Properties

Label 2028.2.i.n.2005.3
Level $2028$
Weight $2$
Character 2028.2005
Analytic conductor $16.194$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2028,2,Mod(529,2028)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2028, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2028.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.1936615299\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.70892257536.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 21x^{6} + 320x^{4} + 2541x^{2} + 14641 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2005.3
Root \(-2.07237 + 2.58945i\) of defining polynomial
Character \(\chi\) \(=\) 2028.2005
Dual form 2028.2.i.n.529.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +2.41269 q^{5} +(-2.07237 + 3.58945i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(-1.73205 - 3.00000i) q^{11} +(-1.20635 - 2.08945i) q^{15} +(-3.08945 + 5.35109i) q^{17} +(1.73205 - 3.00000i) q^{19} +4.14474 q^{21} +(-1.00000 - 1.73205i) q^{23} +0.821092 q^{25} +1.00000 q^{27} +(4.08945 + 7.08314i) q^{29} -7.60885 q^{31} +(-1.73205 + 3.00000i) q^{33} +(-5.00000 + 8.66025i) q^{35} +(-0.525704 - 0.910546i) q^{37} +(2.93840 + 5.08945i) q^{41} +(-0.410546 + 0.711086i) q^{43} +(-1.20635 + 2.08945i) q^{45} -10.3923 q^{47} +(-5.08945 - 8.81519i) q^{49} +6.17891 q^{51} -10.1789 q^{53} +(-4.17891 - 7.23808i) q^{55} -3.46410 q^{57} +(0.680643 - 1.17891i) q^{59} +(-2.50000 + 4.33013i) q^{61} +(-2.07237 - 3.58945i) q^{63} +(2.07237 + 3.58945i) q^{67} +(-1.00000 + 1.73205i) q^{69} +(1.73205 - 3.00000i) q^{71} -11.3828 q^{73} +(-0.410546 - 0.711086i) q^{75} +14.3578 q^{77} +13.1789 q^{79} +(-0.500000 - 0.866025i) q^{81} -11.7536 q^{83} +(-7.45391 + 12.9105i) q^{85} +(4.08945 - 7.08314i) q^{87} +(-3.46410 - 6.00000i) q^{89} +(3.80442 + 6.58945i) q^{93} +(4.17891 - 7.23808i) q^{95} +(1.02096 - 1.76836i) q^{97} +3.46410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 4 q^{9} - 2 q^{17} - 8 q^{23} + 52 q^{25} + 8 q^{27} + 10 q^{29} - 40 q^{35} - 26 q^{43} - 18 q^{49} + 4 q^{51} - 36 q^{53} + 12 q^{55} - 20 q^{61} - 8 q^{69} - 26 q^{75} + 24 q^{77} + 60 q^{79}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) 2.41269 1.07899 0.539495 0.841989i \(-0.318615\pi\)
0.539495 + 0.841989i \(0.318615\pi\)
\(6\) 0 0
\(7\) −2.07237 + 3.58945i −0.783283 + 1.35669i 0.146736 + 0.989176i \(0.453123\pi\)
−0.930019 + 0.367511i \(0.880210\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −1.73205 3.00000i −0.522233 0.904534i −0.999665 0.0258656i \(-0.991766\pi\)
0.477432 0.878668i \(-0.341568\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −1.20635 2.08945i −0.311477 0.539495i
\(16\) 0 0
\(17\) −3.08945 + 5.35109i −0.749303 + 1.29783i 0.198855 + 0.980029i \(0.436278\pi\)
−0.948157 + 0.317801i \(0.897055\pi\)
\(18\) 0 0
\(19\) 1.73205 3.00000i 0.397360 0.688247i −0.596040 0.802955i \(-0.703260\pi\)
0.993399 + 0.114708i \(0.0365932\pi\)
\(20\) 0 0
\(21\) 4.14474 0.904457
\(22\) 0 0
\(23\) −1.00000 1.73205i −0.208514 0.361158i 0.742732 0.669588i \(-0.233529\pi\)
−0.951247 + 0.308431i \(0.900196\pi\)
\(24\) 0 0
\(25\) 0.821092 0.164218
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 4.08945 + 7.08314i 0.759393 + 1.31531i 0.943161 + 0.332337i \(0.107837\pi\)
−0.183768 + 0.982970i \(0.558830\pi\)
\(30\) 0 0
\(31\) −7.60885 −1.36659 −0.683295 0.730143i \(-0.739454\pi\)
−0.683295 + 0.730143i \(0.739454\pi\)
\(32\) 0 0
\(33\) −1.73205 + 3.00000i −0.301511 + 0.522233i
\(34\) 0 0
\(35\) −5.00000 + 8.66025i −0.845154 + 1.46385i
\(36\) 0 0
\(37\) −0.525704 0.910546i −0.0864252 0.149693i 0.819572 0.572976i \(-0.194211\pi\)
−0.905998 + 0.423283i \(0.860878\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.93840 + 5.08945i 0.458901 + 0.794839i 0.998903 0.0468242i \(-0.0149101\pi\)
−0.540003 + 0.841663i \(0.681577\pi\)
\(42\) 0 0
\(43\) −0.410546 + 0.711086i −0.0626077 + 0.108440i −0.895630 0.444799i \(-0.853275\pi\)
0.833023 + 0.553239i \(0.186608\pi\)
\(44\) 0 0
\(45\) −1.20635 + 2.08945i −0.179832 + 0.311477i
\(46\) 0 0
\(47\) −10.3923 −1.51587 −0.757937 0.652328i \(-0.773792\pi\)
−0.757937 + 0.652328i \(0.773792\pi\)
\(48\) 0 0
\(49\) −5.08945 8.81519i −0.727065 1.25931i
\(50\) 0 0
\(51\) 6.17891 0.865220
\(52\) 0 0
\(53\) −10.1789 −1.39818 −0.699090 0.715033i \(-0.746411\pi\)
−0.699090 + 0.715033i \(0.746411\pi\)
\(54\) 0 0
\(55\) −4.17891 7.23808i −0.563484 0.975983i
\(56\) 0 0
\(57\) −3.46410 −0.458831
\(58\) 0 0
\(59\) 0.680643 1.17891i 0.0886122 0.153481i −0.818313 0.574773i \(-0.805090\pi\)
0.906925 + 0.421293i \(0.138423\pi\)
\(60\) 0 0
\(61\) −2.50000 + 4.33013i −0.320092 + 0.554416i −0.980507 0.196485i \(-0.937047\pi\)
0.660415 + 0.750901i \(0.270381\pi\)
\(62\) 0 0
\(63\) −2.07237 3.58945i −0.261094 0.452229i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.07237 + 3.58945i 0.253181 + 0.438522i 0.964400 0.264449i \(-0.0851900\pi\)
−0.711219 + 0.702970i \(0.751857\pi\)
\(68\) 0 0
\(69\) −1.00000 + 1.73205i −0.120386 + 0.208514i
\(70\) 0 0
\(71\) 1.73205 3.00000i 0.205557 0.356034i −0.744753 0.667340i \(-0.767433\pi\)
0.950310 + 0.311305i \(0.100766\pi\)
\(72\) 0 0
\(73\) −11.3828 −1.33226 −0.666130 0.745836i \(-0.732050\pi\)
