Properties

Label 1575.2.bk.i.1151.6
Level $1575$
Weight $2$
Character 1575.1151
Analytic conductor $12.576$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,2,Mod(26,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1575.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5764383184\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1151.6
Character \(\chi\) \(=\) 1575.1151
Dual form 1575.2.bk.i.26.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.14177 + 0.659204i) q^{2} +(-0.130901 + 0.226727i) q^{4} +(1.57437 + 2.12635i) q^{7} -2.98198i q^{8} +(-2.08688 - 1.20486i) q^{11} -1.69332i q^{13} +(-3.19927 - 1.38998i) q^{14} +(1.70393 + 2.95129i) q^{16} +(0.480231 - 0.831785i) q^{17} +(-3.56633 + 2.05902i) q^{19} +3.17699 q^{22} +(4.99818 - 2.88570i) q^{23} +(1.11625 + 1.93339i) q^{26} +(-0.688188 + 0.0786111i) q^{28} -5.56553i q^{29} +(-7.58148 - 4.37717i) q^{31} +(1.27393 + 0.735506i) q^{32} +1.26628i q^{34} +(-1.98654 - 3.44079i) q^{37} +(2.71463 - 4.70187i) q^{38} -1.87474 q^{41} +10.2706 q^{43} +(0.546349 - 0.315435i) q^{44} +(-3.80453 + 6.58963i) q^{46} +(-5.05376 - 8.75337i) q^{47} +(-2.04272 + 6.69532i) q^{49} +(0.383923 + 0.221658i) q^{52} +(-11.0060 - 6.35430i) q^{53} +(6.34072 - 4.69473i) q^{56} +(3.66882 + 6.35458i) q^{58} +(-3.38686 + 5.86621i) q^{59} +(1.98485 - 1.14595i) q^{61} +11.5418 q^{62} -8.75510 q^{64} +(-2.39872 + 4.15470i) q^{67} +(0.125726 + 0.217763i) q^{68} -2.24602i q^{71} +(12.7295 + 7.34937i) q^{73} +(4.53637 + 2.61907i) q^{74} -1.07811i q^{76} +(-0.723564 - 6.33432i) q^{77} +(-0.892703 - 1.54621i) q^{79} +(2.14052 - 1.23583i) q^{82} +9.62086 q^{83} +(-11.7267 + 6.77039i) q^{86} +(-3.59286 + 6.22302i) q^{88} +(-0.220850 - 0.382523i) q^{89} +(3.60060 - 2.66592i) q^{91} +1.51096i q^{92} +(11.5405 + 6.66292i) q^{94} -12.4926i q^{97} +(-2.08125 - 8.99111i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 36 q^{19} - 60 q^{31} - 24 q^{46} - 36 q^{49} + 48 q^{61} - 48 q^{64} + 60 q^{79} + 60 q^{91} - 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(1226\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.14177 + 0.659204i −0.807356 + 0.466127i −0.846037 0.533124i \(-0.821018\pi\)
0.0386807 + 0.999252i \(0.487684\pi\)
\(3\) 0 0
\(4\) −0.130901 + 0.226727i −0.0654506 + 0.113364i
\(5\) 0 0
\(6\) 0 0
\(7\) 1.57437 + 2.12635i 0.595056 + 0.803685i
\(8\) 2.98198i 1.05429i
\(9\) 0 0
\(10\) 0 0
\(11\) −2.08688 1.20486i −0.629217 0.363279i 0.151232 0.988498i \(-0.451676\pi\)
−0.780449 + 0.625220i \(0.785009\pi\)
\(12\) 0 0
\(13\) 1.69332i 0.469643i −0.972038 0.234822i \(-0.924549\pi\)
0.972038 0.234822i \(-0.0754506\pi\)
\(14\) −3.19927 1.38998i −0.855041 0.371488i
\(15\) 0 0
\(16\) 1.70393 + 2.95129i 0.425982 + 0.737822i
\(17\) 0.480231 0.831785i 0.116473 0.201737i −0.801895 0.597466i \(-0.796174\pi\)
0.918368 + 0.395728i \(0.129508\pi\)
\(18\) 0 0
\(19\) −3.56633 + 2.05902i −0.818172 + 0.472372i −0.849786 0.527129i \(-0.823269\pi\)
0.0316139 + 0.999500i \(0.489935\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 3.17699 0.677336
\(23\) 4.99818 2.88570i 1.04219 0.601710i 0.121738 0.992562i \(-0.461153\pi\)
0.920453 + 0.390853i \(0.127820\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1.11625 + 1.93339i 0.218914 + 0.379170i
\(27\) 0 0
\(28\) −0.688188 + 0.0786111i −0.130055 + 0.0148561i
\(29\) 5.56553i 1.03349i −0.856138 0.516747i \(-0.827143\pi\)
0.856138 0.516747i \(-0.172857\pi\)
\(30\) 0 0
\(31\) −7.58148 4.37717i −1.36167 0.786163i −0.371827 0.928302i \(-0.621269\pi\)
−0.989847 + 0.142139i \(0.954602\pi\)
\(32\) 1.27393 + 0.735506i 0.225202 + 0.130020i
\(33\) 0 0
\(34\) 1.26628i 0.217165i
\(35\) 0 0
\(36\) 0 0
\(37\) −1.98654 3.44079i −0.326586 0.565663i 0.655246 0.755415i \(-0.272565\pi\)
−0.981832 + 0.189752i \(0.939231\pi\)
\(38\) 2.71463 4.70187i 0.440371 0.762744i
\(39\) 0 0
\(40\) 0 0
\(41\) −1.87474 −0.292784 −0.146392 0.989227i \(-0.546766\pi\)
−0.146392 + 0.989227i \(0.546766\pi\)
\(42\) 0 0
\(43\) 10.2706 1.56625 0.783123 0.621867i \(-0.213625\pi\)
0.783123 + 0.621867i \(0.213625\pi\)
\(44\) 0.546349 0.315435i 0.0823652 0.0475536i
\(45\) 0 0
\(46\) −3.80453 + 6.58963i −0.560947 + 0.971588i
\(47\) −5.05376 8.75337i −0.737167 1.27681i −0.953766 0.300550i \(-0.902830\pi\)
0.216599 0.976261i \(-0.430504\pi\)
\(48\) 0 0
\(49\) −2.04272 + 6.69532i −0.291818 + 0.956474i
\(50\) 0 0
\(51\) 0 0
\(52\) 0.383923 + 0.221658i 0.0532405 + 0.0307384i
\(53\) −11.0060 6.35430i −1.51179 0.872830i −0.999905 0.0137732i \(-0.995616\pi\)
−0.511880 0.859057i \(-0.671051\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 6.34072 4.69473i 0.847315 0.627360i
\(57\) 0 0
\(58\) 3.66882 + 6.35458i 0.481740 + 0.834398i
\(59\) −3.38686 + 5.86621i −0.440931 + 0.763715i −0.997759 0.0669127i \(-0.978685\pi\)
0.556828 + 0.830628i \(0.312018\pi\)
\(60\) 0 0
\(61\) 1.98485 1.14595i 0.254134 0.146724i −0.367522 0.930015i \(-0.619794\pi\)
0.621656 + 0.783291i \(0.286460\pi\)
\(62\) 11.5418 1.46581
\(63\) 0 0
\(64\) −8.75510 −1.09439
\(65\) 0 0
\(66\) 0 0
\(67\) −2.39872 + 4.15470i −0.293050 + 0.507577i −0.974529 0.224260i \(-0.928004\pi\)
0.681480 + 0.731837i \(0.261337\pi\)
\(68\) 0.125726 + 0.217763i 0.0152465 + 0.0264077i
\(69\) 0 0
\(70\) 0 0
\(71\) 2.24602i 0.266554i −0.991079 0.133277i \(-0.957450\pi\)
0.991079 0.133277i \(-0.0425500\pi\)
\(72\) 0 0
\(73\) 12.7295 + 7.34937i 1.48987 + 0.860178i 0.999933 0.0115780i \(-0.00368547\pi\)
0.489940 + 0.871756i \(0.337019\pi\)
\(74\) 4.53637 + 2.61907i 0.527342 + 0.304461i
\(75\) 0 0
\(76\) 1.07811i 0.123668i
\(77\) −0.723564 6.33432i −0.0824577 0.721863i
\(78\) 0 0
