Properties

Label 315.2.bb.b.269.5
Level $315$
Weight $2$
Character 315.269
Analytic conductor $2.515$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,2,Mod(89,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.89");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.5
Character \(\chi\) \(=\) 315.269
Dual form 315.2.bb.b.89.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.659204 - 1.14177i) q^{2} +(0.130901 - 0.226727i) q^{4} +(-0.729935 - 2.11357i) q^{5} +(-2.12635 + 1.57437i) q^{7} -2.98198 q^{8} +(-1.93205 + 2.22670i) q^{10} +(-2.08688 - 1.20486i) q^{11} -1.69332 q^{13} +(3.19927 + 1.38998i) q^{14} +(1.70393 + 2.95129i) q^{16} +(0.831785 + 0.480231i) q^{17} +(3.56633 - 2.05902i) q^{19} +(-0.574754 - 0.111173i) q^{20} +3.17699i q^{22} +(-2.88570 - 4.99818i) q^{23} +(-3.93439 + 3.08554i) q^{25} +(1.11625 + 1.93339i) q^{26} +(0.0786111 + 0.688188i) q^{28} +5.56553i q^{29} +(-7.58148 - 4.37717i) q^{31} +(-0.735506 + 1.27393i) q^{32} -1.26628i q^{34} +(4.87964 + 3.34501i) q^{35} +(3.44079 - 1.98654i) q^{37} +(-4.70187 - 2.71463i) q^{38} +(2.17665 + 6.30263i) q^{40} -1.87474 q^{41} -10.2706i q^{43} +(-0.546349 + 0.315435i) q^{44} +(-3.80453 + 6.58963i) q^{46} +(8.75337 - 5.05376i) q^{47} +(2.04272 - 6.69532i) q^{49} +(6.11656 + 2.45818i) q^{50} +(-0.221658 + 0.383923i) q^{52} +(-6.35430 + 11.0060i) q^{53} +(-1.02327 + 5.29024i) q^{55} +(6.34072 - 4.69473i) q^{56} +(6.35458 - 3.66882i) q^{58} +(3.38686 - 5.86621i) q^{59} +(1.98485 - 1.14595i) q^{61} +11.5418i q^{62} +8.75510 q^{64} +(1.23602 + 3.57896i) q^{65} +(-4.15470 - 2.39872i) q^{67} +(0.217763 - 0.125726i) q^{68} +(0.602567 - 7.77649i) q^{70} -2.24602i q^{71} +(7.34937 - 12.7295i) q^{73} +(-4.53637 - 2.61907i) q^{74} -1.07811i q^{76} +(6.33432 - 0.723564i) q^{77} +(0.892703 + 1.54621i) q^{79} +(4.99401 - 5.75563i) q^{80} +(1.23583 + 2.14052i) q^{82} -9.62086i q^{83} +(0.407855 - 2.10858i) q^{85} +(-11.7267 + 6.77039i) q^{86} +(6.22302 + 3.59286i) q^{88} +(0.220850 + 0.382523i) q^{89} +(3.60060 - 2.66592i) q^{91} -1.51096 q^{92} +(-11.5405 - 6.66292i) q^{94} +(-6.95508 - 6.03475i) q^{95} +12.4926 q^{97} +(-8.99111 + 2.08125i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{4} - 12 q^{10} - 36 q^{19} + 12 q^{25} - 60 q^{31} + 96 q^{40} - 24 q^{46} + 36 q^{49} + 48 q^{61} + 48 q^{64} - 48 q^{70} - 60 q^{79} - 72 q^{85} + 60 q^{91} + 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.659204 1.14177i −0.466127 0.807356i 0.533124 0.846037i \(-0.321018\pi\)
−0.999252 + 0.0386807i \(0.987684\pi\)
\(3\) 0 0
\(4\) 0.130901 0.226727i 0.0654506 0.113364i
\(5\) −0.729935 2.11357i −0.326437 0.945219i
\(6\) 0 0
\(7\) −2.12635 + 1.57437i −0.803685 + 0.595056i
\(8\) −2.98198 −1.05429
\(9\) 0 0
\(10\) −1.93205 + 2.22670i −0.610967 + 0.704143i
\(11\) −2.08688 1.20486i −0.629217 0.363279i 0.151232 0.988498i \(-0.451676\pi\)
−0.780449 + 0.625220i \(0.785009\pi\)
\(12\) 0 0
\(13\) −1.69332 −0.469643 −0.234822 0.972038i \(-0.575451\pi\)
−0.234822 + 0.972038i \(0.575451\pi\)
\(14\) 3.19927 + 1.38998i 0.855041 + 0.371488i
\(15\) 0 0
\(16\) 1.70393 + 2.95129i 0.425982 + 0.737822i
\(17\) 0.831785 + 0.480231i 0.201737 + 0.116473i 0.597466 0.801895i \(-0.296174\pi\)
−0.395728 + 0.918368i \(0.629508\pi\)
\(18\) 0 0
\(19\) 3.56633 2.05902i 0.818172 0.472372i −0.0316139 0.999500i \(-0.510065\pi\)
0.849786 + 0.527129i \(0.176731\pi\)
\(20\) −0.574754 0.111173i −0.128519 0.0248590i
\(21\) 0 0
\(22\) 3.17699i 0.677336i
\(23\) −2.88570 4.99818i −0.601710 1.04219i −0.992562 0.121738i \(-0.961153\pi\)
0.390853 0.920453i \(-0.372180\pi\)
\(24\) 0 0
\(25\) −3.93439 + 3.08554i −0.786878 + 0.617109i
\(26\) 1.11625 + 1.93339i 0.218914 + 0.379170i
\(27\) 0 0
\(28\) 0.0786111 + 0.688188i 0.0148561 + 0.130055i
\(29\) 5.56553i 1.03349i 0.856138 + 0.516747i \(0.172857\pi\)
−0.856138 + 0.516747i \(0.827143\pi\)
\(30\) 0 0
\(31\) −7.58148 4.37717i −1.36167 0.786163i −0.371827 0.928302i \(-0.621269\pi\)
−0.989847 + 0.142139i \(0.954602\pi\)
\(32\) −0.735506 + 1.27393i −0.130020 + 0.225202i
\(33\) 0 0
\(34\) 1.26628i 0.217165i
\(35\) 4.87964 + 3.34501i 0.824810 + 0.565410i
\(36\) 0 0
\(37\) 3.44079 1.98654i 0.565663 0.326586i −0.189752 0.981832i \(-0.560769\pi\)
0.755415 + 0.655246i \(0.227435\pi\)
\(38\) −4.70187 2.71463i −0.762744 0.440371i
\(39\) 0 0
\(40\) 2.17665 + 6.30263i 0.344158 + 0.996533i
\(41\) −1.87474 −0.292784 −0.146392 0.989227i \(-0.546766\pi\)
−0.146392 + 0.989227i \(0.546766\pi\)
\(42\) 0 0
\(43\) 10.2706i 1.56625i −0.621867 0.783123i \(-0.713625\pi\)
0.621867 0.783123i \(-0.286375\pi\)
\(44\) −0.546349 + 0.315435i −0.0823652 + 0.0475536i
\(45\) 0 0
\(46\) −3.80453 + 6.58963i −0.560947 + 0.971588i
\(47\) 8.75337 5.05376i 1.27681 0.737167i 0.300550 0.953766i \(-0.402830\pi\)
0.976261 + 0.216599i \(0.0694965\pi\)
\(48\) 0 0
\(49\) 2.04272 6.69532i 0.291818 0.956474i
\(50\) 6.11656 + 2.45818i 0.865012 + 0.347640i
\(51\) 0 0
\(52\) −0.221658 + 0.383923i −0.0307384 + 0.0532405i
\(53\) −6.35430 + 11.0060i −0.872830 + 1.51179i −0.0137732 + 0.999905i \(0.504384\pi\)
−0.859057 + 0.511880i \(0.828949\pi\)
\(54\) 0 0
\(55\) −1.02327 + 5.29024i −0.137978 + 0.713335i
\(56\) 6.34072 4.69473i 0.847315 0.627360i
\(57\) 0 0
\(58\) 6.35458 3.66882i 0.834398 0.481740i
\(59\) 3.38686 5.86621i 0.440931 0.763715i −0.556828 0.830628i \(-0.687982\pi\)
0.997759 + 0.0669127i \(0.0213149\pi\)
\(60\) 0 0
\(61\) 1.98485 1.14595i 0.254134 0.146724i −0.367522 0.930015i \(-0.619794\pi\)
0.621656 + 0.783291i \(0.286460\pi\)
\(62\) 11.5418i 1.46581i
\(63\) 0 0
\(64\) 8.75510 1.09439
\(65\) 1.23602 + 3.57896i 0.153309 + 0.443916i
\(66\) 0 0
\(67\) −4.15470 2.39872i −0.507577 0.293050i 0.224260 0.974529i \(-0.428004\pi\)
−0.731837 + 0.681480i \(0.761337\pi\)
\(68\) 0.217763 0.125726i 0.0264077 0.0152465i
\(69\) 0 0
\(70\) 0.602567 7.77649i 0.0720205 0.929469i
\(71\) 2.24602i 0.266554i −0.991079 0.133277i \(-0.957450\pi\)
0.991079 0.133277i \(-0.0425500\pi\)
\(72\) 0 0
\(73\) 7.34937 12.7295i 0.860178 1.48987i −0.0115780 0.999933i \(-0.503685\pi\)
0.871756 0.489940i \(-0.162981\pi\)
\(74\) −4.53637 2.61907i −0.527342 0.304461i
\(75\) 0 0
\(76\) 1.07811i 0.123668i
