0.0453746 0.998970i \(-0.514448\pi\)
−0.0453746 + 0.998970i \(0.514448\pi\)
\(200\) 0 0
\(201\) 5.45264 0.384599
\(202\) 0 0
\(203\) 15.3974 1.08069
\(204\) 0 0
\(205\) 12.6155 0.881108
\(206\) 0 0
\(207\) −16.0552 −1.11591
\(208\) 0 0
\(209\) −5.55691 −0.384380
\(210\) 0 0
\(211\) 1.54392 0.106288 0.0531441 0.998587i \(-0.483076\pi\)
0.0531441 + 0.998587i \(0.483076\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −9.43965 −0.643779
\(216\) 0 0
\(217\) 20.5535 1.39526
\(218\) 0 0
\(219\) −4.44920 −0.300649
\(220\) 0 0
\(221\) −7.66119 −0.515347
\(222\) 0 0
\(223\) 3.92332 0.262725 0.131363 0.991334i \(-0.458065\pi\)
0.131363 + 0.991334i \(0.458065\pi\)
\(224\) 0 0
\(225\) −2.77846 −0.185230
\(226\) 0 0
\(227\) −10.9069 −0.723916 −0.361958 0.932194i \(-0.617892\pi\)
−0.361958 + 0.932194i \(0.617892\pi\)
\(228\) 0 0
\(229\) 10.1725 0.672215 0.336108 0.941824i \(-0.390889\pi\)
0.336108 + 0.941824i \(0.390889\pi\)
\(230\) 0 0
\(231\) −7.11383 −0.468056
\(232\) 0 0
\(233\) −9.11383 −0.597067 −0.298533 0.954399i \(-0.596497\pi\)
−0.298533 + 0.954399i \(0.596497\pi\)
\(234\) 0 0
\(235\) 11.1138 0.724986
\(236\) 0 0
\(237\) −4.20855 −0.273375
\(238\) 0 0
\(239\) −20.1595 −1.30401 −0.652004 0.758216i \(-0.726071\pi\)
−0.652004 + 0.758216i \(0.726071\pi\)
\(240\) 0 0
\(241\) −4.82410 −0.310748 −0.155374 0.987856i \(-0.549658\pi\)
−0.155374 + 0.987856i \(0.549658\pi\)
\(242\) 0 0
\(243\) 11.4802 0.736457
\(244\) 0 0
\(245\) −0.397442 −0.0253917
\(246\) 0 0
\(247\) −2.02760 −0.129013
\(248\) 0 0
\(249\) 2.32582 0.147393
\(250\) 0 0
\(251\) 18.2277 1.15052 0.575260 0.817971i \(-0.304901\pi\)
0.575260 + 0.817971i \(0.304901\pi\)
\(252\) 0 0
\(253\) 32.1104 2.01876
\(254\) 0 0
\(255\) 1.77846 0.111371
\(256\) 0 0
\(257\) 28.5941 1.78365 0.891824 0.452382i \(-0.149426\pi\)
0.891824 + 0.452382i \(0.149426\pi\)
\(258\) 0 0
\(259\) 10.2017 0.633901
\(260\) 0 0
\(261\) 15.7294 0.973624
\(262\) 0 0
\(263\) 27.3776 1.68817 0.844087 0.536206i \(-0.180143\pi\)
0.844087 + 0.536206i \(0.180143\pi\)
\(264\) 0 0
\(265\) 8.85170 0.543755
\(266\) 0 0
\(267\) 7.29317 0.446334
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) −15.8337 −0.961826 −0.480913 0.876768i \(-0.659695\pi\)
−0.480913 + 0.876768i \(0.659695\pi\)
\(272\) 0 0
\(273\) −2.59568 −0.157098
\(274\) 0 0
\(275\) 5.55691 0.335095
\(276\) 0 0
\(277\) −6.70683 −0.402975 −0.201487 0.979491i \(-0.564577\pi\)
−0.201487 + 0.979491i \(0.564577\pi\)
\(278\) 0 0
\(279\) 20.9966 1.25703
\(280\) 0 0
\(281\) 8.38101 0.499969 0.249985 0.968250i \(-0.419574\pi\)
0.249985 + 0.968250i \(0.419574\pi\)
\(282\) 0 0
\(283\) 20.2897 1.20610 0.603050 0.797704i \(-0.293952\pi\)
0.603050 + 0.797704i \(0.293952\pi\)
\(284\) 0 0
\(285\) 0.470683 0.0278809
\(286\) 0 0
\(287\) 34.3121 2.02538
\(288\) 0 0
\(289\) −2.72326 −0.160192
\(290\) 0 0
\(291\) 5.11383 0.299778
\(292\) 0 0
\(293\) −6.76041 −0.394947 −0.197474 0.980308i \(-0.563274\pi\)
−0.197474 + 0.980308i \(0.563274\pi\)
\(294\) 0 0
\(295\) 11.4526 0.666798
\(296\) 0 0
\(297\) −15.1138 −0.876993
\(298\) 0 0
\(299\) 11.7164 0.677576
\(300\) 0 0
\(301\) −25.6742 −1.47984
