Properties

Label 8112.2.a.cr.1.2
Level $8112$
Weight $2$
Character 8112.1
Self dual yes
Analytic conductor $64.775$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8112,2,Mod(1,8112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8112, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8112.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8112.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.7746461197\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{43})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 23x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 156)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.41269\) of defining polynomial
Character \(\chi\) \(=\) 8112.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -2.41269 q^{5} +4.14474 q^{7} +1.00000 q^{9} +3.46410 q^{11} +2.41269 q^{15} +6.17891 q^{17} -3.46410 q^{19} -4.14474 q^{21} -2.00000 q^{23} +0.821092 q^{25} -1.00000 q^{27} -8.17891 q^{29} -7.60885 q^{31} -3.46410 q^{33} -10.0000 q^{35} -1.05141 q^{37} +5.87680 q^{41} -0.821092 q^{43} -2.41269 q^{45} -10.3923 q^{47} +10.1789 q^{49} -6.17891 q^{51} -10.1789 q^{53} -8.35782 q^{55} +3.46410 q^{57} -1.36129 q^{59} +5.00000 q^{61} +4.14474 q^{63} -4.14474 q^{67} +2.00000 q^{69} -3.46410 q^{71} +11.3828 q^{73} -0.821092 q^{75} +14.3578 q^{77} -13.1789 q^{79} +1.00000 q^{81} -11.7536 q^{83} -14.9078 q^{85} +8.17891 q^{87} -6.92820 q^{89} +7.60885 q^{93} +8.35782 q^{95} +2.04193 q^{97} +3.46410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{9} + 2 q^{17} - 8 q^{23} + 26 q^{25} - 4 q^{27} - 10 q^{29} - 40 q^{35} - 26 q^{43} + 18 q^{49} - 2 q^{51} - 18 q^{53} + 12 q^{55} + 20 q^{61} + 8 q^{69} - 26 q^{75} + 12 q^{77} - 30 q^{79}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −2.41269 −1.07899 −0.539495 0.841989i \(-0.681385\pi\)
−0.539495 + 0.841989i \(0.681385\pi\)
\(6\) 0 0
\(7\) 4.14474 1.56657 0.783283 0.621665i \(-0.213544\pi\)
0.783283 + 0.621665i \(0.213544\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.46410 1.04447 0.522233 0.852803i \(-0.325099\pi\)
0.522233 + 0.852803i \(0.325099\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 2.41269 0.622955
\(16\) 0 0
\(17\) 6.17891 1.49861 0.749303 0.662228i \(-0.230389\pi\)
0.749303 + 0.662228i \(0.230389\pi\)
\(18\) 0 0
\(19\) −3.46410 −0.794719 −0.397360 0.917663i \(-0.630073\pi\)
−0.397360 + 0.917663i \(0.630073\pi\)
\(20\) 0 0
\(21\) −4.14474 −0.904457
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) 0.821092 0.164218
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −8.17891 −1.51879 −0.759393 0.650633i \(-0.774504\pi\)
−0.759393 + 0.650633i \(0.774504\pi\)
\(30\) 0 0
\(31\) −7.60885 −1.36659 −0.683295 0.730143i \(-0.739454\pi\)
−0.683295 + 0.730143i \(0.739454\pi\)
\(32\) 0 0
\(33\) −3.46410 −0.603023
\(34\) 0 0
\(35\) −10.0000 −1.69031
\(36\) 0 0
\(37\) −1.05141 −0.172850 −0.0864252 0.996258i \(-0.527544\pi\)
−0.0864252 + 0.996258i \(0.527544\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.87680 0.917801 0.458901 0.888488i \(-0.348243\pi\)
0.458901 + 0.888488i \(0.348243\pi\)
\(42\) 0 0
\(43\) −0.821092 −0.125215 −0.0626077 0.998038i \(-0.519942\pi\)
−0.0626077 + 0.998038i \(0.519942\pi\)
\(44\) 0 0
\(45\) −2.41269 −0.359663
\(46\) 0 0
\(47\) −10.3923 −1.51587 −0.757937 0.652328i \(-0.773792\pi\)
−0.757937 + 0.652328i \(0.773792\pi\)
\(48\) 0 0
\(49\) 10.1789 1.45413
\(50\) 0 0
\(51\) −6.17891 −0.865220
\(52\) 0 0
\(53\) −10.1789 −1.39818 −0.699090 0.715033i \(-0.746411\pi\)
−0.699090 + 0.715033i \(0.746411\pi\)
\(54\) 0 0
\(55\) −8.35782 −1.12697
\(56\) 0 0
\(57\) 3.46410 0.458831
\(58\) 0 0
\(59\) −1.36129 −0.177224 −0.0886122 0.996066i \(-0.528243\pi\)
−0.0886122 + 0.996066i \(0.528243\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 0 0
\(63\) 4.14474 0.522189
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.14474 −0.506361 −0.253181 0.967419i \(-0.581477\pi\)
−0.253181 + 0.967419i \(0.581477\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) −3.46410 −0.411113 −0.205557 0.978645i \(-0.565900\pi\)
−0.205557 + 0.978645i \(0.565900\pi\)
\(72\) 0 0
\(73\) 11.3828 1.33226 0.666130 0.745836i \(-0.267950\pi\)
0.666130 + 0.745836i \(0.267950\pi\)
\(74\) 0 0
\(75\) −0.821092 −0.0948115
\(76\) 0 0