\(77\) 6.33432 0.723564i 0.721863 0.0824577i
\(78\) 0 0
\(79\) 0.892703 + 1.54621i 0.100437 + 0.173962i 0.911865 0.410491i \(-0.134643\pi\)
−0.811428 + 0.584453i \(0.801309\pi\)
\(80\) 4.99401 5.75563i 0.558347 0.643499i
\(81\) 0 0
\(82\) 1.23583 + 2.14052i 0.136475 + 0.236381i
\(83\) 9.62086i 1.05603i −0.849236 0.528013i \(-0.822937\pi\)
0.849236 0.528013i \(-0.177063\pi\)
\(84\) 0 0
\(85\) 0.407855 2.10858i 0.0442381 0.228707i
\(86\) −11.7267 + 6.77039i −1.26452 + 0.730070i
\(87\) 0 0
\(88\) 6.22302 + 3.59286i 0.663376 + 0.383000i
\(89\) 0.220850 + 0.382523i 0.0234100 + 0.0405474i 0.877493 0.479589i \(-0.159214\pi\)
−0.854083 + 0.520137i \(0.825881\pi\)
\(90\) 0 0
\(91\) 3.60060 2.66592i 0.377445 0.279464i
\(92\) −1.51096 −0.157529
\(93\) 0 0
\(94\) −11.5405 6.66292i −1.19031 0.687227i
\(95\) −6.95508 6.03475i −0.713576 0.619152i
\(96\) 0 0
\(97\) 12.4926 1.26843 0.634215 0.773157i \(-0.281323\pi\)
0.634215 + 0.773157i \(0.281323\pi\)
\(98\) −8.99111 + 2.08125i −0.908239 + 0.210238i
\(99\) 0 0
\(100\) 0.184561 + 1.29594i 0.0184561 + 0.129594i
\(101\) 4.74466 8.21799i 0.472111 0.817720i −0.527380 0.849630i \(-0.676825\pi\)
0.999491 + 0.0319094i \(0.0101588\pi\)
\(102\) 0 0
\(103\) −4.04133 6.99979i −0.398204 0.689710i 0.595300 0.803503i \(-0.297033\pi\)
−0.993504 + 0.113793i \(0.963700\pi\)
\(104\) 5.04945 0.495139
\(105\) 0 0
\(106\) 16.7551 1.62740
\(107\) 2.71312 + 4.69926i 0.262287 + 0.454294i 0.966849 0.255348i \(-0.0821900\pi\)
−0.704562 + 0.709642i \(0.748857\pi\)
\(108\) 0 0
\(109\) −8.68208 + 15.0378i −0.831592 + 1.44036i 0.0651830 + 0.997873i \(0.479237\pi\)
−0.896775 + 0.442487i \(0.854096\pi\)
\(110\) 6.71480 2.31900i 0.640231 0.221108i
\(111\) 0 0
\(112\) −8.26956 3.59286i −0.781400 0.339493i
\(113\) −5.92400 −0.557283 −0.278642 0.960395i \(-0.589884\pi\)
−0.278642 + 0.960395i \(0.589884\pi\)
\(114\) 0 0
\(115\) −8.45764 + 9.74748i −0.788679 + 0.908957i
\(116\) 1.26186 + 0.728535i 0.117161 + 0.0676427i
\(117\) 0 0
\(118\) −8.93051 −0.822121
\(119\) −2.52473 + 0.288397i −0.231441 + 0.0264373i
\(120\) 0 0
\(121\) −2.59663 4.49750i −0.236057 0.408863i
\(122\) −2.61684 1.51083i −0.236917 0.136784i
\(123\) 0 0
\(124\) −1.98485 + 1.14595i −0.178245 + 0.102910i
\(125\) 9.39337 + 6.06338i 0.840169 + 0.542325i
\(126\) 0 0
\(127\) 5.01325i 0.444854i 0.974949 + 0.222427i \(0.0713979\pi\)
−0.974949 + 0.222427i \(0.928602\pi\)
\(128\) −4.30038 7.44848i −0.380104 0.658359i
\(129\) 0 0
\(130\) 3.27158 3.77052i 0.286937 0.330696i
\(131\) 8.52739 + 14.7699i 0.745042 + 1.29045i 0.950175 + 0.311716i \(0.100904\pi\)
−0.205134 + 0.978734i \(0.565763\pi\)
\(132\) 0 0
\(133\) −4.34160 + 9.99291i −0.376464 + 0.866495i
\(134\) 6.32497i 0.546394i
\(135\) 0 0
\(136\) −2.48036 1.43204i −0.212689 0.122796i
\(137\) 4.95959 8.59026i 0.423726 0.733915i −0.572574 0.819853i \(-0.694055\pi\)
0.996301 + 0.0859376i \(0.0273886\pi\)
\(138\) 0 0
\(139\) 15.1104i 1.28164i 0.767689 + 0.640822i \(0.221407\pi\)
−0.767689 + 0.640822i \(0.778593\pi\)
\(140\) 1.39716 0.668483i 0.118081 0.0564971i
\(141\) 0 0
\(142\) −2.56445 + 1.48059i −0.215204 + 0.124248i
\(143\) 3.53376 + 2.04022i 0.295508 + 0.170611i
\(144\) 0 0
\(145\) 11.7632 4.06248i 0.976878 0.337370i
\(146\) −19.3789 −1.60381
\(147\) 0 0
\(148\) 1.04016i 0.0855008i
\(149\) −2.02420 + 1.16867i −0.165829 + 0.0957413i −0.580618 0.814176i \(-0.697189\pi\)
0.414789 + 0.909918i \(0.363856\pi\)
\(150\) 0 0
\(151\) −5.01515 + 8.68650i −0.408127 + 0.706897i −0.994680 0.103014i \(-0.967151\pi\)
0.586553 + 0.809911i \(0.300485\pi\)
\(152\) −10.6347 + 6.13995i −0.862588 + 0.498016i
\(153\) 0 0
\(154\) −5.00175 6.75539i −0.403053 0.544365i
\(155\) −3.71748 + 19.2191i −0.298595 + 1.54371i
\(156\) 0 0
\(157\) −10.3765 + 17.9727i −0.828137 + 1.43437i 0.0713615 + 0.997451i \(0.477266\pi\)
−0.899498 + 0.436924i \(0.856068\pi\)
\(158\) 1.17695 2.03853i 0.0936328 0.162177i
\(159\) 0 0
\(160\) 3.22943 + 0.624657i 0.255308 + 0.0493835i
\(161\) 14.0050 + 6.08471i 1.10375 + 0.479543i
\(162\) 0 0
\(163\) −13.5273 + 7.81001i −1.05954 + 0.611727i −0.925306 0.379222i \(-0.876192\pi\)
−0.134237 + 0.990949i \(0.542858\pi\)
\(164\) −0.245405 + 0.425054i −0.0191629 + 0.0331911i
\(165\) 0 0
\(166\) −10.9848 + 6.34211i −0.852590 + 0.492243i
\(167\) 14.7858i 1.14416i −0.820198 0.572080i \(-0.806137\pi\)
0.820198 0.572080i \(-0.193863\pi\)
\(168\) 0 0
\(169\) −10.1327 −0.779435
\(170\) −2.67638 + 0.924302i −0.205269 + 0.0708908i
\(171\) 0 0
\(172\) −2.32862 1.34443i −0.177555 0.102512i
\(173\) −5.94398 + 3.43176i −0.451912 + 0.260912i −0.708637 0.705573i \(-0.750690\pi\)
0.256725 + 0.966484i \(0.417356\pi\)
\(174\) 0 0
\(175\) 3.50810 12.7551i 0.265188 0.964197i
\(176\) 8.21197i 0.619000i
\(177\) 0 0
\(178\) 0.291170 0.504321i 0.0218241 0.0378005i
\(179\) −10.1393 5.85393i −0.757847 0.437543i 0.0706751 0.997499i \(-0.477485\pi\)
−0.828522 + 0.559956i \(0.810818\pi\)
\(180\) 0 0
\(181\) 17.3498i 1.28960i −0.764351 0.644800i \(-0.776941\pi\)
0.764351 0.644800i \(-0.223059\pi\)
\(182\) −5.41740 2.35369i −0.401565 0.174467i
\(183\) 0 0
\(184\) 8.60508 + 14.9044i 0.634375 + 1.09877i
\(185\) −6.71026 5.82232i −0.493348 0.428066i
\(186\) 0 0
\(187\) −1.15722 2.00437i −0.0846244 0.146574i
\(188\) 2.64617i 0.192992i
\(189\) 0 0
\(190\) −2.30550 + 11.9193i −0.167259 + 0.864714i
\(191\) 16.3677 9.44988i 1.18432 0.683770i 0.227313 0.973822i \(-0.427006\pi\)
0.957011 + 0.290052i \(0.0936727\pi\)
\(192\) 0 0
\(193\) 20.1976 + 11.6611i 1.45385 + 0.839382i 0.998697 0.0510306i \(-0.0162506\pi\)
0.455155 + 0.890412i \(0.349584\pi\)
\(194\) −8.23516 14.2637i −0.591250 1.02407i
\(195\) 0 0
\(196\) −1.25062 1.33957i −0.0893298 0.0956833i
\(197\) 0.842929 0.0600562 0.0300281 0.999549i \(-0.490440\pi\)
0.0300281 + 0.999549i \(0.490440\pi\)
\(198\) 0 0
\(199\) −0.739952 0.427211i −0.0524538 0.0302842i 0.473544 0.880770i \(-0.342975\pi\)
−0.525998 + 0.850486i \(0.676308\pi\)
\(200\) 11.7323 9.20102i 0.829596 0.650610i
\(201\) 0 0
\(202\) −12.5108 −0.880255
\(203\) −8.76220 11.8343i −0.614986 0.830603i
\(204\) 0 0
\(205\) 1.36844 + 3.96239i 0.0955757 + 0.276745i
\(206\) −5.32812 + 9.22857i −0.371228 + 0.642985i
\(207\) 0 0
