Properties

Label 156.2.q.b.49.1
Level $156$
Weight $2$
Character 156.49
Analytic conductor $1.246$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [156,2,Mod(49,156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("156.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 156.q (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.24566627153\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-43})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} - 11x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.1
Root \(3.08945 - 1.20635i\) of defining polynomial
Character \(\chi\) \(=\) 156.49
Dual form 156.2.q.b.121.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} -2.41269i q^{5} +(-3.58945 - 2.07237i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(3.00000 - 1.73205i) q^{11} +(1.50000 + 3.27872i) q^{13} +(-2.08945 + 1.20635i) q^{15} +(3.08945 - 5.35109i) q^{17} +(-3.00000 - 1.73205i) q^{19} +4.14474i q^{21} +(1.00000 + 1.73205i) q^{23} -0.821092 q^{25} +1.00000 q^{27} +(4.08945 + 7.08314i) q^{29} +7.60885i q^{31} +(-3.00000 - 1.73205i) q^{33} +(-5.00000 + 8.66025i) q^{35} +(0.910546 - 0.525704i) q^{37} +(2.08945 - 2.93840i) q^{39} +(5.08945 - 2.93840i) q^{41} +(0.410546 - 0.711086i) q^{43} +(2.08945 + 1.20635i) q^{45} -10.3923i q^{47} +(5.08945 + 8.81519i) q^{49} -6.17891 q^{51} -10.1789 q^{53} +(-4.17891 - 7.23808i) q^{55} +3.46410i q^{57} +(1.17891 + 0.680643i) q^{59} +(-2.50000 + 4.33013i) q^{61} +(3.58945 - 2.07237i) q^{63} +(7.91055 - 3.61904i) q^{65} +(3.58945 - 2.07237i) q^{67} +(1.00000 - 1.73205i) q^{69} +(-3.00000 - 1.73205i) q^{71} -11.3828i q^{73} +(0.410546 + 0.711086i) q^{75} -14.3578 q^{77} +13.1789 q^{79} +(-0.500000 - 0.866025i) q^{81} +11.7536i q^{83} +(-12.9105 - 7.45391i) q^{85} +(4.08945 - 7.08314i) q^{87} +(6.00000 - 3.46410i) q^{89} +(1.41055 - 14.8774i) q^{91} +(6.58945 - 3.80442i) q^{93} +(-4.17891 + 7.23808i) q^{95} +(-1.76836 - 1.02096i) q^{97} +3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 3 q^{7} - 2 q^{9} + 12 q^{11} + 6 q^{13} + 3 q^{15} + q^{17} - 12 q^{19} + 4 q^{23} - 26 q^{25} + 4 q^{27} + 5 q^{29} - 12 q^{33} - 20 q^{35} + 15 q^{37} - 3 q^{39} + 9 q^{41} + 13 q^{43}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) 2.41269i 1.07899i −0.841989 0.539495i \(-0.818615\pi\)
0.841989 0.539495i \(-0.181385\pi\)
\(6\) 0 0
\(7\) −3.58945 2.07237i −1.35669 0.783283i −0.367511 0.930019i \(-0.619790\pi\)
−0.989176 + 0.146736i \(0.953123\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 3.00000 1.73205i 0.904534 0.522233i 0.0258656 0.999665i \(-0.491766\pi\)
0.878668 + 0.477432i \(0.158432\pi\)
\(12\) 0 0
\(13\) 1.50000 + 3.27872i 0.416025 + 0.909353i
\(14\) 0 0
\(15\) −2.08945 + 1.20635i −0.539495 + 0.311477i
\(16\) 0 0
\(17\) 3.08945 5.35109i 0.749303 1.29783i −0.198855 0.980029i \(-0.563722\pi\)
0.948157 0.317801i \(-0.102945\pi\)
\(18\) 0 0
\(19\) −3.00000 1.73205i −0.688247 0.397360i 0.114708 0.993399i \(-0.463407\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) 4.14474i 0.904457i
\(22\) 0 0
\(23\) 1.00000 + 1.73205i 0.208514 + 0.361158i 0.951247 0.308431i \(-0.0998038\pi\)
−0.742732 + 0.669588i \(0.766471\pi\)
\(24\) 0 0
\(25\) −0.821092 −0.164218
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 4.08945 + 7.08314i 0.759393 + 1.31531i 0.943161 + 0.332337i \(0.107837\pi\)
−0.183768 + 0.982970i \(0.558830\pi\)
\(30\) 0 0
\(31\) 7.60885i 1.36659i 0.730143 + 0.683295i \(0.239454\pi\)
−0.730143 + 0.683295i \(0.760546\pi\)
\(32\) 0 0
\(33\) −3.00000 1.73205i −0.522233 0.301511i
\(34\) 0 0
\(35\) −5.00000 + 8.66025i −0.845154 + 1.46385i
\(36\) 0 0
\(37\) 0.910546 0.525704i 0.149693 0.0864252i −0.423283 0.905998i \(-0.639122\pi\)
0.572976 + 0.819572i \(0.305789\pi\)
\(38\) 0 0
\(39\) 2.08945 2.93840i 0.334580 0.470520i
\(40\) 0 0
\(41\) 5.08945 2.93840i 0.794839 0.458901i −0.0468242 0.998903i \(-0.514910\pi\)
0.841663 + 0.540003i \(0.181577\pi\)
\(42\) 0 0
\(43\) 0.410546 0.711086i 0.0626077 0.108440i −0.833023 0.553239i \(-0.813392\pi\)
0.895630 + 0.444799i \(0.146725\pi\)
\(44\) 0 0
\(45\) 2.08945 + 1.20635i 0.311477 + 0.179832i
\(46\) 0 0
\(47\) 10.3923i 1.51587i −0.652328 0.757937i \(-0.726208\pi\)
0.652328 0.757937i \(-0.273792\pi\)
\(48\) 0 0
\(49\) 5.08945 + 8.81519i 0.727065 + 1.25931i
\(50\) 0 0
\(51\) −6.17891 −0.865220
\(52\) 0 0
\(53\) −10.1789 −1.39818 −0.699090 0.715033i \(-0.746411\pi\)
−0.699090 + 0.715033i \(0.746411\pi\)
\(54\) 0 0
\(55\) −4.17891 7.23808i −0.563484 0.975983i
\(56\) 0 0
\(57\) 3.46410i 0.458831i
\(58\) 0 0
\(59\) 1.17891 + 0.680643i 0.153481 + 0.0886122i 0.574773 0.818313i \(-0.305090\pi\)
−0.421293 + 0.906925i \(0.638423\pi\)
\(60\) 0 0
\(61\) −2.50000 + 4.33013i −0.320092 + 0.554416i −0.980507 0.196485i \(-0.937047\pi\)
0.660415 + 0.750901i \(0.270381\pi\)
\(62\) 0 0
\(63\) 3.58945 2.07237i 0.452229 0.261094i
\(64\) 0 0
\(65\) 7.91055 3.61904i 0.981182 0.448887i
\(66\) 0 0
\(67\) 3.58945 2.07237i 0.438522 0.253181i −0.264449 0.964400i \(-0.585190\pi\)
0.702970 + 0.711219i \(0.251857\pi\)
\(68\) 0 0
\(69\) 1.00000 1.73205i 0.120386 0.208514i
\(70\) 0 0
\(71\) −3.00000 1.73205i −0.356034 0.205557i 0.311305 0.950310i \(-0.399234\pi\)
−0.667340 + 0.744753i \(0.732567\pi\)
\(72\) 0 0
\(73\) 11.3828i 1.33226i −0.745836 0.666130i \(-0.767950\pi\)
0.745836 0.666130i \(-0.232050\pi\)
\(74\) 0 0
