Properties

Label 2205.2.g.b.2204.16
Level $2205$
Weight $2$
Character 2205.2204
Analytic conductor $17.607$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2205,2,Mod(2204,2205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2205.2204");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2205.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6070136457\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2204.16
Character \(\chi\) \(=\) 2205.2204
Dual form 2205.2.g.b.2204.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.31841 q^{2} -0.261802 q^{4} +(2.19538 - 0.424645i) q^{5} -2.98198 q^{8} +(2.89440 - 0.559855i) q^{10} -2.40972i q^{11} -1.69332 q^{13} -3.40786 q^{16} +0.960462i q^{17} -4.11804i q^{19} +(-0.574754 + 0.111173i) q^{20} -3.17699i q^{22} +5.77140 q^{23} +(4.63935 - 1.86451i) q^{25} -2.23249 q^{26} -5.56553i q^{29} -8.75434i q^{31} +1.47101 q^{32} +1.26628i q^{34} -3.97309i q^{37} -5.42925i q^{38} +(-6.54656 + 1.26628i) q^{40} -1.87474 q^{41} +10.2706i q^{43} +0.630869i q^{44} +7.60905 q^{46} -10.1075i q^{47} +(6.11656 - 2.45818i) q^{50} +0.443316 q^{52} +12.7086 q^{53} +(-1.02327 - 5.29024i) q^{55} -7.33764i q^{58} -6.77371 q^{59} -2.29191i q^{61} -11.5418i q^{62} +8.75510 q^{64} +(-3.71748 + 0.719061i) q^{65} -4.79743i q^{67} -0.251451i q^{68} +2.24602i q^{71} -14.6987 q^{73} -5.23814i q^{74} +1.07811i q^{76} -1.78541 q^{79} +(-7.48152 + 1.44713i) q^{80} -2.47166 q^{82} +9.62086i q^{83} +(0.407855 + 2.10858i) q^{85} +13.5408i q^{86} +7.18572i q^{88} -0.441699 q^{89} -1.51096 q^{92} -13.3258i q^{94} +(-1.74870 - 9.04065i) q^{95} +12.4926 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 48 q^{4} - 24 q^{25} + 48 q^{46} + 48 q^{64} + 120 q^{79} - 72 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2205\mathbb{Z}\right)^\times\).

\(n\) \(442\) \(1081\) \(1226\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.31841 0.932255 0.466127 0.884718i \(-0.345649\pi\)
0.466127 + 0.884718i \(0.345649\pi\)
\(3\) 0 0
\(4\) −0.261802 −0.130901
\(5\) 2.19538 0.424645i 0.981802 0.189907i
\(6\) 0 0
\(7\) 0 0
\(8\) −2.98198 −1.05429
\(9\) 0 0
\(10\) 2.89440 0.559855i 0.915290 0.177042i
\(11\) 2.40972i 0.726557i −0.931681 0.363279i \(-0.881657\pi\)
0.931681 0.363279i \(-0.118343\pi\)
\(12\) 0 0
\(13\) −1.69332 −0.469643 −0.234822 0.972038i \(-0.575451\pi\)
−0.234822 + 0.972038i \(0.575451\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −3.40786 −0.851964
\(17\) 0.960462i 0.232946i 0.993194 + 0.116473i \(0.0371589\pi\)
−0.993194 + 0.116473i \(0.962841\pi\)
\(18\) 0 0
\(19\) 4.11804i 0.944743i −0.881399 0.472372i \(-0.843398\pi\)
0.881399 0.472372i \(-0.156602\pi\)
\(20\) −0.574754 + 0.111173i −0.128519 + 0.0248590i
\(21\) 0 0
\(22\) 3.17699i 0.677336i
\(23\) 5.77140 1.20342 0.601710 0.798715i \(-0.294486\pi\)
0.601710 + 0.798715i \(0.294486\pi\)
\(24\) 0 0
\(25\) 4.63935 1.86451i 0.927871 0.372902i
\(26\) −2.23249 −0.437827
\(27\) 0 0
\(28\) 0 0
\(29\) 5.56553i 1.03349i −0.856138 0.516747i \(-0.827143\pi\)
0.856138 0.516747i \(-0.172857\pi\)
\(30\) 0 0
\(31\) 8.75434i 1.57233i −0.618019 0.786163i \(-0.712065\pi\)
0.618019 0.786163i \(-0.287935\pi\)
\(32\) 1.47101 0.260041
\(33\) 0 0
\(34\) 1.26628i 0.217165i
\(35\) 0 0
\(36\) 0 0
\(37\) 3.97309i 0.653171i −0.945168 0.326586i \(-0.894102\pi\)
0.945168 0.326586i \(-0.105898\pi\)
\(38\) 5.42925i 0.880741i
\(39\) 0 0
\(40\) −6.54656 + 1.26628i −1.03510 + 0.200216i
\(41\) −1.87474 −0.292784 −0.146392 0.989227i \(-0.546766\pi\)
−0.146392 + 0.989227i \(0.546766\pi\)
\(42\) 0 0
\(43\) 10.2706i 1.56625i 0.621867 + 0.783123i \(0.286375\pi\)
−0.621867 + 0.783123i \(0.713625\pi\)
\(44\) 0.630869i 0.0951071i
\(45\) 0 0
\(46\) 7.60905 1.12189
\(47\) 10.1075i 1.47433i −0.675711 0.737167i \(-0.736163\pi\)
0.675711 0.737167i \(-0.263837\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 6.11656 2.45818i 0.865012 0.347640i
\(51\) 0 0
\(52\) 0.443316 0.0614769
\(53\) 12.7086 1.74566 0.872830 0.488025i \(-0.162282\pi\)
0.872830 + 0.488025i \(0.162282\pi\)
\(54\) 0 0
\(55\) −1.02327 5.29024i −0.137978 0.713335i
\(56\) 0 0
\(57\) 0 0