\(208\) −2.88530 4.99749i −0.200060 0.346513i
\(209\) −9.92331 −0.686410
\(210\) 0 0
\(211\) 16.1933 1.11479 0.557395 0.830247i \(-0.311801\pi\)
0.557395 + 0.830247i \(0.311801\pi\)
\(212\) 1.66357 + 2.88139i 0.114254 + 0.197894i
\(213\) 0 0
\(214\) 3.57699 6.19553i 0.244518 0.423518i
\(215\) −21.7076 + 7.49684i −1.48045 + 0.511281i
\(216\) 0 0
\(217\) 23.0122 2.62866i 1.56217 0.178445i
\(218\) 22.8930 1.55051
\(219\) 0 0
\(220\) 1.06549 + 0.924502i 0.0718356 + 0.0623299i
\(221\) −1.40848 0.813187i −0.0947447 0.0547009i
\(222\) 0 0
\(223\) −10.0027 −0.669832 −0.334916 0.942248i \(-0.608708\pi\)
−0.334916 + 0.942248i \(0.608708\pi\)
\(224\) −0.441699 3.86679i −0.0295123 0.258361i
\(225\) 0 0
\(226\) 3.90512 + 6.76387i 0.259765 + 0.449926i
\(227\) −4.05150 2.33913i −0.268908 0.155254i 0.359484 0.933151i \(-0.382953\pi\)
−0.628391 + 0.777898i \(0.716286\pi\)
\(228\) 0 0
\(229\) 12.3460 7.12797i 0.815848 0.471030i −0.0331349 0.999451i \(-0.510549\pi\)
0.848982 + 0.528421i \(0.177216\pi\)
\(230\) 16.7047 + 3.23114i 1.10148 + 0.213055i
\(231\) 0 0
\(232\) 16.5963i 1.08960i
\(233\) 11.1524 + 19.3166i 0.730621 + 1.26547i 0.956618 + 0.291345i \(0.0941027\pi\)
−0.225997 + 0.974128i \(0.572564\pi\)
\(234\) 0 0
\(235\) −17.0709 14.8120i −1.11358 0.966227i
\(236\) −0.886687 1.53579i −0.0577184 0.0999712i
\(237\) 0 0
\(238\) 1.99359 + 2.69255i 0.129225 + 0.174532i
\(239\) 6.39734i 0.413810i −0.978361 0.206905i \(-0.933661\pi\)
0.978361 0.206905i \(-0.0663391\pi\)
\(240\) 0 0
\(241\) −6.20841 3.58443i −0.399919 0.230893i 0.286530 0.958071i \(-0.407498\pi\)
−0.686449 + 0.727178i \(0.740832\pi\)
\(242\) −3.42342 + 5.92953i −0.220066 + 0.381165i
\(243\) 0 0
\(244\) 0.600026i 0.0384127i
\(245\) −15.6421 + 0.569702i −0.999337 + 0.0363969i
\(246\) 0 0
\(247\) −6.03895 + 3.48659i −0.384249 + 0.221846i
\(248\) 22.6078 + 13.0526i 1.43560 + 0.828842i
\(249\) 0 0
\(250\) 0.730861 14.7221i 0.0462237 0.931108i
\(251\) −16.3470 −1.03181 −0.515906 0.856645i \(-0.672545\pi\)
−0.515906 + 0.856645i \(0.672545\pi\)
\(252\) 0 0
\(253\) 13.9074i 0.874353i
\(254\) 5.72400 3.30475i 0.359156 0.207359i
\(255\) 0 0
\(256\) 3.08545 5.34415i 0.192840 0.334009i
\(257\) −10.5984 + 6.11896i −0.661107 + 0.381690i −0.792699 0.609614i \(-0.791325\pi\)
0.131592 + 0.991304i \(0.457991\pi\)
\(258\) 0 0
\(259\) −4.18878 + 9.64116i −0.260278 + 0.599073i
\(260\) 0.973245 + 0.188252i 0.0603581 + 0.0116749i
\(261\) 0 0
\(262\) 11.2426 19.4727i 0.694569 1.20303i
\(263\) −4.71070 + 8.15918i −0.290474 + 0.503117i −0.973922 0.226883i \(-0.927146\pi\)
0.683448 + 0.730000i \(0.260480\pi\)
\(264\) 0 0
\(265\) 27.9001 + 5.39664i 1.71389 + 0.331513i
\(266\) 14.2716 1.63024i 0.875051 0.0999563i
\(267\) 0 0
\(268\) −1.08771 + 0.627989i −0.0664424 + 0.0383605i
\(269\) 3.81600 6.60950i 0.232666 0.402988i −0.725926 0.687773i \(-0.758589\pi\)
0.958592 + 0.284784i \(0.0919219\pi\)
\(270\) 0 0
\(271\) −4.71908 + 2.72456i −0.286664 + 0.165505i −0.636436 0.771329i \(-0.719592\pi\)
0.349773 + 0.936835i \(0.386259\pi\)
\(272\) 3.27312i 0.198462i
\(273\) 0 0
\(274\) −13.0775 −0.790041
\(275\) 11.9282 1.69876i 0.719299 0.102439i
\(276\) 0 0
\(277\) 14.7711 + 8.52809i 0.887508 + 0.512403i 0.873127 0.487494i \(-0.162089\pi\)
0.0143815 + 0.999897i \(0.495422\pi\)
\(278\) 17.2526 9.96081i 1.03474 0.597410i
\(279\) 0 0
\(280\) −14.5510 9.97474i −0.869587 0.596105i
\(281\) 25.3828i 1.51421i −0.653292 0.757106i \(-0.726613\pi\)
0.653292 0.757106i \(-0.273387\pi\)
\(282\) 0 0
\(283\) 4.78999 8.29651i 0.284735 0.493176i −0.687810 0.725891i \(-0.741428\pi\)
0.972545 + 0.232715i \(0.0747609\pi\)
\(284\) −0.509235 0.294007i −0.0302175 0.0174461i
\(285\) 0 0
\(286\) 5.37967i 0.318107i
\(287\) 3.98634 2.95153i 0.235306 0.174223i
\(288\) 0 0
\(289\) −8.03876 13.9235i −0.472868 0.819031i
\(290\) −12.3928 10.7529i −0.727728 0.631431i
\(291\) 0 0
\(292\) −1.92408 3.33261i −0.112598 0.195026i
\(293\) 1.44713i 0.0845421i 0.999106 + 0.0422710i \(0.0134593\pi\)
−0.999106 + 0.0422710i \(0.986541\pi\)
\(294\) 0 0
\(295\) −14.8709 2.87642i −0.865815 0.167472i
\(296\) −10.2604 + 5.92382i −0.596372 + 0.344315i
\(297\) 0 0
\(298\) 2.66872 + 1.54079i 0.154595 + 0.0892553i
\(299\) 4.88642 + 8.46353i 0.282589 + 0.489459i
\(300\) 0 0
\(301\) 16.1697 + 21.8388i 0.932004 + 1.25877i
\(302\) 13.2240 0.760957
\(303\) 0 0
\(304\) 12.1535 + 7.01684i 0.697053 + 0.402444i
\(305\) −3.87087 3.35865i −0.221645 0.192316i
\(306\) 0 0
\(307\) 7.69871 0.439388 0.219694 0.975569i \(-0.429494\pi\)
0.219694 + 0.975569i \(0.429494\pi\)
\(308\) 0.665118 1.53088i 0.0378986 0.0872299i
\(309\) 0 0
\(310\) 24.3944 8.42475i 1.38551 0.478494i
\(311\) −16.5875 + 28.7304i −0.940592 + 1.62915i −0.176247 + 0.984346i \(0.556396\pi\)
−0.764345 + 0.644807i \(0.776938\pi\)
\(312\) 0 0
\(313\) −4.22823 7.32351i −0.238994 0.413950i 0.721432 0.692485i \(-0.243484\pi\)
−0.960426 + 0.278536i \(0.910151\pi\)
\(314\) 27.3610 1.54407
\(315\) 0 0
\(316\) 0.467423 0.0262946
\(317\) 2.97083 + 5.14563i 0.166859 + 0.289008i 0.937314 0.348487i \(-0.113304\pi\)
−0.770455 + 0.637494i \(0.779971\pi\)
\(318\) 0 0
\(319\) 6.70568 11.6146i 0.375446 0.650292i
\(320\) −6.39066 18.5046i −0.357249 1.03444i
\(321\) 0 0
\(322\) −2.28476 20.0016i −0.127325 1.11464i
\(323\) 3.95522 0.220074
\(324\) 0 0
\(325\) 6.66219 5.22482i 0.369552 0.289821i
\(326\) 17.8345 + 10.2968i 0.987764 + 0.570286i
\(327\) 0 0
\(328\) 5.59042 0.308679
\(329\) −10.6562 + 24.5271i −0.587498 + 1.35222i
\(330\) 0 0
\(331\) −13.2551 22.9585i −0.728566 1.26191i −0.957489 0.288469i \(-0.906854\pi\)
0.228923 0.973445i \(-0.426480\pi\)
\(332\) −2.18131 1.25938i −0.119715 0.0691175i
\(333\) 0 0
\(334\) −16.8820 + 9.74685i −0.923744 + 0.533324i
\(335\) −2.03720 + 10.5322i −0.111304 + 0.575434i
\(336\) 0 0
\(337\) 3.42106i 0.186357i −0.995649 0.0931784i \(-0.970297\pi\)
0.995649 0.0931784i \(-0.0297027\pi\)
\(338\) 6.67948 + 11.5692i 0.363316 + 0.629282i
\(339\) 0 0
\(340\) −0.424683 0.368487i −0.0230317 0.0199840i
\(341\) 10.5477 + 18.2692i 0.571192 + 0.989334i
\(342\) 0 0
\(343\) 6.19736 + 17.4526i 0.334626 + 0.942351i
\(344\) 30.6266i 1.65127i
\(345\) 0 0
\(346\) 7.83658 + 4.52445i 0.421297 + 0.243236i