−0.666130 + 0.745836i \(0.732050\pi\)
\(74\) 0 0
\(75\) −0.410546 0.711086i −0.0474057 0.0821092i
\(76\) 0 0
\(77\) 14.3578 1.63623
\(78\) 0 0
\(79\) 13.1789 1.48274 0.741372 0.671095i \(-0.234176\pi\)
0.741372 + 0.671095i \(0.234176\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −11.7536 −1.29012 −0.645062 0.764130i \(-0.723169\pi\)
−0.645062 + 0.764130i \(0.723169\pi\)
\(84\) 0 0
\(85\) −7.45391 + 12.9105i −0.808490 + 1.40035i
\(86\) 0 0
\(87\) 4.08945 7.08314i 0.438436 0.759393i
\(88\) 0 0
\(89\) −3.46410 6.00000i −0.367194 0.635999i 0.621932 0.783072i \(-0.286348\pi\)
−0.989126 + 0.147073i \(0.953015\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.80442 + 6.58945i 0.394500 + 0.683295i
\(94\) 0 0
\(95\) 4.17891 7.23808i 0.428747 0.742612i
\(96\) 0 0
\(97\) 1.02096 1.76836i 0.103663 0.179550i −0.809528 0.587081i \(-0.800277\pi\)
0.913191 + 0.407531i \(0.133610\pi\)
\(98\) 0 0
\(99\) 3.46410 0.348155
\(100\) 0 0
\(101\) 6.08945 + 10.5472i 0.605923 + 1.04949i 0.991905 + 0.126983i \(0.0405295\pi\)
−0.385981 + 0.922507i \(0.626137\pi\)
\(102\) 0 0
\(103\) −3.17891 −0.313227 −0.156614 0.987660i \(-0.550058\pi\)
−0.156614 + 0.987660i \(0.550058\pi\)
\(104\) 0 0
\(105\) 10.0000 0.975900
\(106\) 0 0
\(107\) 5.00000 + 8.66025i 0.483368 + 0.837218i 0.999818 0.0190994i \(-0.00607989\pi\)
−0.516449 + 0.856318i \(0.672747\pi\)
\(108\) 0 0
\(109\) −7.60885 −0.728795 −0.364398 0.931243i \(-0.618725\pi\)
−0.364398 + 0.931243i \(0.618725\pi\)
\(110\) 0 0
\(111\) −0.525704 + 0.910546i −0.0498976 + 0.0864252i
\(112\) 0 0
\(113\) −6.08945 + 10.5472i −0.572848 + 0.992201i 0.423424 + 0.905932i \(0.360828\pi\)
−0.996272 + 0.0862697i \(0.972505\pi\)
\(114\) 0 0
\(115\) −2.41269 4.17891i −0.224985 0.389685i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.8050 22.1789i −1.17383 2.03314i
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) 2.93840 5.08945i 0.264946 0.458901i
\(124\) 0 0
\(125\) −10.0824 −0.901800
\(126\) 0 0
\(127\) −1.41055 2.44314i −0.125166 0.216793i 0.796632 0.604465i \(-0.206613\pi\)
−0.921798 + 0.387671i \(0.873280\pi\)
\(128\) 0 0
\(129\) 0.821092 0.0722931
\(130\) 0 0
\(131\) 6.35782 0.555485 0.277743 0.960656i \(-0.410414\pi\)
0.277743 + 0.960656i \(0.410414\pi\)
\(132\) 0 0
\(133\) 7.17891 + 12.4342i 0.622490 + 1.07818i
\(134\) 0 0
\(135\) 2.41269 0.207652
\(136\) 0 0
\(137\) −6.40250 + 11.0895i −0.547002 + 0.947436i 0.451476 + 0.892284i \(0.350898\pi\)
−0.998478 + 0.0551525i \(0.982436\pi\)
\(138\) 0 0
\(139\) −8.58945 + 14.8774i −0.728548 + 1.26188i 0.228949 + 0.973438i \(0.426471\pi\)
−0.957497 + 0.288444i \(0.906862\pi\)
\(140\) 0 0
\(141\) 5.19615 + 9.00000i 0.437595 + 0.757937i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 9.86660 + 17.0895i 0.819377 + 1.41920i
\(146\) 0 0
\(147\) −5.08945 + 8.81519i −0.419771 + 0.727065i
\(148\) 0 0
\(149\) −2.93840 + 5.08945i −0.240723 + 0.416944i −0.960920 0.276825i \(-0.910718\pi\)
0.720197 + 0.693769i \(0.244051\pi\)
\(150\) 0 0
\(151\) 20.0431 1.63108 0.815541 0.578699i \(-0.196439\pi\)
0.815541 + 0.578699i \(0.196439\pi\)
\(152\) 0 0
\(153\) −3.08945 5.35109i −0.249768 0.432610i
\(154\) 0 0
\(155\) −18.3578 −1.47454
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) 5.08945 + 8.81519i 0.403620 + 0.699090i
\(160\) 0 0
\(161\) 8.28949 0.653303
\(162\) 0 0
\(163\) −3.80442 + 6.58945i −0.297985 + 0.516126i −0.975675 0.219222i \(-0.929648\pi\)
0.677690 + 0.735348i \(0.262981\pi\)
\(164\) 0 0
\(165\) −4.17891 + 7.23808i −0.325328 + 0.563484i
\(166\) 0 0
\(167\) −3.46410 6.00000i −0.268060 0.464294i 0.700301 0.713848i \(-0.253049\pi\)
−0.968361 + 0.249554i \(0.919716\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 1.73205 + 3.00000i 0.132453 + 0.229416i
\(172\) 0 0
\(173\) 9.00000 15.5885i 0.684257 1.18517i −0.289412 0.957205i \(-0.593460\pi\)
0.973670 0.227964i \(-0.0732068\pi\)
\(174\) 0 0
\(175\) −1.70161 + 2.94727i −0.128629 + 0.222793i
\(176\) 0 0
\(177\) −1.36129 −0.102321
\(178\) 0 0
\(179\) −4.17891 7.23808i −0.312346 0.541000i 0.666524 0.745484i \(-0.267782\pi\)
−0.978870 + 0.204484i \(0.934448\pi\)
\(180\) 0 0
\(181\) 20.5367 1.52648 0.763241 0.646113i \(-0.223607\pi\)
0.763241 + 0.646113i \(0.223607\pi\)
\(182\) 0 0
\(183\) 5.00000 0.369611
\(184\) 0 0
\(185\) −1.26836 2.19687i −0.0932519 0.161517i
\(186\) 0 0
\(187\) 21.4044 1.56524
\(188\) 0 0
\(189\) −2.07237 + 3.58945i −0.150743 + 0.261094i
\(190\) 0 0
\(191\) 1.17891 2.04193i 0.0853028 0.147749i −0.820217 0.572052i \(-0.806148\pi\)
0.905520 + 0.424303i \(0.139481\pi\)
\(192\) 0 0
\(193\) 6.74282 + 11.6789i 0.485359 + 0.840666i 0.999858 0.0168244i \(-0.00535563\pi\)
−0.514500 + 0.857491i \(0.672022\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.82539 8.35782i −0.343795 0.595470i 0.641339 0.767257i \(-0.278379\pi\)
−0.985134 + 0.171788i \(0.945046\pi\)
\(198\) 0 0
\(199\) −10.7684 + 18.6514i −0.763349 + 1.32216i 0.177766 + 0.984073i \(0.443113\pi\)
−0.941115 + 0.338086i \(0.890220\pi\)
\(200\) 0 0
\(201\) 2.07237 3.58945i 0.146174 0.253181i
\(202\) 0 0
\(203\) −33.8995 −2.37928
\(204\) 0 0
\(205\) 7.08945 + 12.2793i 0.495149 + 0.857623i
\(206\) 0 0
\(207\) 2.00000 0.139010