\(58\) 7.33764i 0.963479i
\(59\) −6.77371 −0.881863 −0.440931 0.897541i \(-0.645352\pi\)
−0.440931 + 0.897541i \(0.645352\pi\)
\(60\) 0 0
\(61\) 2.29191i 0.293448i −0.989177 0.146724i \(-0.953127\pi\)
0.989177 0.146724i \(-0.0468730\pi\)
\(62\) 11.5418i 1.46581i
\(63\) 0 0
\(64\) 8.75510 1.09439
\(65\) −3.71748 + 0.719061i −0.461097 + 0.0891885i
\(66\) 0 0
\(67\) 4.79743i 0.586100i −0.956097 0.293050i \(-0.905330\pi\)
0.956097 0.293050i \(-0.0946702\pi\)
\(68\) 0.251451i 0.0304929i
\(69\) 0 0
\(70\) 0 0
\(71\) 2.24602i 0.266554i 0.991079 + 0.133277i \(0.0425500\pi\)
−0.991079 + 0.133277i \(0.957450\pi\)
\(72\) 0 0
\(73\) −14.6987 −1.72036 −0.860178 0.509993i \(-0.829648\pi\)
−0.860178 + 0.509993i \(0.829648\pi\)
\(74\) 5.23814i 0.608922i
\(75\) 0 0
\(76\) 1.07811i 0.123668i
\(77\) 0 0
\(78\) 0 0
\(79\) −1.78541 −0.200874 −0.100437 0.994943i \(-0.532024\pi\)
−0.100437 + 0.994943i \(0.532024\pi\)
\(80\) −7.48152 + 1.44713i −0.836460 + 0.161794i
\(81\) 0 0
\(82\) −2.47166 −0.272950
\(83\) 9.62086i 1.05603i 0.849236 + 0.528013i \(0.177063\pi\)
−0.849236 + 0.528013i \(0.822937\pi\)
\(84\) 0 0
\(85\) 0.407855 + 2.10858i 0.0442381 + 0.228707i
\(86\) 13.5408i 1.46014i
\(87\) 0 0
\(88\) 7.18572i 0.766000i
\(89\) −0.441699 −0.0468201 −0.0234100 0.999726i \(-0.507452\pi\)
−0.0234100 + 0.999726i \(0.507452\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.51096 −0.157529
\(93\) 0 0
\(94\) 13.3258i 1.37445i
\(95\) −1.74870 9.04065i −0.179413 0.927551i
\(96\) 0 0
\(97\) 12.4926 1.26843 0.634215 0.773157i \(-0.281323\pi\)
0.634215 + 0.773157i \(0.281323\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.21459 + 0.488133i −0.121459 + 0.0488133i
\(101\) −9.48931 −0.944222 −0.472111 0.881539i \(-0.656508\pi\)
−0.472111 + 0.881539i \(0.656508\pi\)
\(102\) 0 0
\(103\) 8.08266 0.796408 0.398204 0.917297i \(-0.369634\pi\)
0.398204 + 0.917297i \(0.369634\pi\)
\(104\) 5.04945 0.495139
\(105\) 0 0
\(106\) 16.7551 1.62740
\(107\) −5.42623 −0.524574 −0.262287 0.964990i \(-0.584477\pi\)
−0.262287 + 0.964990i \(0.584477\pi\)
\(108\) 0 0
\(109\) 17.3642 1.66318 0.831592 0.555387i \(-0.187430\pi\)
0.831592 + 0.555387i \(0.187430\pi\)
\(110\) −1.34909 6.97469i −0.128631 0.665010i
\(111\) 0 0
\(112\) 0 0
\(113\) −5.92400 −0.557283 −0.278642 0.960395i \(-0.589884\pi\)
−0.278642 + 0.960395i \(0.589884\pi\)
\(114\) 0 0
\(115\) 12.6704 2.45079i 1.18152 0.228538i
\(116\) 1.45707i 0.135285i
\(117\) 0 0
\(118\) −8.93051 −0.822121
\(119\) 0 0
\(120\) 0 0
\(121\) 5.19326 0.472115
\(122\) 3.02166i 0.273569i
\(123\) 0 0
\(124\) 2.29191i 0.205819i
\(125\) 9.39337 6.06338i 0.840169 0.542325i
\(126\) 0 0
\(127\) 5.01325i 0.444854i −0.974949 0.222427i \(-0.928602\pi\)
0.974949 0.222427i \(-0.0713979\pi\)
\(128\) 8.60077 0.760208
\(129\) 0 0
\(130\) −4.90116 + 0.948015i −0.429860 + 0.0831464i
\(131\) −17.0548 −1.49008 −0.745042 0.667018i \(-0.767570\pi\)
−0.745042 + 0.667018i \(0.767570\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.32497i 0.546394i
\(135\) 0 0
\(136\) 2.86408i 0.245592i
\(137\) −9.91917 −0.847452 −0.423726 0.905790i \(-0.639278\pi\)
−0.423726 + 0.905790i \(0.639278\pi\)
\(138\) 0 0
\(139\) 15.1104i 1.28164i −0.767689 0.640822i \(-0.778593\pi\)
0.767689 0.640822i \(-0.221407\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.96117i 0.248496i
\(143\) 4.08043i 0.341223i
\(144\) 0 0
\(145\) −2.36337 12.2184i −0.196268 1.01469i
\(146\) −19.3789 −1.60381
\(147\) 0 0
\(148\) 1.04016i 0.0855008i
\(149\) 2.33734i 0.191483i 0.995406 + 0.0957413i \(0.0305222\pi\)
−0.995406 + 0.0957413i \(0.969478\pi\)
\(150\) 0 0
\(151\) 10.0303 0.816255 0.408127 0.912925i \(-0.366182\pi\)
0.408127 + 0.912925i \(0.366182\pi\)
\(152\) 12.2799i 0.996031i
\(153\) 0 0
\(154\) 0 0
\(155\) −3.71748 19.2191i −0.298595 1.54371i
\(156\) 0 0
\(157\) 20.7530 1.65627 0.828137 0.560526i \(-0.189401\pi\)
0.828137 + 0.560526i \(0.189401\pi\)
\(158\) −2.35389 −0.187266
\(159\) 0 0
\(160\) 3.22943 0.624657i 0.255308 0.0493835i
\(161\) 0 0
\(162\) 0 0
\(163\) 15.6200i 1.22345i 0.791069 + 0.611727i \(0.209525\pi\)
−0.791069 + 0.611727i \(0.790475\pi\)