\(347\) 6.69946 11.6038i 0.359646 0.622925i −0.628256 0.778007i \(-0.716231\pi\)
0.987902 + 0.155082i \(0.0495642\pi\)
\(348\) 0 0
\(349\) 15.2584i 0.816762i −0.912812 0.408381i \(-0.866094\pi\)
0.912812 0.408381i \(-0.133906\pi\)
\(350\) −16.8760 + 4.40277i −0.902062 + 0.235338i
\(351\) 0 0
\(352\) 3.06982 1.77236i 0.163622 0.0944672i
\(353\) 31.9752 + 18.4609i 1.70187 + 0.982574i 0.943871 + 0.330316i \(0.107155\pi\)
0.757997 + 0.652258i \(0.226178\pi\)
\(354\) 0 0
\(355\) −4.74714 + 1.63945i −0.251952 + 0.0870130i
\(356\) 0.115638 0.00612880
\(357\) 0 0
\(358\) 15.4357i 0.815804i
\(359\) 7.71108 4.45200i 0.406975 0.234967i −0.282514 0.959263i \(-0.591168\pi\)
0.689489 + 0.724296i \(0.257835\pi\)
\(360\) 0 0
\(361\) −1.02087 + 1.76820i −0.0537301 + 0.0930633i
\(362\) −19.8095 + 11.4370i −1.04117 + 0.601118i
\(363\) 0 0
\(364\) −0.133114 1.16533i −0.00697707 0.0610797i
\(365\) −32.2693 6.24174i −1.68905 0.326708i
\(366\) 0 0
\(367\) −7.22690 + 12.5174i −0.377241 + 0.653401i −0.990660 0.136357i \(-0.956461\pi\)
0.613419 + 0.789758i \(0.289794\pi\)
\(368\) 9.83404 17.0331i 0.512635 0.887910i
\(369\) 0 0
\(370\) −2.22435 + 11.4997i −0.115638 + 0.597841i
\(371\) −3.81600 33.4065i −0.198117 1.73438i
\(372\) 0 0
\(373\) −18.2917 + 10.5607i −0.947107 + 0.546812i −0.892181 0.451678i \(-0.850826\pi\)
−0.0549259 + 0.998490i \(0.517492\pi\)
\(374\) −1.52569 + 2.64257i −0.0788915 + 0.136644i
\(375\) 0 0
\(376\) −26.1024 + 15.0702i −1.34613 + 0.777186i
\(377\) 9.42425i 0.485374i
\(378\) 0 0
\(379\) −0.0133979 −0.000688205 −0.000344103 1.00000i \(-0.500110\pi\)
−0.000344103 1.00000i \(0.500110\pi\)
\(380\) −2.27867 + 0.786952i −0.116893 + 0.0403698i
\(381\) 0 0
\(382\) −21.5793 12.4588i −1.10409 0.637447i
\(383\) 14.9151 8.61124i 0.762127 0.440014i −0.0679321 0.997690i \(-0.521640\pi\)
0.830059 + 0.557676i \(0.188307\pi\)
\(384\) 0 0
\(385\) −6.15295 12.8599i −0.313583 0.655401i
\(386\) 30.7481i 1.56504i
\(387\) 0 0
\(388\) 1.63529 2.83241i 0.0830194 0.143794i
\(389\) 22.3077 + 12.8793i 1.13104 + 0.653008i 0.944197 0.329381i \(-0.106840\pi\)
0.186846 + 0.982389i \(0.440173\pi\)
\(390\) 0 0
\(391\) 5.54321i 0.280332i
\(392\) −6.09135 + 19.9653i −0.307660 + 1.00840i
\(393\) 0 0
\(394\) −0.555662 0.962434i −0.0279938 0.0484867i
\(395\) 2.61641 3.01543i 0.131646 0.151723i
\(396\) 0 0
\(397\) 7.62398 + 13.2051i 0.382637 + 0.662746i 0.991438 0.130576i \(-0.0416828\pi\)
−0.608802 + 0.793322i \(0.708349\pi\)
\(398\) 1.12648i 0.0564652i
\(399\) 0 0
\(400\) −15.8102 6.35398i −0.790512 0.317699i
\(401\) −11.3640 + 6.56104i −0.567494 + 0.327643i −0.756148 0.654401i \(-0.772921\pi\)
0.188654 + 0.982044i \(0.439588\pi\)
\(402\) 0 0
\(403\) 12.8379 + 7.41196i 0.639501 + 0.369216i
\(404\) −1.24216 2.15149i −0.0617999 0.107041i
\(405\) 0 0
\(406\) −7.73598 + 17.8057i −0.383930 + 0.883680i
\(407\) −9.57401 −0.474566
\(408\) 0 0
\(409\) 28.4692 + 16.4367i 1.40771 + 0.812744i 0.995167 0.0981933i \(-0.0313063\pi\)
0.412546 + 0.910937i \(0.364640\pi\)
\(410\) 3.62208 4.17447i 0.178882 0.206162i
\(411\) 0 0
\(412\) −2.11606 −0.104251
\(413\) 2.03394 + 17.8058i 0.100084 + 0.876165i
\(414\) 0 0
\(415\) −20.3344 + 7.02260i −0.998176 + 0.344726i
\(416\) 1.24545 2.15718i 0.0610632 0.105765i
\(417\) 0 0
\(418\) 6.54148 + 11.3302i 0.319954 + 0.554177i
\(419\) 9.33114 0.455856 0.227928 0.973678i \(-0.426805\pi\)
0.227928 + 0.973678i \(0.426805\pi\)
\(420\) 0 0
\(421\) −13.0720 −0.637093 −0.318546 0.947907i \(-0.603195\pi\)
−0.318546 + 0.947907i \(0.603195\pi\)
\(422\) −10.6747 18.4890i −0.519634 0.900033i
\(423\) 0 0
\(424\) 18.9484 32.8195i 0.920214 1.59386i
\(425\) −4.75434 + 0.677092i −0.230619 + 0.0328438i
\(426\) 0 0
\(427\) −2.41633 + 5.56158i −0.116934 + 0.269144i
\(428\) 1.42060 0.0686673
\(429\) 0 0
\(430\) 22.8694 + 19.8432i 1.10286 + 0.956925i
\(431\) 5.18251 + 2.99212i 0.249633 + 0.144125i 0.619596 0.784921i \(-0.287296\pi\)
−0.369963 + 0.929046i \(0.620630\pi\)
\(432\) 0 0
\(433\) −19.4335 −0.933916 −0.466958 0.884280i \(-0.654650\pi\)
−0.466958 + 0.884280i \(0.654650\pi\)
\(434\) −18.1710 24.5419i −0.872237 1.17805i
\(435\) 0 0
\(436\) 2.27299 + 3.93693i 0.108856 + 0.188545i
\(437\) −20.5827 11.8834i −0.984603 0.568461i
\(438\) 0 0
\(439\) 24.1175 13.9242i 1.15107 0.664568i 0.201919 0.979402i \(-0.435282\pi\)
0.949147 + 0.314834i \(0.101949\pi\)
\(440\) 3.05138 15.7754i 0.145469 0.752061i
\(441\) 0 0
\(442\) 2.14422i 0.101990i
\(443\) −11.7154 20.2916i −0.556614 0.964084i −0.997776 0.0666564i \(-0.978767\pi\)
0.441162 0.897428i \(-0.354566\pi\)
\(444\) 0 0
\(445\) 0.647285 0.745999i 0.0306842 0.0353638i
\(446\) 6.59383 + 11.4208i 0.312227 + 0.540793i
\(447\) 0 0
\(448\) −18.6164 + 13.7838i −0.879543 + 0.651222i
\(449\) 15.7868i 0.745025i −0.928027 0.372513i \(-0.878496\pi\)
0.928027 0.372513i \(-0.121504\pi\)
\(450\) 0 0
\(451\) 3.91234 + 2.25879i 0.184225 + 0.106362i
\(452\) −0.775458 + 1.34313i −0.0364745 + 0.0631757i
\(453\) 0 0
\(454\) 6.16786i 0.289472i
\(455\) −8.26281 5.66418i −0.387367 0.265541i
\(456\) 0 0
\(457\) 23.1358 13.3575i 1.08225 0.624836i 0.150746 0.988573i \(-0.451833\pi\)
0.931502 + 0.363737i \(0.118499\pi\)
\(458\) −16.2771 9.39757i −0.760578 0.439120i
\(459\) 0 0
\(460\) 1.10291 + 3.19354i 0.0514233 + 0.148899i
\(461\) −33.1750 −1.54512 −0.772558 0.634944i \(-0.781023\pi\)
−0.772558 + 0.634944i \(0.781023\pi\)
\(462\) 0 0
\(463\) 9.01458i 0.418943i −0.977815 0.209472i \(-0.932826\pi\)
0.977815 0.209472i \(-0.0671744\pi\)
\(464\) −16.4255 + 9.48327i −0.762535 + 0.440250i
\(465\) 0 0
\(466\) 14.7035 25.4672i 0.681125 1.17974i
\(467\) 28.1192 16.2346i 1.30120 0.751248i 0.320590 0.947218i \(-0.396119\pi\)
0.980610 + 0.195970i \(0.0627856\pi\)
\(468\) 0 0
\(469\) 12.6108 1.44052i 0.582313 0.0665171i
\(470\) −5.65874 + 29.2552i −0.261018 + 1.34944i
\(471\) 0 0
\(472\) −10.0995 + 17.4929i −0.464869 + 0.805176i
\(473\) −12.3746 + 21.4334i −0.568984 + 0.985509i
\(474\) 0 0
\(475\) −7.67812 + 19.1050i −0.352297 + 0.876600i
\(476\) −0.265102 + 0.610176i −0.0121509 + 0.0279674i
\(477\) 0 0
\(478\) −7.30432 + 4.21715i −0.334092 + 0.192888i
\(479\) −2.08303 + 3.60791i −0.0951759 + 0.164849i −0.909682 0.415305i \(-0.863675\pi\)