\(75\) 0.410546 + 0.711086i 0.0474057 + 0.0821092i
\(76\) 0 0
\(77\) −14.3578 −1.63623
\(78\) 0 0
\(79\) 13.1789 1.48274 0.741372 0.671095i \(-0.234176\pi\)
0.741372 + 0.671095i \(0.234176\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 11.7536i 1.29012i 0.764130 + 0.645062i \(0.223169\pi\)
−0.764130 + 0.645062i \(0.776831\pi\)
\(84\) 0 0
\(85\) −12.9105 7.45391i −1.40035 0.808490i
\(86\) 0 0
\(87\) 4.08945 7.08314i 0.438436 0.759393i
\(88\) 0 0
\(89\) 6.00000 3.46410i 0.635999 0.367194i −0.147073 0.989126i \(-0.546985\pi\)
0.783072 + 0.621932i \(0.213652\pi\)
\(90\) 0 0
\(91\) 1.41055 14.8774i 0.147865 1.55957i
\(92\) 0 0
\(93\) 6.58945 3.80442i 0.683295 0.394500i
\(94\) 0 0
\(95\) −4.17891 + 7.23808i −0.428747 + 0.742612i
\(96\) 0 0
\(97\) −1.76836 1.02096i −0.179550 0.103663i 0.407531 0.913191i \(-0.366390\pi\)
−0.587081 + 0.809528i \(0.699723\pi\)
\(98\) 0 0
\(99\) 3.46410i 0.348155i
\(100\) 0 0
\(101\) −6.08945 10.5472i −0.605923 1.04949i −0.991905 0.126983i \(-0.959470\pi\)
0.385981 0.922507i \(-0.373863\pi\)
\(102\) 0 0
\(103\) 3.17891 0.313227 0.156614 0.987660i \(-0.449942\pi\)
0.156614 + 0.987660i \(0.449942\pi\)
\(104\) 0 0
\(105\) 10.0000 0.975900
\(106\) 0 0
\(107\) 5.00000 + 8.66025i 0.483368 + 0.837218i 0.999818 0.0190994i \(-0.00607989\pi\)
−0.516449 + 0.856318i \(0.672747\pi\)
\(108\) 0 0
\(109\) 7.60885i 0.728795i 0.931243 + 0.364398i \(0.118725\pi\)
−0.931243 + 0.364398i \(0.881275\pi\)
\(110\) 0 0
\(111\) −0.910546 0.525704i −0.0864252 0.0498976i
\(112\) 0 0
\(113\) −6.08945 + 10.5472i −0.572848 + 0.992201i 0.423424 + 0.905932i \(0.360828\pi\)
−0.996272 + 0.0862697i \(0.972505\pi\)
\(114\) 0 0
\(115\) 4.17891 2.41269i 0.389685 0.224985i
\(116\) 0 0
\(117\) −3.58945 0.340322i −0.331845 0.0314627i
\(118\) 0 0
\(119\) −22.1789 + 12.8050i −2.03314 + 1.17383i
\(120\) 0 0
\(121\) 0.500000 0.866025i 0.0454545 0.0787296i
\(122\) 0 0
\(123\) −5.08945 2.93840i −0.458901 0.264946i
\(124\) 0 0
\(125\) 10.0824i 0.901800i
\(126\) 0 0
\(127\) 1.41055 + 2.44314i 0.125166 + 0.216793i 0.921798 0.387671i \(-0.126720\pi\)
−0.796632 + 0.604465i \(0.793387\pi\)
\(128\) 0 0
\(129\) −0.821092 −0.0722931
\(130\) 0 0
\(131\) 6.35782 0.555485 0.277743 0.960656i \(-0.410414\pi\)
0.277743 + 0.960656i \(0.410414\pi\)
\(132\) 0 0
\(133\) 7.17891 + 12.4342i 0.622490 + 1.07818i
\(134\) 0 0
\(135\) 2.41269i 0.207652i
\(136\) 0 0
\(137\) −11.0895 6.40250i −0.947436 0.547002i −0.0551525 0.998478i \(-0.517564\pi\)
−0.892284 + 0.451476i \(0.850898\pi\)
\(138\) 0 0
\(139\) −8.58945 + 14.8774i −0.728548 + 1.26188i 0.228949 + 0.973438i \(0.426471\pi\)
−0.957497 + 0.288444i \(0.906862\pi\)
\(140\) 0 0
\(141\) −9.00000 + 5.19615i −0.757937 + 0.437595i
\(142\) 0 0
\(143\) 10.1789 + 7.23808i 0.851203 + 0.605279i
\(144\) 0 0
\(145\) 17.0895 9.86660i 1.41920 0.819377i
\(146\) 0 0
\(147\) 5.08945 8.81519i 0.419771 0.727065i
\(148\) 0 0
\(149\) 5.08945 + 2.93840i 0.416944 + 0.240723i 0.693769 0.720197i \(-0.255949\pi\)
−0.276825 + 0.960920i \(0.589282\pi\)
\(150\) 0 0
\(151\) 20.0431i 1.63108i 0.578699 + 0.815541i \(0.303561\pi\)
−0.578699 + 0.815541i \(0.696439\pi\)
\(152\) 0 0
\(153\) 3.08945 + 5.35109i 0.249768 + 0.432610i
\(154\) 0 0
\(155\) 18.3578 1.47454
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) 5.08945 + 8.81519i 0.403620 + 0.699090i
\(160\) 0 0
\(161\) 8.28949i 0.653303i
\(162\) 0 0
\(163\) −6.58945 3.80442i −0.516126 0.297985i 0.219222 0.975675i \(-0.429648\pi\)
−0.735348 + 0.677690i \(0.762981\pi\)
\(164\) 0 0
\(165\) −4.17891 + 7.23808i −0.325328 + 0.563484i
\(166\) 0 0
\(167\) 6.00000 3.46410i 0.464294 0.268060i −0.249554 0.968361i \(-0.580284\pi\)
0.713848 + 0.700301i \(0.246951\pi\)
\(168\) 0 0
\(169\) −8.50000 + 9.83616i −0.653846 + 0.756628i
\(170\) 0 0
\(171\) 3.00000 1.73205i 0.229416 0.132453i
\(172\) 0 0
\(173\) −9.00000 + 15.5885i −0.684257 + 1.18517i 0.289412 + 0.957205i \(0.406540\pi\)
−0.973670 + 0.227964i \(0.926793\pi\)
\(174\) 0 0
\(175\) 2.94727 + 1.70161i 0.222793 + 0.128629i
\(176\) 0 0
\(177\) 1.36129i 0.102321i
\(178\) 0 0
\(179\) 4.17891 + 7.23808i 0.312346 + 0.541000i 0.978870 0.204484i \(-0.0655518\pi\)
−0.666524 + 0.745484i \(0.732218\pi\)
\(180\) 0 0
\(181\) −20.5367 −1.52648 −0.763241 0.646113i \(-0.776393\pi\)
−0.763241 + 0.646113i \(0.776393\pi\)
\(182\) 0 0
\(183\) 5.00000 0.369611
\(184\) 0 0
\(185\) −1.26836 2.19687i −0.0932519 0.161517i
\(186\) 0 0
\(187\) 21.4044i 1.56524i
\(188\) 0 0
\(189\) −3.58945 2.07237i −0.261094 0.150743i
\(190\) 0 0
\(191\) 1.17891 2.04193i 0.0853028 0.147749i −0.820217 0.572052i \(-0.806148\pi\)
0.905520 + 0.424303i \(0.139481\pi\)
\(192\) 0 0
\(193\) −11.6789 + 6.74282i −0.840666 + 0.485359i −0.857491 0.514500i \(-0.827978\pi\)
0.0168244 + 0.999858i \(0.494644\pi\)
\(194\) 0 0
\(195\) −7.08945 5.04121i −0.507686 0.361009i
\(196\) 0 0
\(197\) −8.35782 + 4.82539i −0.595470 + 0.343795i −0.767257 0.641339i \(-0.778379\pi\)
0.171788 + 0.985134i \(0.445046\pi\)
\(198\) 0 0
\(199\) 10.7684 18.6514i 0.763349 1.32216i −0.177766 0.984073i \(-0.556887\pi\)
0.941115 0.338086i \(-0.109780\pi\)
\(200\) 0 0
\(201\) −3.58945 2.07237i −0.253181 0.146174i
\(202\) 0 0
\(203\) 33.8995i 2.37928i
\(204\) 0 0
\(205\) −7.08945 12.2793i −0.495149 0.857623i
\(206\) 0 0
\(207\) −2.00000 −0.139010
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) 7.76836 + 13.4552i 0.534796 + 0.926294i 0.999173 + 0.0406565i \(0.0129449\pi\)