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) 7.76836 + 13.4552i 0.534796 + 0.926294i 0.999173 + 0.0406565i \(0.0129449\pi\)
−0.464377 + 0.885638i \(0.653722\pi\)
\(212\) 0 0
\(213\) −3.46410 −0.237356
\(214\) 0 0
\(215\) −0.990521 + 1.71563i −0.0675530 + 0.117005i
\(216\) 0 0
\(217\) 15.7684 27.3116i 1.07043 1.85403i
\(218\) 0 0
\(219\) 5.69141 + 9.85782i 0.384590 + 0.666130i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −7.60885 13.1789i −0.509526 0.882525i −0.999939 0.0110349i \(-0.996487\pi\)
0.490413 0.871490i \(-0.336846\pi\)
\(224\) 0 0
\(225\) −0.410546 + 0.711086i −0.0273697 + 0.0474057i
\(226\) 0 0
\(227\) −4.51551 + 7.82109i −0.299705 + 0.519104i −0.976068 0.217464i \(-0.930222\pi\)
0.676363 + 0.736568i \(0.263555\pi\)
\(228\) 0 0
\(229\) 9.65078 0.637741 0.318871 0.947798i \(-0.396696\pi\)
0.318871 + 0.947798i \(0.396696\pi\)
\(230\) 0 0
\(231\) −7.17891 12.4342i −0.472337 0.818113i
\(232\) 0 0
\(233\) −22.7156 −1.48815 −0.744075 0.668096i \(-0.767110\pi\)
−0.744075 + 0.668096i \(0.767110\pi\)
\(234\) 0 0
\(235\) −25.0735 −1.63561
\(236\) 0 0
\(237\) −6.58945 11.4133i −0.428031 0.741372i
\(238\) 0 0
\(239\) 2.10282 0.136020 0.0680099 0.997685i \(-0.478335\pi\)
0.0680099 + 0.997685i \(0.478335\pi\)
\(240\) 0 0
\(241\) 2.93840 5.08945i 0.189279 0.327841i −0.755731 0.654882i \(-0.772718\pi\)
0.945010 + 0.327041i \(0.106052\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) −12.2793 21.2684i −0.784495 1.35879i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 5.87680 + 10.1789i 0.372427 + 0.645062i
\(250\) 0 0
\(251\) −10.3578 + 17.9403i −0.653780 + 1.13238i 0.328419 + 0.944532i \(0.393484\pi\)
−0.982198 + 0.187847i \(0.939849\pi\)
\(252\) 0 0
\(253\) −3.46410 + 6.00000i −0.217786 + 0.377217i
\(254\) 0 0
\(255\) 14.9078 0.933564
\(256\) 0 0
\(257\) 11.0895 + 19.2075i 0.691741 + 1.19813i 0.971267 + 0.237993i \(0.0764894\pi\)
−0.279526 + 0.960138i \(0.590177\pi\)
\(258\) 0 0
\(259\) 4.35782 0.270782
\(260\) 0 0
\(261\) −8.17891 −0.506262
\(262\) 0 0
\(263\) −16.1789 28.0227i −0.997634 1.72795i −0.558352 0.829604i \(-0.688566\pi\)
−0.439282 0.898349i \(-0.644767\pi\)
\(264\) 0 0
\(265\) −24.5586 −1.50862
\(266\) 0 0
\(267\) −3.46410 + 6.00000i −0.212000 + 0.367194i
\(268\) 0 0
\(269\) 6.17891 10.7022i 0.376735 0.652524i −0.613850 0.789422i \(-0.710380\pi\)
0.990585 + 0.136899i \(0.0437135\pi\)
\(270\) 0 0
\(271\) 7.26852 + 12.5895i 0.441531 + 0.764755i 0.997803 0.0662455i \(-0.0211020\pi\)
−0.556272 + 0.831000i \(0.687769\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.42217 2.46327i −0.0857602 0.148541i
\(276\) 0 0
\(277\) −0.0894542 + 0.154939i −0.00537478 + 0.00930939i −0.868700 0.495338i \(-0.835044\pi\)
0.863326 + 0.504647i \(0.168378\pi\)
\(278\) 0 0
\(279\) 3.80442 6.58945i 0.227765 0.394500i
\(280\) 0 0
\(281\) 11.4437 0.682675 0.341337 0.939941i \(-0.389120\pi\)
0.341337 + 0.939941i \(0.389120\pi\)
\(282\) 0 0
\(283\) −13.5895 23.5376i −0.807809 1.39917i −0.914378 0.404861i \(-0.867320\pi\)
0.106569 0.994305i \(-0.466014\pi\)
\(284\) 0 0
\(285\) −8.35782 −0.495074
\(286\) 0 0
\(287\) −24.3578 −1.43780
\(288\) 0 0
\(289\) −10.5895 18.3415i −0.622909 1.07891i
\(290\) 0 0
\(291\) −2.04193 −0.119700
\(292\) 0 0
\(293\) 16.4240 28.4473i 0.959503 1.66191i 0.235792 0.971803i \(-0.424232\pi\)
0.723710 0.690104i \(-0.242435\pi\)
\(294\) 0 0
\(295\) 1.64218 2.84434i 0.0956116 0.165604i
\(296\) 0 0
\(297\) −1.73205 3.00000i −0.100504 0.174078i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −1.70161 2.94727i −0.0980790 0.169878i
\(302\) 0 0
\(303\) 6.08945 10.5472i 0.349830 0.605923i
\(304\) 0 0
\(305\) −6.03173 + 10.4473i −0.345376 + 0.598209i
\(306\) 0 0
\(307\) 11.0729 0.631967 0.315983 0.948765i \(-0.397666\pi\)
0.315983 + 0.948765i \(0.397666\pi\)
\(308\) 0 0
\(309\) 1.58945 + 2.75302i 0.0904209 + 0.156614i
\(310\) 0 0
\(311\) −11.6422 −0.660168 −0.330084 0.943952i \(-0.607077\pi\)
−0.330084 + 0.943952i \(0.607077\pi\)
\(312\) 0 0
\(313\) 27.8945 1.57669 0.788346 0.615232i \(-0.210938\pi\)
0.788346 + 0.615232i \(0.210938\pi\)
\(314\) 0 0
\(315\) −5.00000 8.66025i −0.281718 0.487950i
\(316\) 0 0
\(317\) −3.77398 −0.211968 −0.105984 0.994368i \(-0.533799\pi\)
−0.105984 + 0.994368i \(0.533799\pi\)
\(318\) 0 0
\(319\) 14.1663 24.5367i 0.793160 1.37379i
\(320\) 0 0
\(321\) 5.00000 8.66025i 0.279073 0.483368i
\(322\) 0 0
\(323\) 10.7022 + 18.5367i 0.595485 + 1.03141i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3.80442 + 6.58945i 0.210385 + 0.364398i
\(328\) 0 0
\(329\) 21.5367 37.3027i 1.18736 2.05656i
\(330\) 0 0
\(331\) 10.0520 17.4105i 0.552507 0.956970i −0.445586 0.895239i \(-0.647005\pi\)
0.998093 0.0617309i \(-0.0196621\pi\)
\(332\) 0 0
\(333\) 1.05141 0.0576168
\(334\) 0 0
\(335\) 5.00000 + 8.66025i 0.273179 + 0.473160i
\(336\) 0 0
\(337\) 25.3578 1.38133 0.690664 0.723176i \(-0.257318\pi\)
0.690664 + 0.723176i \(0.257318\pi\)
\(338\) 0 0
\(339\) 12.1789 0.661468
\(340\) 0 0
\(341\) 13.1789 + 22.8265i 0.713678 + 1.23613i
\(342\) 0 0
\(343\) 13.1758 0.711424
\(344\) 0 0
\(345\) −2.41269 + 4.17891i −0.129895 + 0.224985i
\(346\) 0 0
\(347\) −10.1789 + 17.6304i −0.546432 + 0.946449i 0.452083 + 0.891976i \(0.350681\pi\)
−0.998515 + 0.0544728i \(0.982652\pi\)
\(348\) 0 0