0.814506 + 0.580155i \(0.197008\pi\)
\(480\) 0 0
\(481\) −5.82638 + 3.36386i −0.265660 + 0.153379i
\(482\) 9.45148i 0.430503i
\(483\) 0 0
\(484\) −1.35961 −0.0618003
\(485\) −9.11877 26.4040i −0.414062 1.19894i
\(486\) 0 0
\(487\) −17.8689 10.3166i −0.809719 0.467491i 0.0371394 0.999310i \(-0.488175\pi\)
−0.846858 + 0.531819i \(0.821509\pi\)
\(488\) −5.91877 + 3.41720i −0.267930 + 0.154690i
\(489\) 0 0
\(490\) 10.9618 + 17.4842i 0.495204 + 0.789856i
\(491\) 33.6376i 1.51805i −0.651064 0.759023i \(-0.725677\pi\)
0.651064 0.759023i \(-0.274323\pi\)
\(492\) 0 0
\(493\) −2.67274 + 4.62933i −0.120374 + 0.208494i
\(494\) 7.96179 + 4.59674i 0.358218 + 0.206817i
\(495\) 0 0
\(496\) 29.8335i 1.33956i
\(497\) 3.53607 + 4.77583i 0.158614 + 0.214225i
\(498\) 0 0
\(499\) −13.4181 23.2408i −0.600675 1.04040i −0.992719 0.120453i \(-0.961565\pi\)
0.392044 0.919946i \(-0.371768\pi\)
\(500\) 2.60434 1.33603i 0.116469 0.0597492i
\(501\) 0 0
\(502\) 10.7760 + 18.6646i 0.480956 + 0.833040i
\(503\) 22.8321i 1.01803i −0.860757 0.509017i \(-0.830009\pi\)
0.860757 0.509017i \(-0.169991\pi\)
\(504\) 0 0
\(505\) −20.8326 4.02959i −0.927039 0.179314i
\(506\) 15.8791 9.16783i 0.705914 0.407560i
\(507\) 0 0
\(508\) 1.13664 + 0.656240i 0.0504303 + 0.0291159i
\(509\) −7.67782 13.2984i −0.340313 0.589440i 0.644177 0.764876i \(-0.277200\pi\)
−0.984491 + 0.175436i \(0.943866\pi\)
\(510\) 0 0
\(511\) 4.41358 + 38.6379i 0.195245 + 1.70924i
\(512\) −25.3373 −1.11976
\(513\) 0 0
\(514\) 13.9729 + 8.06729i 0.616320 + 0.355833i
\(515\) −11.8447 + 13.6510i −0.521938 + 0.601537i
\(516\) 0 0
\(517\) −24.3563 −1.07119
\(518\) 13.7693 1.57285i 0.604988 0.0691072i
\(519\) 0 0
\(520\) −3.68577 10.6724i −0.161632 0.468015i
\(521\) −9.31915 + 16.1412i −0.408279 + 0.707160i −0.994697 0.102848i \(-0.967204\pi\)
0.586418 + 0.810009i \(0.300538\pi\)
\(522\) 0 0
\(523\) 4.59801 + 7.96399i 0.201057 + 0.348241i 0.948869 0.315669i \(-0.102229\pi\)
−0.747812 + 0.663910i \(0.768896\pi\)
\(524\) 4.46498 0.195054
\(525\) 0 0
\(526\) 12.4213 0.541592
\(527\) −4.20411 7.28172i −0.183134 0.317197i
\(528\) 0 0
\(529\) −5.15451 + 8.92787i −0.224109 + 0.388168i
\(530\) −12.2301 35.4131i −0.531243 1.53825i
\(531\) 0 0
\(532\) 1.69735 + 2.29244i 0.0735893 + 0.0993900i
\(533\) 3.17453 0.137504
\(534\) 0 0
\(535\) 7.95183 9.16453i 0.343787 0.396217i
\(536\) 12.3892 + 7.15291i 0.535132 + 0.308959i
\(537\) 0 0
\(538\) −10.0621 −0.433807
\(539\) −12.3298 + 11.5111i −0.531083 + 0.495819i
\(540\) 0 0
\(541\) 4.49603 + 7.78736i 0.193300 + 0.334805i 0.946342 0.323168i \(-0.104748\pi\)
−0.753042 + 0.657972i \(0.771414\pi\)
\(542\) 6.22167 + 3.59208i 0.267244 + 0.154293i
\(543\) 0 0
\(544\) −1.22357 + 0.706426i −0.0524599 + 0.0302878i
\(545\) 38.1209 + 7.37359i 1.63292 + 0.315850i
\(546\) 0 0
\(547\) 12.8673i 0.550165i 0.961421 + 0.275082i \(0.0887051\pi\)
−0.961421 + 0.275082i \(0.911295\pi\)
\(548\) −1.29843 2.24895i −0.0554662 0.0960703i
\(549\) 0 0
\(550\) −9.80274 12.4995i −0.417990 0.532981i
\(551\) 11.4595 + 19.8485i 0.488193 + 0.845575i
\(552\) 0 0
\(553\) −4.33250 1.88233i −0.184237 0.0800449i
\(554\) 22.4870i 0.955380i
\(555\) 0 0
\(556\) 3.42594 + 1.97796i 0.145292 + 0.0838844i
\(557\) 3.41227 5.91023i 0.144583 0.250424i −0.784635 0.619959i \(-0.787149\pi\)
0.929217 + 0.369534i \(0.120483\pi\)
\(558\) 0 0
\(559\) 17.3914i 0.735577i
\(560\) −1.55753 + 20.1009i −0.0658177 + 0.849418i
\(561\) 0 0
\(562\) −28.9815 + 16.7324i −1.22251 + 0.705816i
\(563\) −7.52241 4.34307i −0.317032 0.183038i 0.333037 0.942914i \(-0.391927\pi\)
−0.650069 + 0.759875i \(0.725260\pi\)
\(564\) 0 0
\(565\) 4.32414 + 12.5208i 0.181918 + 0.526755i
\(566\) −12.6303 −0.530892
\(567\) 0 0
\(568\) 6.69759i 0.281025i
\(569\) 28.5427 16.4792i 1.19657 0.690842i 0.236784 0.971562i \(-0.423907\pi\)
0.959790 + 0.280720i \(0.0905733\pi\)
\(570\) 0 0
\(571\) −4.38204 + 7.58991i −0.183383 + 0.317628i −0.943030 0.332707i \(-0.892038\pi\)
0.759648 + 0.650335i \(0.225371\pi\)
\(572\) 0.925146 0.534133i 0.0386823 0.0223332i
\(573\) 0 0
\(574\) −5.99779 2.60585i −0.250343 0.108766i
\(575\) 26.7755 + 10.7608i 1.11662 + 0.448757i
\(576\) 0 0
\(577\) 17.7788 30.7939i 0.740143 1.28197i −0.212287 0.977207i \(-0.568091\pi\)
0.952430 0.304758i \(-0.0985756\pi\)
\(578\) −10.5984 + 18.3569i −0.440833 + 0.763546i
\(579\) 0 0
\(580\) 0.618737 3.19881i 0.0256916 0.132824i
\(581\) 15.1468 + 20.4573i 0.628394 + 0.848712i
\(582\) 0 0
\(583\) 26.5213 15.3121i 1.09840 0.634161i
\(584\) −21.9156 + 37.9590i −0.906876 + 1.57075i
\(585\) 0 0
\(586\) 1.65229 0.953952i 0.0682556 0.0394074i
\(587\) 31.4362i 1.29751i 0.760997 + 0.648755i \(0.224710\pi\)
−0.760997 + 0.648755i \(0.775290\pi\)
\(588\) 0 0
\(589\) −36.0507 −1.48544
\(590\) 6.51870 + 18.8753i 0.268370 + 0.777084i
\(591\) 0 0
\(592\) 11.7257 + 6.76985i 0.481924 + 0.278239i
\(593\) 11.2487 6.49446i 0.461930 0.266695i −0.250926 0.968006i \(-0.580735\pi\)
0.712855 + 0.701311i \(0.247402\pi\)
\(594\) 0 0
\(595\) 2.45243 + 5.12568i 0.100540 + 0.210133i
\(596\) 0.611922i 0.0250653i
\(597\) 0 0
\(598\) 6.44229 11.1584i 0.263445 0.456300i
\(599\) 12.7099 + 7.33804i 0.519311 + 0.299824i 0.736653 0.676271i \(-0.236405\pi\)
−0.217342 + 0.976096i \(0.569739\pi\)
\(600\) 0 0
\(601\) 9.55020i 0.389561i −0.980847 0.194780i \(-0.937601\pi\)
0.980847 0.194780i \(-0.0623994\pi\)
\(602\) 14.2759 32.8583i 0.581842 1.33920i
\(603\) 0 0
\(604\) 1.31298 + 2.27414i 0.0534243 + 0.0925336i
\(605\) −7.61042 + 8.77105i −0.309408 + 0.356594i
\(606\) 0 0
\(607\) −13.6253 23.5998i −0.553035 0.957885i −0.998053 0.0623639i \(-0.980136\pi\)
0.445018 0.895522i \(-0.353197\pi\)
\(608\) 6.05769i 0.245672i
\(609\) 0 0
\(610\) −1.28313 + 6.63369i −0.0519526 + 0.268590i
\(611\) −14.8223 + 8.55765i −0.599646 + 0.346206i
\(612\) 0 0
\(613\) −41.9818 24.2382i −1.69563 0.978971i −0.949813 0.312819i \(-0.898727\pi\)
−0.745816 0.666152i \(-0.767940\pi\)
\(614\) −5.07501 8.79018i −0.204811 0.354743i
\(615\) 0 0
\(616\) −18.8888 + 2.15765i −0.761051 + 0.0869342i
\(617\) 8.42587 0.339213 0.169606 0.985512i \(-0.445750\pi\)
0.169606 + 0.985512i \(0.445750\pi\)
\(618\) 0 0