\(77\) 14.3578 1.63623
\(78\) 0 0
\(79\) −13.1789 −1.48274 −0.741372 0.671095i \(-0.765824\pi\)
−0.741372 + 0.671095i \(0.765824\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −11.7536 −1.29012 −0.645062 0.764130i \(-0.723169\pi\)
−0.645062 + 0.764130i \(0.723169\pi\)
\(84\) 0 0
\(85\) −14.9078 −1.61698
\(86\) 0 0
\(87\) 8.17891 0.876871
\(88\) 0 0
\(89\) −6.92820 −0.734388 −0.367194 0.930144i \(-0.619682\pi\)
−0.367194 + 0.930144i \(0.619682\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 7.60885 0.789001
\(94\) 0 0
\(95\) 8.35782 0.857494
\(96\) 0 0
\(97\) 2.04193 0.207326 0.103663 0.994612i \(-0.466944\pi\)
0.103663 + 0.994612i \(0.466944\pi\)
\(98\) 0 0
\(99\) 3.46410 0.348155
\(100\) 0 0
\(101\) −12.1789 −1.21185 −0.605923 0.795523i \(-0.707196\pi\)
−0.605923 + 0.795523i \(0.707196\pi\)
\(102\) 0 0
\(103\) 3.17891 0.313227 0.156614 0.987660i \(-0.449942\pi\)
0.156614 + 0.987660i \(0.449942\pi\)
\(104\) 0 0
\(105\) 10.0000 0.975900
\(106\) 0 0
\(107\) 10.0000 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(108\) 0 0
\(109\) 7.60885 0.728795 0.364398 0.931243i \(-0.381275\pi\)
0.364398 + 0.931243i \(0.381275\pi\)
\(110\) 0 0
\(111\) 1.05141 0.0997952
\(112\) 0 0
\(113\) 12.1789 1.14570 0.572848 0.819662i \(-0.305839\pi\)
0.572848 + 0.819662i \(0.305839\pi\)
\(114\) 0 0
\(115\) 4.82539 0.449970
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 25.6100 2.34766
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −5.87680 −0.529893
\(124\) 0 0
\(125\) 10.0824 0.901800
\(126\) 0 0
\(127\) −2.82109 −0.250331 −0.125166 0.992136i \(-0.539946\pi\)
−0.125166 + 0.992136i \(0.539946\pi\)
\(128\) 0 0
\(129\) 0.821092 0.0722931
\(130\) 0 0
\(131\) −6.35782 −0.555485 −0.277743 0.960656i \(-0.589586\pi\)
−0.277743 + 0.960656i \(0.589586\pi\)
\(132\) 0 0
\(133\) −14.3578 −1.24498
\(134\) 0 0
\(135\) 2.41269 0.207652
\(136\) 0 0
\(137\) −12.8050 −1.09400 −0.547002 0.837131i \(-0.684231\pi\)
−0.547002 + 0.837131i \(0.684231\pi\)
\(138\) 0 0
\(139\) −17.1789 −1.45710 −0.728548 0.684995i \(-0.759804\pi\)
−0.728548 + 0.684995i \(0.759804\pi\)
\(140\) 0 0
\(141\) 10.3923 0.875190
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 19.7332 1.63875
\(146\) 0 0
\(147\) −10.1789 −0.839542
\(148\) 0 0
\(149\) −5.87680 −0.481446 −0.240723 0.970594i \(-0.577385\pi\)
−0.240723 + 0.970594i \(0.577385\pi\)
\(150\) 0 0
\(151\) 20.0431 1.63108 0.815541 0.578699i \(-0.196439\pi\)
0.815541 + 0.578699i \(0.196439\pi\)
\(152\) 0 0
\(153\) 6.17891 0.499535
\(154\) 0 0
\(155\) 18.3578 1.47454
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) 10.1789 0.807240
\(160\) 0 0
\(161\) −8.28949 −0.653303
\(162\) 0 0
\(163\) 7.60885 0.595971 0.297985 0.954570i \(-0.403685\pi\)
0.297985 + 0.954570i \(0.403685\pi\)
\(164\) 0 0
\(165\) 8.35782 0.650655
\(166\) 0 0
\(167\) 6.92820 0.536120 0.268060 0.963402i \(-0.413617\pi\)
0.268060 + 0.963402i \(0.413617\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −3.46410 −0.264906
\(172\) 0 0
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) 3.40322 0.257259
\(176\) 0 0
\(177\) 1.36129 0.102321
\(178\) 0 0
\(179\) −8.35782 −0.624693 −0.312346 0.949968i \(-0.601115\pi\)
−0.312346 + 0.949968i \(0.601115\pi\)
\(180\) 0 0
\(181\) 20.5367 1.52648 0.763241 0.646113i \(-0.223607\pi\)
0.763241 + 0.646113i \(0.223607\pi\)
\(182\) 0 0
\(183\) −5.00000 −0.369611
\(184\) 0 0
\(185\) 2.53673 0.186504
\(186\) 0 0
\(187\) 21.4044 1.56524
\(188\) 0 0
\(189\) −4.14474 −0.301486
\(190\) 0 0
\(191\) 2.35782 0.170606 0.0853028 0.996355i \(-0.472814\pi\)
0.0853028 + 0.996355i \(0.472814\pi\)
\(192\) 0 0
\(193\) 13.4856 0.970718 0.485359 0.874315i \(-0.338689\pi\)
0.485359 + 0.874315i \(0.338689\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.65078 −0.687589 −0.343795 0.939045i \(-0.611712\pi\)
−0.343795 + 0.939045i \(0.611712\pi\)
\(198\) 0 0
\(199\) −21.5367 −1.52670 −0.763349 0.645986i \(-0.776446\pi\)
−0.763349 + 0.645986i \(0.776446\pi\)
\(200\) 0 0
\(201\) 4.14474 0.292348
\(202\) 0 0
\(203\) −33.8995 −2.37928
\(204\) 0 0
\(205\) −14.1789 −0.990298
\(206\) 0 0
\(207\) −2.00000 −0.139010
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) 15.5367 1.06959 0.534796 0.844981i \(-0.320388\pi\)
0.534796 + 0.844981i \(0.320388\pi\)
\(212\) 0 0