\(302\) 0 0
\(303\) 2.11727 0.121634
\(304\) 0 0
\(305\) 10.6155 0.607844
\(306\) 0 0
\(307\) −7.74398 −0.441972 −0.220986 0.975277i \(-0.570928\pi\)
−0.220986 + 0.975277i \(0.570928\pi\)
\(308\) 0 0
\(309\) −2.05520 −0.116916
\(310\) 0 0
\(311\) 11.0456 0.626341 0.313170 0.949697i \(-0.398609\pi\)
0.313170 + 0.949697i \(0.398609\pi\)
\(312\) 0 0
\(313\) 1.16291 0.0657315 0.0328658 0.999460i \(-0.489537\pi\)
0.0328658 + 0.999460i \(0.489537\pi\)
\(314\) 0 0
\(315\) −7.55691 −0.425784
\(316\) 0 0
\(317\) −21.8742 −1.22858 −0.614290 0.789080i \(-0.710557\pi\)
−0.614290 + 0.789080i \(0.710557\pi\)
\(318\) 0 0
\(319\) −31.4588 −1.76135
\(320\) 0 0
\(321\) 0.775019 0.0432574
\(322\) 0 0
\(323\) 3.77846 0.210239
\(324\) 0 0
\(325\) 2.02760 0.112471
\(326\) 0 0
\(327\) −0.449200 −0.0248408
\(328\) 0 0
\(329\) 30.2277 1.66650
\(330\) 0 0
\(331\) −14.6646 −0.806041 −0.403020 0.915191i \(-0.632040\pi\)
−0.403020 + 0.915191i \(0.632040\pi\)
\(332\) 0 0
\(333\) 10.4216 0.571100
\(334\) 0 0
\(335\) −11.5845 −0.632929
\(336\) 0 0
\(337\) −20.0958 −1.09469 −0.547344 0.836908i \(-0.684361\pi\)
−0.547344 + 0.836908i \(0.684361\pi\)
\(338\) 0 0
\(339\) 2.67762 0.145428
\(340\) 0 0
\(341\) −41.9931 −2.27406
\(342\) 0 0
\(343\) 17.9578 0.969630
\(344\) 0 0
\(345\) −2.71982 −0.146430
\(346\) 0 0
\(347\) 11.0586 0.593659 0.296829 0.954931i \(-0.404071\pi\)
0.296829 + 0.954931i \(0.404071\pi\)
\(348\) 0 0
\(349\) 8.11727 0.434507 0.217254 0.976115i \(-0.430290\pi\)
0.217254 + 0.976115i \(0.430290\pi\)
\(350\) 0 0
\(351\) −5.51471 −0.294353
\(352\) 0 0
\(353\) 12.0130 0.639387 0.319693 0.947521i \(-0.396420\pi\)
0.319693 + 0.947521i \(0.396420\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.83709 0.256006
\(358\) 0 0
\(359\) 17.9509 0.947413 0.473707 0.880683i \(-0.342916\pi\)
0.473707 + 0.880683i \(0.342916\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 9.35685 0.491108
\(364\) 0 0
\(365\) 9.45264 0.494774
\(366\) 0 0
\(367\) 3.11383 0.162541 0.0812703 0.996692i \(-0.474102\pi\)
0.0812703 + 0.996692i \(0.474102\pi\)
\(368\) 0 0
\(369\) 35.0518 1.82472
\(370\) 0 0
\(371\) 24.0751 1.24991
\(372\) 0 0
\(373\) −21.8742 −1.13261 −0.566303 0.824197i \(-0.691627\pi\)
−0.566303 + 0.824197i \(0.691627\pi\)
\(374\) 0 0
\(375\) −0.470683 −0.0243060
\(376\) 0 0
\(377\) −11.4786 −0.591179
\(378\) 0 0
\(379\) 5.28018 0.271224 0.135612 0.990762i \(-0.456700\pi\)
0.135612 + 0.990762i \(0.456700\pi\)
\(380\) 0 0
\(381\) 4.85008 0.248477
\(382\) 0 0
\(383\) 16.1319 0.824300 0.412150 0.911116i \(-0.364778\pi\)
0.412150 + 0.911116i \(0.364778\pi\)
\(384\) 0 0
\(385\) 15.1138 0.770272
\(386\) 0 0
\(387\) −26.2277 −1.33323
\(388\) 0 0
\(389\) 3.43965 0.174397 0.0871985 0.996191i \(-0.472209\pi\)
0.0871985 + 0.996191i \(0.472209\pi\)
\(390\) 0 0
\(391\) −21.8337 −1.10418
\(392\) 0 0
\(393\) −1.46563 −0.0739311
\(394\) 0 0
\(395\) 8.94137 0.449889
\(396\) 0 0
\(397\) −1.29317 −0.0649021 −0.0324511 0.999473i \(-0.510331\pi\)
−0.0324511 + 0.999473i \(0.510331\pi\)
\(398\) 0 0
\(399\) 1.28018 0.0640890
\(400\) 0 0
\(401\) −35.1070 −1.75316 −0.876579 0.481258i \(-0.840180\pi\)