\(619\) −14.9893 8.65410i −0.602472 0.347837i 0.167541 0.985865i \(-0.446417\pi\)
−0.770014 + 0.638028i \(0.779751\pi\)
\(620\) 3.87087 + 3.35865i 0.155458 + 0.134887i
\(621\) 0 0
\(622\) 43.7382 1.75374
\(623\) −1.07184 0.465678i −0.0429422 0.0186570i
\(624\) 0 0
\(625\) 5.95884 24.2795i 0.238354 0.971178i
\(626\) −5.57453 + 9.65537i −0.222803 + 0.385906i
\(627\) 0 0
\(628\) 2.71660 + 4.70528i 0.108404 + 0.187761i
\(629\) 3.81600 0.152154
\(630\) 0 0
\(631\) 16.3945 0.652653 0.326327 0.945257i \(-0.394189\pi\)
0.326327 + 0.945257i \(0.394189\pi\)
\(632\) −2.66202 4.61075i −0.105889 0.183406i
\(633\) 0 0
\(634\) 3.91677 6.78404i 0.155555 0.269429i
\(635\) 10.5959 3.65935i 0.420484 0.145217i
\(636\) 0 0
\(637\) −3.45899 + 11.3373i −0.137050 + 0.449202i
\(638\) −17.6816 −0.700023
\(639\) 0 0
\(640\) −12.6039 + 14.5261i −0.498214 + 0.574194i
\(641\) 12.9885 + 7.49893i 0.513016 + 0.296190i 0.734072 0.679071i \(-0.237617\pi\)
−0.221057 + 0.975261i \(0.570951\pi\)
\(642\) 0 0
\(643\) 26.5806 1.04824 0.524119 0.851645i \(-0.324395\pi\)
0.524119 + 0.851645i \(0.324395\pi\)
\(644\) 3.21284 2.37882i 0.126604 0.0937385i
\(645\) 0 0
\(646\) −2.60730 4.51597i −0.102583 0.177678i
\(647\) 20.0021 + 11.5482i 0.786364 + 0.454007i 0.838681 0.544623i \(-0.183327\pi\)
−0.0523172 + 0.998631i \(0.516661\pi\)
\(648\) 0 0
\(649\) −14.1359 + 8.16137i −0.554883 + 0.320362i
\(650\) −10.3573 4.16250i −0.406247 0.163267i
\(651\) 0 0
\(652\) 4.08936i 0.160152i
\(653\) −10.5784 18.3223i −0.413964 0.717007i 0.581355 0.813650i \(-0.302523\pi\)
−0.995319 + 0.0966433i \(0.969189\pi\)
\(654\) 0 0
\(655\) 24.9928 28.8043i 0.976549 1.12548i
\(656\) −3.19441 5.53289i −0.124721 0.216023i
\(657\) 0 0
\(658\) 35.0290 4.00134i 1.36557 0.155988i
\(659\) 34.2144i 1.33281i 0.745592 + 0.666403i \(0.232167\pi\)
−0.745592 + 0.666403i \(0.767833\pi\)
\(660\) 0 0
\(661\) 0.188317 + 0.108725i 0.00732467 + 0.00422890i 0.503658 0.863903i \(-0.331987\pi\)
−0.496333 + 0.868132i \(0.665321\pi\)
\(662\) −17.4756 + 30.2687i −0.679209 + 1.17643i
\(663\) 0 0
\(664\) 28.6892i 1.11336i
\(665\) 24.2898 + 1.88212i 0.941920 + 0.0729853i
\(666\) 0 0
\(667\) 27.8175 16.0604i 1.07710 0.621863i
\(668\) −3.35234 1.93548i −0.129706 0.0748859i
\(669\) 0 0
\(670\) 13.3683 4.61682i 0.516462 0.178363i
\(671\) −5.52284 −0.213207
\(672\) 0 0
\(673\) 29.8280i 1.14979i −0.818229 0.574893i \(-0.805044\pi\)
0.818229 0.574893i \(-0.194956\pi\)
\(674\) −3.90607 + 2.25517i −0.150456 + 0.0868660i
\(675\) 0 0
\(676\) −1.32638 + 2.29735i −0.0510145 + 0.0883596i
\(677\) 36.4734 21.0579i 1.40179 0.809321i 0.407209 0.913335i \(-0.366502\pi\)
0.994576 + 0.104014i \(0.0331687\pi\)
\(678\) 0 0
\(679\) −26.5636 + 19.6679i −1.01942 + 0.754786i
\(680\) −1.21621 + 6.28772i −0.0466397 + 0.241123i
\(681\) 0 0
\(682\) 13.9062 24.0863i 0.532497 0.922311i
\(683\) 11.6590 20.1941i 0.446121 0.772704i −0.552009 0.833838i \(-0.686138\pi\)
0.998130 + 0.0611342i \(0.0194718\pi\)
\(684\) 0 0
\(685\) −21.7763 4.21212i −0.832030 0.160937i
\(686\) 15.8416 18.5808i 0.604835 0.709418i
\(687\) 0 0
\(688\) 30.3114 17.5003i 1.15561 0.667192i
\(689\) 10.7599 18.6367i 0.409919 0.710000i
\(690\) 0 0
\(691\) 4.66296 2.69216i 0.177387 0.102415i −0.408677 0.912679i \(-0.634010\pi\)
0.586065 + 0.810264i \(0.300676\pi\)
\(692\) 1.79688i 0.0683073i
\(693\) 0 0
\(694\) −17.6652 −0.670563
\(695\) 31.9369 11.0296i 1.21144 0.418376i
\(696\) 0 0
\(697\) −1.55938 0.900306i −0.0590656 0.0341015i
\(698\) −17.4216 + 10.0584i −0.659418 + 0.380715i
\(699\) 0 0
\(700\) −2.43272 2.46504i −0.0919482 0.0931699i
\(701\) 21.9593i 0.829391i −0.909960 0.414696i \(-0.863888\pi\)
0.909960 0.414696i \(-0.136112\pi\)
\(702\) 0 0
\(703\) 8.18066 14.1693i 0.308540 0.534406i
\(704\) −18.2708 10.5487i −0.688607 0.397568i
\(705\) 0 0
\(706\) 48.6779i 1.83202i
\(707\) 2.84935 + 24.9442i 0.107161 + 0.938121i
\(708\) 0 0
\(709\) 13.6505 + 23.6434i 0.512657 + 0.887948i 0.999892 + 0.0146769i \(0.00467198\pi\)
−0.487236 + 0.873271i \(0.661995\pi\)
\(710\) 5.00121 + 4.33943i 0.187692 + 0.162856i
\(711\) 0 0
\(712\) −0.658569 1.14067i −0.0246809 0.0427486i
\(713\) 50.5248i 1.89217i
\(714\) 0 0
\(715\) 1.73273 8.95808i 0.0648006 0.335013i
\(716\) −2.65449 + 1.53257i −0.0992031 + 0.0572749i
\(717\) 0 0
\(718\) −10.1663 5.86954i −0.379405 0.219049i
\(719\) −16.3001 28.2327i −0.607893 1.05290i −0.991587 0.129441i \(-0.958682\pi\)
0.383694 0.923460i \(-0.374652\pi\)
\(720\) 0 0
\(721\) 19.6135 + 8.52145i 0.730446 + 0.317355i
\(722\) 2.69185 0.100180
\(723\) 0 0
\(724\) −3.93367 2.27111i −0.146194 0.0844050i
\(725\) −17.1727 21.8970i −0.637778 0.813233i
\(726\) 0 0
\(727\) 4.18319 0.155146 0.0775729 0.996987i \(-0.475283\pi\)
0.0775729 + 0.996987i \(0.475283\pi\)
\(728\) −10.7369 + 7.94970i −0.397936 + 0.294636i
\(729\) 0 0
\(730\) 14.1454 + 40.9588i 0.523543 + 1.51595i
\(731\) 4.93224 8.54290i 0.182426 0.315970i
\(732\) 0 0
\(733\) 0.324735 + 0.562457i 0.0119944 + 0.0207748i 0.871960 0.489577i \(-0.162849\pi\)
−0.859966 + 0.510351i \(0.829515\pi\)
\(734\) 19.0560 0.703370
\(735\) 0 0
\(736\) 8.48979 0.312938
\(737\) 5.78023 + 10.0116i 0.212917 + 0.368784i
\(738\) 0 0
\(739\) −11.5360 + 19.9810i −0.424360 + 0.735012i −0.996360 0.0852408i \(-0.972834\pi\)
0.572001 + 0.820253i \(0.306167\pi\)
\(740\) −2.19846 + 0.759251i −0.0808170 + 0.0279106i
\(741\) 0 0
\(742\) −35.6272 + 26.3787i −1.30792 + 0.968393i
\(743\) −18.5599 −0.680897 −0.340448 0.940263i \(-0.610579\pi\)
−0.340448 + 0.940263i \(0.610579\pi\)
\(744\) 0 0
\(745\) 3.94761 + 3.42524i 0.144629 + 0.125491i
\(746\) 24.1159 + 13.9233i 0.882945 + 0.509768i
\(747\) 0 0
\(748\) −0.605926 −0.0221549
\(749\) −13.1674 5.72081i −0.481126 0.209034i
\(750\) 0 0
\(751\) −11.0882 19.2053i −0.404613 0.700811i 0.589663 0.807649i \(-0.299261\pi\)
−0.994276 + 0.106838i \(0.965927\pi\)
\(752\) 29.8302 + 17.2225i 1.08780 + 0.628040i
\(753\) 0 0
\(754\) −10.7604 + 6.21250i −0.391869 + 0.226246i
\(755\) 22.0203 + 4.25931i 0.801400 + 0.155012i
\(756\) 0 0
\(757\) 22.4056i 0.814347i 0.913351 + 0.407173i \(0.133485\pi\)
−0.913351 + 0.407173i \(0.866515\pi\)
\(758\) 0.00883196 + 0.0152974i 0.000320791 + 0.000555627i