\(164\) 0.490810 0.0383258
\(165\) 0 0
\(166\) 12.6842i 0.984486i
\(167\) 14.7858i 1.14416i 0.820198 + 0.572080i \(0.193863\pi\)
−0.820198 + 0.572080i \(0.806137\pi\)
\(168\) 0 0
\(169\) −10.1327 −0.779435
\(170\) 0.537719 + 2.77996i 0.0412412 + 0.213213i
\(171\) 0 0
\(172\) 2.68886i 0.205023i
\(173\) 6.86351i 0.521823i 0.965363 + 0.260912i \(0.0840231\pi\)
−0.965363 + 0.260912i \(0.915977\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 8.21197i 0.619000i
\(177\) 0 0
\(178\) −0.582340 −0.0436482
\(179\) 11.7079i 0.875087i −0.899197 0.437543i \(-0.855849\pi\)
0.899197 0.437543i \(-0.144151\pi\)
\(180\) 0 0
\(181\) 17.3498i 1.28960i 0.764351 + 0.644800i \(0.223059\pi\)
−0.764351 + 0.644800i \(0.776941\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −17.2102 −1.26875
\(185\) −1.68715 8.72242i −0.124042 0.641285i
\(186\) 0 0
\(187\) 2.31444 0.169249
\(188\) 2.64617i 0.192992i
\(189\) 0 0
\(190\) −2.30550 11.9193i −0.167259 0.864714i
\(191\) 18.8998i 1.36754i −0.729698 0.683770i \(-0.760339\pi\)
0.729698 0.683770i \(-0.239661\pi\)
\(192\) 0 0
\(193\) 23.3221i 1.67876i 0.543542 + 0.839382i \(0.317083\pi\)
−0.543542 + 0.839382i \(0.682917\pi\)
\(194\) 16.4703 1.18250
\(195\) 0 0
\(196\) 0 0
\(197\) 0.842929 0.0600562 0.0300281 0.999549i \(-0.490440\pi\)
0.0300281 + 0.999549i \(0.490440\pi\)
\(198\) 0 0
\(199\) 0.854422i 0.0605684i −0.999541 0.0302842i \(-0.990359\pi\)
0.999541 0.0302842i \(-0.00964123\pi\)
\(200\) −13.8344 + 5.55992i −0.978243 + 0.393146i
\(201\) 0 0
\(202\) −12.5108 −0.880255
\(203\) 0 0
\(204\) 0 0
\(205\) −4.11575 + 0.796096i −0.287456 + 0.0556018i
\(206\) 10.6562 0.742455
\(207\) 0 0
\(208\) 5.77060 0.400119
\(209\) −9.92331 −0.686410
\(210\) 0 0
\(211\) 16.1933 1.11479 0.557395 0.830247i \(-0.311801\pi\)
0.557395 + 0.830247i \(0.311801\pi\)
\(212\) −3.32714 −0.228509
\(213\) 0 0
\(214\) −7.15399 −0.489036
\(215\) 4.36134 + 22.5477i 0.297441 + 1.53774i
\(216\) 0 0
\(217\) 0 0
\(218\) 22.8930 1.55051
\(219\) 0 0
\(220\) 0.267895 + 1.38500i 0.0180615 + 0.0933764i
\(221\) 1.62637i 0.109402i
\(222\) 0 0
\(223\) −10.0027 −0.669832 −0.334916 0.942248i \(-0.608708\pi\)
−0.334916 + 0.942248i \(0.608708\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −7.81025 −0.519530
\(227\) 4.67827i 0.310508i −0.987875 0.155254i \(-0.950380\pi\)
0.987875 0.155254i \(-0.0496195\pi\)
\(228\) 0 0
\(229\) 14.2559i 0.942060i −0.882117 0.471030i \(-0.843882\pi\)
0.882117 0.471030i \(-0.156118\pi\)
\(230\) 16.7047 3.23114i 1.10148 0.213055i
\(231\) 0 0
\(232\) 16.5963i 1.08960i
\(233\) −22.3049 −1.46124 −0.730621 0.682783i \(-0.760769\pi\)
−0.730621 + 0.682783i \(0.760769\pi\)
\(234\) 0 0
\(235\) −4.29211 22.1898i −0.279986 1.44750i
\(236\) 1.77337 0.115437
\(237\) 0 0
\(238\) 0 0
\(239\) 6.39734i 0.413810i 0.978361 + 0.206905i \(0.0663391\pi\)
−0.978361 + 0.206905i \(0.933661\pi\)
\(240\) 0 0
\(241\) 7.16886i 0.461787i −0.972979 0.230893i \(-0.925835\pi\)
0.972979 0.230893i \(-0.0741649\pi\)
\(242\) 6.84683 0.440131
\(243\) 0 0
\(244\) 0.600026i 0.0384127i
\(245\) 0 0
\(246\) 0 0
\(247\) 6.97318i 0.443693i
\(248\) 26.1052i 1.65768i
\(249\) 0 0
\(250\) 12.3843 7.99400i 0.783251 0.505585i
\(251\) −16.3470 −1.03181 −0.515906 0.856645i \(-0.672545\pi\)
−0.515906 + 0.856645i \(0.672545\pi\)
\(252\) 0 0
\(253\) 13.9074i 0.874353i
\(254\) 6.60950i 0.414717i
\(255\) 0 0
\(256\) −6.17089 −0.385681
\(257\) 12.2379i 0.763381i 0.924290 + 0.381690i \(0.124658\pi\)
−0.924290 + 0.381690i \(0.875342\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.973245 0.188252i 0.0603581 0.0116749i
\(261\) 0 0
\(262\) −22.4852 −1.38914
\(263\) 9.42141 0.580949 0.290474 0.956883i \(-0.406187\pi\)
0.290474 + 0.956883i \(0.406187\pi\)
\(264\) 0 0
\(265\) 27.9001 5.39664i 1.71389 0.331513i
\(266\) 0 0
\(267\) 0 0
\(268\) 1.25598i 0.0767211i
\(269\) −7.63200 −0.465331 −0.232666 0.972557i \(-0.574745\pi\)
−0.232666 + 0.972557i \(0.574745\pi\)
\(270\) 0 0
\(271\) 5.44912i 0.331011i 0.986209 + 0.165505i \(0.0529255\pi\)
−0.986209 + 0.165505i \(0.947074\pi\)
\(272\) 3.27312i 0.198462i
\(273\) 0 0
\(274\) −13.0775 −0.790041