\(213\) 3.46410 0.237356
\(214\) 0 0
\(215\) 1.98104 0.135106
\(216\) 0 0
\(217\) −31.5367 −2.14085
\(218\) 0 0
\(219\) −11.3828 −0.769180
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 15.2177 1.01905 0.509526 0.860455i \(-0.329821\pi\)
0.509526 + 0.860455i \(0.329821\pi\)
\(224\) 0 0
\(225\) 0.821092 0.0547394
\(226\) 0 0
\(227\) 9.03102 0.599410 0.299705 0.954032i \(-0.403112\pi\)
0.299705 + 0.954032i \(0.403112\pi\)
\(228\) 0 0
\(229\) −9.65078 −0.637741 −0.318871 0.947798i \(-0.603304\pi\)
−0.318871 + 0.947798i \(0.603304\pi\)
\(230\) 0 0
\(231\) −14.3578 −0.944675
\(232\) 0 0
\(233\) −22.7156 −1.48815 −0.744075 0.668096i \(-0.767110\pi\)
−0.744075 + 0.668096i \(0.767110\pi\)
\(234\) 0 0
\(235\) 25.0735 1.63561
\(236\) 0 0
\(237\) 13.1789 0.856062
\(238\) 0 0
\(239\) 2.10282 0.136020 0.0680099 0.997685i \(-0.478335\pi\)
0.0680099 + 0.997685i \(0.478335\pi\)
\(240\) 0 0
\(241\) 5.87680 0.378558 0.189279 0.981923i \(-0.439385\pi\)
0.189279 + 0.981923i \(0.439385\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −24.5586 −1.56899
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 11.7536 0.744854
\(250\) 0 0
\(251\) −20.7156 −1.30756 −0.653780 0.756685i \(-0.726818\pi\)
−0.653780 + 0.756685i \(0.726818\pi\)
\(252\) 0 0
\(253\) −6.92820 −0.435572
\(254\) 0 0
\(255\) 14.9078 0.933564
\(256\) 0 0
\(257\) −22.1789 −1.38348 −0.691741 0.722146i \(-0.743156\pi\)
−0.691741 + 0.722146i \(0.743156\pi\)
\(258\) 0 0
\(259\) −4.35782 −0.270782
\(260\) 0 0
\(261\) −8.17891 −0.506262
\(262\) 0 0
\(263\) −32.3578 −1.99527 −0.997634 0.0687455i \(-0.978100\pi\)
−0.997634 + 0.0687455i \(0.978100\pi\)
\(264\) 0 0
\(265\) 24.5586 1.50862
\(266\) 0 0
\(267\) 6.92820 0.423999
\(268\) 0 0
\(269\) −12.3578 −0.753469 −0.376735 0.926321i \(-0.622953\pi\)
−0.376735 + 0.926321i \(0.622953\pi\)
\(270\) 0 0
\(271\) −14.5370 −0.883063 −0.441531 0.897246i \(-0.645565\pi\)
−0.441531 + 0.897246i \(0.645565\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.84434 0.171520
\(276\) 0 0
\(277\) 0.178908 0.0107496 0.00537478 0.999986i \(-0.498289\pi\)
0.00537478 + 0.999986i \(0.498289\pi\)
\(278\) 0 0
\(279\) −7.60885 −0.455530
\(280\) 0 0
\(281\) −11.4437 −0.682675 −0.341337 0.939941i \(-0.610880\pi\)
−0.341337 + 0.939941i \(0.610880\pi\)
\(282\) 0 0
\(283\) −27.1789 −1.61562 −0.807809 0.589444i \(-0.799347\pi\)
−0.807809 + 0.589444i \(0.799347\pi\)
\(284\) 0 0
\(285\) −8.35782 −0.495074
\(286\) 0 0
\(287\) 24.3578 1.43780
\(288\) 0 0
\(289\) 21.1789 1.24582
\(290\) 0 0
\(291\) −2.04193 −0.119700
\(292\) 0 0
\(293\) 32.8481 1.91901 0.959503 0.281700i \(-0.0908982\pi\)
0.959503 + 0.281700i \(0.0908982\pi\)
\(294\) 0 0
\(295\) 3.28437 0.191223
\(296\) 0 0
\(297\) −3.46410 −0.201008
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −3.40322 −0.196158
\(302\) 0 0
\(303\) 12.1789 0.699660
\(304\) 0 0
\(305\) −12.0635 −0.690752
\(306\) 0 0
\(307\) 11.0729 0.631967 0.315983 0.948765i \(-0.397666\pi\)
0.315983 + 0.948765i \(0.397666\pi\)
\(308\) 0 0
\(309\) −3.17891 −0.180842
\(310\) 0 0
\(311\) 11.6422 0.660168 0.330084 0.943952i \(-0.392923\pi\)
0.330084 + 0.943952i \(0.392923\pi\)
\(312\) 0 0
\(313\) 27.8945 1.57669 0.788346 0.615232i \(-0.210938\pi\)
0.788346 + 0.615232i \(0.210938\pi\)
\(314\) 0 0
\(315\) −10.0000 −0.563436
\(316\) 0 0
\(317\) 3.77398 0.211968 0.105984 0.994368i \(-0.466201\pi\)
0.105984 + 0.994368i \(0.466201\pi\)
\(318\) 0 0
\(319\) −28.3326 −1.58632
\(320\) 0 0
\(321\) −10.0000 −0.558146
\(322\) 0 0
\(323\) −21.4044 −1.19097
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −7.60885 −0.420770
\(328\) 0 0
\(329\) −43.0735 −2.37472
\(330\) 0 0
\(331\) −20.1040 −1.10501 −0.552507 0.833508i \(-0.686329\pi\)
−0.552507 + 0.833508i \(0.686329\pi\)
\(332\) 0 0
\(333\) −1.05141 −0.0576168
\(334\) 0 0
\(335\) 10.0000 0.546358
\(336\) 0 0
\(337\) 25.3578 1.38133 0.690664 0.723176i \(-0.257318\pi\)
0.690664 + 0.723176i \(0.257318\pi\)
\(338\) 0 0
\(339\) −12.1789 −0.661468
\(340\) 0 0
\(341\) −26.3578 −1.42736
\(342\) 0 0
\(343\) 13.1758 0.711424
\(344\) 0 0
\(345\) −4.82539 −0.259790
\(346\) 0 0
\(347\) −20.3578 −1.09286 −0.546432 0.837503i \(-0.684014\pi\)
−0.546432 + 0.837503i \(0.684014\pi\)
\(348\) 0 0
\(349\) −10.3314 −0.553028 −0.276514 0.961010i \(-0.589179\pi\)