−0.464377 + 0.885638i \(0.653722\pi\)
\(212\) 0 0
\(213\) 3.46410i 0.237356i
\(214\) 0 0
\(215\) −1.71563 0.990521i −0.117005 0.0675530i
\(216\) 0 0
\(217\) 15.7684 27.3116i 1.07043 1.85403i
\(218\) 0 0
\(219\) −9.85782 + 5.69141i −0.666130 + 0.384590i
\(220\) 0 0
\(221\) 22.1789 + 2.10282i 1.49191 + 0.141451i
\(222\) 0 0
\(223\) −13.1789 + 7.60885i −0.882525 + 0.509526i −0.871490 0.490413i \(-0.836846\pi\)
−0.0110349 + 0.999939i \(0.503513\pi\)
\(224\) 0 0
\(225\) 0.410546 0.711086i 0.0273697 0.0474057i
\(226\) 0 0
\(227\) 7.82109 + 4.51551i 0.519104 + 0.299705i 0.736568 0.676363i \(-0.236445\pi\)
−0.217464 + 0.976068i \(0.569778\pi\)
\(228\) 0 0
\(229\) 9.65078i 0.637741i 0.947798 + 0.318871i \(0.103304\pi\)
−0.947798 + 0.318871i \(0.896696\pi\)
\(230\) 0 0
\(231\) 7.17891 + 12.4342i 0.472337 + 0.818113i
\(232\) 0 0
\(233\) 22.7156 1.48815 0.744075 0.668096i \(-0.232890\pi\)
0.744075 + 0.668096i \(0.232890\pi\)
\(234\) 0 0
\(235\) −25.0735 −1.63561
\(236\) 0 0
\(237\) −6.58945 11.4133i −0.428031 0.741372i
\(238\) 0 0
\(239\) 2.10282i 0.136020i −0.997685 0.0680099i \(-0.978335\pi\)
0.997685 0.0680099i \(-0.0216650\pi\)
\(240\) 0 0
\(241\) 5.08945 + 2.93840i 0.327841 + 0.189279i 0.654882 0.755731i \(-0.272718\pi\)
−0.327041 + 0.945010i \(0.606052\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 21.2684 12.2793i 1.35879 0.784495i
\(246\) 0 0
\(247\) 1.17891 12.4342i 0.0750121 0.791171i
\(248\) 0 0
\(249\) 10.1789 5.87680i 0.645062 0.372427i
\(250\) 0 0
\(251\) 10.3578 17.9403i 0.653780 1.13238i −0.328419 0.944532i \(-0.606516\pi\)
0.982198 0.187847i \(-0.0601510\pi\)
\(252\) 0 0
\(253\) 6.00000 + 3.46410i 0.377217 + 0.217786i
\(254\) 0 0
\(255\) 14.9078i 0.933564i
\(256\) 0 0
\(257\) −11.0895 19.2075i −0.691741 1.19813i −0.971267 0.237993i \(-0.923511\pi\)
0.279526 0.960138i \(-0.409823\pi\)
\(258\) 0 0
\(259\) −4.35782 −0.270782
\(260\) 0 0
\(261\) −8.17891 −0.506262
\(262\) 0 0
\(263\) −16.1789 28.0227i −0.997634 1.72795i −0.558352 0.829604i \(-0.688566\pi\)
−0.439282 0.898349i \(-0.644767\pi\)
\(264\) 0 0
\(265\) 24.5586i 1.50862i
\(266\) 0 0
\(267\) −6.00000 3.46410i −0.367194 0.212000i
\(268\) 0 0
\(269\) 6.17891 10.7022i 0.376735 0.652524i −0.613850 0.789422i \(-0.710380\pi\)
0.990585 + 0.136899i \(0.0437135\pi\)
\(270\) 0 0
\(271\) −12.5895 + 7.26852i −0.764755 + 0.441531i −0.831000 0.556272i \(-0.812231\pi\)
0.0662455 + 0.997803i \(0.478898\pi\)
\(272\) 0 0
\(273\) −13.5895 + 6.21712i −0.822471 + 0.376277i
\(274\) 0 0
\(275\) −2.46327 + 1.42217i −0.148541 + 0.0857602i
\(276\) 0 0
\(277\) 0.0894542 0.154939i 0.00537478 0.00930939i −0.863326 0.504647i \(-0.831622\pi\)
0.868700 + 0.495338i \(0.164956\pi\)
\(278\) 0 0
\(279\) −6.58945 3.80442i −0.394500 0.227765i
\(280\) 0 0
\(281\) 11.4437i 0.682675i 0.939941 + 0.341337i \(0.110880\pi\)
−0.939941 + 0.341337i \(0.889120\pi\)
\(282\) 0 0
\(283\) 13.5895 + 23.5376i 0.807809 + 1.39917i 0.914378 + 0.404861i \(0.132680\pi\)
−0.106569 + 0.994305i \(0.533986\pi\)
\(284\) 0 0
\(285\) 8.35782 0.495074
\(286\) 0 0
\(287\) −24.3578 −1.43780
\(288\) 0 0
\(289\) −10.5895 18.3415i −0.622909 1.07891i
\(290\) 0 0
\(291\) 2.04193i 0.119700i
\(292\) 0 0
\(293\) 28.4473 + 16.4240i 1.66191 + 0.959503i 0.971803 + 0.235792i \(0.0757685\pi\)
0.690104 + 0.723710i \(0.257565\pi\)
\(294\) 0 0
\(295\) 1.64218 2.84434i 0.0956116 0.165604i
\(296\) 0 0
\(297\) 3.00000 1.73205i 0.174078 0.100504i
\(298\) 0 0
\(299\) −4.17891 + 5.87680i −0.241673 + 0.339864i
\(300\) 0 0
\(301\) −2.94727 + 1.70161i −0.169878 + 0.0980790i
\(302\) 0 0
\(303\) −6.08945 + 10.5472i −0.349830 + 0.605923i
\(304\) 0 0
\(305\) 10.4473 + 6.03173i 0.598209 + 0.345376i
\(306\) 0 0
\(307\) 11.0729i 0.631967i 0.948765 + 0.315983i \(0.102334\pi\)
−0.948765 + 0.315983i \(0.897666\pi\)
\(308\) 0 0
\(309\) −1.58945 2.75302i −0.0904209 0.156614i
\(310\) 0 0
\(311\) 11.6422 0.660168 0.330084 0.943952i \(-0.392923\pi\)
0.330084 + 0.943952i \(0.392923\pi\)
\(312\) 0 0
\(313\) 27.8945 1.57669 0.788346 0.615232i \(-0.210938\pi\)
0.788346 + 0.615232i \(0.210938\pi\)
\(314\) 0 0
\(315\) −5.00000 8.66025i −0.281718 0.487950i
\(316\) 0 0
\(317\) 3.77398i 0.211968i 0.994368 + 0.105984i \(0.0337992\pi\)
−0.994368 + 0.105984i \(0.966201\pi\)
\(318\) 0 0
\(319\) 24.5367 + 14.1663i 1.37379 + 0.793160i
\(320\) 0 0
\(321\) 5.00000 8.66025i 0.279073 0.483368i
\(322\) 0 0
\(323\) −18.5367 + 10.7022i −1.03141 + 0.595485i
\(324\) 0 0
\(325\) −1.23164 2.69213i −0.0683190 0.149332i
\(326\) 0 0
\(327\) 6.58945 3.80442i 0.364398 0.210385i
\(328\) 0 0
\(329\) −21.5367 + 37.3027i −1.18736 + 2.05656i
\(330\) 0 0
\(331\) −17.4105 10.0520i −0.956970 0.552507i −0.0617309 0.998093i \(-0.519662\pi\)
−0.895239 + 0.445586i \(0.852995\pi\)
\(332\) 0 0
\(333\) 1.05141i 0.0576168i
\(334\) 0 0
\(335\) −5.00000 8.66025i −0.273179 0.473160i
\(336\) 0 0
\(337\) −25.3578 −1.38133 −0.690664 0.723176i \(-0.742682\pi\)
−0.690664 + 0.723176i \(0.742682\pi\)
\(338\) 0 0
\(339\) 12.1789 0.661468
\(340\) 0 0
\(341\) 13.1789 + 22.8265i 0.713678 + 1.23613i
\(342\) 0 0
\(343\) 13.1758i 0.711424i
\(344\) 0 0
\(345\) −4.17891 2.41269i −0.224985 0.129895i
\(346\) 0 0
\(347\) −10.1789 + 17.6304i −0.546432 + 0.946449i 0.452083 + 0.891976i \(0.350681\pi\)
−0.998515 + 0.0544728i \(0.982652\pi\)
\(348\) 0 0