\(275\) −4.49294 11.1795i −0.270935 0.674151i
\(276\) 0 0
\(277\) 17.0562i 1.02481i 0.858745 + 0.512403i \(0.171245\pi\)
−0.858745 + 0.512403i \(0.828755\pi\)
\(278\) 19.9216i 1.19482i
\(279\) 0 0
\(280\) 0 0
\(281\) 25.3828i 1.51421i 0.653292 + 0.757106i \(0.273387\pi\)
−0.653292 + 0.757106i \(0.726613\pi\)
\(282\) 0 0
\(283\) −9.57998 −0.569471 −0.284735 0.958606i \(-0.591906\pi\)
−0.284735 + 0.958606i \(0.591906\pi\)
\(284\) 0.588014i 0.0348922i
\(285\) 0 0
\(286\) 5.37967i 0.318107i
\(287\) 0 0
\(288\) 0 0
\(289\) 16.0775 0.945736
\(290\) −3.11589 16.1089i −0.182971 0.945946i
\(291\) 0 0
\(292\) 3.84816 0.225197
\(293\) 1.44713i 0.0845421i −0.999106 0.0422710i \(-0.986541\pi\)
0.999106 0.0422710i \(-0.0134593\pi\)
\(294\) 0 0
\(295\) −14.8709 + 2.87642i −0.865815 + 0.167472i
\(296\) 11.8476i 0.688631i
\(297\) 0 0
\(298\) 3.08157i 0.178511i
\(299\) −9.77284 −0.565178
\(300\) 0 0
\(301\) 0 0
\(302\) 13.2240 0.760957
\(303\) 0 0
\(304\) 14.0337i 0.804887i
\(305\) −0.973245 5.03159i −0.0557279 0.288108i
\(306\) 0 0
\(307\) 7.69871 0.439388 0.219694 0.975569i \(-0.429494\pi\)
0.219694 + 0.975569i \(0.429494\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −4.90116 25.3386i −0.278367 1.43913i
\(311\) 33.1750 1.88118 0.940592 0.339539i \(-0.110271\pi\)
0.940592 + 0.339539i \(0.110271\pi\)
\(312\) 0 0
\(313\) 8.45647 0.477988 0.238994 0.971021i \(-0.423182\pi\)
0.238994 + 0.971021i \(0.423182\pi\)
\(314\) 27.3610 1.54407
\(315\) 0 0
\(316\) 0.467423 0.0262946
\(317\) −5.94166 −0.333717 −0.166859 0.985981i \(-0.553362\pi\)
−0.166859 + 0.985981i \(0.553362\pi\)
\(318\) 0 0
\(319\) −13.4114 −0.750892
\(320\) 19.2207 3.71781i 1.07447 0.207832i
\(321\) 0 0
\(322\) 0 0
\(323\) 3.95522 0.220074
\(324\) 0 0
\(325\) −7.85593 + 3.15722i −0.435768 + 0.175131i
\(326\) 20.5936i 1.14057i
\(327\) 0 0
\(328\) 5.59042 0.308679
\(329\) 0 0
\(330\) 0 0
\(331\) 26.5102 1.45713 0.728566 0.684975i \(-0.240187\pi\)
0.728566 + 0.684975i \(0.240187\pi\)
\(332\) 2.51876i 0.138235i
\(333\) 0 0
\(334\) 19.4937i 1.06665i
\(335\) −2.03720 10.5322i −0.111304 0.575434i
\(336\) 0 0
\(337\) 3.42106i 0.186357i 0.995649 + 0.0931784i \(0.0297027\pi\)
−0.995649 + 0.0931784i \(0.970297\pi\)
\(338\) −13.3590 −0.726632
\(339\) 0 0
\(340\) −0.106777 0.552030i −0.00579082 0.0299380i
\(341\) −21.0955 −1.14238
\(342\) 0 0
\(343\) 0 0
\(344\) 30.6266i 1.65127i
\(345\) 0 0
\(346\) 9.04891i 0.486472i
\(347\) −13.3989 −0.719292 −0.359646 0.933089i \(-0.617102\pi\)
−0.359646 + 0.933089i \(0.617102\pi\)
\(348\) 0 0
\(349\) 15.2584i 0.816762i 0.912812 + 0.408381i \(0.133906\pi\)
−0.912812 + 0.408381i \(0.866094\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.54472i 0.188934i
\(353\) 36.9218i 1.96515i 0.185874 + 0.982574i \(0.440488\pi\)
−0.185874 + 0.982574i \(0.559512\pi\)
\(354\) 0 0
\(355\) 0.953762 + 4.93087i 0.0506204 + 0.261703i
\(356\) 0.115638 0.00612880
\(357\) 0 0
\(358\) 15.4357i 0.815804i
\(359\) 8.90399i 0.469935i −0.972003 0.234967i \(-0.924502\pi\)
0.972003 0.234967i \(-0.0754983\pi\)
\(360\) 0 0
\(361\) 2.04174 0.107460
\(362\) 22.8741i 1.20224i
\(363\) 0 0
\(364\) 0 0
\(365\) −32.2693 + 6.24174i −1.68905 + 0.326708i
\(366\) 0 0
\(367\) 14.4538 0.754482 0.377241 0.926115i \(-0.376873\pi\)
0.377241 + 0.926115i \(0.376873\pi\)
\(368\) −19.6681 −1.02527
\(369\) 0 0
\(370\) −2.22435 11.4997i −0.115638 0.597841i
\(371\) 0 0
\(372\) 0 0
\(373\) 21.1214i 1.09362i 0.837255 + 0.546812i \(0.184159\pi\)
−0.837255 + 0.546812i \(0.815841\pi\)
\(374\) 3.05138 0.157783
\(375\) 0 0
\(376\) 30.1404i 1.55437i
\(377\) 9.42425i 0.485374i
\(378\) 0 0
\(379\) −0.0133979 −0.000688205 −0.000344103 1.00000i \(-0.500110\pi\)
−0.000344103 1.00000i \(0.500110\pi\)
\(380\) 0.457815 + 2.36686i 0.0234854 + 0.121417i
\(381\) 0 0
\(382\) 24.9176i 1.27489i
\(383\) 17.2225i 0.880028i −0.897991 0.440014i \(-0.854973\pi\)
0.897991 0.440014i \(-0.145027\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 30.7481i 1.56504i
\(387\) 0 0
\(388\) −3.27059 −0.166039
\(389\) 25.7587i 1.30602i 0.757351 + 0.653008i \(0.226493\pi\)
−0.757351 + 0.653008i \(0.773507\pi\)
\(390\) 0 0