−0.276514 + 0.961010i \(0.589179\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.9917 1.01082 0.505412 0.862878i \(-0.331340\pi\)
0.505412 + 0.862878i \(0.331340\pi\)
\(354\) 0 0
\(355\) 8.35782 0.443587
\(356\) 0 0
\(357\) −25.6100 −1.35542
\(358\) 0 0
\(359\) −18.6818 −0.985987 −0.492994 0.870033i \(-0.664097\pi\)
−0.492994 + 0.870033i \(0.664097\pi\)
\(360\) 0 0
\(361\) −7.00000 −0.368421
\(362\) 0 0
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) −27.4633 −1.43749
\(366\) 0 0
\(367\) −12.8211 −0.669256 −0.334628 0.942350i \(-0.608611\pi\)
−0.334628 + 0.942350i \(0.608611\pi\)
\(368\) 0 0
\(369\) 5.87680 0.305934
\(370\) 0 0
\(371\) −42.1890 −2.19034
\(372\) 0 0
\(373\) −11.3578 −0.588085 −0.294043 0.955792i \(-0.595001\pi\)
−0.294043 + 0.955792i \(0.595001\pi\)
\(374\) 0 0
\(375\) −10.0824 −0.520654
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 6.24756 0.320916 0.160458 0.987043i \(-0.448703\pi\)
0.160458 + 0.987043i \(0.448703\pi\)
\(380\) 0 0
\(381\) 2.82109 0.144529
\(382\) 0 0
\(383\) −19.3016 −0.986263 −0.493132 0.869955i \(-0.664148\pi\)
−0.493132 + 0.869955i \(0.664148\pi\)
\(384\) 0 0
\(385\) −34.6410 −1.76547
\(386\) 0 0
\(387\) −0.821092 −0.0417384
\(388\) 0 0
\(389\) 6.53673 0.331425 0.165713 0.986174i \(-0.447008\pi\)
0.165713 + 0.986174i \(0.447008\pi\)
\(390\) 0 0
\(391\) −12.3578 −0.624962
\(392\) 0 0
\(393\) 6.35782 0.320709
\(394\) 0 0
\(395\) 31.7967 1.59986
\(396\) 0 0
\(397\) 21.4653 1.07731 0.538655 0.842526i \(-0.318933\pi\)
0.538655 + 0.842526i \(0.318933\pi\)
\(398\) 0 0
\(399\) 14.3578 0.718790
\(400\) 0 0
\(401\) −10.7022 −0.534442 −0.267221 0.963635i \(-0.586105\pi\)
−0.267221 + 0.963635i \(0.586105\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.41269 −0.119888
\(406\) 0 0
\(407\) −3.64218 −0.180536
\(408\) 0 0
\(409\) 0.990521 0.0489781 0.0244891 0.999700i \(-0.492204\pi\)
0.0244891 + 0.999700i \(0.492204\pi\)
\(410\) 0 0
\(411\) 12.8050 0.631624
\(412\) 0 0
\(413\) −5.64218 −0.277634
\(414\) 0 0
\(415\) 28.3578 1.39203
\(416\) 0 0
\(417\) 17.1789 0.841255
\(418\) 0 0
\(419\) 12.7156 0.621199 0.310600 0.950541i \(-0.399470\pi\)
0.310600 + 0.950541i \(0.399470\pi\)
\(420\) 0 0
\(421\) −32.1674 −1.56774 −0.783872 0.620922i \(-0.786758\pi\)
−0.783872 + 0.620922i \(0.786758\pi\)
\(422\) 0 0
\(423\) −10.3923 −0.505291
\(424\) 0 0
\(425\) 5.07345 0.246098
\(426\) 0 0
\(427\) 20.7237 1.00289
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.6818 0.899870 0.449935 0.893061i \(-0.351447\pi\)
0.449935 + 0.893061i \(0.351447\pi\)
\(432\) 0 0
\(433\) 2.64218 0.126975 0.0634876 0.997983i \(-0.479778\pi\)
0.0634876 + 0.997983i \(0.479778\pi\)
\(434\) 0 0
\(435\) −19.7332 −0.946135
\(436\) 0 0
\(437\) 6.92820 0.331421
\(438\) 0 0
\(439\) 23.8945 1.14042 0.570212 0.821497i \(-0.306861\pi\)
0.570212 + 0.821497i \(0.306861\pi\)
\(440\) 0 0
\(441\) 10.1789 0.484710
\(442\) 0 0
\(443\) −8.00000 −0.380091 −0.190046 0.981775i \(-0.560864\pi\)
−0.190046 + 0.981775i \(0.560864\pi\)
\(444\) 0 0
\(445\) 16.7156 0.792397
\(446\) 0 0
\(447\) 5.87680 0.277963
\(448\) 0 0
\(449\) −11.0121 −0.519691 −0.259846 0.965650i \(-0.583672\pi\)
−0.259846 + 0.965650i \(0.583672\pi\)
\(450\) 0 0
\(451\) 20.3578 0.958612
\(452\) 0 0
\(453\) −20.0431 −0.941706
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 7.29897 0.341431 0.170716 0.985320i \(-0.445392\pi\)
0.170716 + 0.985320i \(0.445392\pi\)
\(458\) 0 0
\(459\) −6.17891 −0.288407
\(460\) 0 0
\(461\) 24.5586 1.14381 0.571904 0.820321i \(-0.306205\pi\)
0.571904 + 0.820321i \(0.306205\pi\)
\(462\) 0 0
\(463\) 1.42217 0.0660940 0.0330470 0.999454i \(-0.489479\pi\)
0.0330470 + 0.999454i \(0.489479\pi\)
\(464\) 0 0
\(465\) −18.3578 −0.851323
\(466\) 0 0
\(467\) −6.00000 −0.277647 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(468\) 0 0
\(469\) −17.1789 −0.793248
\(470\) 0 0
\(471\) −7.00000 −0.322543
\(472\) 0 0
\(473\) −2.84434 −0.130783
\(474\) 0 0
\(475\) −2.84434 −0.130507
\(476\) 0 0
\(477\) −10.1789 −0.466060
\(478\) 0 0
\(479\) −6.92820 −0.316558 −0.158279 0.987394i \(-0.550594\pi\)
−0.158279 + 0.987394i \(0.550594\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 8.28949 0.377185
\(484\) 0 0
\(485\) −4.92655 −0.223703
\(486\) 0 0