\(349\) −5.16571 8.94727i −0.276514 0.478936i 0.694002 0.719973i \(-0.255846\pi\)
−0.970516 + 0.241037i \(0.922513\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.49584 + 16.4473i 0.505412 + 0.875400i 0.999980 + 0.00626098i \(0.00199294\pi\)
−0.494568 + 0.869139i \(0.664674\pi\)
\(354\) 0 0
\(355\) 4.17891 7.23808i 0.221793 0.384157i
\(356\) 0 0
\(357\) −12.8050 + 22.1789i −0.677712 + 1.17383i
\(358\) 0 0
\(359\) −18.6818 −0.985987 −0.492994 0.870033i \(-0.664097\pi\)
−0.492994 + 0.870033i \(0.664097\pi\)
\(360\) 0 0
\(361\) 3.50000 + 6.06218i 0.184211 + 0.319062i
\(362\) 0 0
\(363\) 1.00000 0.0524864
\(364\) 0 0
\(365\) −27.4633 −1.43749
\(366\) 0 0
\(367\) −6.41055 11.1034i −0.334628 0.579592i 0.648785 0.760971i \(-0.275277\pi\)
−0.983413 + 0.181379i \(0.941944\pi\)
\(368\) 0 0
\(369\) −5.87680 −0.305934
\(370\) 0 0
\(371\) 21.0945 36.5367i 1.09517 1.89689i
\(372\) 0 0
\(373\) 5.67891 9.83616i 0.294043 0.509297i −0.680719 0.732545i \(-0.738333\pi\)
0.974762 + 0.223248i \(0.0716659\pi\)
\(374\) 0 0
\(375\) 5.04121 + 8.73164i 0.260327 + 0.450900i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −3.12378 5.41055i −0.160458 0.277921i 0.774575 0.632482i \(-0.217964\pi\)
−0.935033 + 0.354561i \(0.884630\pi\)
\(380\) 0 0
\(381\) −1.41055 + 2.44314i −0.0722645 + 0.125166i
\(382\) 0 0
\(383\) 9.65078 16.7156i 0.493132 0.854129i −0.506837 0.862042i \(-0.669185\pi\)
0.999969 + 0.00791288i \(0.00251878\pi\)
\(384\) 0 0
\(385\) 34.6410 1.76547
\(386\) 0 0
\(387\) −0.410546 0.711086i −0.0208692 0.0361465i
\(388\) 0 0
\(389\) 6.53673 0.331425 0.165713 0.986174i \(-0.447008\pi\)
0.165713 + 0.986174i \(0.447008\pi\)
\(390\) 0 0
\(391\) 12.3578 0.624962
\(392\) 0 0
\(393\) −3.17891 5.50603i −0.160355 0.277743i
\(394\) 0 0
\(395\) 31.7967 1.59986
\(396\) 0 0
\(397\) 10.7326 18.5895i 0.538655 0.932978i −0.460322 0.887752i \(-0.652266\pi\)
0.998977 0.0452258i \(-0.0144007\pi\)
\(398\) 0 0
\(399\) 7.17891 12.4342i 0.359395 0.622490i
\(400\) 0 0
\(401\) −5.35109 9.26836i −0.267221 0.462840i 0.700922 0.713238i \(-0.252772\pi\)
−0.968143 + 0.250398i \(0.919439\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −1.20635 2.08945i −0.0599439 0.103826i
\(406\) 0 0
\(407\) −1.82109 + 3.15422i −0.0902682 + 0.156349i
\(408\) 0 0
\(409\) 0.495261 0.857817i 0.0244891 0.0424163i −0.853521 0.521058i \(-0.825537\pi\)
0.878010 + 0.478642i \(0.158871\pi\)
\(410\) 0 0
\(411\) 12.8050 0.631624
\(412\) 0 0
\(413\) 2.82109 + 4.88627i 0.138817 + 0.240438i
\(414\) 0 0
\(415\) −28.3578 −1.39203
\(416\) 0 0
\(417\) 17.1789 0.841255
\(418\) 0 0
\(419\) 6.35782 + 11.0121i 0.310600 + 0.537974i 0.978492 0.206283i \(-0.0661368\pi\)
−0.667893 + 0.744258i \(0.732803\pi\)
\(420\) 0 0
\(421\) 32.1674 1.56774 0.783872 0.620922i \(-0.213242\pi\)
0.783872 + 0.620922i \(0.213242\pi\)
\(422\) 0 0
\(423\) 5.19615 9.00000i 0.252646 0.437595i
\(424\) 0 0
\(425\) −2.53673 + 4.39374i −0.123049 + 0.213128i
\(426\) 0 0
\(427\) −10.3619 17.9473i −0.501446 0.868529i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9.34090 16.1789i −0.449935 0.779311i 0.548446 0.836186i \(-0.315220\pi\)
−0.998381 + 0.0568753i \(0.981886\pi\)
\(432\) 0 0
\(433\) −1.32109 + 2.28820i −0.0634876 + 0.109964i −0.896022 0.444009i \(-0.853556\pi\)
0.832535 + 0.553973i \(0.186889\pi\)
\(434\) 0 0
\(435\) 9.86660 17.0895i 0.473067 0.819377i
\(436\) 0 0
\(437\) −6.92820 −0.331421
\(438\) 0 0
\(439\) 11.9473 + 20.6933i 0.570212 + 0.987636i 0.996544 + 0.0830694i \(0.0264723\pi\)
−0.426332 + 0.904567i \(0.640194\pi\)
\(440\) 0 0
\(441\) 10.1789 0.484710
\(442\) 0 0
\(443\) 8.00000 0.380091 0.190046 0.981775i \(-0.439136\pi\)
0.190046 + 0.981775i \(0.439136\pi\)
\(444\) 0 0
\(445\) −8.35782 14.4762i −0.396199 0.686236i
\(446\) 0 0
\(447\) 5.87680 0.277963
\(448\) 0 0
\(449\) −5.50603 + 9.53673i −0.259846 + 0.450066i −0.966200 0.257792i \(-0.917005\pi\)
0.706355 + 0.707858i \(0.250338\pi\)
\(450\) 0 0
\(451\) 10.1789 17.6304i 0.479306 0.830182i
\(452\) 0 0
\(453\) −10.0215 17.3578i −0.470853 0.815541i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.64948 + 6.32109i 0.170716 + 0.295688i 0.938670 0.344816i \(-0.112059\pi\)
−0.767955 + 0.640504i \(0.778725\pi\)
\(458\) 0 0
\(459\) −3.08945 + 5.35109i −0.144203 + 0.249768i
\(460\) 0 0
\(461\) 12.2793 21.2684i 0.571904 0.990566i −0.424467 0.905444i \(-0.639538\pi\)
0.996370 0.0851228i \(-0.0271283\pi\)
\(462\) 0 0
\(463\) 1.42217 0.0660940 0.0330470 0.999454i \(-0.489479\pi\)
0.0330470 + 0.999454i \(0.489479\pi\)
\(464\) 0 0
\(465\) 9.17891 + 15.8983i 0.425662 + 0.737268i
\(466\) 0 0
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 0 0
\(469\) −17.1789 −0.793248
\(470\) 0 0
\(471\) −3.50000 6.06218i −0.161271 0.279330i
\(472\) 0 0
\(473\) 2.84434 0.130783
\(474\) 0 0
\(475\) 1.42217 2.46327i 0.0652537 0.113023i
\(476\) 0 0
\(477\) 5.08945 8.81519i 0.233030 0.403620i
\(478\) 0 0
\(479\) 3.46410 + 6.00000i 0.158279 + 0.274147i 0.934248 0.356624i \(-0.116072\pi\)
−0.775969 + 0.630771i \(0.782739\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −4.14474 7.17891i −0.188592 0.326652i
\(484\) 0 0
\(485\) 2.46327 4.26652i 0.111852 0.193733i
\(486\) 0 0