\(391\) 5.54321i 0.280332i
\(392\) 0 0
\(393\) 0 0
\(394\) 1.11132 0.0559877
\(395\) −3.91964 + 0.758163i −0.197218 + 0.0381473i
\(396\) 0 0
\(397\) −15.2480 −0.765273 −0.382637 0.923899i \(-0.624984\pi\)
−0.382637 + 0.923899i \(0.624984\pi\)
\(398\) 1.12648i 0.0564652i
\(399\) 0 0
\(400\) −15.8102 + 6.35398i −0.790512 + 0.317699i
\(401\) 13.1221i 0.655285i 0.944802 + 0.327643i \(0.106254\pi\)
−0.944802 + 0.327643i \(0.893746\pi\)
\(402\) 0 0
\(403\) 14.8239i 0.738432i
\(404\) 2.48432 0.123600
\(405\) 0 0
\(406\) 0 0
\(407\) −9.57401 −0.474566
\(408\) 0 0
\(409\) 32.8734i 1.62549i 0.582622 + 0.812744i \(0.302027\pi\)
−0.582622 + 0.812744i \(0.697973\pi\)
\(410\) −5.42623 + 1.04958i −0.267983 + 0.0518350i
\(411\) 0 0
\(412\) −2.11606 −0.104251
\(413\) 0 0
\(414\) 0 0
\(415\) 4.08545 + 21.1214i 0.200547 + 1.03681i
\(416\) −2.49090 −0.122126
\(417\) 0 0
\(418\) −13.0830 −0.639909
\(419\) 9.33114 0.455856 0.227928 0.973678i \(-0.426805\pi\)
0.227928 + 0.973678i \(0.426805\pi\)
\(420\) 0 0
\(421\) −13.0720 −0.637093 −0.318546 0.947907i \(-0.603195\pi\)
−0.318546 + 0.947907i \(0.603195\pi\)
\(422\) 21.3493 1.03927
\(423\) 0 0
\(424\) −37.8967 −1.84043
\(425\) 1.79079 + 4.45592i 0.0868661 + 0.216144i
\(426\) 0 0
\(427\) 0 0
\(428\) 1.42060 0.0686673
\(429\) 0 0
\(430\) 5.75002 + 29.7271i 0.277291 + 1.43357i
\(431\) 5.98424i 0.288251i 0.989559 + 0.144125i \(0.0460369\pi\)
−0.989559 + 0.144125i \(0.953963\pi\)
\(432\) 0 0
\(433\) −19.4335 −0.933916 −0.466958 0.884280i \(-0.654650\pi\)
−0.466958 + 0.884280i \(0.654650\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4.54597 −0.217713
\(437\) 23.7668i 1.13692i
\(438\) 0 0
\(439\) 27.8485i 1.32914i −0.747228 0.664568i \(-0.768616\pi\)
0.747228 0.664568i \(-0.231384\pi\)
\(440\) 3.05138 + 15.7754i 0.145469 + 0.752061i
\(441\) 0 0
\(442\) 2.14422i 0.101990i
\(443\) 23.4307 1.11323 0.556614 0.830771i \(-0.312100\pi\)
0.556614 + 0.830771i \(0.312100\pi\)
\(444\) 0 0
\(445\) −0.969697 + 0.187565i −0.0459680 + 0.00889145i
\(446\) −13.1877 −0.624454
\(447\) 0 0
\(448\) 0 0
\(449\) 15.7868i 0.745025i 0.928027 + 0.372513i \(0.121504\pi\)
−0.928027 + 0.372513i \(0.878496\pi\)
\(450\) 0 0
\(451\) 4.51758i 0.212725i
\(452\) 1.55092 0.0729490
\(453\) 0 0
\(454\) 6.16786i 0.289472i
\(455\) 0 0
\(456\) 0 0
\(457\) 26.7149i 1.24967i −0.780756 0.624836i \(-0.785166\pi\)
0.780756 0.624836i \(-0.214834\pi\)
\(458\) 18.7951i 0.878240i
\(459\) 0 0
\(460\) −3.31714 + 0.641623i −0.154662 + 0.0299158i
\(461\) −33.1750 −1.54512 −0.772558 0.634944i \(-0.781023\pi\)
−0.772558 + 0.634944i \(0.781023\pi\)
\(462\) 0 0
\(463\) 9.01458i 0.418943i 0.977815 + 0.209472i \(0.0671744\pi\)
−0.977815 + 0.209472i \(0.932826\pi\)
\(464\) 18.9665i 0.880499i
\(465\) 0 0
\(466\) −29.4069 −1.36225
\(467\) 32.4692i 1.50250i −0.660020 0.751248i \(-0.729452\pi\)
0.660020 0.751248i \(-0.270548\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −5.65874 29.2552i −0.261018 1.34944i
\(471\) 0 0
\(472\) 20.1991 0.929737
\(473\) 24.7492 1.13797
\(474\) 0 0
\(475\) −7.67812 19.1050i −0.352297 0.876600i
\(476\) 0 0
\(477\) 0 0
\(478\) 8.43430i 0.385776i
\(479\) 4.16605 0.190352 0.0951759 0.995460i \(-0.469659\pi\)
0.0951759 + 0.995460i \(0.469659\pi\)
\(480\) 0 0
\(481\) 6.72772i 0.306758i
\(482\) 9.45148i 0.430503i
\(483\) 0 0
\(484\) −1.35961 −0.0618003
\(485\) 27.4259 5.30491i 1.24535 0.240883i
\(486\) 0 0
\(487\) 20.6333i 0.934983i −0.883998 0.467491i \(-0.845158\pi\)
0.883998 0.467491i \(-0.154842\pi\)
\(488\) 6.83441i 0.309379i
\(489\) 0 0
\(490\) 0 0
\(491\) 33.6376i 1.51805i 0.651064 + 0.759023i \(0.274323\pi\)
−0.651064 + 0.759023i \(0.725677\pi\)
\(492\) 0 0
\(493\) 5.34548 0.240748
\(494\) 9.19348i 0.413634i
\(495\) 0 0
\(496\) 29.8335i 1.33956i
\(497\) 0 0
\(498\) 0 0
\(499\) 26.8361 1.20135 0.600675 0.799493i \(-0.294899\pi\)
0.600675 + 0.799493i \(0.294899\pi\)
\(500\) −2.45921 + 1.58741i −0.109979 + 0.0709909i
\(501\) 0 0
\(502\) −21.5520 −0.961911
\(503\) 22.8321i 1.01803i 0.860757 + 0.509017i \(0.169991\pi\)
−0.860757 + 0.509017i \(0.830009\pi\)
\(504\) 0 0
\(505\) −20.8326 + 4.02959i −0.927039 + 0.179314i