\(487\) 24.2487 1.09881 0.549407 0.835555i \(-0.314854\pi\)
0.549407 + 0.835555i \(0.314854\pi\)
\(488\) 0 0
\(489\) −7.60885 −0.344084
\(490\) 0 0
\(491\) 18.7156 0.844625 0.422312 0.906450i \(-0.361219\pi\)
0.422312 + 0.906450i \(0.361219\pi\)
\(492\) 0 0
\(493\) −50.5367 −2.27606
\(494\) 0 0
\(495\) −8.35782 −0.375656
\(496\) 0 0
\(497\) −14.3578 −0.644036
\(498\) 0 0
\(499\) −1.36129 −0.0609395 −0.0304698 0.999536i \(-0.509700\pi\)
−0.0304698 + 0.999536i \(0.509700\pi\)
\(500\) 0 0
\(501\) −6.92820 −0.309529
\(502\) 0 0
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) 29.3840 1.30757
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14.1663 −0.627910 −0.313955 0.949438i \(-0.601654\pi\)
−0.313955 + 0.949438i \(0.601654\pi\)
\(510\) 0 0
\(511\) 47.1789 2.08707
\(512\) 0 0
\(513\) 3.46410 0.152944
\(514\) 0 0
\(515\) −7.66973 −0.337969
\(516\) 0 0
\(517\) −36.0000 −1.58328
\(518\) 0 0
\(519\) 18.0000 0.790112
\(520\) 0 0
\(521\) −38.8945 −1.70400 −0.852000 0.523541i \(-0.824611\pi\)
−0.852000 + 0.523541i \(0.824611\pi\)
\(522\) 0 0
\(523\) −24.3578 −1.06509 −0.532546 0.846401i \(-0.678765\pi\)
−0.532546 + 0.846401i \(0.678765\pi\)
\(524\) 0 0
\(525\) −3.40322 −0.148528
\(526\) 0 0
\(527\) −47.0144 −2.04798
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) −1.36129 −0.0590748
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −24.1269 −1.04310
\(536\) 0 0
\(537\) 8.35782 0.360666
\(538\) 0 0
\(539\) 35.2608 1.51879
\(540\) 0 0
\(541\) 3.09334 0.132993 0.0664965 0.997787i \(-0.478818\pi\)
0.0664965 + 0.997787i \(0.478818\pi\)
\(542\) 0 0
\(543\) −20.5367 −0.881315
\(544\) 0 0
\(545\) −18.3578 −0.786362
\(546\) 0 0
\(547\) −13.5367 −0.578789 −0.289394 0.957210i \(-0.593454\pi\)
−0.289394 + 0.957210i \(0.593454\pi\)
\(548\) 0 0
\(549\) 5.00000 0.213395
\(550\) 0 0
\(551\) 28.3326 1.20701
\(552\) 0 0
\(553\) −54.6232 −2.32282
\(554\) 0 0
\(555\) −2.53673 −0.107678
\(556\) 0 0
\(557\) 32.1065 1.36040 0.680199 0.733027i \(-0.261893\pi\)
0.680199 + 0.733027i \(0.261893\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −21.4044 −0.903693
\(562\) 0 0
\(563\) −18.3578 −0.773690 −0.386845 0.922145i \(-0.626435\pi\)
−0.386845 + 0.922145i \(0.626435\pi\)
\(564\) 0 0
\(565\) −29.3840 −1.23619
\(566\) 0 0
\(567\) 4.14474 0.174063
\(568\) 0 0
\(569\) 30.7156 1.28767 0.643833 0.765166i \(-0.277343\pi\)
0.643833 + 0.765166i \(0.277343\pi\)
\(570\) 0 0
\(571\) −7.64218 −0.319815 −0.159908 0.987132i \(-0.551120\pi\)
−0.159908 + 0.987132i \(0.551120\pi\)
\(572\) 0 0
\(573\) −2.35782 −0.0984992
\(574\) 0 0
\(575\) −1.64218 −0.0684838
\(576\) 0 0
\(577\) 43.2404 1.80012 0.900060 0.435765i \(-0.143522\pi\)
0.900060 + 0.435765i \(0.143522\pi\)
\(578\) 0 0
\(579\) −13.4856 −0.560444
\(580\) 0 0
\(581\) −48.7156 −2.02107
\(582\) 0 0
\(583\) −35.2608 −1.46035
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.1459 0.914059 0.457029 0.889452i \(-0.348913\pi\)
0.457029 + 0.889452i \(0.348913\pi\)
\(588\) 0 0
\(589\) 26.3578 1.08605
\(590\) 0 0
\(591\) 9.65078 0.396980
\(592\) 0 0
\(593\) −32.8481 −1.34891 −0.674454 0.738316i \(-0.735621\pi\)
−0.674454 + 0.738316i \(0.735621\pi\)
\(594\) 0 0
\(595\) −61.7891 −2.53311
\(596\) 0 0
\(597\) 21.5367 0.881439
\(598\) 0 0
\(599\) −9.64218 −0.393969 −0.196984 0.980407i \(-0.563115\pi\)
−0.196984 + 0.980407i \(0.563115\pi\)
\(600\) 0 0
\(601\) −0.178908 −0.00729782 −0.00364891 0.999993i \(-0.501161\pi\)
−0.00364891 + 0.999993i \(0.501161\pi\)
\(602\) 0 0
\(603\) −4.14474 −0.168787
\(604\) 0 0
\(605\) −2.41269 −0.0980900
\(606\) 0 0
\(607\) −16.0000 −0.649420 −0.324710 0.945814i \(-0.605267\pi\)
−0.324710 + 0.945814i \(0.605267\pi\)
\(608\) 0 0
\(609\) 33.8995 1.37368
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −2.47358 −0.0999070 −0.0499535 0.998752i \(-0.515907\pi\)
−0.0499535 + 0.998752i \(0.515907\pi\)
\(614\) 0 0
\(615\) 14.1789 0.571749
\(616\) 0 0
\(617\) −2.41269 −0.0971314 −0.0485657 0.998820i \(-0.515465\pi\)
−0.0485657 + 0.998820i \(0.515465\pi\)
\(618\) 0 0
\(619\) −10.3314 −0.415255 −0.207627 0.978208i \(-0.566574\pi\)
−0.207627 + 0.978208i \(0.566574\pi\)
\(620\) 0 0
\(621\) 2.00000 0.0802572
\(622\) 0 0
\(623\) −28.7156 −1.15047
\(624\) 0 0
\(625\) −28.4313 −1.13725
\(626\) 0 0
\(627\) 12.0000 0.479234
\(628\) 0 0