\(79\) −0.892703 1.54621i −0.100437 0.173962i 0.811428 0.584453i \(-0.198691\pi\)
−0.911865 + 0.410491i \(0.865357\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 2.14052 1.23583i 0.236381 0.136475i
\(83\) 9.62086 1.05603 0.528013 0.849236i \(-0.322937\pi\)
0.528013 + 0.849236i \(0.322937\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −11.7267 + 6.77039i −1.26452 + 0.730070i
\(87\) 0 0
\(88\) −3.59286 + 6.22302i −0.383000 + 0.663376i
\(89\) −0.220850 0.382523i −0.0234100 0.0405474i 0.854083 0.520137i \(-0.174119\pi\)
−0.877493 + 0.479589i \(0.840786\pi\)
\(90\) 0 0
\(91\) 3.60060 2.66592i 0.377445 0.279464i
\(92\) 1.51096i 0.157529i
\(93\) 0 0
\(94\) 11.5405 + 6.66292i 1.19031 + 0.687227i
\(95\) 0 0
\(96\) 0 0
\(97\) 12.4926i 1.26843i −0.773157 0.634215i \(-0.781323\pi\)
0.773157 0.634215i \(-0.218677\pi\)
\(98\) −2.08125 8.99111i −0.210238 0.908239i
\(99\) 0 0
\(100\) 0 0
\(101\) 4.74466 8.21799i 0.472111 0.817720i −0.527380 0.849630i \(-0.676825\pi\)
0.999491 + 0.0319094i \(0.0101588\pi\)
\(102\) 0 0
\(103\) 6.99979 4.04133i 0.689710 0.398204i −0.113793 0.993504i \(-0.536300\pi\)
0.803503 + 0.595300i \(0.202967\pi\)
\(104\) −5.04945 −0.495139
\(105\) 0 0
\(106\) 16.7551 1.62740
\(107\) 4.69926 2.71312i 0.454294 0.262287i −0.255348 0.966849i \(-0.582190\pi\)
0.709642 + 0.704562i \(0.248857\pi\)
\(108\) 0 0
\(109\) 8.68208 15.0378i 0.831592 1.44036i −0.0651830 0.997873i \(-0.520763\pi\)
0.896775 0.442487i \(-0.145904\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −3.59286 + 8.26956i −0.339493 + 0.781400i
\(113\) 5.92400i 0.557283i −0.960395 0.278642i \(-0.910116\pi\)
0.960395 0.278642i \(-0.0898841\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.26186 + 0.728535i 0.117161 + 0.0676427i
\(117\) 0 0
\(118\) 8.93051i 0.822121i
\(119\) 2.52473 0.288397i 0.231441 0.0264373i
\(120\) 0 0
\(121\) −2.59663 4.49750i −0.236057 0.408863i
\(122\) −1.51083 + 2.61684i −0.136784 + 0.236917i
\(123\) 0 0
\(124\) 1.98485 1.14595i 0.178245 0.102910i
\(125\) 0 0
\(126\) 0 0
\(127\) 5.01325 0.444854 0.222427 0.974949i \(-0.428602\pi\)
0.222427 + 0.974949i \(0.428602\pi\)
\(128\) 7.44848 4.30038i 0.658359 0.380104i
\(129\) 0 0
\(130\) 0 0
\(131\) 8.52739 + 14.7699i 0.745042 + 1.29045i 0.950175 + 0.311716i \(0.100904\pi\)
−0.205134 + 0.978734i \(0.565763\pi\)
\(132\) 0 0
\(133\) −9.99291 4.34160i −0.866495 0.376464i
\(134\) 6.32497i 0.546394i
\(135\) 0 0
\(136\) −2.48036 1.43204i −0.212689 0.122796i
\(137\) −8.59026 4.95959i −0.733915 0.423726i 0.0859376 0.996301i \(-0.472611\pi\)
−0.819853 + 0.572574i \(0.805945\pi\)
\(138\) 0 0
\(139\) 15.1104i 1.28164i −0.767689 0.640822i \(-0.778593\pi\)
0.767689 0.640822i \(-0.221407\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.48059 + 2.56445i 0.124248 + 0.215204i
\(143\) −2.04022 + 3.53376i −0.170611 + 0.295508i
\(144\) 0 0
\(145\) 0 0
\(146\) −19.3789 −1.60381
\(147\) 0 0
\(148\) 1.04016 0.0855008
\(149\) 2.02420 1.16867i 0.165829 0.0957413i −0.414789 0.909918i \(-0.636144\pi\)
0.580618 + 0.814176i \(0.302811\pi\)
\(150\) 0 0
\(151\) −5.01515 + 8.68650i −0.408127 + 0.706897i −0.994680 0.103014i \(-0.967151\pi\)
0.586553 + 0.809911i \(0.300485\pi\)
\(152\) 6.13995 + 10.6347i 0.498016 + 0.862588i
\(153\) 0 0
\(154\) 5.00175 + 6.75539i 0.403053 + 0.544365i
\(155\) 0 0
\(156\) 0 0
\(157\) 17.9727 + 10.3765i 1.43437 + 0.828137i 0.997451 0.0713615i \(-0.0227344\pi\)
0.436924 + 0.899498i \(0.356068\pi\)
\(158\) 2.03853 + 1.17695i 0.162177 + 0.0936328i
\(159\) 0 0
\(160\) 0 0
\(161\) 14.0050 + 6.08471i 1.10375 + 0.479543i
\(162\) 0 0
\(163\) −7.81001 13.5273i −0.611727 1.05954i −0.990949 0.134237i \(-0.957142\pi\)
0.379222 0.925306i \(-0.376192\pi\)
\(164\) 0.245405 0.425054i 0.0191629 0.0331911i
\(165\) 0 0
\(166\) −10.9848 + 6.34211i −0.852590 + 0.492243i
\(167\) −14.7858 −1.14416 −0.572080 0.820198i \(-0.693863\pi\)
−0.572080 + 0.820198i \(0.693863\pi\)
\(168\) 0 0
\(169\) 10.1327 0.779435
\(170\) 0 0
\(171\) 0 0
\(172\) −1.34443 + 2.32862i −0.102512 + 0.177555i
\(173\) −3.43176 5.94398i −0.260912 0.451912i 0.705573 0.708637i \(-0.250690\pi\)
−0.966484 + 0.256725i \(0.917356\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 8.21197i 0.619000i
\(177\) 0 0
\(178\) 0.504321 + 0.291170i 0.0378005 + 0.0218241i
\(179\) 10.1393 + 5.85393i 0.757847 + 0.437543i 0.828522 0.559956i \(-0.189182\pi\)
−0.0706751 + 0.997499i \(0.522515\pi\)
\(180\) 0 0
\(181\) 17.3498i 1.28960i −0.764351 0.644800i \(-0.776941\pi\)
0.764351 0.644800i \(-0.223059\pi\)
\(182\) −2.35369 + 5.41740i −0.174467 + 0.401565i
\(183\) 0 0
\(184\) −8.60508 14.9044i −0.634375 1.09877i
\(185\) 0 0
\(186\) 0 0
\(187\) −2.00437 + 1.15722i −0.146574 + 0.0846244i
\(188\) 2.64617 0.192992
\(189\) 0 0
\(190\) 0 0
\(191\) 16.3677 9.44988i 1.18432 0.683770i 0.227313 0.973822i \(-0.427006\pi\)
0.957011 + 0.290052i \(0.0936727\pi\)
\(192\) 0 0
\(193\) −11.6611 + 20.1976i −0.839382 + 1.45385i 0.0510306 + 0.998697i \(0.483749\pi\)
−0.890412 + 0.455155i \(0.849584\pi\)
\(194\) 8.23516 + 14.2637i 0.591250 + 1.02407i
\(195\) 0 0
\(196\) −1.25062 1.33957i −0.0893298 0.0956833i
\(197\) 0.842929i 0.0600562i −0.999549 0.0300281i \(-0.990440\pi\)
0.999549 0.0300281i \(-0.00955968\pi\)
\(198\) 0 0
\(199\) 0.739952 + 0.427211i 0.0524538 + 0.0302842i 0.525998 0.850486i \(-0.323692\pi\)
−0.473544 + 0.880770i \(0.657025\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 12.5108i 0.880255i
\(203\) 11.8343 8.76220i 0.830603 0.614986i
\(204\) 0 0
\(205\) 0 0
\(206\) −5.32812 + 9.22857i −0.371228 + 0.642985i
\(207\) 0 0
\(208\) 4.99749 2.88530i 0.346513 0.200060i