−0.876579 + 0.481258i \(0.840180\pi\)
\(402\) 0 0
\(403\) −15.3224 −0.763262
\(404\) 0 0
\(405\) −7.05520 −0.350575
\(406\) 0 0
\(407\) −20.8432 −1.03316
\(408\) 0 0
\(409\) −24.8793 −1.23020 −0.615101 0.788448i \(-0.710885\pi\)
−0.615101 + 0.788448i \(0.710885\pi\)
\(410\) 0 0
\(411\) 6.33193 0.312331
\(412\) 0 0
\(413\) 31.1492 1.53275
\(414\) 0 0
\(415\) −4.94137 −0.242562
\(416\) 0 0
\(417\) −4.49828 −0.220282
\(418\) 0 0
\(419\) 35.4328 1.73100 0.865502 0.500905i \(-0.167000\pi\)
0.865502 + 0.500905i \(0.167000\pi\)
\(420\) 0 0
\(421\) 14.2147 0.692780 0.346390 0.938091i \(-0.387407\pi\)
0.346390 + 0.938091i \(0.387407\pi\)
\(422\) 0 0
\(423\) 30.8793 1.50140
\(424\) 0 0
\(425\) −3.77846 −0.183282
\(426\) 0 0
\(427\) 28.8724 1.39723
\(428\) 0 0
\(429\) 5.30328 0.256045
\(430\) 0 0
\(431\) 24.4983 1.18004 0.590020 0.807388i \(-0.299120\pi\)
0.590020 + 0.807388i \(0.299120\pi\)
\(432\) 0 0
\(433\) 9.45426 0.454343 0.227171 0.973855i \(-0.427052\pi\)
0.227171 + 0.973855i \(0.427052\pi\)
\(434\) 0 0
\(435\) 2.66463 0.127759
\(436\) 0 0
\(437\) −5.77846 −0.276421
\(438\) 0 0
\(439\) −9.70340 −0.463118 −0.231559 0.972821i \(-0.574383\pi\)
−0.231559 + 0.972821i \(0.574383\pi\)
\(440\) 0 0
\(441\) −1.10428 −0.0525846
\(442\) 0 0
\(443\) 6.85008 0.325457 0.162729 0.986671i \(-0.447971\pi\)
0.162729 + 0.986671i \(0.447971\pi\)
\(444\) 0 0
\(445\) −15.4948 −0.734526
\(446\) 0 0
\(447\) 9.23109 0.436616
\(448\) 0 0
\(449\) −25.7655 −1.21595 −0.607974 0.793957i \(-0.708017\pi\)
−0.607974 + 0.793957i \(0.708017\pi\)
\(450\) 0 0
\(451\) −70.1035 −3.30105
\(452\) 0 0
\(453\) 8.02598 0.377093
\(454\) 0 0
\(455\) 5.51471 0.258534
\(456\) 0 0
\(457\) 0.400880 0.0187524 0.00937619 0.999956i \(-0.497015\pi\)
0.00937619 + 0.999956i \(0.497015\pi\)
\(458\) 0 0
\(459\) 10.2767 0.479677
\(460\) 0 0
\(461\) 23.1070 1.07620 0.538099 0.842882i \(-0.319143\pi\)
0.538099 + 0.842882i \(0.319143\pi\)
\(462\) 0 0
\(463\) −4.96735 −0.230852 −0.115426 0.993316i \(-0.536823\pi\)
−0.115426 + 0.993316i \(0.536823\pi\)
\(464\) 0 0
\(465\) 3.55691 0.164948
\(466\) 0 0
\(467\) −21.6190 −1.00041 −0.500204 0.865908i \(-0.666742\pi\)
−0.500204 + 0.865908i \(0.666742\pi\)
\(468\) 0 0
\(469\) −31.5078 −1.45490
\(470\) 0 0
\(471\) −10.5896 −0.487942
\(472\) 0 0
\(473\) 52.4553 2.41190
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) 24.5941 1.12608
\(478\) 0 0
\(479\) −2.20855 −0.100911 −0.0504557 0.998726i \(-0.516067\pi\)
−0.0504557 + 0.998726i \(0.516067\pi\)
\(480\) 0 0
\(481\) −7.60523 −0.346769
\(482\) 0 0
\(483\) −7.39744 −0.336595
\(484\) 0 0
\(485\) −10.8647 −0.493340
\(486\) 0 0
\(487\) 11.4250 0.517718 0.258859 0.965915i \(-0.416654\pi\)
0.258859 + 0.965915i \(0.416654\pi\)
\(488\) 0 0
\(489\) −10.5604 −0.477556
\(490\) 0 0
\(491\) −23.6673 −1.06809 −0.534045 0.845456i \(-0.679329\pi\)
−0.534045 + 0.845456i \(0.679329\pi\)
\(492\) 0 0
\(493\) 21.3906 0.963383
\(494\) 0 0
\(495\) 15.4396 0.693961
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3.99312 −0.178757 −0.0893784 0.995998i \(-0.528488\pi\)
−0.0893784 + 0.995998i \(0.528488\pi\)
\(500\) 0 0
\(501\) 3.14992 0.140728