\(629\) −6.49655 −0.259034
\(630\) 0 0
\(631\) −6.24756 −0.248711 −0.124356 0.992238i \(-0.539686\pi\)
−0.124356 + 0.992238i \(0.539686\pi\)
\(632\) 0 0
\(633\) −15.5367 −0.617529
\(634\) 0 0
\(635\) 6.80643 0.270105
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −3.46410 −0.137038
\(640\) 0 0
\(641\) 0.536725 0.0211994 0.0105997 0.999944i \(-0.496626\pi\)
0.0105997 + 0.999944i \(0.496626\pi\)
\(642\) 0 0
\(643\) −15.8983 −0.626969 −0.313485 0.949593i \(-0.601496\pi\)
−0.313485 + 0.949593i \(0.601496\pi\)
\(644\) 0 0
\(645\) −1.98104 −0.0780035
\(646\) 0 0
\(647\) 13.6422 0.536330 0.268165 0.963373i \(-0.413583\pi\)
0.268165 + 0.963373i \(0.413583\pi\)
\(648\) 0 0
\(649\) −4.71563 −0.185105
\(650\) 0 0
\(651\) 31.5367 1.23602
\(652\) 0 0
\(653\) 0.357817 0.0140024 0.00700122 0.999975i \(-0.497771\pi\)
0.00700122 + 0.999975i \(0.497771\pi\)
\(654\) 0 0
\(655\) 15.3395 0.599363
\(656\) 0 0
\(657\) 11.3828 0.444086
\(658\) 0 0
\(659\) 8.71563 0.339513 0.169756 0.985486i \(-0.445702\pi\)
0.169756 + 0.985486i \(0.445702\pi\)
\(660\) 0 0
\(661\) −12.8659 −0.500425 −0.250212 0.968191i \(-0.580500\pi\)
−0.250212 + 0.968191i \(0.580500\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 34.6410 1.34332
\(666\) 0 0
\(667\) 16.3578 0.633377
\(668\) 0 0
\(669\) −15.2177 −0.588350
\(670\) 0 0
\(671\) 17.3205 0.668651
\(672\) 0 0
\(673\) 5.35782 0.206529 0.103264 0.994654i \(-0.467071\pi\)
0.103264 + 0.994654i \(0.467071\pi\)
\(674\) 0 0
\(675\) −0.821092 −0.0316038
\(676\) 0 0
\(677\) −3.64218 −0.139980 −0.0699902 0.997548i \(-0.522297\pi\)
−0.0699902 + 0.997548i \(0.522297\pi\)
\(678\) 0 0
\(679\) 8.46327 0.324791
\(680\) 0 0
\(681\) −9.03102 −0.346069
\(682\) 0 0
\(683\) 17.9403 0.686465 0.343233 0.939250i \(-0.388478\pi\)
0.343233 + 0.939250i \(0.388478\pi\)
\(684\) 0 0
\(685\) 30.8945 1.18042
\(686\) 0 0
\(687\) 9.65078 0.368200
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 8.22860 0.313031 0.156515 0.987676i \(-0.449974\pi\)
0.156515 + 0.987676i \(0.449974\pi\)
\(692\) 0 0
\(693\) 14.3578 0.545408
\(694\) 0 0
\(695\) 41.4474 1.57219
\(696\) 0 0
\(697\) 36.3122 1.37542
\(698\) 0 0
\(699\) 22.7156 0.859184
\(700\) 0 0
\(701\) −48.3578 −1.82645 −0.913225 0.407456i \(-0.866416\pi\)
−0.913225 + 0.407456i \(0.866416\pi\)
\(702\) 0 0
\(703\) 3.64218 0.137368
\(704\) 0 0
\(705\) −25.0735 −0.944321
\(706\) 0 0
\(707\) −50.4785 −1.89844
\(708\) 0 0
\(709\) 29.4449 1.10583 0.552913 0.833239i \(-0.313516\pi\)
0.552913 + 0.833239i \(0.313516\pi\)
\(710\) 0 0
\(711\) −13.1789 −0.494248
\(712\) 0 0
\(713\) 15.2177 0.569907
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −2.10282 −0.0785311
\(718\) 0 0
\(719\) −30.3578 −1.13216 −0.566078 0.824352i \(-0.691540\pi\)
−0.566078 + 0.824352i \(0.691540\pi\)
\(720\) 0 0
\(721\) 13.1758 0.490691
\(722\) 0 0
\(723\) −5.87680 −0.218560
\(724\) 0 0
\(725\) −6.71563 −0.249412
\(726\) 0 0
\(727\) 17.5367 0.650401 0.325201 0.945645i \(-0.394568\pi\)
0.325201 + 0.945645i \(0.394568\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −5.07345 −0.187648
\(732\) 0 0
\(733\) −10.6413 −0.393045 −0.196523 0.980499i \(-0.562965\pi\)
−0.196523 + 0.980499i \(0.562965\pi\)
\(734\) 0 0
\(735\) 24.5586 0.905857
\(736\) 0 0
\(737\) −14.3578 −0.528877
\(738\) 0 0
\(739\) −15.2177 −0.559792 −0.279896 0.960030i \(-0.590300\pi\)
−0.279896 + 0.960030i \(0.590300\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.36129 0.0499407 0.0249704 0.999688i \(-0.492051\pi\)
0.0249704 + 0.999688i \(0.492051\pi\)
\(744\) 0 0
\(745\) 14.1789 0.519475
\(746\) 0 0
\(747\) −11.7536 −0.430041
\(748\) 0 0
\(749\) 41.4474 1.51446
\(750\) 0 0
\(751\) −19.6422 −0.716753 −0.358377 0.933577i \(-0.616670\pi\)
−0.358377 + 0.933577i \(0.616670\pi\)
\(752\) 0 0
\(753\) 20.7156 0.754920
\(754\) 0 0
\(755\) −48.3578 −1.75992
\(756\) 0 0
\(757\) −38.7156 −1.40714 −0.703572 0.710624i \(-0.748413\pi\)
−0.703572 + 0.710624i \(0.748413\pi\)
\(758\) 0 0
\(759\) 6.92820 0.251478
\(760\) 0 0
\(761\) −48.4974 −1.75803 −0.879015 0.476794i \(-0.841799\pi\)
−0.879015 + 0.476794i \(0.841799\pi\)
\(762\) 0 0
\(763\) 31.5367 1.14171
\(764\) 0 0
\(765\) −14.9078 −0.538993
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −6.92820 −0.249837 −0.124919 0.992167i \(-0.539867\pi\)