\(209\) 9.92331 0.686410
\(210\) 0 0
\(211\) 16.1933 1.11479 0.557395 0.830247i \(-0.311801\pi\)
0.557395 + 0.830247i \(0.311801\pi\)
\(212\) 2.88139 1.66357i 0.197894 0.114254i
\(213\) 0 0
\(214\) −3.57699 + 6.19553i −0.244518 + 0.423518i
\(215\) 0 0
\(216\) 0 0
\(217\) −2.62866 23.0122i −0.178445 1.56217i
\(218\) 22.8930i 1.55051i
\(219\) 0 0
\(220\) 0 0
\(221\) −1.40848 0.813187i −0.0947447 0.0547009i
\(222\) 0 0
\(223\) 10.0027i 0.669832i −0.942248 0.334916i \(-0.891292\pi\)
0.942248 0.334916i \(-0.108708\pi\)
\(224\) 0.441699 + 3.86679i 0.0295123 + 0.258361i
\(225\) 0 0
\(226\) 3.90512 + 6.76387i 0.259765 + 0.449926i
\(227\) −2.33913 + 4.05150i −0.155254 + 0.268908i −0.933151 0.359484i \(-0.882953\pi\)
0.777898 + 0.628391i \(0.216286\pi\)
\(228\) 0 0
\(229\) −12.3460 + 7.12797i −0.815848 + 0.471030i −0.848982 0.528421i \(-0.822784\pi\)
0.0331349 + 0.999451i \(0.489451\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −16.5963 −1.08960
\(233\) −19.3166 + 11.1524i −1.26547 + 0.730621i −0.974128 0.225997i \(-0.927436\pi\)
−0.291345 + 0.956618i \(0.594103\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.886687 1.53579i −0.0577184 0.0999712i
\(237\) 0 0
\(238\) −2.69255 + 1.99359i −0.174532 + 0.129225i
\(239\) 6.39734i 0.413810i 0.978361 + 0.206905i \(0.0663391\pi\)
−0.978361 + 0.206905i \(0.933661\pi\)
\(240\) 0 0
\(241\) −6.20841 3.58443i −0.399919 0.230893i 0.286530 0.958071i \(-0.407498\pi\)
−0.686449 + 0.727178i \(0.740832\pi\)
\(242\) 5.92953 + 3.42342i 0.381165 + 0.220066i
\(243\) 0 0
\(244\) 0.600026i 0.0384127i
\(245\) 0 0
\(246\) 0 0
\(247\) 3.48659 + 6.03895i 0.221846 + 0.384249i
\(248\) −13.0526 + 22.6078i −0.828842 + 1.43560i
\(249\) 0 0
\(250\) 0 0
\(251\) −16.3470 −1.03181 −0.515906 0.856645i \(-0.672545\pi\)
−0.515906 + 0.856645i \(0.672545\pi\)
\(252\) 0 0
\(253\) −13.9074 −0.874353
\(254\) −5.72400 + 3.30475i −0.359156 + 0.207359i
\(255\) 0 0
\(256\) 3.08545 5.34415i 0.192840 0.334009i
\(257\) 6.11896 + 10.5984i 0.381690 + 0.661107i 0.991304 0.131592i \(-0.0420087\pi\)
−0.609614 + 0.792699i \(0.708675\pi\)
\(258\) 0 0
\(259\) 4.18878 9.64116i 0.260278 0.599073i
\(260\) 0 0
\(261\) 0 0
\(262\) −19.4727 11.2426i −1.20303 0.694569i
\(263\) −8.15918 4.71070i −0.503117 0.290474i 0.226883 0.973922i \(-0.427146\pi\)
−0.730000 + 0.683448i \(0.760480\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 14.2716 1.63024i 0.875051 0.0999563i
\(267\) 0 0
\(268\) −0.627989 1.08771i −0.0383605 0.0664424i
\(269\) −3.81600 + 6.60950i −0.232666 + 0.402988i −0.958592 0.284784i \(-0.908078\pi\)
0.725926 + 0.687773i \(0.241411\pi\)
\(270\) 0 0
\(271\) −4.71908 + 2.72456i −0.286664 + 0.165505i −0.636436 0.771329i \(-0.719592\pi\)
0.349773 + 0.936835i \(0.386259\pi\)
\(272\) 3.27312 0.198462
\(273\) 0 0
\(274\) 13.0775 0.790041
\(275\) 0 0
\(276\) 0 0
\(277\) 8.52809 14.7711i 0.512403 0.887508i −0.487494 0.873127i \(-0.662089\pi\)
0.999897 0.0143815i \(-0.00457793\pi\)
\(278\) 9.96081 + 17.2526i 0.597410 + 1.03474i
\(279\) 0 0
\(280\) 0 0
\(281\) 25.3828i 1.51421i −0.653292 0.757106i \(-0.726613\pi\)
0.653292 0.757106i \(-0.273387\pi\)
\(282\) 0 0
\(283\) 8.29651 + 4.78999i 0.493176 + 0.284735i 0.725891 0.687810i \(-0.241428\pi\)
−0.232715 + 0.972545i \(0.574761\pi\)
\(284\) 0.509235 + 0.294007i 0.0302175 + 0.0174461i
\(285\) 0 0
\(286\) 5.37967i 0.318107i
\(287\) −2.95153 3.98634i −0.174223 0.235306i
\(288\) 0 0
\(289\) 8.03876 + 13.9235i 0.472868 + 0.819031i
\(290\) 0 0
\(291\) 0 0
\(292\) −3.33261 + 1.92408i −0.195026 + 0.112598i
\(293\) −1.44713 −0.0845421 −0.0422710 0.999106i \(-0.513459\pi\)
−0.0422710 + 0.999106i \(0.513459\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −10.2604 + 5.92382i −0.596372 + 0.344315i
\(297\) 0 0
\(298\) −1.54079 + 2.66872i −0.0892553 + 0.154595i
\(299\) −4.88642 8.46353i −0.282589 0.489459i
\(300\) 0 0
\(301\) 16.1697 + 21.8388i 0.932004 + 1.25877i
\(302\) 13.2240i 0.760957i
\(303\) 0 0
\(304\) −12.1535 7.01684i −0.697053 0.402444i
\(305\) 0 0
\(306\) 0 0
\(307\) 7.69871i 0.439388i −0.975569 0.219694i \(-0.929494\pi\)
0.975569 0.219694i \(-0.0705059\pi\)
\(308\) 1.53088 + 0.665118i 0.0872299 + 0.0378986i
\(309\) 0 0
\(310\) 0 0
\(311\) −16.5875 + 28.7304i −0.940592 + 1.62915i −0.176247 + 0.984346i \(0.556396\pi\)
−0.764345 + 0.644807i \(0.776938\pi\)
\(312\) 0 0
\(313\) 7.32351 4.22823i 0.413950 0.238994i −0.278536 0.960426i \(-0.589849\pi\)
0.692485 + 0.721432i \(0.256516\pi\)
\(314\) −27.3610 −1.54407
\(315\) 0 0
\(316\) 0.467423 0.0262946
\(317\) 5.14563 2.97083i 0.289008 0.166859i −0.348487 0.937314i \(-0.613304\pi\)
0.637494 + 0.770455i \(0.279971\pi\)
\(318\) 0 0
\(319\) −6.70568 + 11.6146i −0.375446 + 0.650292i
\(320\) 0 0
\(321\) 0 0
\(322\) −20.0016 + 2.28476i −1.11464 + 0.127325i
\(323\) 3.95522i 0.220074i
\(324\) 0 0
\(325\) 0 0
\(326\) 17.8345 + 10.2968i 0.987764 + 0.570286i
\(327\) 0 0
\(328\) 5.59042i 0.308679i
\(329\) 10.6562 24.5271i 0.587498 1.35222i
\(330\) 0 0
\(331\) −13.2551 22.9585i −0.728566 1.26191i −0.957489 0.288469i \(-0.906854\pi\)
0.228923 0.973445i \(-0.426480\pi\)
\(332\) −1.25938 + 2.18131i −0.0691175 + 0.119715i
\(333\) 0 0
\(334\) 16.8820 9.74685i 0.923744 0.533324i
\(335\) 0 0
\(336\) 0 0
\(337\) −3.42106 −0.186357 −0.0931784 0.995649i \(-0.529703\pi\)
−0.0931784 + 0.995649i \(0.529703\pi\)
\(338\) −11.5692 + 6.67948i −0.629282 + 0.363316i
\(339\) 0 0
\(340\) 0 0
\(341\) 10.5477 + 18.2692i 0.571192 + 0.989334i
\(342\) 0 0
\(343\) −17.4526 + 6.19736i −0.942351 + 0.334626i
\(344\) 30.6266i 1.65127i
\(345\) 0 0
\(346\) 7.83658 + 4.52445i 0.421297 + 0.243236i