\(759\) 0 0
\(760\) 20.7399 + 17.9955i 0.752315 + 0.652764i
\(761\) −7.01527 12.1508i −0.254303 0.440466i 0.710403 0.703795i \(-0.248513\pi\)
−0.964706 + 0.263329i \(0.915179\pi\)
\(762\) 0 0
\(763\) −5.21392 45.6444i −0.188757 1.65244i
\(764\) 4.94800i 0.179012i
\(765\) 0 0
\(766\) −19.6642 11.3531i −0.710496 0.410205i
\(767\) −5.73505 + 9.93339i −0.207081 + 0.358674i
\(768\) 0 0
\(769\) 40.4788i 1.45970i −0.683606 0.729851i \(-0.739589\pi\)
0.683606 0.729851i \(-0.260411\pi\)
\(770\) −10.6271 + 15.5026i −0.382973 + 0.558674i
\(771\) 0 0
\(772\) 5.28777 3.05289i 0.190311 0.109876i
\(773\) −27.1171 15.6561i −0.975335 0.563110i −0.0744762 0.997223i \(-0.523728\pi\)
−0.900858 + 0.434113i \(0.857062\pi\)
\(774\) 0 0
\(775\) 43.3344 6.17150i 1.55662 0.221687i
\(776\) −37.2526 −1.33729
\(777\) 0 0
\(778\) 33.9604i 1.21754i
\(779\) −6.68592 + 3.86012i −0.239548 + 0.138303i
\(780\) 0 0
\(781\) −2.70614 + 4.68717i −0.0968333 + 0.167720i
\(782\) −6.32909 + 3.65410i −0.226328 + 0.130670i
\(783\) 0 0
\(784\) 23.2405 5.37967i 0.830017 0.192131i
\(785\) 45.5607 + 8.81267i 1.62613 + 0.314538i
\(786\) 0 0
\(787\) −12.1781 + 21.0932i −0.434104 + 0.751890i −0.997222 0.0744866i \(-0.976268\pi\)
0.563118 + 0.826376i \(0.309602\pi\)
\(788\) 0.110340 0.191115i 0.00393071 0.00680819i
\(789\) 0 0
\(790\) −5.16768 0.999568i −0.183858 0.0355630i
\(791\) 12.5965 9.32656i 0.447880 0.331614i
\(792\) 0 0
\(793\) −3.36099 + 1.94047i −0.119352 + 0.0689081i
\(794\) 10.0515 17.4097i 0.356715 0.617848i
\(795\) 0 0
\(796\) −0.193721 + 0.111845i −0.00686626 + 0.00396424i
\(797\) 42.7862i 1.51557i −0.652507 0.757783i \(-0.726283\pi\)
0.652507 0.757783i \(-0.273717\pi\)
\(798\) 0 0
\(799\) 9.70789 0.343441
\(800\) −1.03701 7.28159i −0.0366639 0.257443i
\(801\) 0 0
\(802\) 14.9824 + 8.65012i 0.529049 + 0.305446i
\(803\) −30.6744 + 17.7099i −1.08248 + 0.624969i
\(804\) 0 0
\(805\) 2.63777 34.0420i 0.0929691 1.19982i
\(806\) 19.5440i 0.688407i
\(807\) 0 0
\(808\) −14.1485 + 24.5058i −0.497741 + 0.862113i
\(809\) −33.0092 19.0579i −1.16054 0.670038i −0.209107 0.977893i \(-0.567056\pi\)
−0.951433 + 0.307854i \(0.900389\pi\)
\(810\) 0 0
\(811\) 43.0019i 1.51000i 0.655725 + 0.755000i \(0.272363\pi\)
−0.655725 + 0.755000i \(0.727637\pi\)
\(812\) −3.83014 + 0.437513i −0.134411 + 0.0153537i
\(813\) 0 0
\(814\) 6.31122 + 10.9314i 0.221208 + 0.383144i
\(815\) 26.3811 + 22.8902i 0.924090 + 0.801810i
\(816\) 0 0
\(817\) −21.1473 36.6282i −0.739850 1.28146i
\(818\) 43.3406i 1.51537i
\(819\) 0 0
\(820\) 1.07751 + 0.208420i 0.0376284 + 0.00727833i
\(821\) 6.74916 3.89663i 0.235547 0.135993i −0.377581 0.925976i \(-0.623244\pi\)
0.613129 + 0.789983i \(0.289911\pi\)
\(822\) 0 0
\(823\) 19.9581 + 11.5228i 0.695697 + 0.401661i 0.805743 0.592265i \(-0.201766\pi\)
−0.110046 + 0.993927i \(0.535100\pi\)
\(824\) 12.0512 + 20.8732i 0.419822 + 0.727153i
\(825\) 0 0
\(826\) 18.9894 14.0599i 0.660726 0.489207i
\(827\) −0.555383 −0.0193126 −0.00965628 0.999953i \(-0.503074\pi\)
−0.00965628 + 0.999953i \(0.503074\pi\)
\(828\) 0 0
\(829\) 20.8718 + 12.0504i 0.724909 + 0.418526i 0.816557 0.577265i \(-0.195880\pi\)
−0.0916480 + 0.995791i \(0.529213\pi\)
\(830\) 21.4227 + 18.5880i 0.743594 + 0.645198i
\(831\) 0 0
\(832\) −14.8252 −0.513972
\(833\) 4.91441 4.58808i 0.170274 0.158968i
\(834\) 0 0
\(835\) −31.2509 + 10.7927i −1.08148 + 0.373496i
\(836\) −1.29897 + 2.24989i −0.0449259 + 0.0778140i
\(837\) 0 0
\(838\) −6.15112 10.6541i −0.212487 0.368038i
\(839\) −45.5904 −1.57395 −0.786977 0.616982i \(-0.788355\pi\)
−0.786977 + 0.616982i \(0.788355\pi\)
\(840\) 0 0
\(841\) −1.97516 −0.0681090
\(842\) 8.61714 + 14.9253i 0.296966 + 0.514361i
\(843\) 0 0
\(844\) 2.11972 3.67146i 0.0729636 0.126377i
\(845\) 7.39618 + 21.4161i 0.254436 + 0.736737i
\(846\) 0 0
\(847\) 12.6021 + 5.47519i 0.433012 + 0.188130i
\(848\) −43.3090 −1.48724
\(849\) 0 0
\(850\) 3.90716 + 4.98204i 0.134015 + 0.170883i
\(851\) −19.8582 11.4651i −0.680730 0.393019i
\(852\) 0 0
\(853\) −0.440934 −0.0150973 −0.00754864 0.999972i \(-0.502403\pi\)
−0.00754864 + 0.999972i \(0.502403\pi\)
\(854\) 7.94292 0.907313i 0.271801 0.0310476i
\(855\) 0 0
\(856\) −8.09045 14.0131i −0.276526 0.478957i
\(857\) −7.23358 4.17631i −0.247094 0.142660i 0.371339 0.928497i \(-0.378899\pi\)
−0.618433 + 0.785838i \(0.712232\pi\)
\(858\) 0 0
\(859\) 2.09709 1.21076i 0.0715518 0.0413104i −0.463797 0.885941i \(-0.653513\pi\)
0.535349 + 0.844631i \(0.320180\pi\)
\(860\) −1.14181 + 5.90305i −0.0389353 + 0.201292i
\(861\) 0 0
\(862\) 7.88967i 0.268723i
\(863\) −7.63275 13.2203i −0.259822 0.450025i 0.706372 0.707841i \(-0.250331\pi\)
−0.966194 + 0.257816i \(0.916997\pi\)
\(864\) 0 0
\(865\) 11.5920 + 10.0581i 0.394139 + 0.341985i
\(866\) 12.8107 + 22.1887i 0.435324 + 0.754003i
\(867\) 0 0
\(868\) 2.41633 5.56158i 0.0820155 0.188772i
\(869\) 4.30233i 0.145946i
\(870\) 0 0
\(871\) 7.03525 + 4.06180i 0.238380 + 0.137629i
\(872\) 25.8897 44.8424i 0.876738 1.51855i
\(873\) 0 0
\(874\) 31.3344i 1.05990i
\(875\) −29.5196 + 1.89578i −0.997944 + 0.0640891i
\(876\) 0 0
\(877\) −29.9865 + 17.3127i −1.01257 + 0.584609i −0.911944 0.410315i \(-0.865419\pi\)
−0.100629 + 0.994924i \(0.532086\pi\)
\(878\) −31.7967 18.3578i −1.07309 0.619547i
\(879\) 0 0
\(880\) −17.3566 + 5.99420i −0.585091 + 0.202065i
\(881\) 18.2805 0.615887 0.307943 0.951405i \(-0.400359\pi\)
0.307943 + 0.951405i \(0.400359\pi\)
\(882\) 0 0
\(883\) 15.7048i 0.528508i 0.964453 + 0.264254i \(0.0851257\pi\)
−0.964453 + 0.264254i \(0.914874\pi\)
\(884\) −0.368743 + 0.212894i −0.0124022 + 0.00716040i
\(885\) 0 0
\(886\) −15.4456 + 26.7526i −0.518906 + 0.898772i
\(887\) −27.4423 + 15.8438i −0.921422 + 0.531983i −0.884088 0.467320i \(-0.845220\pi\)
−0.0373336 + 0.999303i \(0.511886\pi\)
\(888\) 0 0
\(889\) −7.89270 10.6599i −0.264713 0.357522i
\(890\) −1.27845 0.247287i −0.0428539 0.00828909i
\(891\) 0 0
\(892\) −1.30937 + 2.26789i −0.0438409 + 0.0759346i
\(893\) 20.8116 36.0467i 0.696433 1.20626i
\(894\) 0 0
\(895\) −4.97168 + 25.7032i −0.166185 + 0.859162i
\(896\) 20.8708 + 9.06769i 0.697244 + 0.302930i
\(897\) 0 0
\(898\) −18.0250 + 10.4067i −0.601501 + 0.347277i