\(349\) 8.94727 5.16571i 0.478936 0.276514i −0.241037 0.970516i \(-0.577487\pi\)
0.719973 + 0.694002i \(0.244154\pi\)
\(350\) 0 0
\(351\) 1.50000 + 3.27872i 0.0800641 + 0.175005i
\(352\) 0 0
\(353\) 16.4473 9.49584i 0.875400 0.505412i 0.00626098 0.999980i \(-0.498007\pi\)
0.869139 + 0.494568i \(0.164674\pi\)
\(354\) 0 0
\(355\) −4.17891 + 7.23808i −0.221793 + 0.384157i
\(356\) 0 0
\(357\) 22.1789 + 12.8050i 1.17383 + 0.677712i
\(358\) 0 0
\(359\) 18.6818i 0.985987i −0.870033 0.492994i \(-0.835903\pi\)
0.870033 0.492994i \(-0.164097\pi\)
\(360\) 0 0
\(361\) −3.50000 6.06218i −0.184211 0.319062i
\(362\) 0 0
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) −27.4633 −1.43749
\(366\) 0 0
\(367\) −6.41055 11.1034i −0.334628 0.579592i 0.648785 0.760971i \(-0.275277\pi\)
−0.983413 + 0.181379i \(0.941944\pi\)
\(368\) 0 0
\(369\) 5.87680i 0.305934i
\(370\) 0 0
\(371\) 36.5367 + 21.0945i 1.89689 + 1.09517i
\(372\) 0 0
\(373\) 5.67891 9.83616i 0.294043 0.509297i −0.680719 0.732545i \(-0.738333\pi\)
0.974762 + 0.223248i \(0.0716659\pi\)
\(374\) 0 0
\(375\) −8.73164 + 5.04121i −0.450900 + 0.260327i
\(376\) 0 0
\(377\) −17.0895 + 24.0329i −0.880152 + 1.23776i
\(378\) 0 0
\(379\) −5.41055 + 3.12378i −0.277921 + 0.160458i −0.632482 0.774575i \(-0.717964\pi\)
0.354561 + 0.935033i \(0.384630\pi\)
\(380\) 0 0
\(381\) 1.41055 2.44314i 0.0722645 0.125166i
\(382\) 0 0
\(383\) −16.7156 9.65078i −0.854129 0.493132i 0.00791288 0.999969i \(-0.497481\pi\)
−0.862042 + 0.506837i \(0.830815\pi\)
\(384\) 0 0
\(385\) 34.6410i 1.76547i
\(386\) 0 0
\(387\) 0.410546 + 0.711086i 0.0208692 + 0.0361465i
\(388\) 0 0
\(389\) −6.53673 −0.331425 −0.165713 0.986174i \(-0.552992\pi\)
−0.165713 + 0.986174i \(0.552992\pi\)
\(390\) 0 0
\(391\) 12.3578 0.624962
\(392\) 0 0
\(393\) −3.17891 5.50603i −0.160355 0.277743i
\(394\) 0 0
\(395\) 31.7967i 1.59986i
\(396\) 0 0
\(397\) 18.5895 + 10.7326i 0.932978 + 0.538655i 0.887752 0.460322i \(-0.152266\pi\)
0.0452258 + 0.998977i \(0.485599\pi\)
\(398\) 0 0
\(399\) 7.17891 12.4342i 0.359395 0.622490i
\(400\) 0 0
\(401\) 9.26836 5.35109i 0.462840 0.267221i −0.250398 0.968143i \(-0.580561\pi\)
0.713238 + 0.700922i \(0.247228\pi\)
\(402\) 0 0
\(403\) −24.9473 + 11.4133i −1.24271 + 0.568535i
\(404\) 0 0
\(405\) −2.08945 + 1.20635i −0.103826 + 0.0599439i
\(406\) 0 0
\(407\) 1.82109 3.15422i 0.0902682 0.156349i
\(408\) 0 0
\(409\) −0.857817 0.495261i −0.0424163 0.0244891i 0.478642 0.878010i \(-0.341129\pi\)
−0.521058 + 0.853521i \(0.674463\pi\)
\(410\) 0 0
\(411\) 12.8050i 0.631624i
\(412\) 0 0
\(413\) −2.82109 4.88627i −0.138817 0.240438i
\(414\) 0 0
\(415\) 28.3578 1.39203
\(416\) 0 0
\(417\) 17.1789 0.841255
\(418\) 0 0
\(419\) 6.35782 + 11.0121i 0.310600 + 0.537974i 0.978492 0.206283i \(-0.0661368\pi\)
−0.667893 + 0.744258i \(0.732803\pi\)
\(420\) 0 0
\(421\) 32.1674i 1.56774i −0.620922 0.783872i \(-0.713242\pi\)
0.620922 0.783872i \(-0.286758\pi\)
\(422\) 0 0
\(423\) 9.00000 + 5.19615i 0.437595 + 0.252646i
\(424\) 0 0
\(425\) −2.53673 + 4.39374i −0.123049 + 0.213128i
\(426\) 0 0
\(427\) 17.9473 10.3619i 0.868529 0.501446i
\(428\) 0 0
\(429\) 1.17891 12.4342i 0.0569182 0.600330i
\(430\) 0 0
\(431\) −16.1789 + 9.34090i −0.779311 + 0.449935i −0.836186 0.548446i \(-0.815220\pi\)
0.0568753 + 0.998381i \(0.481886\pi\)
\(432\) 0 0
\(433\) 1.32109 2.28820i 0.0634876 0.109964i −0.832535 0.553973i \(-0.813111\pi\)
0.896022 + 0.444009i \(0.146444\pi\)
\(434\) 0 0
\(435\) −17.0895 9.86660i −0.819377 0.473067i
\(436\) 0 0
\(437\) 6.92820i 0.331421i
\(438\) 0 0
\(439\) −11.9473 20.6933i −0.570212 0.987636i −0.996544 0.0830694i \(-0.973528\pi\)
0.426332 0.904567i \(-0.359806\pi\)
\(440\) 0 0
\(441\) −10.1789 −0.484710
\(442\) 0 0
\(443\) 8.00000 0.380091 0.190046 0.981775i \(-0.439136\pi\)
0.190046 + 0.981775i \(0.439136\pi\)
\(444\) 0 0
\(445\) −8.35782 14.4762i −0.396199 0.686236i
\(446\) 0 0
\(447\) 5.87680i 0.277963i
\(448\) 0 0
\(449\) −9.53673 5.50603i −0.450066 0.259846i 0.257792 0.966200i \(-0.417005\pi\)
−0.707858 + 0.706355i \(0.750338\pi\)
\(450\) 0 0
\(451\) 10.1789 17.6304i 0.479306 0.830182i
\(452\) 0 0
\(453\) 17.3578 10.0215i 0.815541 0.470853i
\(454\) 0 0
\(455\) −35.8945 3.40322i −1.68276 0.159545i
\(456\) 0 0
\(457\) 6.32109 3.64948i 0.295688 0.170716i −0.344816 0.938670i \(-0.612059\pi\)
0.640504 + 0.767955i \(0.278725\pi\)
\(458\) 0 0
\(459\) 3.08945 5.35109i 0.144203 0.249768i
\(460\) 0 0
\(461\) −21.2684 12.2793i −0.990566 0.571904i −0.0851228 0.996370i \(-0.527128\pi\)
−0.905444 + 0.424467i \(0.860462\pi\)
\(462\) 0 0
\(463\) 1.42217i 0.0660940i 0.999454 + 0.0330470i \(0.0105211\pi\)
−0.999454 + 0.0330470i \(0.989479\pi\)
\(464\) 0 0
\(465\) −9.17891 15.8983i −0.425662 0.737268i
\(466\) 0 0
\(467\) −6.00000 −0.277647 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(468\) 0 0
\(469\) −17.1789 −0.793248
\(470\) 0 0
\(471\) −3.50000 6.06218i −0.161271 0.279330i
\(472\) 0 0
\(473\) 2.84434i 0.130783i
\(474\) 0 0
\(475\) 2.46327 + 1.42217i 0.113023 + 0.0652537i
\(476\) 0 0
\(477\) 5.08945 8.81519i 0.233030 0.403620i
\(478\) 0 0
\(479\) −6.00000 + 3.46410i −0.274147 + 0.158279i −0.630771 0.775969i \(-0.717261\pi\)
0.356624 + 0.934248i \(0.383928\pi\)
\(480\) 0 0
\(481\) 3.08945 + 2.19687i 0.140867 + 0.100169i
\(482\) 0 0
\(483\) −7.17891 + 4.14474i −0.326652 + 0.188592i
\(484\) 0 0
\(485\) −2.46327 + 4.26652i −0.111852 + 0.193733i