\(347\) −11.6038 6.69946i −0.622925 0.359646i 0.155082 0.987902i \(-0.450436\pi\)
−0.778007 + 0.628256i \(0.783769\pi\)
\(348\) 0 0
\(349\) 15.2584i 0.816762i 0.912812 + 0.408381i \(0.133906\pi\)
−0.912812 + 0.408381i \(0.866094\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.77236 3.06982i −0.0944672 0.163622i
\(353\) −18.4609 + 31.9752i −0.982574 + 1.70187i −0.330316 + 0.943871i \(0.607155\pi\)
−0.652258 + 0.757997i \(0.726178\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.115638 0.00612880
\(357\) 0 0
\(358\) −15.4357 −0.815804
\(359\) −7.71108 + 4.45200i −0.406975 + 0.234967i −0.689489 0.724296i \(-0.742165\pi\)
0.282514 + 0.959263i \(0.408832\pi\)
\(360\) 0 0
\(361\) −1.02087 + 1.76820i −0.0537301 + 0.0930633i
\(362\) 11.4370 + 19.8095i 0.601118 + 1.04117i
\(363\) 0 0
\(364\) 0.133114 + 1.16533i 0.00697707 + 0.0610797i
\(365\) 0 0
\(366\) 0 0
\(367\) 12.5174 + 7.22690i 0.653401 + 0.377241i 0.789758 0.613419i \(-0.210206\pi\)
−0.136357 + 0.990660i \(0.543539\pi\)
\(368\) 17.0331 + 9.83404i 0.887910 + 0.512635i
\(369\) 0 0
\(370\) 0 0
\(371\) −3.81600 33.4065i −0.198117 1.73438i
\(372\) 0 0
\(373\) −10.5607 18.2917i −0.546812 0.947107i −0.998490 0.0549259i \(-0.982508\pi\)
0.451678 0.892181i \(-0.350826\pi\)
\(374\) 1.52569 2.64257i 0.0788915 0.136644i
\(375\) 0 0
\(376\) −26.1024 + 15.0702i −1.34613 + 0.777186i
\(377\) −9.42425 −0.485374
\(378\) 0 0
\(379\) 0.0133979 0.000688205 0.000344103 1.00000i \(-0.499890\pi\)
0.000344103 1.00000i \(0.499890\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −12.4588 + 21.5793i −0.637447 + 1.10409i
\(383\) 8.61124 + 14.9151i 0.440014 + 0.762127i 0.997690 0.0679321i \(-0.0216401\pi\)
−0.557676 + 0.830059i \(0.688307\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 30.7481i 1.56504i
\(387\) 0 0
\(388\) 2.83241 + 1.63529i 0.143794 + 0.0830194i
\(389\) −22.3077 12.8793i −1.13104 0.653008i −0.186846 0.982389i \(-0.559827\pi\)
−0.944197 + 0.329381i \(0.893160\pi\)
\(390\) 0 0
\(391\) 5.54321i 0.280332i
\(392\) 19.9653 + 6.09135i 1.00840 + 0.307660i
\(393\) 0 0
\(394\) 0.555662 + 0.962434i 0.0279938 + 0.0484867i
\(395\) 0 0
\(396\) 0 0
\(397\) 13.2051 7.62398i 0.662746 0.382637i −0.130576 0.991438i \(-0.541683\pi\)
0.793322 + 0.608802i \(0.208349\pi\)
\(398\) −1.12648 −0.0564652
\(399\) 0 0
\(400\) 0 0
\(401\) −11.3640 + 6.56104i −0.567494 + 0.327643i −0.756148 0.654401i \(-0.772921\pi\)
0.188654 + 0.982044i \(0.439588\pi\)
\(402\) 0 0
\(403\) −7.41196 + 12.8379i −0.369216 + 0.639501i
\(404\) 1.24216 + 2.15149i 0.0617999 + 0.107041i
\(405\) 0 0
\(406\) −7.73598 + 17.8057i −0.383930 + 0.883680i
\(407\) 9.57401i 0.474566i
\(408\) 0 0
\(409\) −28.4692 16.4367i −1.40771 0.812744i −0.412546 0.910937i \(-0.635360\pi\)
−0.995167 + 0.0981933i \(0.968694\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.11606i 0.104251i
\(413\) −17.8058 + 2.03394i −0.876165 + 0.100084i
\(414\) 0 0
\(415\) 0 0
\(416\) 1.24545 2.15718i 0.0610632 0.105765i
\(417\) 0 0
\(418\) −11.3302 + 6.54148i −0.554177 + 0.319954i
\(419\) −9.33114 −0.455856 −0.227928 0.973678i \(-0.573195\pi\)
−0.227928 + 0.973678i \(0.573195\pi\)
\(420\) 0 0
\(421\) −13.0720 −0.637093 −0.318546 0.947907i \(-0.603195\pi\)
−0.318546 + 0.947907i \(0.603195\pi\)
\(422\) −18.4890 + 10.6747i −0.900033 + 0.519634i
\(423\) 0 0
\(424\) −18.9484 + 32.8195i −0.920214 + 1.59386i
\(425\) 0 0
\(426\) 0 0
\(427\) 5.56158 + 2.41633i 0.269144 + 0.116934i
\(428\) 1.42060i 0.0686673i
\(429\) 0 0
\(430\) 0 0
\(431\) 5.18251 + 2.99212i 0.249633 + 0.144125i 0.619596 0.784921i \(-0.287296\pi\)
−0.369963 + 0.929046i \(0.620630\pi\)
\(432\) 0 0
\(433\) 19.4335i 0.933916i −0.884280 0.466958i \(-0.845350\pi\)
0.884280 0.466958i \(-0.154650\pi\)
\(434\) 18.1710 + 24.5419i 0.872237 + 1.17805i
\(435\) 0 0
\(436\) 2.27299 + 3.93693i 0.108856 + 0.188545i
\(437\) −11.8834 + 20.5827i −0.568461 + 0.984603i
\(438\) 0 0
\(439\) −24.1175 + 13.9242i −1.15107 + 0.664568i −0.949147 0.314834i \(-0.898051\pi\)
−0.201919 + 0.979402i \(0.564718\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2.14422 0.101990
\(443\) 20.2916 11.7154i 0.964084 0.556614i 0.0666564 0.997776i \(-0.478767\pi\)
0.897428 + 0.441162i \(0.145434\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 6.59383 + 11.4208i 0.312227 + 0.540793i
\(447\) 0 0
\(448\) −13.7838 18.6164i −0.651222 0.879543i
\(449\) 15.7868i 0.745025i 0.928027 + 0.372513i \(0.121504\pi\)
−0.928027 + 0.372513i \(0.878496\pi\)
\(450\) 0 0
\(451\) 3.91234 + 2.25879i 0.184225 + 0.106362i
\(452\) 1.34313 + 0.775458i 0.0631757 + 0.0364745i
\(453\) 0 0
\(454\) 6.16786i 0.289472i
\(455\) 0 0
\(456\) 0 0
\(457\) −13.3575 23.1358i −0.624836 1.08225i −0.988573 0.150746i \(-0.951833\pi\)
0.363737 0.931502i \(-0.381501\pi\)
\(458\) 9.39757 16.2771i 0.439120 0.760578i
\(459\) 0 0
\(460\) 0 0
\(461\) −33.1750 −1.54512 −0.772558 0.634944i \(-0.781023\pi\)
−0.772558 + 0.634944i \(0.781023\pi\)
\(462\) 0 0
\(463\) 9.01458 0.418943 0.209472 0.977815i \(-0.432826\pi\)
0.209472 + 0.977815i \(0.432826\pi\)
\(464\) 16.4255 9.48327i 0.762535 0.440250i
\(465\) 0 0
\(466\) 14.7035 25.4672i 0.681125 1.17974i
\(467\) −16.2346 28.1192i −0.751248 1.30120i −0.947218 0.320590i \(-0.896119\pi\)
0.195970 0.980610i \(-0.437214\pi\)
\(468\) 0 0
\(469\) −12.6108 + 1.44052i −0.582313 + 0.0665171i
\(470\) 0 0
\(471\) 0 0
\(472\) 17.4929 + 10.0995i 0.805176 + 0.464869i
\(473\) −21.4334 12.3746i −0.985509 0.568984i
\(474\) 0 0
\(475\) 0 0
\(476\) −0.265102 + 0.610176i −0.0121509 + 0.0279674i
\(477\) 0 0
\(478\) −4.21715 7.30432i −0.192888 0.334092i