\(487\) −12.1244 + 21.0000i −0.549407 + 0.951601i 0.448908 + 0.893578i \(0.351813\pi\)
−0.998315 + 0.0580230i \(0.981520\pi\)
\(488\) 0 0
\(489\) 7.60885 0.344084
\(490\) 0 0
\(491\) 9.35782 + 16.2082i 0.422312 + 0.731466i 0.996165 0.0874920i \(-0.0278852\pi\)
−0.573853 + 0.818958i \(0.694552\pi\)
\(492\) 0 0
\(493\) −50.5367 −2.27606
\(494\) 0 0
\(495\) 8.35782 0.375656
\(496\) 0 0
\(497\) 7.17891 + 12.4342i 0.322018 + 0.557752i
\(498\) 0 0
\(499\) −1.36129 −0.0609395 −0.0304698 0.999536i \(-0.509700\pi\)
−0.0304698 + 0.999536i \(0.509700\pi\)
\(500\) 0 0
\(501\) −3.46410 + 6.00000i −0.154765 + 0.268060i
\(502\) 0 0
\(503\) −3.00000 + 5.19615i −0.133763 + 0.231685i −0.925124 0.379664i \(-0.876040\pi\)
0.791361 + 0.611349i \(0.209373\pi\)
\(504\) 0 0
\(505\) 14.6920 + 25.4473i 0.653785 + 1.13239i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.08314 12.2684i −0.313955 0.543786i 0.665260 0.746612i \(-0.268321\pi\)
−0.979215 + 0.202826i \(0.934987\pi\)
\(510\) 0 0
\(511\) 23.5895 40.8581i 1.04354 1.80746i
\(512\) 0 0
\(513\) 1.73205 3.00000i 0.0764719 0.132453i
\(514\) 0 0
\(515\) −7.66973 −0.337969
\(516\) 0 0
\(517\) 18.0000 + 31.1769i 0.791639 + 1.37116i
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) 0 0
\(521\) −38.8945 −1.70400 −0.852000 0.523541i \(-0.824611\pi\)
−0.852000 + 0.523541i \(0.824611\pi\)
\(522\) 0 0
\(523\) −12.1789 21.0945i −0.532546 0.922398i −0.999278 0.0379984i \(-0.987902\pi\)
0.466731 0.884399i \(-0.345432\pi\)
\(524\) 0 0
\(525\) 3.40322 0.148528
\(526\) 0 0
\(527\) 23.5072 40.7156i 1.02399 1.77360i
\(528\) 0 0
\(529\) 9.50000 16.4545i 0.413043 0.715412i
\(530\) 0 0
\(531\) 0.680643 + 1.17891i 0.0295374 + 0.0511603i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 12.0635 + 20.8945i 0.521549 + 0.903350i
\(536\) 0 0
\(537\) −4.17891 + 7.23808i −0.180333 + 0.312346i
\(538\) 0 0
\(539\) −17.6304 + 30.5367i −0.759395 + 1.31531i
\(540\) 0 0
\(541\) −3.09334 −0.132993 −0.0664965 0.997787i \(-0.521182\pi\)
−0.0664965 + 0.997787i \(0.521182\pi\)
\(542\) 0 0
\(543\) −10.2684 17.7853i −0.440658 0.763241i
\(544\) 0 0
\(545\) −18.3578 −0.786362
\(546\) 0 0
\(547\) 13.5367 0.578789 0.289394 0.957210i \(-0.406546\pi\)
0.289394 + 0.957210i \(0.406546\pi\)
\(548\) 0 0
\(549\) −2.50000 4.33013i −0.106697 0.184805i
\(550\) 0 0
\(551\) 28.3326 1.20701
\(552\) 0 0
\(553\) −27.3116 + 47.3051i −1.16141 + 2.01162i
\(554\) 0 0
\(555\) −1.26836 + 2.19687i −0.0538390 + 0.0932519i
\(556\) 0 0
\(557\) 16.0533 + 27.8051i 0.680199 + 1.17814i 0.974920 + 0.222556i \(0.0714400\pi\)
−0.294721 + 0.955583i \(0.595227\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −10.7022 18.5367i −0.451847 0.782621i
\(562\) 0 0
\(563\) −9.17891 + 15.8983i −0.386845 + 0.670035i −0.992023 0.126055i \(-0.959768\pi\)
0.605178 + 0.796090i \(0.293102\pi\)
\(564\) 0 0
\(565\) −14.6920 + 25.4473i −0.618097 + 1.07057i
\(566\) 0 0
\(567\) 4.14474 0.174063
\(568\) 0 0
\(569\) −15.3578 26.6005i −0.643833 1.11515i −0.984570 0.174993i \(-0.944010\pi\)
0.340737 0.940159i \(-0.389324\pi\)
\(570\) 0 0
\(571\) 7.64218 0.319815 0.159908 0.987132i \(-0.448880\pi\)
0.159908 + 0.987132i \(0.448880\pi\)
\(572\) 0 0
\(573\) −2.35782 −0.0984992
\(574\) 0 0
\(575\) −0.821092 1.42217i −0.0342419 0.0593087i
\(576\) 0 0
\(577\) −43.2404 −1.80012 −0.900060 0.435765i \(-0.856478\pi\)
−0.900060 + 0.435765i \(0.856478\pi\)
\(578\) 0 0
\(579\) 6.74282 11.6789i 0.280222 0.485359i
\(580\) 0 0
\(581\) 24.3578 42.1890i 1.01053 1.75029i
\(582\) 0 0
\(583\) 17.6304 + 30.5367i 0.730176 + 1.26470i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −11.0729 19.1789i −0.457029 0.791598i 0.541773 0.840525i \(-0.317753\pi\)
−0.998802 + 0.0489266i \(0.984420\pi\)
\(588\) 0 0
\(589\) −13.1789 + 22.8265i −0.543027 + 0.940551i
\(590\) 0 0
\(591\) −4.82539 + 8.35782i −0.198490 + 0.343795i
\(592\) 0 0
\(593\) 32.8481 1.34891 0.674454 0.738316i \(-0.264379\pi\)
0.674454 + 0.738316i \(0.264379\pi\)
\(594\) 0 0
\(595\) −30.8945 53.5109i −1.26655 2.19373i
\(596\) 0 0
\(597\) 21.5367 0.881439
\(598\) 0 0
\(599\) 9.64218 0.393969 0.196984 0.980407i \(-0.436885\pi\)
0.196984 + 0.980407i \(0.436885\pi\)
\(600\) 0 0
\(601\) 0.0894542 + 0.154939i 0.00364891 + 0.00632010i 0.867844 0.496837i \(-0.165505\pi\)
−0.864195 + 0.503157i \(0.832172\pi\)
\(602\) 0 0
\(603\) −4.14474 −0.168787
\(604\) 0 0
\(605\) −1.20635 + 2.08945i −0.0490450 + 0.0849484i
\(606\) 0 0
\(607\) −8.00000 + 13.8564i −0.324710 + 0.562414i −0.981454 0.191700i \(-0.938600\pi\)
0.656744 + 0.754114i \(0.271933\pi\)
\(608\) 0 0
\(609\) 16.9497 + 29.3578i 0.686838 + 1.18964i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.23679 2.14218i −0.0499535 0.0865220i 0.839967 0.542637i \(-0.182574\pi\)
−0.889921 + 0.456115i \(0.849241\pi\)
\(614\) 0 0
\(615\) 7.08945 12.2793i 0.285874 0.495149i
\(616\) 0 0
\(617\) −1.20635 + 2.08945i −0.0485657 + 0.0841183i −0.889286 0.457351i \(-0.848798\pi\)
0.840721 + 0.541469i \(0.182132\pi\)
\(618\) 0 0
\(619\) −10.3314 −0.415255 −0.207627 0.978208i \(-0.566574\pi\)
−0.207627 + 0.978208i \(0.566574\pi\)
\(620\) 0 0
\(621\) −1.00000 1.73205i −0.0401286 0.0695048i
\(622\) 0 0
\(623\) 28.7156 1.15047
\(624\) 0 0
\(625\) −28.4313 −1.13725
\(626\) 0 0
\(627\) 6.00000 + 10.3923i 0.239617 + 0.415029i