\(486\) 0 0
\(487\) 21.0000 + 12.1244i 0.951601 + 0.549407i 0.893578 0.448908i \(-0.148187\pi\)
0.0580230 + 0.998315i \(0.481520\pi\)
\(488\) 0 0
\(489\) 7.60885i 0.344084i
\(490\) 0 0
\(491\) −9.35782 16.2082i −0.422312 0.731466i 0.573853 0.818958i \(-0.305448\pi\)
−0.996165 + 0.0874920i \(0.972115\pi\)
\(492\) 0 0
\(493\) 50.5367 2.27606
\(494\) 0 0
\(495\) 8.35782 0.375656
\(496\) 0 0
\(497\) 7.17891 + 12.4342i 0.322018 + 0.557752i
\(498\) 0 0
\(499\) 1.36129i 0.0609395i 0.999536 + 0.0304698i \(0.00970033\pi\)
−0.999536 + 0.0304698i \(0.990300\pi\)
\(500\) 0 0
\(501\) −6.00000 3.46410i −0.268060 0.154765i
\(502\) 0 0
\(503\) −3.00000 + 5.19615i −0.133763 + 0.231685i −0.925124 0.379664i \(-0.876040\pi\)
0.791361 + 0.611349i \(0.209373\pi\)
\(504\) 0 0
\(505\) −25.4473 + 14.6920i −1.13239 + 0.653785i
\(506\) 0 0
\(507\) 12.7684 + 2.44314i 0.567063 + 0.108504i
\(508\) 0 0
\(509\) −12.2684 + 7.08314i −0.543786 + 0.313955i −0.746612 0.665260i \(-0.768321\pi\)
0.202826 + 0.979215i \(0.434987\pi\)
\(510\) 0 0
\(511\) −23.5895 + 40.8581i −1.04354 + 1.80746i
\(512\) 0 0
\(513\) −3.00000 1.73205i −0.132453 0.0764719i
\(514\) 0 0
\(515\) 7.66973i 0.337969i
\(516\) 0 0
\(517\) −18.0000 31.1769i −0.791639 1.37116i
\(518\) 0 0
\(519\) 18.0000 0.790112
\(520\) 0 0
\(521\) −38.8945 −1.70400 −0.852000 0.523541i \(-0.824611\pi\)
−0.852000 + 0.523541i \(0.824611\pi\)
\(522\) 0 0
\(523\) −12.1789 21.0945i −0.532546 0.922398i −0.999278 0.0379984i \(-0.987902\pi\)
0.466731 0.884399i \(-0.345432\pi\)
\(524\) 0 0
\(525\) 3.40322i 0.148528i
\(526\) 0 0
\(527\) 40.7156 + 23.5072i 1.77360 + 1.02399i
\(528\) 0 0
\(529\) 9.50000 16.4545i 0.413043 0.715412i
\(530\) 0 0
\(531\) −1.17891 + 0.680643i −0.0511603 + 0.0295374i
\(532\) 0 0
\(533\) 17.2684 + 12.2793i 0.747976 + 0.531875i
\(534\) 0 0
\(535\) 20.8945 12.0635i 0.903350 0.521549i
\(536\) 0 0
\(537\) 4.17891 7.23808i 0.180333 0.312346i
\(538\) 0 0
\(539\) 30.5367 + 17.6304i 1.31531 + 0.759395i
\(540\) 0 0
\(541\) 3.09334i 0.132993i −0.997787 0.0664965i \(-0.978818\pi\)
0.997787 0.0664965i \(-0.0211821\pi\)
\(542\) 0 0
\(543\) 10.2684 + 17.7853i 0.440658 + 0.763241i
\(544\) 0 0
\(545\) 18.3578 0.786362
\(546\) 0 0
\(547\) 13.5367 0.578789 0.289394 0.957210i \(-0.406546\pi\)
0.289394 + 0.957210i \(0.406546\pi\)
\(548\) 0 0
\(549\) −2.50000 4.33013i −0.106697 0.184805i
\(550\) 0 0
\(551\) 28.3326i 1.20701i
\(552\) 0 0
\(553\) −47.3051 27.3116i −2.01162 1.16141i
\(554\) 0 0
\(555\) −1.26836 + 2.19687i −0.0538390 + 0.0932519i
\(556\) 0 0
\(557\) −27.8051 + 16.0533i −1.17814 + 0.680199i −0.955583 0.294721i \(-0.904773\pi\)
−0.222556 + 0.974920i \(0.571440\pi\)
\(558\) 0 0
\(559\) 2.94727 + 0.279435i 0.124656 + 0.0118188i
\(560\) 0 0
\(561\) −18.5367 + 10.7022i −0.782621 + 0.451847i
\(562\) 0 0
\(563\) 9.17891 15.8983i 0.386845 0.670035i −0.605178 0.796090i \(-0.706898\pi\)
0.992023 + 0.126055i \(0.0402316\pi\)
\(564\) 0 0
\(565\) 25.4473 + 14.6920i 1.07057 + 0.618097i
\(566\) 0 0
\(567\) 4.14474i 0.174063i
\(568\) 0 0
\(569\) 15.3578 + 26.6005i 0.643833 + 1.11515i 0.984570 + 0.174993i \(0.0559903\pi\)
−0.340737 + 0.940159i \(0.610676\pi\)
\(570\) 0 0
\(571\) −7.64218 −0.319815 −0.159908 0.987132i \(-0.551120\pi\)
−0.159908 + 0.987132i \(0.551120\pi\)
\(572\) 0 0
\(573\) −2.35782 −0.0984992
\(574\) 0 0
\(575\) −0.821092 1.42217i −0.0342419 0.0593087i
\(576\) 0 0
\(577\) 43.2404i 1.80012i 0.435765 + 0.900060i \(0.356478\pi\)
−0.435765 + 0.900060i \(0.643522\pi\)
\(578\) 0 0
\(579\) 11.6789 + 6.74282i 0.485359 + 0.280222i
\(580\) 0 0
\(581\) 24.3578 42.1890i 1.01053 1.75029i
\(582\) 0 0
\(583\) −30.5367 + 17.6304i −1.26470 + 0.730176i
\(584\) 0 0
\(585\) −0.821092 + 8.66025i −0.0339480 + 0.358057i
\(586\) 0 0
\(587\) −19.1789 + 11.0729i −0.791598 + 0.457029i −0.840525 0.541773i \(-0.817753\pi\)
0.0489266 + 0.998802i \(0.484420\pi\)
\(588\) 0 0
\(589\) 13.1789 22.8265i 0.543027 0.940551i
\(590\) 0 0
\(591\) 8.35782 + 4.82539i 0.343795 + 0.198490i
\(592\) 0 0
\(593\) 32.8481i 1.34891i 0.738316 + 0.674454i \(0.235621\pi\)
−0.738316 + 0.674454i \(0.764379\pi\)
\(594\) 0 0
\(595\) 30.8945 + 53.5109i 1.26655 + 2.19373i
\(596\) 0 0
\(597\) −21.5367 −0.881439
\(598\) 0 0
\(599\) 9.64218 0.393969 0.196984 0.980407i \(-0.436885\pi\)
0.196984 + 0.980407i \(0.436885\pi\)
\(600\) 0 0
\(601\) 0.0894542 + 0.154939i 0.00364891 + 0.00632010i 0.867844 0.496837i \(-0.165505\pi\)
−0.864195 + 0.503157i \(0.832172\pi\)
\(602\) 0 0
\(603\) 4.14474i 0.168787i
\(604\) 0 0
\(605\) −2.08945 1.20635i −0.0849484 0.0490450i
\(606\) 0 0
\(607\) −8.00000 + 13.8564i −0.324710 + 0.562414i −0.981454 0.191700i \(-0.938600\pi\)
0.656744 + 0.754114i \(0.271933\pi\)
\(608\) 0 0
\(609\) −29.3578 + 16.9497i −1.18964 + 0.686838i
\(610\) 0 0
\(611\) 34.0735 15.5885i 1.37846 0.630641i
\(612\) 0 0
\(613\) −2.14218 + 1.23679i −0.0865220 + 0.0499535i −0.542637 0.839967i \(-0.682574\pi\)
0.456115 + 0.889921i \(0.349241\pi\)
\(614\) 0 0
\(615\) −7.08945 + 12.2793i −0.285874 + 0.495149i
\(616\) 0 0
\(617\) 2.08945 + 1.20635i 0.0841183 + 0.0485657i 0.541469 0.840721i \(-0.317868\pi\)
−0.457351 + 0.889286i \(0.651202\pi\)
\(618\) 0 0
\(619\) 10.3314i 0.415255i −0.978208 0.207627i \(-0.933426\pi\)
0.978208 0.207627i \(-0.0665742\pi\)
\(620\) 0 0
\(621\) 1.00000 + 1.73205i 0.0401286 + 0.0695048i
\(622\) 0 0
\(623\) −28.7156 −1.15047