\(479\) 2.08303 3.60791i 0.0951759 0.164849i −0.814506 0.580155i \(-0.802992\pi\)
0.909682 + 0.415305i \(0.136325\pi\)
\(480\) 0 0
\(481\) −5.82638 + 3.36386i −0.265660 + 0.153379i
\(482\) 9.45148 0.430503
\(483\) 0 0
\(484\) 1.35961 0.0618003
\(485\) 0 0
\(486\) 0 0
\(487\) −10.3166 + 17.8689i −0.467491 + 0.809719i −0.999310 0.0371394i \(-0.988175\pi\)
0.531819 + 0.846858i \(0.321509\pi\)
\(488\) −3.41720 5.91877i −0.154690 0.267930i
\(489\) 0 0
\(490\) 0 0
\(491\) 33.6376i 1.51805i −0.651064 0.759023i \(-0.725677\pi\)
0.651064 0.759023i \(-0.274323\pi\)
\(492\) 0 0
\(493\) −4.62933 2.67274i −0.208494 0.120374i
\(494\) −7.96179 4.59674i −0.358218 0.206817i
\(495\) 0 0
\(496\) 29.8335i 1.33956i
\(497\) 4.77583 3.53607i 0.214225 0.158614i
\(498\) 0 0
\(499\) 13.4181 + 23.2408i 0.600675 + 1.04040i 0.992719 + 0.120453i \(0.0384347\pi\)
−0.392044 + 0.919946i \(0.628232\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 18.6646 10.7760i 0.833040 0.480956i
\(503\) 22.8321 1.01803 0.509017 0.860757i \(-0.330009\pi\)
0.509017 + 0.860757i \(0.330009\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 15.8791 9.16783i 0.705914 0.407560i
\(507\) 0 0
\(508\) −0.656240 + 1.13664i −0.0291159 + 0.0504303i
\(509\) 7.67782 + 13.2984i 0.340313 + 0.589440i 0.984491 0.175436i \(-0.0561335\pi\)
−0.644177 + 0.764876i \(0.722800\pi\)
\(510\) 0 0
\(511\) 4.41358 + 38.6379i 0.195245 + 1.70924i
\(512\) 25.3373i 1.11976i
\(513\) 0 0
\(514\) −13.9729 8.06729i −0.616320 0.355833i
\(515\) 0 0
\(516\) 0 0
\(517\) 24.3563i 1.07119i
\(518\) 1.57285 + 13.7693i 0.0691072 + 0.604988i
\(519\) 0 0
\(520\) 0 0
\(521\) −9.31915 + 16.1412i −0.408279 + 0.707160i −0.994697 0.102848i \(-0.967204\pi\)
0.586418 + 0.810009i \(0.300538\pi\)
\(522\) 0 0
\(523\) −7.96399 + 4.59801i −0.348241 + 0.201057i −0.663910 0.747812i \(-0.731104\pi\)
0.315669 + 0.948869i \(0.397771\pi\)
\(524\) −4.46498 −0.195054
\(525\) 0 0
\(526\) 12.4213 0.541592
\(527\) −7.28172 + 4.20411i −0.317197 + 0.183134i
\(528\) 0 0
\(529\) 5.15451 8.92787i 0.224109 0.388168i
\(530\) 0 0
\(531\) 0 0
\(532\) 2.29244 1.69735i 0.0993900 0.0735893i
\(533\) 3.17453i 0.137504i
\(534\) 0 0
\(535\) 0 0
\(536\) 12.3892 + 7.15291i 0.535132 + 0.308959i
\(537\) 0 0
\(538\) 10.0621i 0.433807i
\(539\) 12.3298 11.5111i 0.531083 0.495819i
\(540\) 0 0
\(541\) 4.49603 + 7.78736i 0.193300 + 0.334805i 0.946342 0.323168i \(-0.104748\pi\)
−0.753042 + 0.657972i \(0.771414\pi\)
\(542\) 3.59208 6.22167i 0.154293 0.267244i
\(543\) 0 0
\(544\) 1.22357 0.706426i 0.0524599 0.0302878i
\(545\) 0 0
\(546\) 0 0
\(547\) 12.8673 0.550165 0.275082 0.961421i \(-0.411295\pi\)
0.275082 + 0.961421i \(0.411295\pi\)
\(548\) 2.24895 1.29843i 0.0960703 0.0554662i
\(549\) 0 0
\(550\) 0 0
\(551\) 11.4595 + 19.8485i 0.488193 + 0.845575i
\(552\) 0 0
\(553\) 1.88233 4.33250i 0.0800449 0.184237i
\(554\) 22.4870i 0.955380i
\(555\) 0 0
\(556\) 3.42594 + 1.97796i 0.145292 + 0.0838844i
\(557\) −5.91023 3.41227i −0.250424 0.144583i 0.369534 0.929217i \(-0.379517\pi\)
−0.619959 + 0.784635i \(0.712851\pi\)
\(558\) 0 0
\(559\) 17.3914i 0.735577i
\(560\) 0 0
\(561\) 0 0
\(562\) 16.7324 + 28.9815i 0.705816 + 1.22251i
\(563\) 4.34307 7.52241i 0.183038 0.317032i −0.759875 0.650069i \(-0.774740\pi\)
0.942914 + 0.333037i \(0.108073\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −12.6303 −0.530892
\(567\) 0 0
\(568\) −6.69759 −0.281025
\(569\) −28.5427 + 16.4792i −1.19657 + 0.690842i −0.959790 0.280720i \(-0.909427\pi\)
−0.236784 + 0.971562i \(0.576093\pi\)
\(570\) 0 0
\(571\) −4.38204 + 7.58991i −0.183383 + 0.317628i −0.943030 0.332707i \(-0.892038\pi\)
0.759648 + 0.650335i \(0.225371\pi\)
\(572\) −0.534133 0.925146i −0.0223332 0.0386823i
\(573\) 0 0
\(574\) 5.99779 + 2.60585i 0.250343 + 0.108766i
\(575\) 0 0
\(576\) 0 0
\(577\) −30.7939 17.7788i −1.28197 0.740143i −0.304758 0.952430i \(-0.598576\pi\)
−0.977207 + 0.212287i \(0.931909\pi\)
\(578\) −18.3569 10.5984i −0.763546 0.440833i
\(579\) 0 0
\(580\) 0 0
\(581\) 15.1468 + 20.4573i 0.628394 + 0.848712i
\(582\) 0 0
\(583\) 15.3121 + 26.5213i 0.634161 + 1.09840i
\(584\) 21.9156 37.9590i 0.906876 1.57075i
\(585\) 0 0
\(586\) 1.65229 0.953952i 0.0682556 0.0394074i
\(587\) 31.4362 1.29751 0.648755 0.760997i \(-0.275290\pi\)
0.648755 + 0.760997i \(0.275290\pi\)
\(588\) 0 0
\(589\) 36.0507 1.48544
\(590\) 0 0
\(591\) 0 0
\(592\) 6.76985 11.7257i 0.278239 0.481924i
\(593\) 6.49446 + 11.2487i 0.266695 + 0.461930i 0.968006 0.250926i \(-0.0807349\pi\)
−0.701311 + 0.712855i \(0.747402\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.611922i 0.0250653i
\(597\) 0 0
\(598\) 11.1584 + 6.44229i 0.456300 + 0.263445i
\(599\) −12.7099 7.33804i −0.519311 0.299824i 0.217342 0.976096i \(-0.430261\pi\)
−0.736653 + 0.676271i \(0.763595\pi\)
\(600\) 0 0
\(601\) 9.55020i 0.389561i −0.980847 0.194780i \(-0.937601\pi\)
0.980847 0.194780i \(-0.0623994\pi\)
\(602\) −32.8583 14.2759i −1.33920 0.581842i
\(603\) 0 0
\(604\) −1.31298 2.27414i −0.0534243 0.0925336i
\(605\) 0 0
\(606\) 0 0
\(607\) −23.5998 + 13.6253i −0.957885 + 0.553035i −0.895522 0.445018i \(-0.853197\pi\)
−0.0623639 + 0.998053i \(0.519864\pi\)
\(608\) −6.05769 −0.245672
\(609\) 0 0
\(610\) 0 0
\(611\) −14.8223 + 8.55765i −0.599646 + 0.346206i
\(612\) 0 0
\(613\) 24.2382 41.9818i 0.978971 1.69563i 0.312819 0.949813i \(-0.398727\pi\)
0.666152 0.745816i \(-0.267940\pi\)
\(614\) 5.07501 + 8.79018i 0.204811 + 0.354743i
\(615\) 0 0
\(616\) −18.8888 + 2.15765i −0.761051 + 0.0869342i
\(617\) 8.42587i 0.339213i −0.985512 0.169606i \(-0.945750\pi\)
0.985512 0.169606i \(-0.0542497\pi\)
\(618\) 0 0