\(502\) 0 0
\(503\) −0.338809 −0.0151068 −0.00755338 0.999971i \(-0.502404\pi\)
−0.00755338 + 0.999971i \(0.502404\pi\)
\(504\) 0 0
\(505\) −4.49828 −0.200171
\(506\) 0 0
\(507\) −4.18383 −0.185811
\(508\) 0 0
\(509\) −28.4914 −1.26286 −0.631430 0.775433i \(-0.717532\pi\)
−0.631430 + 0.775433i \(0.717532\pi\)
\(510\) 0 0
\(511\) 25.7095 1.13732
\(512\) 0 0
\(513\) 2.71982 0.120083
\(514\) 0 0
\(515\) 4.36641 0.192407
\(516\) 0 0
\(517\) −61.7586 −2.71614
\(518\) 0 0
\(519\) −1.34836 −0.0591865
\(520\) 0 0
\(521\) 41.4328 1.81520 0.907601 0.419833i \(-0.137911\pi\)
0.907601 + 0.419833i \(0.137911\pi\)
\(522\) 0 0
\(523\) 22.1741 0.969605 0.484802 0.874624i \(-0.338892\pi\)
0.484802 + 0.874624i \(0.338892\pi\)
\(524\) 0 0
\(525\) −1.28018 −0.0558715
\(526\) 0 0
\(527\) 28.5535 1.24381
\(528\) 0 0
\(529\) 10.3906 0.451764
\(530\) 0 0
\(531\) 31.8207 1.38090
\(532\) 0 0
\(533\) −25.5793 −1.10796
\(534\) 0 0
\(535\) −1.64658 −0.0711880
\(536\) 0 0
\(537\) −0.651639 −0.0281203
\(538\) 0 0
\(539\) 2.20855 0.0951291
\(540\) 0 0
\(541\) −7.61211 −0.327270 −0.163635 0.986521i \(-0.552322\pi\)
−0.163635 + 0.986521i \(0.552322\pi\)
\(542\) 0 0
\(543\) −9.82754 −0.421740
\(544\) 0 0
\(545\) 0.954357 0.0408801
\(546\) 0 0
\(547\) 18.3303 0.783748 0.391874 0.920019i \(-0.371827\pi\)
0.391874 + 0.920019i \(0.371827\pi\)
\(548\) 0 0
\(549\) 29.4948 1.25881
\(550\) 0 0
\(551\) 5.66119 0.241175
\(552\) 0 0
\(553\) 24.3189 1.03415
\(554\) 0 0
\(555\) 1.76547 0.0749399
\(556\) 0 0
\(557\) 36.7000 1.55503 0.777514 0.628866i \(-0.216481\pi\)
0.777514 + 0.628866i \(0.216481\pi\)
\(558\) 0 0
\(559\) 19.1398 0.809528
\(560\) 0 0
\(561\) −9.88273 −0.417249
\(562\) 0 0
\(563\) 16.1319 0.679877 0.339939 0.940448i \(-0.389594\pi\)
0.339939 + 0.940448i \(0.389594\pi\)
\(564\) 0 0
\(565\) −5.68879 −0.239329
\(566\) 0 0
\(567\) −19.1889 −0.805858
\(568\) 0 0
\(569\) −19.2051 −0.805120 −0.402560 0.915394i \(-0.631880\pi\)
−0.402560 + 0.915394i \(0.631880\pi\)
\(570\) 0 0
\(571\) 2.46907 0.103327 0.0516636 0.998665i \(-0.483548\pi\)
0.0516636 + 0.998665i \(0.483548\pi\)
\(572\) 0 0
\(573\) −9.07162 −0.378972
\(574\) 0 0
\(575\) 5.77846 0.240978
\(576\) 0 0
\(577\) 11.7233 0.488046 0.244023 0.969769i \(-0.421533\pi\)
0.244023 + 0.969769i \(0.421533\pi\)
\(578\) 0 0
\(579\) −3.77234 −0.156773
\(580\) 0 0
\(581\) −13.4396 −0.557571
\(582\) 0 0
\(583\) −49.1881 −2.03716
\(584\) 0 0
\(585\) 5.63359 0.232920
\(586\) 0 0
\(587\) 8.28973 0.342154 0.171077 0.985258i \(-0.445275\pi\)
0.171077 + 0.985258i \(0.445275\pi\)
\(588\) 0 0
\(589\) 7.55691 0.311377
\(590\) 0 0
\(591\) 7.94480 0.326806
\(592\) 0 0
\(593\) −31.5760 −1.29667 −0.648336 0.761354i \(-0.724535\pi\)
−0.648336 + 0.761354i \(0.724535\pi\)
\(594\) 0 0
\(595\) −10.2767 −0.421305
\(596\) 0 0
\(597\) −0.602558 −0.0246610
\(598\) 0 0
\(599\) −1.28629 −0.0525564 −0.0262782 0.999655i \(-0.508366\pi\)
−0.0262782 + 0.999655i \(0.508366\pi\)
\(600\) 0 0
\(601\) 38.8432 1.58445 0.792224 0.610231i \(-0.208923\pi\)
0.792224 + 0.610231i \(0.208923\pi\)
\(602\) 0 0
\(603\) −32.1871 −1.31076
\(604\) 0 0
\(605\) −19.8793 −0.808208
\(606\) 0 0