\(624\) 0 0
\(625\) −28.4313 −1.13725
\(626\) 0 0
\(627\) 6.00000 + 10.3923i 0.239617 + 0.415029i
\(628\) 0 0
\(629\) 6.49655i 0.259034i
\(630\) 0 0
\(631\) 5.41055 + 3.12378i 0.215390 + 0.124356i 0.603814 0.797125i \(-0.293647\pi\)
−0.388424 + 0.921481i \(0.626980\pi\)
\(632\) 0 0
\(633\) 7.76836 13.4552i 0.308765 0.534796i
\(634\) 0 0
\(635\) 5.89454 3.40322i 0.233918 0.135052i
\(636\) 0 0
\(637\) −21.2684 + 29.9097i −0.842683 + 1.18506i
\(638\) 0 0
\(639\) 3.00000 1.73205i 0.118678 0.0685189i
\(640\) 0 0
\(641\) 0.268363 0.464818i 0.0105997 0.0183592i −0.860677 0.509152i \(-0.829959\pi\)
0.871277 + 0.490792i \(0.163293\pi\)
\(642\) 0 0
\(643\) −13.7684 7.94917i −0.542971 0.313485i 0.203311 0.979114i \(-0.434830\pi\)
−0.746282 + 0.665630i \(0.768163\pi\)
\(644\) 0 0
\(645\) 1.98104i 0.0780035i
\(646\) 0 0
\(647\) −6.82109 11.8145i −0.268165 0.464475i 0.700223 0.713924i \(-0.253084\pi\)
−0.968388 + 0.249449i \(0.919750\pi\)
\(648\) 0 0
\(649\) 4.71563 0.185105
\(650\) 0 0
\(651\) −31.5367 −1.23602
\(652\) 0 0
\(653\) −0.178908 0.309878i −0.00700122 0.0121265i 0.862504 0.506051i \(-0.168895\pi\)
−0.869505 + 0.493925i \(0.835562\pi\)
\(654\) 0 0
\(655\) 15.3395i 0.599363i
\(656\) 0 0
\(657\) 9.85782 + 5.69141i 0.384590 + 0.222043i
\(658\) 0 0
\(659\) 4.35782 7.54796i 0.169756 0.294027i −0.768578 0.639756i \(-0.779035\pi\)
0.938334 + 0.345730i \(0.112369\pi\)
\(660\) 0 0
\(661\) 11.1422 6.43294i 0.433381 0.250212i −0.267405 0.963584i \(-0.586166\pi\)
0.700786 + 0.713372i \(0.252833\pi\)
\(662\) 0 0
\(663\) −9.26836 20.2589i −0.359953 0.786791i
\(664\) 0 0
\(665\) 30.0000 17.3205i 1.16335 0.671660i
\(666\) 0 0
\(667\) −8.17891 + 14.1663i −0.316689 + 0.548521i
\(668\) 0 0
\(669\) 13.1789 + 7.60885i 0.509526 + 0.294175i
\(670\) 0 0
\(671\) 17.3205i 0.668651i
\(672\) 0 0
\(673\) 2.67891 + 4.64001i 0.103264 + 0.178859i 0.913028 0.407897i \(-0.133738\pi\)
−0.809763 + 0.586757i \(0.800405\pi\)
\(674\) 0 0
\(675\) −0.821092 −0.0316038
\(676\) 0 0
\(677\) −3.64218 −0.139980 −0.0699902 0.997548i \(-0.522297\pi\)
−0.0699902 + 0.997548i \(0.522297\pi\)
\(678\) 0 0
\(679\) 4.23164 + 7.32941i 0.162395 + 0.281277i
\(680\) 0 0
\(681\) 9.03102i 0.346069i
\(682\) 0 0
\(683\) −15.5367 8.97013i −0.594496 0.343233i 0.172377 0.985031i \(-0.444855\pi\)
−0.766873 + 0.641798i \(0.778189\pi\)
\(684\) 0 0
\(685\) −15.4473 + 26.7555i −0.590210 + 1.02227i
\(686\) 0 0
\(687\) 8.35782 4.82539i 0.318871 0.184100i
\(688\) 0 0
\(689\) −15.2684 33.3738i −0.581678 1.27144i
\(690\) 0 0
\(691\) −7.12618 + 4.11430i −0.271093 + 0.156515i −0.629384 0.777094i \(-0.716693\pi\)
0.358291 + 0.933610i \(0.383359\pi\)
\(692\) 0 0
\(693\) 7.17891 12.4342i 0.272704 0.472337i
\(694\) 0 0
\(695\) 35.8945 + 20.7237i 1.36156 + 0.786096i
\(696\) 0 0
\(697\) 36.3122i 1.37542i
\(698\) 0 0
\(699\) −11.3578 19.6723i −0.429592 0.744075i
\(700\) 0 0
\(701\) 48.3578 1.82645 0.913225 0.407456i \(-0.133584\pi\)
0.913225 + 0.407456i \(0.133584\pi\)
\(702\) 0 0
\(703\) −3.64218 −0.137368
\(704\) 0 0
\(705\) 12.5367 + 21.7142i 0.472160 + 0.817806i
\(706\) 0 0
\(707\) 50.4785i 1.89844i
\(708\) 0 0
\(709\) 25.5000 + 14.7224i 0.957673 + 0.552913i 0.895456 0.445150i \(-0.146850\pi\)
0.0622167 + 0.998063i \(0.480183\pi\)
\(710\) 0 0
\(711\) −6.58945 + 11.4133i −0.247124 + 0.428031i
\(712\) 0 0
\(713\) −13.1789 + 7.60885i −0.493554 + 0.284954i
\(714\) 0 0
\(715\) 17.4633 24.5586i 0.653089 0.918439i
\(716\) 0 0
\(717\) −1.82109 + 1.05141i −0.0680099 + 0.0392655i
\(718\) 0 0
\(719\) 15.1789 26.2906i 0.566078 0.980475i −0.430871 0.902414i \(-0.641794\pi\)
0.996949 0.0780618i \(-0.0248731\pi\)
\(720\) 0 0
\(721\) −11.4105 6.58788i −0.424951 0.245346i
\(722\) 0 0
\(723\) 5.87680i 0.218560i
\(724\) 0 0
\(725\) −3.35782 5.81591i −0.124706 0.215997i
\(726\) 0 0
\(727\) 17.5367 0.650401 0.325201 0.945645i \(-0.394568\pi\)
0.325201 + 0.945645i \(0.394568\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −2.53673 4.39374i −0.0938242 0.162508i
\(732\) 0 0
\(733\) 10.6413i 0.393045i −0.980499 0.196523i \(-0.937035\pi\)
0.980499 0.196523i \(-0.0629649\pi\)
\(734\) 0 0
\(735\) −21.2684 12.2793i −0.784495 0.452929i
\(736\) 0 0
\(737\) 7.17891 12.4342i 0.264438 0.458021i
\(738\) 0 0
\(739\) −13.1789 + 7.60885i −0.484794 + 0.279896i −0.722412 0.691463i \(-0.756967\pi\)
0.237618 + 0.971359i \(0.423633\pi\)
\(740\) 0 0
\(741\) −11.3578 + 5.19615i −0.417240 + 0.190885i
\(742\) 0 0
\(743\) −1.17891 + 0.680643i −0.0432500 + 0.0249704i −0.521469 0.853270i \(-0.674616\pi\)
0.478219 + 0.878241i \(0.341282\pi\)
\(744\) 0 0
\(745\) 7.08945 12.2793i 0.259738 0.449879i
\(746\) 0 0
\(747\) −10.1789 5.87680i −0.372427 0.215021i
\(748\) 0 0
\(749\) 41.4474i 1.51446i
\(750\) 0 0
\(751\) 9.82109 + 17.0106i 0.358377 + 0.620727i 0.987690 0.156425i \(-0.0499970\pi\)
−0.629313 + 0.777152i \(0.716664\pi\)
\(752\) 0 0
\(753\) −20.7156 −0.754920
\(754\) 0 0
\(755\) 48.3578 1.75992
\(756\) 0 0
\(757\) 19.3578 + 33.5287i 0.703572 + 1.21862i 0.967204 + 0.253999i \(0.0817460\pi\)
−0.263633 + 0.964623i \(0.584921\pi\)
\(758\) 0 0
\(759\) 6.92820i 0.251478i
\(760\) 0 0
\(761\) −42.0000 24.2487i −1.52250 0.879015i −0.999646 0.0265919i \(-0.991535\pi\)
−0.522852 0.852423i \(-0.675132\pi\)
\(762\) 0 0
\(763\) 15.7684 27.3116i 0.570853 0.988746i
\(764\) 0 0
\(765\) 12.9105 7.45391i 0.466782 0.269497i
\(766\) 0 0