\(899\) 24.3613 42.1950i 0.812494 1.40728i
\(900\) 0 0
\(901\) −10.5708 + 6.10306i −0.352165 + 0.203322i
\(902\) 5.95601i 0.198314i
\(903\) 0 0
\(904\) 17.6652 0.587537
\(905\) −36.6701 + 12.6642i −1.21895 + 0.420973i
\(906\) 0 0
\(907\) 2.78222 + 1.60632i 0.0923822 + 0.0533369i 0.545479 0.838124i \(-0.316348\pi\)
−0.453097 + 0.891461i \(0.649681\pi\)
\(908\) −1.06069 + 0.612391i −0.0352003 + 0.0203229i
\(909\) 0 0
\(910\) −1.02034 + 13.1681i −0.0338240 + 0.436519i
\(911\) 43.0454i 1.42616i 0.701084 + 0.713079i \(0.252700\pi\)
−0.701084 + 0.713079i \(0.747300\pi\)
\(912\) 0 0
\(913\) −11.5918 + 20.0775i −0.383632 + 0.664470i
\(914\) −30.5024 17.6106i −1.00893 0.582506i
\(915\) 0 0
\(916\) 3.73224i 0.123317i
\(917\) −41.3855 17.9807i −1.36667 0.593773i
\(918\) 0 0
\(919\) −17.9287 31.0535i −0.591414 1.02436i −0.994042 0.108996i \(-0.965237\pi\)
0.402628 0.915364i \(-0.368097\pi\)
\(920\) 25.2205 29.0668i 0.831495 0.958303i
\(921\) 0 0
\(922\) 21.8691 + 37.8784i 0.720221 + 1.24746i
\(923\) 3.80324i 0.125185i
\(924\) 0 0
\(925\) −7.40786 + 18.4325i −0.243569 + 0.606058i
\(926\) −10.2926 + 5.94245i −0.338236 + 0.195281i
\(927\) 0 0
\(928\) −7.09012 4.09348i −0.232745 0.134375i
\(929\) 3.44568 + 5.96810i 0.113049 + 0.195807i 0.916998 0.398891i \(-0.130605\pi\)
−0.803949 + 0.594698i \(0.797272\pi\)
\(930\) 0 0
\(931\) −6.50078 28.0837i −0.213054 0.920406i
\(932\) 5.83947 0.191278
\(933\) 0 0
\(934\) −37.0725 21.4038i −1.21305 0.700354i
\(935\) −3.39168 + 3.90893i −0.110920 + 0.127836i
\(936\) 0 0
\(937\) −13.8533 −0.452566 −0.226283 0.974062i \(-0.572657\pi\)
−0.226283 + 0.974062i \(0.572657\pi\)
\(938\) −9.95784 13.4491i −0.325135 0.439129i
\(939\) 0 0
\(940\) −5.59288 + 1.93153i −0.182420 + 0.0629997i
\(941\) −15.2003 + 26.3277i −0.495516 + 0.858259i −0.999987 0.00517013i \(-0.998354\pi\)
0.504471 + 0.863429i \(0.331688\pi\)
\(942\) 0 0
\(943\) 5.40992 + 9.37026i 0.176171 + 0.305138i
\(944\) 23.0838 0.751315
\(945\) 0 0
\(946\) 32.6295 1.06088
\(947\) 13.3878 + 23.1883i 0.435044 + 0.753519i 0.997299 0.0734452i \(-0.0233994\pi\)
−0.562255 + 0.826964i \(0.690066\pi\)
\(948\) 0 0
\(949\) −12.4449 + 21.5551i −0.403977 + 0.699709i
\(950\) 26.8751 3.82743i 0.871943 0.124178i
\(951\) 0 0
\(952\) 7.52867 0.859993i 0.244006 0.0278725i
\(953\) 23.9462 0.775693 0.387846 0.921724i \(-0.373219\pi\)
0.387846 + 0.921724i \(0.373219\pi\)
\(954\) 0 0
\(955\) −31.9204 27.6965i −1.03292 0.896238i
\(956\) −1.45045 0.837419i −0.0469110 0.0270841i
\(957\) 0 0
\(958\) 5.49255 0.177456
\(959\) 2.97842 + 26.0741i 0.0961783 + 0.841977i
\(960\) 0 0
\(961\) 22.8192 + 39.5240i 0.736104 + 1.27497i
\(962\) 7.68154 + 4.43494i 0.247663 + 0.142988i
\(963\) 0 0
\(964\) −1.62538 + 0.938412i −0.0523499 + 0.0302242i
\(965\) 9.90362 51.2008i 0.318809 1.64821i
\(966\) 0 0
\(967\) 12.8640i 0.413678i 0.978375 + 0.206839i \(0.0663177\pi\)
−0.978375 + 0.206839i \(0.933682\pi\)
\(968\) 7.74309 + 13.4114i 0.248872 + 0.431060i
\(969\) 0 0
\(970\) −24.1363 + 27.8172i −0.774969 + 0.893156i
\(971\) 17.4878 + 30.2897i 0.561209 + 0.972043i 0.997391 + 0.0721846i \(0.0229971\pi\)
−0.436182 + 0.899859i \(0.643670\pi\)
\(972\) 0 0
\(973\) −23.7893 32.1299i −0.762650 1.03004i
\(974\) 27.2031i 0.871642i
\(975\) 0 0
\(976\) 6.76408 + 3.90524i 0.216513 + 0.125004i
\(977\) −4.41664 + 7.64984i −0.141301 + 0.244740i −0.927987 0.372613i \(-0.878462\pi\)
0.786686 + 0.617353i \(0.211795\pi\)
\(978\) 0 0
\(979\) 1.06437i 0.0340174i
\(980\) −1.91840 + 3.62107i −0.0612811 + 0.115671i
\(981\) 0 0
\(982\) −38.4066 + 22.1741i −1.22560 + 0.707603i
\(983\) −44.4437 25.6596i −1.41753 0.818414i −0.421453 0.906850i \(-0.638480\pi\)
−0.996082 + 0.0884361i \(0.971813\pi\)
\(984\) 0 0
\(985\) −0.615283 1.78159i −0.0196046 0.0567663i
\(986\) 7.04753 0.224439
\(987\) 0 0
\(988\) 1.82559i 0.0580798i
\(989\) −51.3341 + 29.6377i −1.63233 + 0.942425i
\(990\) 0 0
\(991\) 9.04272 15.6625i 0.287252 0.497534i −0.685901 0.727695i \(-0.740592\pi\)
0.973153 + 0.230160i \(0.0739251\pi\)
\(992\) 11.1524 6.43887i 0.354091 0.204434i
\(993\) 0 0
\(994\) 3.12193 7.18564i 0.0990216 0.227915i
\(995\) −0.362826 + 1.87578i −0.0115024 + 0.0594662i
\(996\) 0 0
\(997\) −16.6125 + 28.7737i −0.526124 + 0.911273i 0.473413 + 0.880841i \(0.343022\pi\)
−0.999537 + 0.0304328i \(0.990311\pi\)
\(998\) −17.6905 + 30.6408i −0.559982 + 0.969917i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.bb.b.269.5 yes 24
3.2 odd 2 inner 315.2.bb.b.269.8 yes 24
5.2 odd 4 1575.2.bk.i.1151.8 24
5.3 odd 4 1575.2.bk.i.1151.6 24
5.4 even 2 inner 315.2.bb.b.269.7 yes 24
7.3 odd 6 2205.2.g.b.2204.14 24
7.4 even 3 2205.2.g.b.2204.13 24
7.5 odd 6 inner 315.2.bb.b.89.6 yes 24
15.2 even 4 1575.2.bk.i.1151.5 24
15.8 even 4 1575.2.bk.i.1151.7 24
15.14 odd 2 inner 315.2.bb.b.269.6 yes 24
21.5 even 6 inner 315.2.bb.b.89.7 yes 24
21.11 odd 6 2205.2.g.b.2204.11 24
21.17 even 6 2205.2.g.b.2204.12 24
35.4 even 6 2205.2.g.b.2204.9 24
35.12 even 12 1575.2.bk.i.26.5 24
35.19 odd 6 inner 315.2.bb.b.89.8 yes 24
35.24 odd 6 2205.2.g.b.2204.10 24
35.33 even 12 1575.2.bk.i.26.7 24
105.47 odd 12 1575.2.bk.i.26.8 24
105.59 even 6 2205.2.g.b.2204.16 24
105.68 odd 12 1575.2.bk.i.26.6 24
105.74 odd 6 2205.2.g.b.2204.15 24
105.89 even 6 inner 315.2.bb.b.89.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.bb.b.89.5 24 105.89 even 6 inner
315.2.bb.b.89.6 yes 24 7.5 odd 6 inner
315.2.bb.b.89.7 yes 24 21.5 even 6 inner
315.2.bb.b.89.8 yes 24 35.19 odd 6 inner
315.2.bb.b.269.5 yes 24 1.1 even 1 trivial
315.2.bb.b.269.6 yes 24 15.14 odd 2 inner
315.2.bb.b.269.7 yes 24 5.4 even 2 inner
315.2.bb.b.269.8 yes 24 3.2 odd 2 inner
1575.2.bk.i.26.5 24 35.12 even 12
1575.2.bk.i.26.6 24 105.68 odd 12
1575.2.bk.i.26.7 24 35.33 even 12
1575.2.bk.i.26.8 24 105.47 odd 12
1575.2.bk.i.1151.5 24 15.2 even 4
1575.2.bk.i.1151.6 24 5.3 odd 4
1575.2.bk.i.1151.7 24 15.8 even 4
1575.2.bk.i.1151.8 24 5.2 odd 4
2205.2.g.b.2204.9 24 35.4 even 6
2205.2.g.b.2204.10 24 35.24 odd 6
2205.2.g.b.2204.11 24 21.11 odd 6
2205.2.g.b.2204.12 24 21.17 even 6
2205.2.g.b.2204.13 24 7.4 even 3
2205.2.g.b.2204.14 24 7.3 odd 6
2205.2.g.b.2204.15 24 105.74 odd 6
2205.2.g.b.2204.16 24 105.59 even 6