−0.124919 + 0.992167i \(0.539867\pi\)
\(770\) 0 0
\(771\) 22.1789 0.798754
\(772\) 0 0
\(773\) 31.7967 1.14365 0.571823 0.820377i \(-0.306236\pi\)
0.571823 + 0.820377i \(0.306236\pi\)
\(774\) 0 0
\(775\) −6.24756 −0.224419
\(776\) 0 0
\(777\) 4.35782 0.156336
\(778\) 0 0
\(779\) −20.3578 −0.729394
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 8.17891 0.292290
\(784\) 0 0
\(785\) −16.8889 −0.602789
\(786\) 0 0
\(787\) 33.9604 1.21056 0.605278 0.796014i \(-0.293062\pi\)
0.605278 + 0.796014i \(0.293062\pi\)
\(788\) 0 0
\(789\) 32.3578 1.15197
\(790\) 0 0
\(791\) 50.4785 1.79481
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −24.5586 −0.871003
\(796\) 0 0
\(797\) −17.0735 −0.604773 −0.302386 0.953185i \(-0.597783\pi\)
−0.302386 + 0.953185i \(0.597783\pi\)
\(798\) 0 0
\(799\) −64.2131 −2.27170
\(800\) 0 0
\(801\) −6.92820 −0.244796
\(802\) 0 0
\(803\) 39.4313 1.39150
\(804\) 0 0
\(805\) 20.0000 0.704907
\(806\) 0 0
\(807\) 12.3578 0.435016
\(808\) 0 0
\(809\) 46.5367 1.63614 0.818072 0.575116i \(-0.195043\pi\)
0.818072 + 0.575116i \(0.195043\pi\)
\(810\) 0 0
\(811\) −0.680643 −0.0239006 −0.0119503 0.999929i \(-0.503804\pi\)
−0.0119503 + 0.999929i \(0.503804\pi\)
\(812\) 0 0
\(813\) 14.5370 0.509837
\(814\) 0 0
\(815\) −18.3578 −0.643046
\(816\) 0 0
\(817\) 2.84434 0.0995110
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 31.7967 1.10971 0.554856 0.831947i \(-0.312773\pi\)
0.554856 + 0.831947i \(0.312773\pi\)
\(822\) 0 0
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) 0 0
\(825\) −2.84434 −0.0990274
\(826\) 0 0
\(827\) 35.8805 1.24769 0.623844 0.781549i \(-0.285570\pi\)
0.623844 + 0.781549i \(0.285570\pi\)
\(828\) 0 0
\(829\) −23.3578 −0.811251 −0.405625 0.914039i \(-0.632946\pi\)
−0.405625 + 0.914039i \(0.632946\pi\)
\(830\) 0 0
\(831\) −0.178908 −0.00620626
\(832\) 0 0
\(833\) 62.8945 2.17917
\(834\) 0 0
\(835\) −16.7156 −0.578468
\(836\) 0 0
\(837\) 7.60885 0.263000
\(838\) 0 0
\(839\) 15.2177 0.525373 0.262687 0.964881i \(-0.415391\pi\)
0.262687 + 0.964881i \(0.415391\pi\)
\(840\) 0 0
\(841\) 37.8945 1.30671
\(842\) 0 0
\(843\) 11.4437 0.394142
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 4.14474 0.142415
\(848\) 0 0
\(849\) 27.1789 0.932778
\(850\) 0 0
\(851\) 2.10282 0.0720836
\(852\) 0 0
\(853\) 24.6195 0.842955 0.421477 0.906839i \(-0.361512\pi\)
0.421477 + 0.906839i \(0.361512\pi\)
\(854\) 0 0
\(855\) 8.35782 0.285831
\(856\) 0 0
\(857\) 20.1789 0.689298 0.344649 0.938732i \(-0.387998\pi\)
0.344649 + 0.938732i \(0.387998\pi\)
\(858\) 0 0
\(859\) −54.2524 −1.85107 −0.925533 0.378666i \(-0.876383\pi\)
−0.925533 + 0.378666i \(0.876383\pi\)
\(860\) 0 0
\(861\) −24.3578 −0.830112
\(862\) 0 0
\(863\) −20.0431 −0.682274 −0.341137 0.940014i \(-0.610812\pi\)
−0.341137 + 0.940014i \(0.610812\pi\)
\(864\) 0 0
\(865\) 43.4285 1.47661
\(866\) 0 0
\(867\) −21.1789 −0.719273
\(868\) 0 0
\(869\) −45.6531 −1.54867
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 2.04193 0.0691088
\(874\) 0 0
\(875\) 41.7891 1.41273
\(876\) 0 0
\(877\) −12.8050 −0.432394 −0.216197 0.976350i \(-0.569365\pi\)
−0.216197 + 0.976350i \(0.569365\pi\)
\(878\) 0 0
\(879\) −32.8481 −1.10794
\(880\) 0 0
\(881\) 37.8211 1.27422 0.637112 0.770771i \(-0.280129\pi\)
0.637112 + 0.770771i \(0.280129\pi\)
\(882\) 0 0
\(883\) −17.8945 −0.602199 −0.301100 0.953593i \(-0.597354\pi\)
−0.301100 + 0.953593i \(0.597354\pi\)
\(884\) 0 0
\(885\) −3.28437 −0.110403
\(886\) 0 0
\(887\) −21.6422 −0.726673 −0.363337 0.931658i \(-0.618363\pi\)
−0.363337 + 0.931658i \(0.618363\pi\)
\(888\) 0 0
\(889\) −11.6927 −0.392161
\(890\) 0 0
\(891\) 3.46410 0.116052
\(892\) 0 0
\(893\) 36.0000 1.20469
\(894\) 0 0
\(895\) 20.1649 0.674037
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 62.2321 2.07556
\(900\) 0 0
\(901\) −62.8945 −2.09532
\(902\) 0 0
\(903\) 3.40322 0.113252
\(904\) 0 0
\(905\) −49.5488 −1.64706
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 0 0
\(909\) −12.1789 −0.403949
\(910\) 0 0
\(911\) −4.71563 −0.156236 −0.0781180 0.996944i \(-0.524891\pi\)
−0.0781180 + 0.996944i \(0.524891\pi\)
\(912\) 0 0
\(913\) −40.7156 −1.34749
\(914\) 0 0
\(915\) 12.0635 0.398806
\(916\) 0 0
\(917\) −26.3515 −0.870204
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) −11.0729 −0.364866