\(506\) 18.3357i 0.815120i
\(507\) 0 0
\(508\) 1.31248i 0.0582319i
\(509\) 15.3556 0.680627 0.340313 0.940312i \(-0.389467\pi\)
0.340313 + 0.940312i \(0.389467\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −25.3373 −1.11976
\(513\) 0 0
\(514\) 16.1346i 0.711665i
\(515\) 17.7445 3.43226i 0.781915 0.151243i
\(516\) 0 0
\(517\) −24.3563 −1.07119
\(518\) 0 0
\(519\) 0 0
\(520\) 11.0854 2.14422i 0.486129 0.0940304i
\(521\) 18.6383 0.816558 0.408279 0.912857i \(-0.366129\pi\)
0.408279 + 0.912857i \(0.366129\pi\)
\(522\) 0 0
\(523\) −9.19603 −0.402114 −0.201057 0.979580i \(-0.564438\pi\)
−0.201057 + 0.979580i \(0.564438\pi\)
\(524\) 4.46498 0.195054
\(525\) 0 0
\(526\) 12.4213 0.541592
\(527\) 8.40821 0.366267
\(528\) 0 0
\(529\) 10.3090 0.448218
\(530\) 36.7838 7.11496i 1.59778 0.309054i
\(531\) 0 0
\(532\) 0 0
\(533\) 3.17453 0.137504
\(534\) 0 0
\(535\) −11.9126 + 2.30422i −0.515028 + 0.0996202i
\(536\) 14.3058i 0.617918i
\(537\) 0 0
\(538\) −10.0621 −0.433807
\(539\) 0 0
\(540\) 0 0
\(541\) −8.99207 −0.386599 −0.193300 0.981140i \(-0.561919\pi\)
−0.193300 + 0.981140i \(0.561919\pi\)
\(542\) 7.18416i 0.308586i
\(543\) 0 0
\(544\) 1.41285i 0.0605755i
\(545\) 38.1209 7.37359i 1.63292 0.315850i
\(546\) 0 0
\(547\) 12.8673i 0.550165i −0.961421 0.275082i \(-0.911295\pi\)
0.961421 0.275082i \(-0.0887051\pi\)
\(548\) 2.59686 0.110932
\(549\) 0 0
\(550\) −5.92353 14.7392i −0.252580 0.628481i
\(551\) −22.9191 −0.976386
\(552\) 0 0
\(553\) 0 0
\(554\) 22.4870i 0.955380i
\(555\) 0 0
\(556\) 3.95593i 0.167769i
\(557\) −6.82455 −0.289165 −0.144583 0.989493i \(-0.546184\pi\)
−0.144583 + 0.989493i \(0.546184\pi\)
\(558\) 0 0
\(559\) 17.3914i 0.735577i
\(560\) 0 0
\(561\) 0 0
\(562\) 33.4649i 1.41163i
\(563\) 8.68613i 0.366077i −0.983106 0.183038i \(-0.941407\pi\)
0.983106 0.183038i \(-0.0585933\pi\)
\(564\) 0 0
\(565\) −13.0054 + 2.51560i −0.547142 + 0.105832i
\(566\) −12.6303 −0.530892
\(567\) 0 0
\(568\) 6.69759i 0.281025i
\(569\) 32.9583i 1.38168i −0.723006 0.690842i \(-0.757240\pi\)
0.723006 0.690842i \(-0.242760\pi\)
\(570\) 0 0
\(571\) 8.76408 0.366765 0.183383 0.983042i \(-0.441295\pi\)
0.183383 + 0.983042i \(0.441295\pi\)
\(572\) 1.06827i 0.0446665i
\(573\) 0 0
\(574\) 0 0
\(575\) 26.7755 10.7608i 1.11662 0.448757i
\(576\) 0 0
\(577\) −35.5577 −1.48029 −0.740143 0.672449i \(-0.765242\pi\)
−0.740143 + 0.672449i \(0.765242\pi\)
\(578\) 21.1967 0.881667
\(579\) 0 0
\(580\) 0.618737 + 3.19881i 0.0256916 + 0.132824i
\(581\) 0 0
\(582\) 0 0
\(583\) 30.6241i 1.26832i
\(584\) 43.8313 1.81375
\(585\) 0 0
\(586\) 1.90790i 0.0788148i
\(587\) 31.4362i 1.29751i −0.760997 0.648755i \(-0.775290\pi\)
0.760997 0.648755i \(-0.224710\pi\)
\(588\) 0 0
\(589\) −36.0507 −1.48544
\(590\) −19.6058 + 3.79230i −0.807160 + 0.156126i
\(591\) 0 0
\(592\) 13.5397i 0.556478i
\(593\) 12.9889i 0.533391i −0.963781 0.266695i \(-0.914068\pi\)
0.963781 0.266695i \(-0.0859317\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.611922i 0.0250653i
\(597\) 0 0
\(598\) −12.8846 −0.526890
\(599\) 14.6761i 0.599648i 0.953995 + 0.299824i \(0.0969280\pi\)
−0.953995 + 0.299824i \(0.903072\pi\)
\(600\) 0 0
\(601\) 9.55020i 0.389561i 0.980847 + 0.194780i \(0.0623994\pi\)
−0.980847 + 0.194780i \(0.937601\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −2.62596 −0.106849
\(605\) 11.4012 2.20529i 0.463523 0.0896578i
\(606\) 0 0
\(607\) 27.2507 1.10607 0.553035 0.833158i \(-0.313469\pi\)
0.553035 + 0.833158i \(0.313469\pi\)
\(608\) 6.05769i 0.245672i
\(609\) 0 0
\(610\) −1.28313 6.63369i −0.0519526 0.268590i
\(611\) 17.1153i 0.692411i
\(612\) 0 0
\(613\) 48.4764i 1.95794i −0.203997 0.978971i \(-0.565393\pi\)
0.203997 0.978971i \(-0.434607\pi\)
\(614\) 10.1500 0.409622
\(615\) 0 0
\(616\) 0 0
\(617\) 8.42587 0.339213 0.169606 0.985512i \(-0.445750\pi\)
0.169606 + 0.985512i \(0.445750\pi\)
\(618\) 0 0
\(619\) 17.3082i 0.695675i −0.937555 0.347837i \(-0.886916\pi\)
0.937555 0.347837i \(-0.113084\pi\)
\(620\) 0.973245 + 5.03159i 0.0390865 + 0.202074i
\(621\) 0 0
\(622\) 43.7382 1.75374
\(623\) 0 0
\(624\) 0 0