\(607\) −43.6888 −1.77327 −0.886637 0.462467i \(-0.846964\pi\)
−0.886637 + 0.462467i \(0.846964\pi\)
\(608\) 0 0
\(609\) 7.24732 0.293676
\(610\) 0 0
\(611\) −22.5344 −0.911643
\(612\) 0 0
\(613\) −30.8172 −1.24470 −0.622348 0.782741i \(-0.713821\pi\)
−0.622348 + 0.782741i \(0.713821\pi\)
\(614\) 0 0
\(615\) 5.93793 0.239440
\(616\) 0 0
\(617\) 10.4983 0.422645 0.211322 0.977416i \(-0.432223\pi\)
0.211322 + 0.977416i \(0.432223\pi\)
\(618\) 0 0
\(619\) −13.3224 −0.535472 −0.267736 0.963492i \(-0.586275\pi\)
−0.267736 + 0.963492i \(0.586275\pi\)
\(620\) 0 0
\(621\) −15.7164 −0.630677
\(622\) 0 0
\(623\) −42.1432 −1.68843
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −2.61555 −0.104455
\(628\) 0 0
\(629\) 14.1725 0.565093
\(630\) 0 0
\(631\) −1.21199 −0.0482486 −0.0241243 0.999709i \(-0.507680\pi\)
−0.0241243 + 0.999709i \(0.507680\pi\)
\(632\) 0 0
\(633\) 0.726700 0.0288837
\(634\) 0 0
\(635\) −10.3043 −0.408915
\(636\) 0 0
\(637\) 0.805853 0.0319291
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −49.6965 −1.96289 −0.981447 0.191732i \(-0.938589\pi\)
−0.981447 + 0.191732i \(0.938589\pi\)
\(642\) 0 0
\(643\) 39.0449 1.53978 0.769890 0.638177i \(-0.220311\pi\)
0.769890 + 0.638177i \(0.220311\pi\)
\(644\) 0 0
\(645\) −4.44309 −0.174946
\(646\) 0 0
\(647\) 28.4232 1.11743 0.558716 0.829359i \(-0.311294\pi\)
0.558716 + 0.829359i \(0.311294\pi\)
\(648\) 0 0
\(649\) −63.6413 −2.49814
\(650\) 0 0
\(651\) 9.67418 0.379161
\(652\) 0 0
\(653\) 29.0586 1.13715 0.568576 0.822631i \(-0.307494\pi\)
0.568576 + 0.822631i \(0.307494\pi\)
\(654\) 0 0
\(655\) 3.11383 0.121667
\(656\) 0 0
\(657\) 26.2637 1.02465
\(658\) 0 0
\(659\) −11.8957 −0.463392 −0.231696 0.972788i \(-0.574427\pi\)
−0.231696 + 0.972788i \(0.574427\pi\)
\(660\) 0 0
\(661\) 30.8923 1.20157 0.600785 0.799410i \(-0.294855\pi\)
0.600785 + 0.799410i \(0.294855\pi\)
\(662\) 0 0
\(663\) −3.60600 −0.140045
\(664\) 0 0
\(665\) −2.71982 −0.105470
\(666\) 0 0
\(667\) −32.7129 −1.26665
\(668\) 0 0
\(669\) 1.84664 0.0713953
\(670\) 0 0
\(671\) −58.9897 −2.27727
\(672\) 0 0
\(673\) 37.5354 1.44688 0.723442 0.690385i \(-0.242559\pi\)
0.723442 + 0.690385i \(0.242559\pi\)
\(674\) 0 0
\(675\) −2.71982 −0.104686
\(676\) 0 0
\(677\) −31.6466 −1.21628 −0.608138 0.793831i \(-0.708083\pi\)
−0.608138 + 0.793831i \(0.708083\pi\)
\(678\) 0 0
\(679\) −29.5500 −1.13403
\(680\) 0 0
\(681\) −5.13369 −0.196724
\(682\) 0 0
\(683\) −22.6233 −0.865656 −0.432828 0.901477i \(-0.642484\pi\)
−0.432828 + 0.901477i \(0.642484\pi\)
\(684\) 0 0
\(685\) −13.4526 −0.513999
\(686\) 0 0
\(687\) 4.78801 0.182674
\(688\) 0 0
\(689\) −17.9477 −0.683752
\(690\) 0 0
\(691\) −17.7655 −0.675830 −0.337915 0.941177i \(-0.609722\pi\)
−0.337915 + 0.941177i \(0.609722\pi\)
\(692\) 0 0
\(693\) 41.9931 1.59519
\(694\) 0 0
\(695\) 9.55691 0.362514
\(696\) 0 0
\(697\) 47.6673 1.80553
\(698\) 0 0
\(699\) −4.28973 −0.162252
\(700\) 0 0
\(701\) 25.6052 0.967096 0.483548 0.875318i \(-0.339348\pi\)
0.483548 + 0.875318i \(0.339348\pi\)
\(702\) 0 0
\(703\) 3.75086 0.141466
\(704\) 0 0
\(705\) 5.23109 0.197014
\(706\) 0 0
\(707\) −12.2345 −0.460127