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −0.863302 −0.0283852
\(926\) 0 0
\(927\) 3.17891 0.104409
\(928\) 0 0
\(929\) 31.4868 1.03305 0.516524 0.856273i \(-0.327226\pi\)
0.516524 + 0.856273i \(0.327226\pi\)
\(930\) 0 0
\(931\) −35.2608 −1.15563
\(932\) 0 0
\(933\) −11.6422 −0.381148
\(934\) 0 0
\(935\) −51.6422 −1.68888
\(936\) 0 0
\(937\) 48.8945 1.59732 0.798658 0.601786i \(-0.205544\pi\)
0.798658 + 0.601786i \(0.205544\pi\)
\(938\) 0 0
\(939\) −27.8945 −0.910304
\(940\) 0 0
\(941\) 37.2418 1.21405 0.607024 0.794683i \(-0.292363\pi\)
0.607024 + 0.794683i \(0.292363\pi\)
\(942\) 0 0
\(943\) −11.7536 −0.382750
\(944\) 0 0
\(945\) 10.0000 0.325300
\(946\) 0 0
\(947\) −30.4354 −0.989017 −0.494509 0.869173i \(-0.664652\pi\)
−0.494509 + 0.869173i \(0.664652\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −3.77398 −0.122380
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) −5.68869 −0.184082
\(956\) 0 0
\(957\) 28.3326 0.915862
\(958\) 0 0
\(959\) −53.0735 −1.71383
\(960\) 0 0
\(961\) 26.8945 0.867566
\(962\) 0 0
\(963\) 10.0000 0.322245
\(964\) 0 0
\(965\) −32.5367 −1.04739
\(966\) 0 0
\(967\) −35.3825 −1.13783 −0.568913 0.822398i \(-0.692636\pi\)
−0.568913 + 0.822398i \(0.692636\pi\)
\(968\) 0 0
\(969\) 21.4044 0.687607
\(970\) 0 0
\(971\) −4.71563 −0.151332 −0.0756659 0.997133i \(-0.524108\pi\)
−0.0756659 + 0.997133i \(0.524108\pi\)
\(972\) 0 0
\(973\) −71.2022 −2.28264
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17.0106 0.544218 0.272109 0.962266i \(-0.412279\pi\)
0.272109 + 0.962266i \(0.412279\pi\)
\(978\) 0 0
\(979\) −24.0000 −0.767043
\(980\) 0 0
\(981\) 7.60885 0.242932
\(982\) 0 0
\(983\) 24.8685 0.793181 0.396590 0.917996i \(-0.370193\pi\)
0.396590 + 0.917996i \(0.370193\pi\)
\(984\) 0 0
\(985\) 23.2844 0.741902
\(986\) 0 0
\(987\) 43.0735 1.37104
\(988\) 0 0
\(989\) 1.64218 0.0522184
\(990\) 0 0
\(991\) 45.0735 1.43181 0.715903 0.698200i \(-0.246015\pi\)
0.715903 + 0.698200i \(0.246015\pi\)
\(992\) 0 0
\(993\) 20.1040 0.637980
\(994\) 0 0
\(995\) 51.9615 1.64729
\(996\) 0 0
\(997\) 35.3578 1.11979 0.559897 0.828562i \(-0.310841\pi\)
0.559897 + 0.828562i \(0.310841\pi\)
\(998\) 0 0
\(999\) 1.05141 0.0332651
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8112.2.a.cr.1.2 4
4.3 odd 2 2028.2.a.m.1.2 4
12.11 even 2 6084.2.a.bd.1.3 4
13.2 odd 12 624.2.bv.f.433.2 4
13.7 odd 12 624.2.bv.f.49.1 4
13.12 even 2 inner 8112.2.a.cr.1.3 4
39.2 even 12 1872.2.by.j.433.1 4
39.20 even 12 1872.2.by.j.1297.2 4
52.3 odd 6 2028.2.i.n.529.2 8
52.7 even 12 156.2.q.b.49.1 4
52.11 even 12 2028.2.q.f.1837.1 4
52.15 even 12 156.2.q.b.121.2 yes 4
52.19 even 12 2028.2.q.f.361.2 4
52.23 odd 6 2028.2.i.n.529.3 8
52.31 even 4 2028.2.b.e.337.3 4
52.35 odd 6 2028.2.i.n.2005.2 8
52.43 odd 6 2028.2.i.n.2005.3 8
52.47 even 4 2028.2.b.e.337.2 4
52.51 odd 2 2028.2.a.m.1.3 4
156.47 odd 4 6084.2.b.o.4393.3 4
156.59 odd 12 468.2.t.d.361.2 4
156.83 odd 4 6084.2.b.o.4393.2 4
156.119 odd 12 468.2.t.d.433.1 4
156.155 even 2 6084.2.a.bd.1.2 4
260.7 odd 12 3900.2.bw.j.49.2 8
260.59 even 12 3900.2.cd.i.2701.2 4
260.67 odd 12 3900.2.bw.j.2149.3 8
260.119 even 12 3900.2.cd.i.901.2 4
260.163 odd 12 3900.2.bw.j.49.3 8
260.223 odd 12 3900.2.bw.j.2149.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.q.b.49.1 4 52.7 even 12
156.2.q.b.121.2 yes 4 52.15 even 12
468.2.t.d.361.2 4 156.59 odd 12
468.2.t.d.433.1 4 156.119 odd 12
624.2.bv.f.49.1 4 13.7 odd 12
624.2.bv.f.433.2 4 13.2 odd 12
1872.2.by.j.433.1 4 39.2 even 12
1872.2.by.j.1297.2 4 39.20 even 12
2028.2.a.m.1.2 4 4.3 odd 2
2028.2.a.m.1.3 4 52.51 odd 2
2028.2.b.e.337.2 4 52.47 even 4
2028.2.b.e.337.3 4 52.31 even 4
2028.2.i.n.529.2 8 52.3 odd 6
2028.2.i.n.529.3 8 52.23 odd 6
2028.2.i.n.2005.2 8 52.35 odd 6
2028.2.i.n.2005.3 8 52.43 odd 6
2028.2.q.f.361.2 4 52.19 even 12
2028.2.q.f.1837.1 4 52.11 even 12
3900.2.bw.j.49.2 8 260.7 odd 12
3900.2.bw.j.49.3 8 260.163 odd 12
3900.2.bw.j.2149.2 8 260.223 odd 12
3900.2.bw.j.2149.3 8 260.67 odd 12
3900.2.cd.i.901.2 4 260.119 even 12
3900.2.cd.i.2701.2 4 260.59 even 12
6084.2.a.bd.1.2 4 156.155 even 2
6084.2.a.bd.1.3 4 12.11 even 2
6084.2.b.o.4393.2 4 156.83 odd 4
6084.2.b.o.4393.3 4 156.47 odd 4
8112.2.a.cr.1.2 4 1.1 even 1 trivial
8112.2.a.cr.1.3 4 13.12 even 2 inner