\(619\) 14.9893 + 8.65410i 0.602472 + 0.347837i 0.770014 0.638028i \(-0.220249\pi\)
−0.167541 + 0.985865i \(0.553583\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 43.7382i 1.75374i
\(623\) 0.465678 1.07184i 0.0186570 0.0429422i
\(624\) 0 0
\(625\) 0 0
\(626\) −5.57453 + 9.65537i −0.222803 + 0.385906i
\(627\) 0 0
\(628\) −4.70528 + 2.71660i −0.187761 + 0.108404i
\(629\) −3.81600 −0.152154
\(630\) 0 0
\(631\) 16.3945 0.652653 0.326327 0.945257i \(-0.394189\pi\)
0.326327 + 0.945257i \(0.394189\pi\)
\(632\) −4.61075 + 2.66202i −0.183406 + 0.105889i
\(633\) 0 0
\(634\) −3.91677 + 6.78404i −0.155555 + 0.269429i
\(635\) 0 0
\(636\) 0 0
\(637\) 11.3373 + 3.45899i 0.449202 + 0.137050i
\(638\) 17.6816i 0.700023i
\(639\) 0 0
\(640\) 0 0
\(641\) 12.9885 + 7.49893i 0.513016 + 0.296190i 0.734072 0.679071i \(-0.237617\pi\)
−0.221057 + 0.975261i \(0.570951\pi\)
\(642\) 0 0
\(643\) 26.5806i 1.04824i 0.851645 + 0.524119i \(0.175605\pi\)
−0.851645 + 0.524119i \(0.824395\pi\)
\(644\) −3.21284 + 2.37882i −0.126604 + 0.0937385i
\(645\) 0 0
\(646\) −2.60730 4.51597i −0.102583 0.177678i
\(647\) 11.5482 20.0021i 0.454007 0.786364i −0.544623 0.838681i \(-0.683327\pi\)
0.998631 + 0.0523172i \(0.0166607\pi\)
\(648\) 0 0
\(649\) 14.1359 8.16137i 0.554883 0.320362i
\(650\) 0 0
\(651\) 0 0
\(652\) 4.08936 0.160152
\(653\) 18.3223 10.5784i 0.717007 0.413964i −0.0966433 0.995319i \(-0.530811\pi\)
0.813650 + 0.581355i \(0.197477\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3.19441 5.53289i −0.124721 0.216023i
\(657\) 0 0
\(658\) 4.00134 + 35.0290i 0.155988 + 1.36557i
\(659\) 34.2144i 1.33281i −0.745592 0.666403i \(-0.767833\pi\)
0.745592 0.666403i \(-0.232167\pi\)
\(660\) 0 0
\(661\) 0.188317 + 0.108725i 0.00732467 + 0.00422890i 0.503658 0.863903i \(-0.331987\pi\)
−0.496333 + 0.868132i \(0.665321\pi\)
\(662\) 30.2687 + 17.4756i 1.17643 + 0.679209i
\(663\) 0 0
\(664\) 28.6892i 1.11336i
\(665\) 0 0
\(666\) 0 0
\(667\) −16.0604 27.8175i −0.621863 1.07710i
\(668\) 1.93548 3.35234i 0.0748859 0.129706i
\(669\) 0 0
\(670\) 0 0
\(671\) −5.52284 −0.213207
\(672\) 0 0
\(673\) 29.8280 1.14979 0.574893 0.818229i \(-0.305044\pi\)
0.574893 + 0.818229i \(0.305044\pi\)
\(674\) 3.90607 2.25517i 0.150456 0.0868660i
\(675\) 0 0
\(676\) −1.32638 + 2.29735i −0.0510145 + 0.0883596i
\(677\) −21.0579 36.4734i −0.809321 1.40179i −0.913335 0.407209i \(-0.866502\pi\)
0.104014 0.994576i \(-0.466831\pi\)
\(678\) 0 0
\(679\) 26.5636 19.6679i 1.01942 0.754786i
\(680\) 0 0
\(681\) 0 0
\(682\) −24.0863 13.9062i −0.922311 0.532497i
\(683\) 20.1941 + 11.6590i 0.772704 + 0.446121i 0.833838 0.552009i \(-0.186138\pi\)
−0.0611342 + 0.998130i \(0.519472\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 15.8416 18.5808i 0.604835 0.709418i
\(687\) 0 0
\(688\) 17.5003 + 30.3114i 0.667192 + 1.15561i
\(689\) −10.7599 + 18.6367i −0.409919 + 0.710000i
\(690\) 0 0
\(691\) 4.66296 2.69216i 0.177387 0.102415i −0.408677 0.912679i \(-0.634010\pi\)
0.586065 + 0.810264i \(0.300676\pi\)
\(692\) 1.79688 0.0683073
\(693\) 0 0
\(694\) 17.6652 0.670563
\(695\) 0 0
\(696\) 0 0
\(697\) −0.900306 + 1.55938i −0.0341015 + 0.0590656i
\(698\) −10.0584 17.4216i −0.380715 0.659418i
\(699\) 0 0
\(700\) 0 0
\(701\) 21.9593i 0.829391i −0.909960 0.414696i \(-0.863888\pi\)
0.909960 0.414696i \(-0.136112\pi\)
\(702\) 0 0
\(703\) 14.1693 + 8.18066i 0.534406 + 0.308540i
\(704\) 18.2708 + 10.5487i 0.688607 + 0.397568i
\(705\) 0 0
\(706\) 48.6779i 1.83202i
\(707\) 24.9442 2.84935i 0.938121 0.107161i
\(708\) 0 0
\(709\) −13.6505 23.6434i −0.512657 0.887948i −0.999892 0.0146769i \(-0.995328\pi\)
0.487236 0.873271i \(-0.338005\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.14067 + 0.658569i −0.0427486 + 0.0246809i
\(713\) −50.5248 −1.89217
\(714\) 0 0
\(715\) 0 0
\(716\) −2.65449 + 1.53257i −0.0992031 + 0.0572749i
\(717\) 0 0
\(718\) 5.86954 10.1663i 0.219049 0.379405i
\(719\) 16.3001 + 28.2327i 0.607893 + 1.05290i 0.991587 + 0.129441i \(0.0413183\pi\)
−0.383694 + 0.923460i \(0.625348\pi\)
\(720\) 0 0
\(721\) 19.6135 + 8.52145i 0.730446 + 0.317355i
\(722\) 2.69185i 0.100180i
\(723\) 0 0
\(724\) 3.93367 + 2.27111i 0.146194 + 0.0844050i
\(725\) 0 0
\(726\) 0 0
\(727\) 4.18319i 0.155146i −0.996987 0.0775729i \(-0.975283\pi\)
0.996987 0.0775729i \(-0.0247171\pi\)
\(728\) −7.94970 10.7369i −0.294636 0.397936i
\(729\) 0 0
\(730\) 0 0
\(731\) 4.93224 8.54290i 0.182426 0.315970i
\(732\) 0 0
\(733\) −0.562457 + 0.324735i −0.0207748 + 0.0119944i −0.510351 0.859966i \(-0.670485\pi\)
0.489577 + 0.871960i \(0.337151\pi\)
\(734\) −19.0560 −0.703370
\(735\) 0 0
\(736\) 8.48979 0.312938
\(737\) 10.0116 5.78023i 0.368784 0.212917i
\(738\) 0 0
\(739\) 11.5360 19.9810i 0.424360 0.735012i −0.572001 0.820253i \(-0.693833\pi\)
0.996360 + 0.0852408i \(0.0271660\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 26.3787 + 35.6272i 0.968393 + 1.30792i
\(743\) 18.5599i 0.680897i −0.940263 0.340448i \(-0.889421\pi\)
0.940263 0.340448i \(-0.110579\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 24.1159 + 13.9233i 0.882945 + 0.509768i
\(747\) 0 0
\(748\) 0.605926i 0.0221549i
\(749\) 13.1674 + 5.72081i 0.481126 + 0.209034i
\(750\) 0 0
\(751\) −11.0882 19.2053i −0.404613 0.700811i 0.589663 0.807649i \(-0.299261\pi\)
−0.994276 + 0.106838i \(0.965927\pi\)
\(752\) 17.2225 29.8302i 0.628040 1.08780i
\(753\) 0 0
\(754\) 10.7604 6.21250i 0.391869 0.226246i
\(755\) 0 0
\(756\) 0 0
\(757\) 22.4056 0.814347 0.407173 0.913351i \(-0.366515\pi\)
0.407173 + 0.913351i \(0.366515\pi\)
\(758\) −0.0152974 + 0.00883196i −0.000555627 + 0.000320791i
\(759\) 0 0
\(760\) 0 0