\(708\) 0 0
\(709\) 23.2311 0.872462 0.436231 0.899835i \(-0.356313\pi\)
0.436231 + 0.899835i \(0.356313\pi\)
\(710\) 0 0
\(711\) 24.8432 0.931693
\(712\) 0 0
\(713\) −43.6673 −1.63535
\(714\) 0 0
\(715\) −11.2672 −0.421369
\(716\) 0 0
\(717\) −9.48873 −0.354363
\(718\) 0 0
\(719\) −24.9544 −0.930640 −0.465320 0.885142i \(-0.654061\pi\)
−0.465320 + 0.885142i \(0.654061\pi\)
\(720\) 0 0
\(721\) 11.8759 0.442280
\(722\) 0 0
\(723\) −2.27062 −0.0844454
\(724\) 0 0
\(725\) −5.66119 −0.210251
\(726\) 0 0
\(727\) 3.39744 0.126004 0.0630021 0.998013i \(-0.479933\pi\)
0.0630021 + 0.998013i \(0.479933\pi\)
\(728\) 0 0
\(729\) −15.7620 −0.583779
\(730\) 0 0
\(731\) −35.6673 −1.31920
\(732\) 0 0
\(733\) −9.66730 −0.357070 −0.178535 0.983934i \(-0.557136\pi\)
−0.178535 + 0.983934i \(0.557136\pi\)
\(734\) 0 0
\(735\) −0.187070 −0.00690016
\(736\) 0 0
\(737\) 64.3741 2.37125
\(738\) 0 0
\(739\) −17.0225 −0.626184 −0.313092 0.949723i \(-0.601365\pi\)
−0.313092 + 0.949723i \(0.601365\pi\)
\(740\) 0 0
\(741\) −0.954357 −0.0350592
\(742\) 0 0
\(743\) −8.57496 −0.314585 −0.157292 0.987552i \(-0.550277\pi\)
−0.157292 + 0.987552i \(0.550277\pi\)
\(744\) 0 0
\(745\) −19.6121 −0.718532
\(746\) 0 0
\(747\) −13.7294 −0.502332
\(748\) 0 0
\(749\) −4.47842 −0.163638
\(750\) 0 0
\(751\) −12.8310 −0.468209 −0.234104 0.972211i \(-0.575216\pi\)
−0.234104 + 0.972211i \(0.575216\pi\)
\(752\) 0 0
\(753\) 8.57946 0.312653
\(754\) 0 0
\(755\) −17.0518 −0.620577
\(756\) 0 0
\(757\) −35.8827 −1.30418 −0.652090 0.758142i \(-0.726108\pi\)
−0.652090 + 0.758142i \(0.726108\pi\)
\(758\) 0 0
\(759\) 15.1138 0.548597
\(760\) 0 0
\(761\) −30.1234 −1.09197 −0.545986 0.837794i \(-0.683845\pi\)
−0.545986 + 0.837794i \(0.683845\pi\)
\(762\) 0 0
\(763\) 2.59568 0.0939700
\(764\) 0 0
\(765\) −10.4983 −0.379566
\(766\) 0 0
\(767\) −23.2213 −0.838474
\(768\) 0 0
\(769\) −6.22154 −0.224355 −0.112177 0.993688i \(-0.535782\pi\)
−0.112177 + 0.993688i \(0.535782\pi\)
\(770\) 0 0
\(771\) 13.4588 0.484705
\(772\) 0 0
\(773\) 10.2362 0.368169 0.184084 0.982910i \(-0.441068\pi\)
0.184084 + 0.982910i \(0.441068\pi\)
\(774\) 0 0
\(775\) −7.55691 −0.271452
\(776\) 0 0
\(777\) 4.80176 0.172262
\(778\) 0 0
\(779\) 12.6155 0.451999
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 15.3974 0.550260
\(784\) 0 0
\(785\) 22.4983 0.802998
\(786\) 0 0
\(787\) 4.34654 0.154937 0.0774687 0.996995i \(-0.475316\pi\)
0.0774687 + 0.996995i \(0.475316\pi\)
\(788\) 0 0
\(789\) 12.8862 0.458760
\(790\) 0 0
\(791\) −15.4725 −0.550139
\(792\) 0 0
\(793\) −21.5241 −0.764342
\(794\) 0 0
\(795\) 4.16635 0.147765
\(796\) 0 0
\(797\) −30.1932 −1.06950 −0.534749 0.845011i \(-0.679594\pi\)
−0.534749 + 0.845011i \(0.679594\pi\)
\(798\) 0 0
\(799\) 41.9931 1.48561
\(800\) 0 0
\(801\) −43.0518 −1.52116
\(802\) 0 0
\(803\) −52.5275 −1.85366
\(804\) 0 0
\(805\) 15.7164 0.553930
\(806\) 0 0
\(807\) −6.58957 −0.231964
\(808\) 0 0
\(809\) −11.8077 −0.415136 −0.207568 0.978221i \(-0.566555\pi\)
−0.207568 + 0.978221i \(0.566555\pi\)
\(810\) 0 0
\(811\) −0.811111 −0.0284820 −0.0142410 0.999899i \(-0.504533\pi\)
−0.0142410 + 0.999899i \(0.504533\pi\)