\(628\) 0 0
\(629\) 6.49655 0.259034
\(630\) 0 0
\(631\) 3.12378 5.41055i 0.124356 0.215390i −0.797125 0.603814i \(-0.793647\pi\)
0.921481 + 0.388424i \(0.126980\pi\)
\(632\) 0 0
\(633\) 7.76836 13.4552i 0.308765 0.534796i
\(634\) 0 0
\(635\) −3.40322 5.89454i −0.135052 0.233918i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.73205 + 3.00000i 0.0685189 + 0.118678i
\(640\) 0 0
\(641\) −0.268363 + 0.464818i −0.0105997 + 0.0183592i −0.871277 0.490792i \(-0.836707\pi\)
0.860677 + 0.509152i \(0.170041\pi\)
\(642\) 0 0
\(643\) 7.94917 13.7684i 0.313485 0.542971i −0.665630 0.746282i \(-0.731837\pi\)
0.979114 + 0.203311i \(0.0651703\pi\)
\(644\) 0 0
\(645\) 1.98104 0.0780035
\(646\) 0 0
\(647\) 6.82109 + 11.8145i 0.268165 + 0.464475i 0.968388 0.249449i \(-0.0802495\pi\)
−0.700223 + 0.713924i \(0.746916\pi\)
\(648\) 0 0
\(649\) −4.71563 −0.185105
\(650\) 0 0
\(651\) −31.5367 −1.23602
\(652\) 0 0
\(653\) −0.178908 0.309878i −0.00700122 0.0121265i 0.862504 0.506051i \(-0.168895\pi\)
−0.869505 + 0.493925i \(0.835562\pi\)
\(654\) 0 0
\(655\) 15.3395 0.599363
\(656\) 0 0
\(657\) 5.69141 9.85782i 0.222043 0.384590i
\(658\) 0 0
\(659\) 4.35782 7.54796i 0.169756 0.294027i −0.768578 0.639756i \(-0.779035\pi\)
0.938334 + 0.345730i \(0.112369\pi\)
\(660\) 0 0
\(661\) −6.43294 11.1422i −0.250212 0.433381i 0.713372 0.700786i \(-0.247167\pi\)
−0.963584 + 0.267405i \(0.913834\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 17.3205 + 30.0000i 0.671660 + 1.16335i
\(666\) 0 0
\(667\) 8.17891 14.1663i 0.316689 0.548521i
\(668\) 0 0
\(669\) −7.60885 + 13.1789i −0.294175 + 0.509526i
\(670\) 0 0
\(671\) 17.3205 0.668651
\(672\) 0 0
\(673\) −2.67891 4.64001i −0.103264 0.178859i 0.809763 0.586757i \(-0.199595\pi\)
−0.913028 + 0.407897i \(0.866262\pi\)
\(674\) 0 0
\(675\) 0.821092 0.0316038
\(676\) 0 0
\(677\) −3.64218 −0.139980 −0.0699902 0.997548i \(-0.522297\pi\)
−0.0699902 + 0.997548i \(0.522297\pi\)
\(678\) 0 0
\(679\) 4.23164 + 7.32941i 0.162395 + 0.281277i
\(680\) 0 0
\(681\) 9.03102 0.346069
\(682\) 0 0
\(683\) −8.97013 + 15.5367i −0.343233 + 0.594496i −0.985031 0.172377i \(-0.944855\pi\)
0.641798 + 0.766873i \(0.278189\pi\)
\(684\) 0 0
\(685\) −15.4473 + 26.7555i −0.590210 + 1.02227i
\(686\) 0 0
\(687\) −4.82539 8.35782i −0.184100 0.318871i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −4.11430 7.12618i −0.156515 0.271093i 0.777094 0.629384i \(-0.216693\pi\)
−0.933610 + 0.358291i \(0.883359\pi\)
\(692\) 0 0
\(693\) −7.17891 + 12.4342i −0.272704 + 0.472337i
\(694\) 0 0
\(695\) −20.7237 + 35.8945i −0.786096 + 1.36156i
\(696\) 0 0
\(697\) −36.3122 −1.37542
\(698\) 0 0
\(699\) 11.3578 + 19.6723i 0.429592 + 0.744075i
\(700\) 0 0
\(701\) −48.3578 −1.82645 −0.913225 0.407456i \(-0.866416\pi\)
−0.913225 + 0.407456i \(0.866416\pi\)
\(702\) 0 0
\(703\) −3.64218 −0.137368
\(704\) 0 0
\(705\) 12.5367 + 21.7142i 0.472160 + 0.817806i
\(706\) 0 0
\(707\) −50.4785 −1.89844
\(708\) 0 0
\(709\) 14.7224 25.5000i 0.552913 0.957673i −0.445150 0.895456i \(-0.646850\pi\)
0.998063 0.0622167i \(-0.0198170\pi\)
\(710\) 0 0
\(711\) −6.58945 + 11.4133i −0.247124 + 0.428031i
\(712\) 0 0
\(713\) 7.60885 + 13.1789i 0.284954 + 0.493554i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.05141 1.82109i −0.0392655 0.0680099i
\(718\) 0 0
\(719\) −15.1789 + 26.2906i −0.566078 + 0.980475i 0.430871 + 0.902414i \(0.358206\pi\)
−0.996949 + 0.0780618i \(0.975127\pi\)
\(720\) 0 0
\(721\) 6.58788 11.4105i 0.245346 0.424951i
\(722\) 0 0
\(723\) −5.87680 −0.218560
\(724\) 0 0
\(725\) 3.35782 + 5.81591i 0.124706 + 0.215997i
\(726\) 0 0
\(727\) −17.5367 −0.650401 −0.325201 0.945645i \(-0.605432\pi\)
−0.325201 + 0.945645i \(0.605432\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −2.53673 4.39374i −0.0938242 0.162508i
\(732\) 0 0
\(733\) 10.6413 0.393045 0.196523 0.980499i \(-0.437035\pi\)
0.196523 + 0.980499i \(0.437035\pi\)
\(734\) 0 0
\(735\) −12.2793 + 21.2684i −0.452929 + 0.784495i
\(736\) 0 0
\(737\) 7.17891 12.4342i 0.264438 0.458021i
\(738\) 0 0
\(739\) 7.60885 + 13.1789i 0.279896 + 0.484794i 0.971359 0.237618i \(-0.0763667\pi\)
−0.691463 + 0.722412i \(0.743033\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.680643 1.17891i −0.0249704 0.0432500i 0.853270 0.521469i \(-0.174616\pi\)
−0.878241 + 0.478219i \(0.841282\pi\)
\(744\) 0 0
\(745\) −7.08945 + 12.2793i −0.259738 + 0.449879i
\(746\) 0 0
\(747\) 5.87680 10.1789i 0.215021 0.372427i
\(748\) 0 0
\(749\) −41.4474 −1.51446
\(750\) 0 0
\(751\) −9.82109 17.0106i −0.358377 0.620727i 0.629313 0.777152i \(-0.283336\pi\)
−0.987690 + 0.156425i \(0.950003\pi\)
\(752\) 0 0
\(753\) 20.7156 0.754920
\(754\) 0 0
\(755\) 48.3578 1.75992
\(756\) 0 0
\(757\) 19.3578 + 33.5287i 0.703572 + 1.21862i 0.967204 + 0.253999i \(0.0817460\pi\)
−0.263633 + 0.964623i \(0.584921\pi\)
\(758\) 0 0
\(759\) 6.92820 0.251478
\(760\) 0 0
\(761\) −24.2487 + 42.0000i −0.879015 + 1.52250i −0.0265919 + 0.999646i \(0.508465\pi\)
−0.852423 + 0.522852i \(0.824868\pi\)
\(762\) 0 0
\(763\) 15.7684 27.3116i 0.570853 0.988746i
\(764\) 0 0
\(765\) −7.45391 12.9105i −0.269497 0.466782i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −3.46410 6.00000i −0.124919 0.216366i 0.796782 0.604266i \(-0.206534\pi\)