\(767\) −0.463275 + 4.88627i −0.0167279 + 0.176433i
\(768\) 0 0
\(769\) −6.00000 + 3.46410i −0.216366 + 0.124919i −0.604266 0.796782i \(-0.706534\pi\)
0.387901 + 0.921701i \(0.373200\pi\)
\(770\) 0 0
\(771\) −11.0895 + 19.2075i −0.399377 + 0.691741i
\(772\) 0 0
\(773\) −27.5367 15.8983i −0.990427 0.571823i −0.0850252 0.996379i \(-0.527097\pi\)
−0.905402 + 0.424555i \(0.860430\pi\)
\(774\) 0 0
\(775\) 6.24756i 0.224419i
\(776\) 0 0
\(777\) 2.17891 + 3.77398i 0.0781679 + 0.135391i
\(778\) 0 0
\(779\) −20.3578 −0.729394
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 4.08945 + 7.08314i 0.146145 + 0.253131i
\(784\) 0 0
\(785\) 16.8889i 0.602789i
\(786\) 0 0
\(787\) −29.4105 16.9802i −1.04837 0.605278i −0.126179 0.992007i \(-0.540271\pi\)
−0.922193 + 0.386729i \(0.873605\pi\)
\(788\) 0 0
\(789\) −16.1789 + 28.0227i −0.575984 + 0.997634i
\(790\) 0 0
\(791\) 43.7156 25.2392i 1.55435 0.897404i
\(792\) 0 0
\(793\) −17.9473 1.70161i −0.637326 0.0604259i
\(794\) 0 0
\(795\) 21.2684 12.2793i 0.754311 0.435502i
\(796\) 0 0
\(797\) −8.53673 + 14.7860i −0.302386 + 0.523748i −0.976676 0.214718i \(-0.931117\pi\)
0.674290 + 0.738467i \(0.264450\pi\)
\(798\) 0 0
\(799\) −55.6102 32.1065i −1.96735 1.13585i
\(800\) 0 0
\(801\) 6.92820i 0.244796i
\(802\) 0 0
\(803\) −19.7156 34.1485i −0.695750 1.20507i
\(804\) 0 0
\(805\) −20.0000 −0.704907
\(806\) 0 0
\(807\) −12.3578 −0.435016
\(808\) 0 0
\(809\) −23.2684 40.3020i −0.818072 1.41694i −0.907101 0.420913i \(-0.861710\pi\)
0.0890288 0.996029i \(-0.471624\pi\)
\(810\) 0 0
\(811\) 0.680643i 0.0239006i 0.999929 + 0.0119503i \(0.00380399\pi\)
−0.999929 + 0.0119503i \(0.996196\pi\)
\(812\) 0 0
\(813\) 12.5895 + 7.26852i 0.441531 + 0.254918i
\(814\) 0 0
\(815\) −9.17891 + 15.8983i −0.321523 + 0.556894i
\(816\) 0 0
\(817\) −2.46327 + 1.42217i −0.0861791 + 0.0497555i
\(818\) 0 0
\(819\) 12.1789 + 8.66025i 0.425565 + 0.302614i
\(820\) 0 0
\(821\) 27.5367 15.8983i 0.961038 0.554856i 0.0645459 0.997915i \(-0.479440\pi\)
0.896492 + 0.443059i \(0.146107\pi\)
\(822\) 0 0
\(823\) 12.0000 20.7846i 0.418294 0.724506i −0.577474 0.816409i \(-0.695962\pi\)
0.995768 + 0.0919029i \(0.0292950\pi\)
\(824\) 0 0
\(825\) 2.46327 + 1.42217i 0.0857602 + 0.0495137i
\(826\) 0 0
\(827\) 35.8805i 1.24769i 0.781549 + 0.623844i \(0.214430\pi\)
−0.781549 + 0.623844i \(0.785570\pi\)
\(828\) 0 0
\(829\) −11.6789 20.2285i −0.405625 0.702564i 0.588769 0.808302i \(-0.299613\pi\)
−0.994394 + 0.105738i \(0.966280\pi\)
\(830\) 0 0
\(831\) −0.178908 −0.00620626
\(832\) 0 0
\(833\) 62.8945 2.17917
\(834\) 0 0
\(835\) −8.35782 14.4762i −0.289234 0.500968i
\(836\) 0 0
\(837\) 7.60885i 0.263000i
\(838\) 0 0
\(839\) −13.1789 7.60885i −0.454986 0.262687i 0.254947 0.966955i \(-0.417942\pi\)
−0.709934 + 0.704268i \(0.751275\pi\)
\(840\) 0 0
\(841\) −18.9473 + 32.8176i −0.653354 + 1.13164i
\(842\) 0 0
\(843\) 9.91055 5.72186i 0.341337 0.197071i
\(844\) 0 0
\(845\) 23.7316 + 20.5079i 0.816393 + 0.705493i
\(846\) 0 0
\(847\) −3.58945 + 2.07237i −0.123335 + 0.0712076i
\(848\) 0 0
\(849\) 13.5895 23.5376i 0.466389 0.807809i
\(850\) 0 0
\(851\) 1.82109 + 1.05141i 0.0624262 + 0.0360418i
\(852\) 0 0
\(853\) 24.6195i 0.842955i −0.906839 0.421477i \(-0.861512\pi\)
0.906839 0.421477i \(-0.138488\pi\)
\(854\) 0 0
\(855\) −4.17891 7.23808i −0.142916 0.247537i
\(856\) 0 0
\(857\) −20.1789 −0.689298 −0.344649 0.938732i \(-0.612002\pi\)
−0.344649 + 0.938732i \(0.612002\pi\)
\(858\) 0 0
\(859\) 54.2524 1.85107 0.925533 0.378666i \(-0.123617\pi\)
0.925533 + 0.378666i \(0.123617\pi\)
\(860\) 0 0
\(861\) 12.1789 + 21.0945i 0.415056 + 0.718898i
\(862\) 0 0
\(863\) 20.0431i 0.682274i 0.940014 + 0.341137i \(0.110812\pi\)
−0.940014 + 0.341137i \(0.889188\pi\)
\(864\) 0 0
\(865\) 37.6102 + 21.7142i 1.27878 + 0.738306i
\(866\) 0 0
\(867\) −10.5895 + 18.3415i −0.359637 + 0.622909i
\(868\) 0 0
\(869\) 39.5367 22.8265i 1.34119 0.774337i
\(870\) 0 0
\(871\) 12.1789 + 8.66025i 0.412667 + 0.293442i
\(872\) 0 0
\(873\) 1.76836 1.02096i 0.0598500 0.0345544i
\(874\) 0 0
\(875\) −20.8945 + 36.1904i −0.706364 + 1.22346i
\(876\) 0 0
\(877\) 11.0895 + 6.40250i 0.374464 + 0.216197i 0.675407 0.737445i \(-0.263968\pi\)
−0.300943 + 0.953642i \(0.597301\pi\)
\(878\) 0 0
\(879\) 32.8481i 1.10794i
\(880\) 0 0
\(881\) 18.9105 + 32.7540i 0.637112 + 1.10351i 0.986063 + 0.166370i \(0.0532047\pi\)
−0.348951 + 0.937141i \(0.613462\pi\)
\(882\) 0 0
\(883\) −17.8945 −0.602199 −0.301100 0.953593i \(-0.597354\pi\)
−0.301100 + 0.953593i \(0.597354\pi\)
\(884\) 0 0
\(885\) −3.28437 −0.110403
\(886\) 0 0
\(887\) −10.8211 18.7427i −0.363337 0.629318i 0.625171 0.780488i \(-0.285029\pi\)
−0.988508 + 0.151170i \(0.951696\pi\)
\(888\) 0 0
\(889\) 11.6927i 0.392161i
\(890\) 0 0
\(891\) −3.00000 1.73205i −0.100504 0.0580259i
\(892\) 0 0
\(893\) −18.0000 + 31.1769i −0.602347 + 1.04330i
\(894\) 0 0
\(895\) 17.4633 10.0824i 0.583733 0.337018i
\(896\) 0 0
\(897\) 7.17891 + 0.680643i 0.239697 + 0.0227260i
\(898\) 0 0
\(899\) −53.8945 + 31.1160i −1.79748 + 1.03778i
\(900\) 0 0
\(901\) −31.4473 + 54.4683i −1.04766 + 1.81460i
\(902\) 0 0
\(903\) 2.94727 + 1.70161i 0.0980790 + 0.0566260i
\(904\) 0 0
\(905\) 49.5488i 1.64706i
\(906\) 0 0
\(907\) −14.0000 24.2487i −0.464862 0.805165i 0.534333 0.845274i \(-0.320563\pi\)
−0.999195 + 0.0401089i \(0.987230\pi\)
\(908\) 0 0
\(909\) 12.1789 0.403949
\(910\) 0 0