\(812\) 0 0
\(813\) −7.45264 −0.261375
\(814\) 0 0
\(815\) 22.4362 0.785906
\(816\) 0 0
\(817\) −9.43965 −0.330251
\(818\) 0 0
\(819\) 15.3224 0.535407
\(820\) 0 0
\(821\) 40.6707 1.41942 0.709709 0.704495i \(-0.248826\pi\)
0.709709 + 0.704495i \(0.248826\pi\)
\(822\) 0 0
\(823\) 7.48185 0.260801 0.130401 0.991461i \(-0.458374\pi\)
0.130401 + 0.991461i \(0.458374\pi\)
\(824\) 0 0
\(825\) 2.61555 0.0910617
\(826\) 0 0
\(827\) 46.4346 1.61469 0.807344 0.590080i \(-0.200904\pi\)
0.807344 + 0.590080i \(0.200904\pi\)
\(828\) 0 0
\(829\) −10.7267 −0.372554 −0.186277 0.982497i \(-0.559642\pi\)
−0.186277 + 0.982497i \(0.559642\pi\)
\(830\) 0 0
\(831\) −3.15680 −0.109508
\(832\) 0 0
\(833\) −1.50172 −0.0520315
\(834\) 0 0
\(835\) −6.69223 −0.231594
\(836\) 0 0
\(837\) 20.5535 0.710432
\(838\) 0 0
\(839\) −10.1465 −0.350295 −0.175148 0.984542i \(-0.556040\pi\)
−0.175148 + 0.984542i \(0.556040\pi\)
\(840\) 0 0
\(841\) 3.04908 0.105141
\(842\) 0 0
\(843\) 3.94480 0.135866
\(844\) 0 0
\(845\) 8.88885 0.305786
\(846\) 0 0
\(847\) −54.0682 −1.85780
\(848\) 0 0
\(849\) 9.55004 0.327756
\(850\) 0 0
\(851\) −21.6742 −0.742981
\(852\) 0 0
\(853\) −26.1104 −0.894003 −0.447001 0.894533i \(-0.647508\pi\)
−0.447001 + 0.894533i \(0.647508\pi\)
\(854\) 0 0
\(855\) −2.77846 −0.0950212
\(856\) 0 0
\(857\) 20.6922 0.706833 0.353416 0.935466i \(-0.385020\pi\)
0.353416 + 0.935466i \(0.385020\pi\)
\(858\) 0 0
\(859\) −3.53093 −0.120474 −0.0602370 0.998184i \(-0.519186\pi\)
−0.0602370 + 0.998184i \(0.519186\pi\)
\(860\) 0 0
\(861\) 16.1501 0.550395
\(862\) 0 0
\(863\) 3.39906 0.115705 0.0578527 0.998325i \(-0.481575\pi\)
0.0578527 + 0.998325i \(0.481575\pi\)
\(864\) 0 0
\(865\) 2.86469 0.0974023
\(866\) 0 0
\(867\) −1.28179 −0.0435320
\(868\) 0 0
\(869\) −49.6864 −1.68550
\(870\) 0 0
\(871\) 23.4887 0.795885
\(872\) 0 0
\(873\) −30.1871 −1.02168
\(874\) 0 0
\(875\) 2.71982 0.0919468
\(876\) 0 0
\(877\) −0.422364 −0.0142622 −0.00713111 0.999975i \(-0.502270\pi\)
−0.00713111 + 0.999975i \(0.502270\pi\)
\(878\) 0 0
\(879\) −3.18201 −0.107327
\(880\) 0 0
\(881\) 16.5243 0.556716 0.278358 0.960477i \(-0.410210\pi\)
0.278358 + 0.960477i \(0.410210\pi\)
\(882\) 0 0
\(883\) −24.5535 −0.826290 −0.413145 0.910665i \(-0.635570\pi\)
−0.413145 + 0.910665i \(0.635570\pi\)
\(884\) 0 0
\(885\) 5.39057 0.181202
\(886\) 0 0
\(887\) 41.5975 1.39671 0.698354 0.715753i \(-0.253916\pi\)
0.698354 + 0.715753i \(0.253916\pi\)
\(888\) 0 0
\(889\) −28.0260 −0.939961
\(890\) 0 0
\(891\) 39.2051 1.31342
\(892\) 0 0
\(893\) 11.1138 0.371910
\(894\) 0 0
\(895\) 1.38445 0.0462771
\(896\) 0 0
\(897\) 5.51471 0.184131
\(898\) 0 0
\(899\) 42.7811 1.42683
\(900\) 0 0
\(901\) 33.4458 1.11424
\(902\) 0 0
\(903\) −12.0844 −0.402144
\(904\) 0 0
\(905\) 20.8793 0.694051
\(906\) 0 0
\(907\) −31.9294 −1.06020 −0.530100 0.847935i \(-0.677846\pi\)
−0.530100 + 0.847935i \(0.677846\pi\)
\(908\) 0 0
\(909\) −12.4983 −0.414542
\(910\) 0 0
\(911\) −26.9605 −0.893240 −0.446620 0.894724i \(-0.647372\pi\)
−0.446620 + 0.894724i \(0.647372\pi\)
\(912\) 0 0
\(913\) 27.4588 0.908752
\(914\) 0 0
\(915\) 4.99656 0.165181
\(916\) 0 0