−0.921701 + 0.387901i \(0.873200\pi\)
\(770\) 0 0
\(771\) 11.0895 19.2075i 0.399377 0.691741i
\(772\) 0 0
\(773\) 15.8983 27.5367i 0.571823 0.990427i −0.424555 0.905402i \(-0.639570\pi\)
0.996379 0.0850252i \(-0.0270971\pi\)
\(774\) 0 0
\(775\) −6.24756 −0.224419
\(776\) 0 0
\(777\) −2.17891 3.77398i −0.0781679 0.135391i
\(778\) 0 0
\(779\) 20.3578 0.729394
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 4.08945 + 7.08314i 0.146145 + 0.253131i
\(784\) 0 0
\(785\) 16.8889 0.602789
\(786\) 0 0
\(787\) −16.9802 + 29.4105i −0.605278 + 1.04837i 0.386729 + 0.922193i \(0.373605\pi\)
−0.992007 + 0.126179i \(0.959729\pi\)
\(788\) 0 0
\(789\) −16.1789 + 28.0227i −0.575984 + 0.997634i
\(790\) 0 0
\(791\) −25.2392 43.7156i −0.897404 1.55435i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 12.2793 + 21.2684i 0.435502 + 0.754311i
\(796\) 0 0
\(797\) 8.53673 14.7860i 0.302386 0.523748i −0.674290 0.738467i \(-0.735550\pi\)
0.976676 + 0.214718i \(0.0688834\pi\)
\(798\) 0 0
\(799\) 32.1065 55.6102i 1.13585 1.96735i
\(800\) 0 0
\(801\) 6.92820 0.244796
\(802\) 0 0
\(803\) 19.7156 + 34.1485i 0.695750 + 1.20507i
\(804\) 0 0
\(805\) 20.0000 0.704907
\(806\) 0 0
\(807\) −12.3578 −0.435016
\(808\) 0 0
\(809\) −23.2684 40.3020i −0.818072 1.41694i −0.907101 0.420913i \(-0.861710\pi\)
0.0890288 0.996029i \(-0.471624\pi\)
\(810\) 0 0
\(811\) −0.680643 −0.0239006 −0.0119503 0.999929i \(-0.503804\pi\)
−0.0119503 + 0.999929i \(0.503804\pi\)
\(812\) 0 0
\(813\) 7.26852 12.5895i 0.254918 0.441531i
\(814\) 0 0
\(815\) −9.17891 + 15.8983i −0.321523 + 0.556894i
\(816\) 0 0
\(817\) 1.42217 + 2.46327i 0.0497555 + 0.0861791i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15.8983 + 27.5367i 0.554856 + 0.961038i 0.997915 + 0.0645459i \(0.0205599\pi\)
−0.443059 + 0.896492i \(0.646107\pi\)
\(822\) 0 0
\(823\) −12.0000 + 20.7846i −0.418294 + 0.724506i −0.995768 0.0919029i \(-0.970705\pi\)
0.577474 + 0.816409i \(0.304038\pi\)
\(824\) 0 0
\(825\) −1.42217 + 2.46327i −0.0495137 + 0.0857602i
\(826\) 0 0
\(827\) 35.8805 1.24769 0.623844 0.781549i \(-0.285570\pi\)
0.623844 + 0.781549i \(0.285570\pi\)
\(828\) 0 0
\(829\) 11.6789 + 20.2285i 0.405625 + 0.702564i 0.994394 0.105738i \(-0.0337205\pi\)
−0.588769 + 0.808302i \(0.700387\pi\)
\(830\) 0 0
\(831\) 0.178908 0.00620626
\(832\) 0 0
\(833\) 62.8945 2.17917
\(834\) 0 0
\(835\) −8.35782 14.4762i −0.289234 0.500968i
\(836\) 0 0
\(837\) −7.60885 −0.263000
\(838\) 0 0
\(839\) −7.60885 + 13.1789i −0.262687 + 0.454986i −0.966955 0.254947i \(-0.917942\pi\)
0.704268 + 0.709934i \(0.251275\pi\)
\(840\) 0 0
\(841\) −18.9473 + 32.8176i −0.653354 + 1.13164i
\(842\) 0 0
\(843\) −5.72186 9.91055i −0.197071 0.341337i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −2.07237 3.58945i −0.0712076 0.123335i
\(848\) 0 0
\(849\) −13.5895 + 23.5376i −0.466389 + 0.807809i
\(850\) 0 0
\(851\) −1.05141 + 1.82109i −0.0360418 + 0.0624262i
\(852\) 0 0
\(853\) −24.6195 −0.842955 −0.421477 0.906839i \(-0.638488\pi\)
−0.421477 + 0.906839i \(0.638488\pi\)
\(854\) 0 0
\(855\) 4.17891 + 7.23808i 0.142916 + 0.247537i
\(856\) 0 0
\(857\) 20.1789 0.689298 0.344649 0.938732i \(-0.387998\pi\)
0.344649 + 0.938732i \(0.387998\pi\)
\(858\) 0 0
\(859\) 54.2524 1.85107 0.925533 0.378666i \(-0.123617\pi\)
0.925533 + 0.378666i \(0.123617\pi\)
\(860\) 0 0
\(861\) 12.1789 + 21.0945i 0.415056 + 0.718898i
\(862\) 0 0
\(863\) −20.0431 −0.682274 −0.341137 0.940014i \(-0.610812\pi\)
−0.341137 + 0.940014i \(0.610812\pi\)
\(864\) 0 0
\(865\) 21.7142 37.6102i 0.738306 1.27878i
\(866\) 0 0
\(867\) −10.5895 + 18.3415i −0.359637 + 0.622909i
\(868\) 0 0
\(869\) −22.8265 39.5367i −0.774337 1.34119i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 1.02096 + 1.76836i 0.0345544 + 0.0598500i
\(874\) 0 0
\(875\) 20.8945 36.1904i 0.706364 1.22346i
\(876\) 0 0
\(877\) −6.40250 + 11.0895i −0.216197 + 0.374464i −0.953642 0.300943i \(-0.902699\pi\)
0.737445 + 0.675407i \(0.236032\pi\)
\(878\) 0 0
\(879\) −32.8481 −1.10794
\(880\) 0 0
\(881\) −18.9105 32.7540i −0.637112 1.10351i −0.986063 0.166370i \(-0.946795\pi\)
0.348951 0.937141i \(-0.386538\pi\)
\(882\) 0 0
\(883\) 17.8945 0.602199 0.301100 0.953593i \(-0.402646\pi\)
0.301100 + 0.953593i \(0.402646\pi\)
\(884\) 0 0
\(885\) −3.28437 −0.110403
\(886\) 0 0
\(887\) −10.8211 18.7427i −0.363337 0.629318i 0.625171 0.780488i \(-0.285029\pi\)
−0.988508 + 0.151170i \(0.951696\pi\)
\(888\) 0 0
\(889\) 11.6927 0.392161
\(890\) 0 0
\(891\) −1.73205 + 3.00000i −0.0580259 + 0.100504i
\(892\) 0 0
\(893\) −18.0000 + 31.1769i −0.602347 + 1.04330i
\(894\) 0 0
\(895\) −10.0824 17.4633i −0.337018 0.583733i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −31.1160 53.8945i −1.03778 1.79748i
\(900\) 0 0
\(901\) 31.4473 54.4683i 1.04766 1.81460i
\(902\) 0 0
\(903\) −1.70161 + 2.94727i −0.0566260 + 0.0980790i
\(904\) 0 0
\(905\) 49.5488 1.64706
\(906\) 0 0
\(907\) 14.0000 + 24.2487i 0.464862 + 0.805165i 0.999195 0.0401089i \(-0.0127705\pi\)
−0.534333 + 0.845274i \(0.679437\pi\)
\(908\) 0 0
\(909\) −12.1789 −0.403949
\(910\) 0 0
\(911\) 4.71563 0.156236 0.0781180 0.996944i \(-0.475109\pi\)
0.0781180 + 0.996944i \(0.475109\pi\)
\(912\) 0 0