\(625\) 18.0472 17.3002i 0.721888 0.692010i
\(626\) 11.1491 0.445606
\(627\) 0 0
\(628\) −5.43319 −0.216808
\(629\) 3.81600 0.152154
\(630\) 0 0
\(631\) 16.3945 0.652653 0.326327 0.945257i \(-0.394189\pi\)
0.326327 + 0.945257i \(0.394189\pi\)
\(632\) 5.32404 0.211779
\(633\) 0 0
\(634\) −7.83353 −0.311109
\(635\) −2.12885 11.0060i −0.0844808 0.436758i
\(636\) 0 0
\(637\) 0 0
\(638\) −17.6816 −0.700023
\(639\) 0 0
\(640\) 18.8819 3.65227i 0.746373 0.144369i
\(641\) 14.9979i 0.592380i 0.955129 + 0.296190i \(0.0957161\pi\)
−0.955129 + 0.296190i \(0.904284\pi\)
\(642\) 0 0
\(643\) 26.5806 1.04824 0.524119 0.851645i \(-0.324395\pi\)
0.524119 + 0.851645i \(0.324395\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 5.21459 0.205165
\(647\) 23.0964i 0.908015i 0.890998 + 0.454007i \(0.150006\pi\)
−0.890998 + 0.454007i \(0.849994\pi\)
\(648\) 0 0
\(649\) 16.3227i 0.640724i
\(650\) −10.3573 + 4.16250i −0.406247 + 0.163267i
\(651\) 0 0
\(652\) 4.08936i 0.160152i
\(653\) 21.1568 0.827928 0.413964 0.910293i \(-0.364144\pi\)
0.413964 + 0.910293i \(0.364144\pi\)
\(654\) 0 0
\(655\) −37.4417 + 7.24222i −1.46297 + 0.282977i
\(656\) 6.38883 0.249442
\(657\) 0 0
\(658\) 0 0
\(659\) 34.2144i 1.33281i −0.745592 0.666403i \(-0.767833\pi\)
0.745592 0.666403i \(-0.232167\pi\)
\(660\) 0 0
\(661\) 0.217449i 0.00845780i 0.999991 + 0.00422890i \(0.00134610\pi\)
−0.999991 + 0.00422890i \(0.998654\pi\)
\(662\) 34.9512 1.35842
\(663\) 0 0
\(664\) 28.6892i 1.11336i
\(665\) 0 0
\(666\) 0 0
\(667\) 32.1209i 1.24373i
\(668\) 3.87095i 0.149772i
\(669\) 0 0
\(670\) −2.68586 13.8857i −0.103764 0.536451i
\(671\) −5.52284 −0.213207
\(672\) 0 0
\(673\) 29.8280i 1.14979i 0.818229 + 0.574893i \(0.194956\pi\)
−0.818229 + 0.574893i \(0.805044\pi\)
\(674\) 4.51034i 0.173732i
\(675\) 0 0
\(676\) 2.65275 0.102029
\(677\) 42.1158i 1.61864i −0.587367 0.809321i \(-0.699835\pi\)
0.587367 0.809321i \(-0.300165\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.21621 6.28772i −0.0466397 0.241123i
\(681\) 0 0
\(682\) −27.8124 −1.06499
\(683\) −23.3181 −0.892242 −0.446121 0.894973i \(-0.647195\pi\)
−0.446121 + 0.894973i \(0.647195\pi\)
\(684\) 0 0
\(685\) −21.7763 + 4.21212i −0.832030 + 0.160937i
\(686\) 0 0
\(687\) 0 0
\(688\) 35.0006i 1.33438i
\(689\) −21.5198 −0.819838
\(690\) 0 0
\(691\) 5.38432i 0.204829i −0.994742 0.102415i \(-0.967343\pi\)
0.994742 0.102415i \(-0.0326568\pi\)
\(692\) 1.79688i 0.0683073i
\(693\) 0 0
\(694\) −17.6652 −0.670563
\(695\) −6.41654 33.1729i −0.243393 1.25832i
\(696\) 0 0
\(697\) 1.80061i 0.0682031i
\(698\) 20.1167i 0.761430i
\(699\) 0 0
\(700\) 0 0
\(701\) 21.9593i 0.829391i 0.909960 + 0.414696i \(0.136112\pi\)
−0.909960 + 0.414696i \(0.863888\pi\)
\(702\) 0 0
\(703\) −16.3613 −0.617079
\(704\) 21.0973i 0.795135i
\(705\) 0 0
\(706\) 48.6779i 1.83202i
\(707\) 0 0
\(708\) 0 0
\(709\) −27.3011 −1.02531 −0.512657 0.858594i \(-0.671339\pi\)
−0.512657 + 0.858594i \(0.671339\pi\)
\(710\) 1.25745 + 6.50089i 0.0471911 + 0.243974i
\(711\) 0 0
\(712\) 1.31714 0.0493618
\(713\) 50.5248i 1.89217i
\(714\) 0 0
\(715\) 1.73273 + 8.95808i 0.0648006 + 0.335013i
\(716\) 3.06514i 0.114550i
\(717\) 0 0
\(718\) 11.7391i 0.438099i
\(719\) 32.6003 1.21579 0.607893 0.794019i \(-0.292015\pi\)
0.607893 + 0.794019i \(0.292015\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 2.69185 0.100180
\(723\) 0 0
\(724\) 4.54221i 0.168810i
\(725\) −10.3770 25.8205i −0.385392 0.958948i
\(726\) 0 0
\(727\) 4.18319 0.155146 0.0775729 0.996987i \(-0.475283\pi\)
0.0775729 + 0.996987i \(0.475283\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −42.5440 + 8.22915i −1.57462 + 0.304575i
\(731\) −9.86449 −0.364851
\(732\) 0 0
\(733\) −0.649470 −0.0239887 −0.0119944 0.999928i \(-0.503818\pi\)
−0.0119944 + 0.999928i \(0.503818\pi\)
\(734\) 19.0560 0.703370
\(735\) 0 0
\(736\) 8.48979 0.312938
\(737\) −11.5605 −0.425835
\(738\) 0 0
\(739\) 23.0720 0.848719 0.424360 0.905494i \(-0.360499\pi\)
0.424360 + 0.905494i \(0.360499\pi\)
\(740\) 0.441699 + 2.28355i 0.0162372 + 0.0839449i
\(741\) 0 0
\(742\) 0 0
\(743\) −18.5599 −0.680897 −0.340448 0.940263i \(-0.610579\pi\)