\(917\) 8.46907 0.279673
\(918\) 0 0
\(919\) 0.394005 0.0129970 0.00649850 0.999979i \(-0.497931\pi\)
0.00649850 + 0.999979i \(0.497931\pi\)
\(920\) 0 0
\(921\) −3.64496 −0.120106
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −3.75086 −0.123327
\(926\) 0 0
\(927\) 12.1319 0.398463
\(928\) 0 0
\(929\) −32.9284 −1.08035 −0.540173 0.841554i \(-0.681641\pi\)
−0.540173 + 0.841554i \(0.681641\pi\)
\(930\) 0 0
\(931\) −0.397442 −0.0130256
\(932\) 0 0
\(933\) 5.19900 0.170208
\(934\) 0 0
\(935\) 20.9966 0.686661
\(936\) 0 0
\(937\) −26.3388 −0.860451 −0.430226 0.902721i \(-0.641566\pi\)
−0.430226 + 0.902721i \(0.641566\pi\)
\(938\) 0 0
\(939\) 0.547362 0.0178625
\(940\) 0 0
\(941\) 4.71982 0.153862 0.0769309 0.997036i \(-0.475488\pi\)
0.0769309 + 0.997036i \(0.475488\pi\)
\(942\) 0 0
\(943\) −72.8984 −2.37390
\(944\) 0 0
\(945\) −7.39744 −0.240639
\(946\) 0 0
\(947\) −53.9639 −1.75359 −0.876796 0.480863i \(-0.840323\pi\)
−0.876796 + 0.480863i \(0.840323\pi\)
\(948\) 0 0
\(949\) −19.1661 −0.622159
\(950\) 0 0
\(951\) −10.2958 −0.333866
\(952\) 0 0
\(953\) −13.0801 −0.423707 −0.211853 0.977301i \(-0.567950\pi\)
−0.211853 + 0.977301i \(0.567950\pi\)
\(954\) 0 0
\(955\) 19.2733 0.623669
\(956\) 0 0
\(957\) −14.8071 −0.478646
\(958\) 0 0
\(959\) −36.5888 −1.18151
\(960\) 0 0
\(961\) 26.1070 0.842160
\(962\) 0 0
\(963\) −4.57496 −0.147426
\(964\) 0 0
\(965\) 8.01461 0.257999
\(966\) 0 0
\(967\) −10.4914 −0.337381 −0.168690 0.985669i \(-0.553954\pi\)
−0.168690 + 0.985669i \(0.553954\pi\)
\(968\) 0 0
\(969\) 1.77846 0.0571323
\(970\) 0 0
\(971\) 12.4691 0.400151 0.200076 0.979780i \(-0.435881\pi\)
0.200076 + 0.979780i \(0.435881\pi\)
\(972\) 0 0
\(973\) 25.9931 0.833301
\(974\) 0 0
\(975\) 0.954357 0.0305639
\(976\) 0 0
\(977\) −52.4699 −1.67866 −0.839331 0.543621i \(-0.817053\pi\)
−0.839331 + 0.543621i \(0.817053\pi\)
\(978\) 0 0
\(979\) 86.1035 2.75188
\(980\) 0 0
\(981\) 2.65164 0.0846603
\(982\) 0 0
\(983\) −14.1939 −0.452717 −0.226358 0.974044i \(-0.572682\pi\)
−0.226358 + 0.974044i \(0.572682\pi\)
\(984\) 0 0
\(985\) −16.8793 −0.537819
\(986\) 0 0
\(987\) 14.2277 0.452871
\(988\) 0 0
\(989\) 54.5466 1.73448
\(990\) 0 0
\(991\) −19.4036 −0.616374 −0.308187 0.951326i \(-0.599722\pi\)
−0.308187 + 0.951326i \(0.599722\pi\)
\(992\) 0 0
\(993\) −6.90240 −0.219041
\(994\) 0 0
\(995\) 1.28018 0.0405843
\(996\) 0 0
\(997\) −8.14648 −0.258002 −0.129001 0.991644i \(-0.541177\pi\)
−0.129001 + 0.991644i \(0.541177\pi\)
\(998\) 0 0
\(999\) 10.2017 0.322767
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1520.2.a.q.1.2 3
4.3 odd 2 760.2.a.i.1.2 3
5.4 even 2 7600.2.a.bp.1.2 3
8.3 odd 2 6080.2.a.bx.1.2 3
8.5 even 2 6080.2.a.br.1.2 3
12.11 even 2 6840.2.a.bm.1.3 3
20.3 even 4 3800.2.d.n.3649.3 6
20.7 even 4 3800.2.d.n.3649.4 6
20.19 odd 2 3800.2.a.w.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.a.i.1.2 3 4.3 odd 2
1520.2.a.q.1.2 3 1.1 even 1 trivial
3800.2.a.w.1.2 3 20.19 odd 2
3800.2.d.n.3649.3 6 20.3 even 4
3800.2.d.n.3649.4 6 20.7 even 4
6080.2.a.br.1.2 3 8.5 even 2
6080.2.a.bx.1.2 3 8.3 odd 2
6840.2.a.bm.1.3 3 12.11 even 2
7600.2.a.bp.1.2 3 5.4 even 2