\(913\) 20.3578 + 35.2608i 0.673745 + 1.16696i
\(914\) 0 0
\(915\) 12.0635 0.398806
\(916\) 0 0
\(917\) −13.1758 + 22.8211i −0.435102 + 0.753619i
\(918\) 0 0
\(919\) −12.0000 + 20.7846i −0.395843 + 0.685621i −0.993208 0.116348i \(-0.962881\pi\)
0.597365 + 0.801970i \(0.296214\pi\)
\(920\) 0 0
\(921\) −5.53647 9.58945i −0.182433 0.315983i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −0.431651 0.747642i −0.0141926 0.0245823i
\(926\) 0 0
\(927\) 1.58945 2.75302i 0.0522045 0.0904209i
\(928\) 0 0
\(929\) 15.7434 27.2684i 0.516524 0.894646i −0.483292 0.875459i \(-0.660559\pi\)
0.999816 0.0191866i \(-0.00610767\pi\)
\(930\) 0 0
\(931\) −35.2608 −1.15563
\(932\) 0 0
\(933\) 5.82109 + 10.0824i 0.190574 + 0.330084i
\(934\) 0 0
\(935\) 51.6422 1.68888
\(936\) 0 0
\(937\) 48.8945 1.59732 0.798658 0.601786i \(-0.205544\pi\)
0.798658 + 0.601786i \(0.205544\pi\)
\(938\) 0 0
\(939\) −13.9473 24.1574i −0.455152 0.788346i
\(940\) 0 0
\(941\) −37.2418 −1.21405 −0.607024 0.794683i \(-0.707637\pi\)
−0.607024 + 0.794683i \(0.707637\pi\)
\(942\) 0 0
\(943\) 5.87680 10.1789i 0.191375 0.331471i
\(944\) 0 0
\(945\) −5.00000 + 8.66025i −0.162650 + 0.281718i
\(946\) 0 0
\(947\) 15.2177 + 26.3578i 0.494509 + 0.856514i 0.999980 0.00632940i \(-0.00201472\pi\)
−0.505471 + 0.862843i \(0.668681\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 1.88699 + 3.26836i 0.0611898 + 0.105984i
\(952\) 0 0
\(953\) 3.00000 5.19615i 0.0971795 0.168320i −0.813337 0.581793i \(-0.802351\pi\)
0.910516 + 0.413473i \(0.135685\pi\)
\(954\) 0 0
\(955\) 2.84434 4.92655i 0.0920408 0.159419i
\(956\) 0 0
\(957\) −28.3326 −0.915862
\(958\) 0 0
\(959\) −26.5367 45.9630i −0.856916 1.48422i
\(960\) 0 0
\(961\) 26.8945 0.867566
\(962\) 0 0
\(963\) −10.0000 −0.322245
\(964\) 0 0
\(965\) 16.2684 + 28.1776i 0.523697 + 0.907070i
\(966\) 0 0
\(967\) −35.3825 −1.13783 −0.568913 0.822398i \(-0.692636\pi\)
−0.568913 + 0.822398i \(0.692636\pi\)
\(968\) 0 0
\(969\) 10.7022 18.5367i 0.343804 0.595485i
\(970\) 0 0
\(971\) −2.35782 + 4.08386i −0.0756659 + 0.131057i −0.901376 0.433038i \(-0.857442\pi\)
0.825710 + 0.564095i \(0.190775\pi\)
\(972\) 0 0
\(973\) −35.6011 61.6629i −1.14132 1.97682i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.50531 + 14.7316i 0.272109 + 0.471307i 0.969402 0.245480i \(-0.0789455\pi\)
−0.697293 + 0.716787i \(0.745612\pi\)
\(978\) 0 0
\(979\) −12.0000 + 20.7846i −0.383522 + 0.664279i
\(980\) 0 0
\(981\) 3.80442 6.58945i 0.121466 0.210385i
\(982\) 0 0
\(983\) 24.8685 0.793181 0.396590 0.917996i \(-0.370193\pi\)
0.396590 + 0.917996i \(0.370193\pi\)
\(984\) 0 0
\(985\) −11.6422 20.1649i −0.370951 0.642506i
\(986\) 0 0
\(987\) −43.0735 −1.37104
\(988\) 0 0
\(989\) 1.64218 0.0522184
\(990\) 0 0
\(991\) 22.5367 + 39.0348i 0.715903 + 1.23998i 0.962610 + 0.270890i \(0.0873179\pi\)
−0.246708 + 0.969090i \(0.579349\pi\)
\(992\) 0 0
\(993\) −20.1040 −0.637980
\(994\) 0 0
\(995\) −25.9808 + 45.0000i −0.823646 + 1.42660i
\(996\) 0 0
\(997\) −17.6789 + 30.6208i −0.559897 + 0.969769i 0.437608 + 0.899166i \(0.355826\pi\)
−0.997504 + 0.0706035i \(0.977507\pi\)
\(998\) 0 0
\(999\) −0.525704 0.910546i −0.0166325 0.0288084i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2028.2.i.n.2005.3 8
13.2 odd 12 2028.2.b.e.337.2 4
13.3 even 3 2028.2.a.m.1.3 4
13.4 even 6 inner 2028.2.i.n.529.2 8
13.5 odd 4 156.2.q.b.49.1 4
13.6 odd 12 2028.2.q.f.1837.1 4
13.7 odd 12 156.2.q.b.121.2 yes 4
13.8 odd 4 2028.2.q.f.361.2 4
13.9 even 3 inner 2028.2.i.n.529.3 8
13.10 even 6 2028.2.a.m.1.2 4
13.11 odd 12 2028.2.b.e.337.3 4
13.12 even 2 inner 2028.2.i.n.2005.2 8
39.2 even 12 6084.2.b.o.4393.3 4
39.5 even 4 468.2.t.d.361.2 4
39.11 even 12 6084.2.b.o.4393.2 4
39.20 even 12 468.2.t.d.433.1 4
39.23 odd 6 6084.2.a.bd.1.3 4
39.29 odd 6 6084.2.a.bd.1.2 4
52.3 odd 6 8112.2.a.cr.1.3 4
52.7 even 12 624.2.bv.f.433.2 4
52.23 odd 6 8112.2.a.cr.1.2 4
52.31 even 4 624.2.bv.f.49.1 4
65.7 even 12 3900.2.bw.j.2149.3 8
65.18 even 4 3900.2.bw.j.49.3 8
65.33 even 12 3900.2.bw.j.2149.2 8
65.44 odd 4 3900.2.cd.i.2701.2 4
65.57 even 4 3900.2.bw.j.49.2 8
65.59 odd 12 3900.2.cd.i.901.2 4
156.59 odd 12 1872.2.by.j.433.1 4
156.83 odd 4 1872.2.by.j.1297.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.q.b.49.1 4 13.5 odd 4
156.2.q.b.121.2 yes 4 13.7 odd 12
468.2.t.d.361.2 4 39.5 even 4
468.2.t.d.433.1 4 39.20 even 12
624.2.bv.f.49.1 4 52.31 even 4
624.2.bv.f.433.2 4 52.7 even 12
1872.2.by.j.433.1 4 156.59 odd 12
1872.2.by.j.1297.2 4 156.83 odd 4
2028.2.a.m.1.2 4 13.10 even 6
2028.2.a.m.1.3 4 13.3 even 3
2028.2.b.e.337.2 4 13.2 odd 12
2028.2.b.e.337.3 4 13.11 odd 12
2028.2.i.n.529.2 8 13.4 even 6 inner
2028.2.i.n.529.3 8 13.9 even 3 inner
2028.2.i.n.2005.2 8 13.12 even 2 inner
2028.2.i.n.2005.3 8 1.1 even 1 trivial
2028.2.q.f.361.2 4 13.8 odd 4
2028.2.q.f.1837.1 4 13.6 odd 12
3900.2.bw.j.49.2 8 65.57 even 4
3900.2.bw.j.49.3 8 65.18 even 4
3900.2.bw.j.2149.2 8 65.33 even 12
3900.2.bw.j.2149.3 8 65.7 even 12
3900.2.cd.i.901.2 4 65.59 odd 12
3900.2.cd.i.2701.2 4 65.44 odd 4
6084.2.a.bd.1.2 4 39.29 odd 6
6084.2.a.bd.1.3 4 39.23 odd 6
6084.2.b.o.4393.2 4 39.11 even 12
6084.2.b.o.4393.3 4 39.2 even 12
8112.2.a.cr.1.2 4 52.23 odd 6
8112.2.a.cr.1.3 4 52.3 odd 6