\(911\) 4.71563 0.156236 0.0781180 0.996944i \(-0.475109\pi\)
0.0781180 + 0.996944i \(0.475109\pi\)
\(912\) 0 0
\(913\) 20.3578 + 35.2608i 0.673745 + 1.16696i
\(914\) 0 0
\(915\) 12.0635i 0.398806i
\(916\) 0 0
\(917\) −22.8211 13.1758i −0.753619 0.435102i
\(918\) 0 0
\(919\) −12.0000 + 20.7846i −0.395843 + 0.685621i −0.993208 0.116348i \(-0.962881\pi\)
0.597365 + 0.801970i \(0.296214\pi\)
\(920\) 0 0
\(921\) 9.58945 5.53647i 0.315983 0.182433i
\(922\) 0 0
\(923\) 1.17891 12.4342i 0.0388042 0.409278i
\(924\) 0 0
\(925\) −0.747642 + 0.431651i −0.0245823 + 0.0141926i
\(926\) 0 0
\(927\) −1.58945 + 2.75302i −0.0522045 + 0.0904209i
\(928\) 0 0
\(929\) −27.2684 15.7434i −0.894646 0.516524i −0.0191866 0.999816i \(-0.506108\pi\)
−0.875459 + 0.483292i \(0.839441\pi\)
\(930\) 0 0
\(931\) 35.2608i 1.15563i
\(932\) 0 0
\(933\) −5.82109 10.0824i −0.190574 0.330084i
\(934\) 0 0
\(935\) −51.6422 −1.68888
\(936\) 0 0
\(937\) 48.8945 1.59732 0.798658 0.601786i \(-0.205544\pi\)
0.798658 + 0.601786i \(0.205544\pi\)
\(938\) 0 0
\(939\) −13.9473 24.1574i −0.455152 0.788346i
\(940\) 0 0
\(941\) 37.2418i 1.21405i 0.794683 + 0.607024i \(0.207637\pi\)
−0.794683 + 0.607024i \(0.792363\pi\)
\(942\) 0 0
\(943\) 10.1789 + 5.87680i 0.331471 + 0.191375i
\(944\) 0 0
\(945\) −5.00000 + 8.66025i −0.162650 + 0.281718i
\(946\) 0 0
\(947\) −26.3578 + 15.2177i −0.856514 + 0.494509i −0.862843 0.505471i \(-0.831319\pi\)
0.00632940 + 0.999980i \(0.497985\pi\)
\(948\) 0 0
\(949\) 37.3211 17.0742i 1.21149 0.554253i
\(950\) 0 0
\(951\) 3.26836 1.88699i 0.105984 0.0611898i
\(952\) 0 0
\(953\) −3.00000 + 5.19615i −0.0971795 + 0.168320i −0.910516 0.413473i \(-0.864315\pi\)
0.813337 + 0.581793i \(0.197649\pi\)
\(954\) 0 0
\(955\) −4.92655 2.84434i −0.159419 0.0920408i
\(956\) 0 0
\(957\) 28.3326i 0.915862i
\(958\) 0 0
\(959\) 26.5367 + 45.9630i 0.856916 + 1.48422i
\(960\) 0 0
\(961\) −26.8945 −0.867566
\(962\) 0 0
\(963\) −10.0000 −0.322245
\(964\) 0 0
\(965\) 16.2684 + 28.1776i 0.523697 + 0.907070i
\(966\) 0 0
\(967\) 35.3825i 1.13783i 0.822398 + 0.568913i \(0.192636\pi\)
−0.822398 + 0.568913i \(0.807364\pi\)
\(968\) 0 0
\(969\) 18.5367 + 10.7022i 0.595485 + 0.343804i
\(970\) 0 0
\(971\) −2.35782 + 4.08386i −0.0756659 + 0.131057i −0.901376 0.433038i \(-0.857442\pi\)
0.825710 + 0.564095i \(0.190775\pi\)
\(972\) 0 0
\(973\) 61.6629 35.6011i 1.97682 1.14132i
\(974\) 0 0
\(975\) −1.71563 + 2.41269i −0.0549442 + 0.0772680i
\(976\) 0 0
\(977\) 14.7316 8.50531i 0.471307 0.272109i −0.245480 0.969402i \(-0.578945\pi\)
0.716787 + 0.697293i \(0.245612\pi\)
\(978\) 0 0
\(979\) 12.0000 20.7846i 0.383522 0.664279i
\(980\) 0 0
\(981\) −6.58945 3.80442i −0.210385 0.121466i
\(982\) 0 0
\(983\) 24.8685i 0.793181i 0.917996 + 0.396590i \(0.129807\pi\)
−0.917996 + 0.396590i \(0.870193\pi\)
\(984\) 0 0
\(985\) 11.6422 + 20.1649i 0.370951 + 0.642506i
\(986\) 0 0
\(987\) 43.0735 1.37104
\(988\) 0 0
\(989\) 1.64218 0.0522184
\(990\) 0 0
\(991\) 22.5367 + 39.0348i 0.715903 + 1.23998i 0.962610 + 0.270890i \(0.0873179\pi\)
−0.246708 + 0.969090i \(0.579349\pi\)
\(992\) 0 0
\(993\) 20.1040i 0.637980i
\(994\) 0 0
\(995\) −45.0000 25.9808i −1.42660 0.823646i
\(996\) 0 0
\(997\) −17.6789 + 30.6208i −0.559897 + 0.969769i 0.437608 + 0.899166i \(0.355826\pi\)
−0.997504 + 0.0706035i \(0.977507\pi\)
\(998\) 0 0
\(999\) 0.910546 0.525704i 0.0288084 0.0166325i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.2.q.b.49.1 4
3.2 odd 2 468.2.t.d.361.2 4
4.3 odd 2 624.2.bv.f.49.1 4
5.2 odd 4 3900.2.bw.j.49.2 8
5.3 odd 4 3900.2.bw.j.49.3 8
5.4 even 2 3900.2.cd.i.2701.2 4
12.11 even 2 1872.2.by.j.1297.2 4
13.2 odd 12 2028.2.a.m.1.2 4
13.3 even 3 2028.2.b.e.337.2 4
13.4 even 6 inner 156.2.q.b.121.2 yes 4
13.5 odd 4 2028.2.i.n.2005.2 8
13.6 odd 12 2028.2.i.n.529.2 8
13.7 odd 12 2028.2.i.n.529.3 8
13.8 odd 4 2028.2.i.n.2005.3 8
13.9 even 3 2028.2.q.f.1837.1 4
13.10 even 6 2028.2.b.e.337.3 4
13.11 odd 12 2028.2.a.m.1.3 4
13.12 even 2 2028.2.q.f.361.2 4
39.2 even 12 6084.2.a.bd.1.3 4
39.11 even 12 6084.2.a.bd.1.2 4
39.17 odd 6 468.2.t.d.433.1 4
39.23 odd 6 6084.2.b.o.4393.2 4
39.29 odd 6 6084.2.b.o.4393.3 4
52.11 even 12 8112.2.a.cr.1.3 4
52.15 even 12 8112.2.a.cr.1.2 4
52.43 odd 6 624.2.bv.f.433.2 4
65.4 even 6 3900.2.cd.i.901.2 4
65.17 odd 12 3900.2.bw.j.2149.3 8
65.43 odd 12 3900.2.bw.j.2149.2 8
156.95 even 6 1872.2.by.j.433.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.q.b.49.1 4 1.1 even 1 trivial
156.2.q.b.121.2 yes 4 13.4 even 6 inner
468.2.t.d.361.2 4 3.2 odd 2
468.2.t.d.433.1 4 39.17 odd 6
624.2.bv.f.49.1 4 4.3 odd 2
624.2.bv.f.433.2 4 52.43 odd 6
1872.2.by.j.433.1 4 156.95 even 6
1872.2.by.j.1297.2 4 12.11 even 2
2028.2.a.m.1.2 4 13.2 odd 12
2028.2.a.m.1.3 4 13.11 odd 12
2028.2.b.e.337.2 4 13.3 even 3
2028.2.b.e.337.3 4 13.10 even 6
2028.2.i.n.529.2 8 13.6 odd 12
2028.2.i.n.529.3 8 13.7 odd 12
2028.2.i.n.2005.2 8 13.5 odd 4
2028.2.i.n.2005.3 8 13.8 odd 4
2028.2.q.f.361.2 4 13.12 even 2
2028.2.q.f.1837.1 4 13.9 even 3
3900.2.bw.j.49.2 8 5.2 odd 4
3900.2.bw.j.49.3 8 5.3 odd 4
3900.2.bw.j.2149.2 8 65.43 odd 12
3900.2.bw.j.2149.3 8 65.17 odd 12
3900.2.cd.i.901.2 4 65.4 even 6
3900.2.cd.i.2701.2 4 5.4 even 2
6084.2.a.bd.1.2 4 39.11 even 12
6084.2.a.bd.1.3 4 39.2 even 12
6084.2.b.o.4393.2 4 39.23 odd 6
6084.2.b.o.4393.3 4 39.29 odd 6
8112.2.a.cr.1.2 4 52.15 even 12
8112.2.a.cr.1.3 4 52.11 even 12