\(761\) −7.01527 12.1508i −0.254303 0.440466i 0.710403 0.703795i \(-0.248513\pi\)
−0.964706 + 0.263329i \(0.915179\pi\)
\(762\) 0 0
\(763\) 45.6444 5.21392i 1.65244 0.188757i
\(764\) 4.94800i 0.179012i
\(765\) 0 0
\(766\) −19.6642 11.3531i −0.710496 0.410205i
\(767\) 9.93339 + 5.73505i 0.358674 + 0.207081i
\(768\) 0 0
\(769\) 40.4788i 1.45970i 0.683606 + 0.729851i \(0.260411\pi\)
−0.683606 + 0.729851i \(0.739589\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3.05289 5.28777i −0.109876 0.190311i
\(773\) 15.6561 27.1171i 0.563110 0.975335i −0.434113 0.900858i \(-0.642938\pi\)
0.997223 0.0744762i \(-0.0237285\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −37.2526 −1.33729
\(777\) 0 0
\(778\) 33.9604 1.21754
\(779\) 6.68592 3.86012i 0.239548 0.138303i
\(780\) 0 0
\(781\) −2.70614 + 4.68717i −0.0968333 + 0.167720i
\(782\) 3.65410 + 6.32909i 0.130670 + 0.226328i
\(783\) 0 0
\(784\) −23.2405 + 5.37967i −0.830017 + 0.192131i
\(785\) 0 0
\(786\) 0 0
\(787\) 21.0932 + 12.1781i 0.751890 + 0.434104i 0.826376 0.563118i \(-0.190398\pi\)
−0.0744866 + 0.997222i \(0.523732\pi\)
\(788\) 0.191115 + 0.110340i 0.00680819 + 0.00393071i
\(789\) 0 0
\(790\) 0 0
\(791\) 12.5965 9.32656i 0.447880 0.331614i
\(792\) 0 0
\(793\) −1.94047 3.36099i −0.0689081 0.119352i
\(794\) −10.0515 + 17.4097i −0.356715 + 0.617848i
\(795\) 0 0
\(796\) −0.193721 + 0.111845i −0.00686626 + 0.00396424i
\(797\) −42.7862 −1.51557 −0.757783 0.652507i \(-0.773717\pi\)
−0.757783 + 0.652507i \(0.773717\pi\)
\(798\) 0 0
\(799\) −9.70789 −0.343441
\(800\) 0 0
\(801\) 0 0
\(802\) 8.65012 14.9824i 0.305446 0.529049i
\(803\) −17.7099 30.6744i −0.624969 1.08248i
\(804\) 0 0
\(805\) 0 0
\(806\) 19.5440i 0.688407i
\(807\) 0 0
\(808\) −24.5058 14.1485i −0.862113 0.497741i
\(809\) 33.0092 + 19.0579i 1.16054 + 0.670038i 0.951433 0.307854i \(-0.0996110\pi\)
0.209107 + 0.977893i \(0.432944\pi\)
\(810\) 0 0
\(811\) 43.0019i 1.51000i 0.655725 + 0.755000i \(0.272363\pi\)
−0.655725 + 0.755000i \(0.727637\pi\)
\(812\) 0.437513 + 3.83014i 0.0153537 + 0.134411i
\(813\) 0 0
\(814\) −6.31122 10.9314i −0.221208 0.383144i
\(815\) 0 0
\(816\) 0 0
\(817\) −36.6282 + 21.1473i −1.28146 + 0.739850i
\(818\) 43.3406 1.51537
\(819\) 0 0
\(820\) 0 0
\(821\) 6.74916 3.89663i 0.235547 0.135993i −0.377581 0.925976i \(-0.623244\pi\)
0.613129 + 0.789983i \(0.289911\pi\)
\(822\) 0 0
\(823\) −11.5228 + 19.9581i −0.401661 + 0.695697i −0.993927 0.110046i \(-0.964900\pi\)
0.592265 + 0.805743i \(0.298234\pi\)
\(824\) −12.0512 20.8732i −0.419822 0.727153i
\(825\) 0 0
\(826\) 18.9894 14.0599i 0.660726 0.489207i
\(827\) 0.555383i 0.0193126i 0.999953 + 0.00965628i \(0.00307374\pi\)
−0.999953 + 0.00965628i \(0.996926\pi\)
\(828\) 0 0
\(829\) −20.8718 12.0504i −0.724909 0.418526i 0.0916480 0.995791i \(-0.470787\pi\)
−0.816557 + 0.577265i \(0.804120\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 14.8252i 0.513972i
\(833\) 4.58808 + 4.91441i 0.158968 + 0.170274i
\(834\) 0 0
\(835\) 0 0
\(836\) −1.29897 + 2.24989i −0.0449259 + 0.0778140i
\(837\) 0 0
\(838\) 10.6541 6.15112i 0.368038 0.212487i
\(839\) 45.5904 1.57395 0.786977 0.616982i \(-0.211645\pi\)
0.786977 + 0.616982i \(0.211645\pi\)
\(840\) 0 0
\(841\) −1.97516 −0.0681090
\(842\) 14.9253 8.61714i 0.514361 0.296966i
\(843\) 0 0
\(844\) −2.11972 + 3.67146i −0.0729636 + 0.126377i
\(845\) 0 0
\(846\) 0 0
\(847\) 5.47519 12.6021i 0.188130 0.433012i
\(848\) 43.3090i 1.48724i
\(849\) 0 0
\(850\) 0 0
\(851\) −19.8582 11.4651i −0.680730 0.393019i
\(852\) 0 0
\(853\) 0.440934i 0.0150973i −0.999972 0.00754864i \(-0.997597\pi\)
0.999972 0.00754864i \(-0.00240283\pi\)
\(854\) −7.94292 + 0.907313i −0.271801 + 0.0310476i
\(855\) 0 0
\(856\) −8.09045 14.0131i −0.276526 0.478957i
\(857\) −4.17631 + 7.23358i −0.142660 + 0.247094i −0.928497 0.371339i \(-0.878899\pi\)
0.785838 + 0.618433i \(0.212232\pi\)
\(858\) 0 0
\(859\) −2.09709 + 1.21076i −0.0715518 + 0.0413104i −0.535349 0.844631i \(-0.679820\pi\)
0.463797 + 0.885941i \(0.346487\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −7.88967 −0.268723
\(863\) 13.2203 7.63275i 0.450025 0.259822i −0.257816 0.966194i \(-0.583003\pi\)
0.707841 + 0.706372i \(0.249669\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 12.8107 + 22.1887i 0.435324 + 0.754003i
\(867\) 0 0
\(868\) 5.56158 + 2.41633i 0.188772 + 0.0820155i
\(869\) 4.30233i 0.145946i
\(870\) 0 0
\(871\) 7.03525 + 4.06180i 0.238380 + 0.137629i
\(872\) −44.8424 25.8897i −1.51855 0.876738i
\(873\) 0 0
\(874\) 31.3344i 1.05990i
\(875\) 0 0
\(876\) 0 0
\(877\) 17.3127 + 29.9865i 0.584609 + 1.01257i 0.994924 + 0.100629i \(0.0320855\pi\)
−0.410315 + 0.911944i \(0.634581\pi\)
\(878\) 18.3578 31.7967i 0.619547 1.07309i
\(879\) 0 0
\(880\) 0 0
\(881\) 18.2805 0.615887 0.307943 0.951405i \(-0.400359\pi\)
0.307943 + 0.951405i \(0.400359\pi\)
\(882\) 0 0
\(883\) −15.7048 −0.528508 −0.264254 0.964453i \(-0.585126\pi\)
−0.264254 + 0.964453i \(0.585126\pi\)
\(884\) 0.368743 0.212894i 0.0124022 0.00716040i
\(885\) 0 0
\(886\) −15.4456 + 26.7526i −0.518906 + 0.898772i
\(887\) 15.8438 + 27.4423i 0.531983 + 0.921422i 0.999303 + 0.0373336i \(0.0118864\pi\)
−0.467320 + 0.884088i \(0.654780\pi\)
\(888\) 0 0
\(889\) 7.89270 + 10.6599i 0.264713 + 0.357522i
\(890\) 0 0
\(891\) 0 0
\(892\) 2.26789 + 1.30937i 0.0759346 + 0.0438409i
\(893\) 36.0467 + 20.8116i 1.20626 + 0.696433i
\(894\) 0 0
\(895\) 0 0
\(896\) 20.8708 + 9.06769i 0.697244 + 0.302930i
\(897\) 0 0
\(898\) −10.4067 18.0250i −0.347277 0.601501i
\(899\) −24.3613 + 42.1950i −0.812494 + 1.40728i
\(900\) 0 0
\(901\) −10.5708 + 6.10306i −0.352165 + 0.203322i
\(902\) −5.95601 −0.198314
\(903\) 0 0
\(904\) −17.6652 −0.587537
\(905\) 0 0
\(906\) 0 0
\(907\) 1.60632 2.78222i 0.0533369 0.0923822i −0.838124 0.545479i \(-0.816348\pi\)
0.891461 + 0.453097i \(0.149681\pi\)
\(908\) −0.612391 1.06069i −0.0203229 0.0352003i
\(909\) 0 0
\(910\) 0 0
\(911\) 43.0454i 1.42616i 0.701084 + 0.713079i \(0.252700\pi\)
−0.701084 + 0.713079i \(0.747300\pi\)
\(912\) 0 0
\(913\) −20.0775 11.5918i −0.664470 0.383632i
\(914\) 30.5024 + 17.6106i 1.00893 + 0.582506i
\(915\) 0 0
\(916\) 3.73224i 0.123317i
\(917\) −17.9807 + 41.3855i −0.593773 + 1.36667i
\(918\) 0 0
\(919\) 17.9287 + 31.0535i 0.591414 + 1.02436i 0.994042 + 0.108996i \(0.0347635\pi\)
−0.402628 + 0.915364i \(0.631903\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 37.8784 21.8691i 1.24746 0.720221i
\(923\) −3.80324 −0.125185
\(924\) 0 0
\(925\) 0 0
\(926\) −10.2926 + 5.94245i −0.338236 + 0.195281i
\(927\) 0 0
\(928\) 4.09348 7.09012i 0.134375 0.232745i
\(929\) −3.44568 5.96810i −0.113049 0.195807i 0.803949 0.594698i \(-0.202728\pi\)
−0.916998 + 0.398891i \(0.869395\pi\)
\(930\) 0 0
\(931\) −6.50078 28.0837i −0.213054 0.920406i
\(932\) 5.83947i 0.191278i
\(933\) 0 0
\(934\) 37.0725 + 21.4038i 1.21305 + 0.700354i
\(935\) 0 0
\(936\) 0 0
\(937\) 13.8533i 0.452566i 0.974062 + 0.226283i \(0.0726575\pi\)
−0.974062 + 0.226283i \(0.927343\pi\)
\(938\) 13.4491 9.95784i 0.439129 0.325135i
\(939\) 0 0
\(940\) 0 0
\(941\) −15.2003 + 26.3277i −0.495516 + 0.858259i −0.999987 0.00517013i \(-0.998354\pi\)
0.504471 + 0.863429i \(0.331688\pi\)
\(942\) 0 0
\(943\) −9.37026 + 5.40992i −0.305138 + 0.176171i
\(944\) −23.0838 −0.751315
\(945\) 0 0
\(946\) 32.6295 1.06088
\(947\) 23.1883 13.3878i 0.753519 0.435044i −0.0734452 0.997299i \(-0.523399\pi\)
0.826964 + 0.562255i \(0.190066\pi\)
\(948\) 0 0
\(949\) 12.4449 21.5551i 0.403977 0.699709i
\(950\) 0 0
\(951\) 0 0
\(952\) −0.859993 7.52867i −0.0278725 0.244006i
\(953\) 23.9462i 0.775693i 0.921724 + 0.387846i \(0.126781\pi\)
−0.921724 + 0.387846i \(0.873219\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.45045 0.837419i −0.0469110 0.0270841i
\(957\) 0 0
\(958\) 5.49255i 0.177456i
\(959\) −2.97842 26.0741i −0.0961783 0.841977i
\(960\) 0 0
\(961\) 22.8192 + 39.5240i 0.736104 + 1.27497i
\(962\) 4.43494 7.68154i 0.142988 0.247663i
\(963\) 0 0
\(964\) 1.62538 0.938412i 0.0523499 0.0302242i
\(965\) 0 0
\(966\) 0 0
\(967\) 12.8640 0.413678 0.206839 0.978375i \(-0.433682\pi\)
0.206839 + 0.978375i \(0.433682\pi\)
\(968\) −13.4114 + 7.74309i −0.431060 + 0.248872i
\(969\) 0 0
\(970\) 0 0
\(971\) 17.4878 + 30.2897i 0.561209 + 0.972043i 0.997391 + 0.0721846i \(0.0229971\pi\)
−0.436182 + 0.899859i \(0.643670\pi\)
\(972\) 0 0
\(973\) 32.1299 23.7893i 1.03004 0.762650i
\(974\) 27.2031i 0.871642i
\(975\) 0 0
\(976\) 6.76408 + 3.90524i 0.216513 + 0.125004i
\(977\) 7.64984 + 4.41664i 0.244740 + 0.141301i 0.617353 0.786686i \(-0.288205\pi\)
−0.372613 + 0.927987i \(0.621538\pi\)
\(978\) 0 0
\(979\) 1.06437i 0.0340174i
\(980\) 0 0
\(981\) 0 0
\(982\) 22.1741 + 38.4066i 0.707603 + 1.22560i
\(983\) 25.6596 44.4437i 0.818414 1.41753i −0.0884361 0.996082i \(-0.528187\pi\)
0.906850 0.421453i \(-0.138480\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 7.04753 0.224439
\(987\) 0 0
\(988\) −1.82559 −0.0580798
\(989\) 51.3341 29.6377i 1.63233 0.942425i
\(990\) 0 0
\(991\) 9.04272 15.6625i 0.287252 0.497534i −0.685901 0.727695i \(-0.740592\pi\)
0.973153 + 0.230160i \(0.0739251\pi\)
\(992\) −6.43887 11.1524i −0.204434 0.354091i
\(993\) 0 0
\(994\) −3.12193 + 7.18564i −0.0990216 + 0.227915i
\(995\) 0 0
\(996\) 0 0
\(997\) 28.7737 + 16.6125i 0.911273 + 0.526124i 0.880841 0.473413i \(-0.156978\pi\)
0.0304328 + 0.999537i \(0.490311\pi\)
\(998\) −30.6408 17.6905i −0.969917 0.559982i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.2.bk.i.1151.6 24
3.2 odd 2 inner 1575.2.bk.i.1151.7 24
5.2 odd 4 315.2.bb.b.269.5 yes 24
5.3 odd 4 315.2.bb.b.269.7 yes 24
5.4 even 2 inner 1575.2.bk.i.1151.8 24
7.5 odd 6 inner 1575.2.bk.i.26.7 24
15.2 even 4 315.2.bb.b.269.8 yes 24
15.8 even 4 315.2.bb.b.269.6 yes 24
15.14 odd 2 inner 1575.2.bk.i.1151.5 24
21.5 even 6 inner 1575.2.bk.i.26.6 24
35.3 even 12 2205.2.g.b.2204.10 24
35.12 even 12 315.2.bb.b.89.6 yes 24
35.17 even 12 2205.2.g.b.2204.14 24
35.18 odd 12 2205.2.g.b.2204.9 24
35.19 odd 6 inner 1575.2.bk.i.26.5 24
35.32 odd 12 2205.2.g.b.2204.13 24
35.33 even 12 315.2.bb.b.89.8 yes 24
105.17 odd 12 2205.2.g.b.2204.12 24
105.32 even 12 2205.2.g.b.2204.11 24
105.38 odd 12 2205.2.g.b.2204.16 24
105.47 odd 12 315.2.bb.b.89.7 yes 24
105.53 even 12 2205.2.g.b.2204.15 24
105.68 odd 12 315.2.bb.b.89.5 24
105.89 even 6 inner 1575.2.bk.i.26.8 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.bb.b.89.5 24 105.68 odd 12
315.2.bb.b.89.6 yes 24 35.12 even 12
315.2.bb.b.89.7 yes 24 105.47 odd 12
315.2.bb.b.89.8 yes 24 35.33 even 12
315.2.bb.b.269.5 yes 24 5.2 odd 4
315.2.bb.b.269.6 yes 24 15.8 even 4
315.2.bb.b.269.7 yes 24 5.3 odd 4
315.2.bb.b.269.8 yes 24 15.2 even 4
1575.2.bk.i.26.5 24 35.19 odd 6 inner
1575.2.bk.i.26.6 24 21.5 even 6 inner
1575.2.bk.i.26.7 24 7.5 odd 6 inner
1575.2.bk.i.26.8 24 105.89 even 6 inner
1575.2.bk.i.1151.5 24 15.14 odd 2 inner
1575.2.bk.i.1151.6 24 1.1 even 1 trivial
1575.2.bk.i.1151.7 24 3.2 odd 2 inner
1575.2.bk.i.1151.8 24 5.4 even 2 inner
2205.2.g.b.2204.9 24 35.18 odd 12
2205.2.g.b.2204.10 24 35.3 even 12
2205.2.g.b.2204.11 24 105.32 even 12
2205.2.g.b.2204.12 24 105.17 odd 12
2205.2.g.b.2204.13 24 35.32 odd 12
2205.2.g.b.2204.14 24 35.17 even 12
2205.2.g.b.2204.15 24 105.53 even 12
2205.2.g.b.2204.16 24 105.38 odd 12