−0.340448 + 0.940263i \(0.610579\pi\)
\(744\) 0 0
\(745\) 0.992541 + 5.13135i 0.0363639 + 0.187998i
\(746\) 27.8466i 1.01954i
\(747\) 0 0
\(748\) −0.605926 −0.0221549
\(749\) 0 0
\(750\) 0 0
\(751\) 22.1764 0.809227 0.404613 0.914488i \(-0.367406\pi\)
0.404613 + 0.914488i \(0.367406\pi\)
\(752\) 34.4450i 1.25608i
\(753\) 0 0
\(754\) 12.4250i 0.452492i
\(755\) 22.0203 4.25931i 0.801400 0.155012i
\(756\) 0 0
\(757\) 22.4056i 0.814347i −0.913351 0.407173i \(-0.866515\pi\)
0.913351 0.407173i \(-0.133485\pi\)
\(758\) −0.0176639 −0.000641582
\(759\) 0 0
\(760\) 5.21459 + 26.9590i 0.189153 + 0.977906i
\(761\) 14.0305 0.508607 0.254303 0.967125i \(-0.418154\pi\)
0.254303 + 0.967125i \(0.418154\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 4.94800i 0.179012i
\(765\) 0 0
\(766\) 22.7063i 0.820410i
\(767\) 11.4701 0.414161
\(768\) 0 0
\(769\) 40.4788i 1.45970i 0.683606 + 0.729851i \(0.260411\pi\)
−0.683606 + 0.729851i \(0.739589\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 6.10579i 0.219752i
\(773\) 31.3121i 1.12622i −0.826382 0.563110i \(-0.809605\pi\)
0.826382 0.563110i \(-0.190395\pi\)
\(774\) 0 0
\(775\) −16.3225 40.6145i −0.586323 1.45891i
\(776\) −37.2526 −1.33729
\(777\) 0 0
\(778\) 33.9604i 1.21754i
\(779\) 7.72024i 0.276606i
\(780\) 0 0
\(781\) 5.41228 0.193667
\(782\) 7.30821i 0.261341i
\(783\) 0 0
\(784\) 0 0
\(785\) 45.5607 8.81267i 1.62613 0.314538i
\(786\) 0 0
\(787\) 24.3563 0.868208 0.434104 0.900863i \(-0.357065\pi\)
0.434104 + 0.900863i \(0.357065\pi\)
\(788\) −0.220681 −0.00786142
\(789\) 0 0
\(790\) −5.16768 + 0.999568i −0.183858 + 0.0355630i
\(791\) 0 0
\(792\) 0 0
\(793\) 3.88094i 0.137816i
\(794\) −20.1030 −0.713429
\(795\) 0 0
\(796\) 0.223690i 0.00792847i
\(797\) 42.7862i 1.51557i 0.652507 + 0.757783i \(0.273717\pi\)
−0.652507 + 0.757783i \(0.726283\pi\)
\(798\) 0 0
\(799\) 9.70789 0.343441
\(800\) 6.82455 2.74272i 0.241284 0.0969697i
\(801\) 0 0
\(802\) 17.3002i 0.610893i
\(803\) 35.4198i 1.24994i
\(804\) 0 0
\(805\) 0 0
\(806\) 19.5440i 0.688407i
\(807\) 0 0
\(808\) 28.2969 0.995482
\(809\) 38.1157i 1.34008i −0.742326 0.670038i \(-0.766278\pi\)
0.742326 0.670038i \(-0.233722\pi\)
\(810\) 0 0
\(811\) 43.0019i 1.51000i −0.655725 0.755000i \(-0.727637\pi\)
0.655725 0.755000i \(-0.272363\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −12.6224 −0.442417
\(815\) 6.63296 + 34.2918i 0.232342 + 1.20119i
\(816\) 0 0
\(817\) 42.2946 1.47970
\(818\) 43.3406i 1.51537i
\(819\) 0 0
\(820\) 1.07751 0.208420i 0.0376284 0.00727833i
\(821\) 7.79326i 0.271987i −0.990710 0.135993i \(-0.956577\pi\)
0.990710 0.135993i \(-0.0434226\pi\)
\(822\) 0 0
\(823\) 23.0457i 0.803322i 0.915788 + 0.401661i \(0.131567\pi\)
−0.915788 + 0.401661i \(0.868433\pi\)
\(824\) −24.1023 −0.839644
\(825\) 0 0
\(826\) 0 0
\(827\) −0.555383 −0.0193126 −0.00965628 0.999953i \(-0.503074\pi\)
−0.00965628 + 0.999953i \(0.503074\pi\)
\(828\) 0 0
\(829\) 24.1007i 0.837052i 0.908205 + 0.418526i \(0.137453\pi\)
−0.908205 + 0.418526i \(0.862547\pi\)
\(830\) 5.38628 + 27.8466i 0.186961 + 0.966570i
\(831\) 0 0
\(832\) −14.8252 −0.513972
\(833\) 0 0
\(834\) 0 0
\(835\) 6.27871 + 32.4604i 0.217284 + 1.12334i
\(836\) 2.59795 0.0898518
\(837\) 0 0
\(838\) 12.3022 0.424974
\(839\) −45.5904 −1.57395 −0.786977 0.616982i \(-0.788355\pi\)
−0.786977 + 0.616982i \(0.788355\pi\)
\(840\) 0 0
\(841\) −1.97516 −0.0681090
\(842\) −17.2343 −0.593933
\(843\) 0 0
\(844\) −4.23943 −0.145927
\(845\) −22.2450 + 4.30278i −0.765251 + 0.148020i
\(846\) 0 0
\(847\) 0 0
\(848\) −43.3090 −1.48724
\(849\) 0 0
\(850\) 2.36099 + 5.87472i 0.0809813 + 0.201501i
\(851\) 22.9302i 0.786039i
\(852\) 0 0
\(853\) −0.440934 −0.0150973 −0.00754864 0.999972i \(-0.502403\pi\)
−0.00754864 + 0.999972i \(0.502403\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 16.1809 0.553052
\(857\) 8.35261i 0.285320i −0.989772 0.142660i \(-0.954434\pi\)
0.989772 0.142660i \(-0.0455655\pi\)
\(858\) 0 0
\(859\) 2.42151i 0.0826209i −0.999146 0.0413104i \(-0.986847\pi\)
0.999146 0.0413104i \(-0.0131533\pi\)
\(860\) −1.14181 5.90305i −0.0389353 0.201292i
\(861\) 0 0
\(862\) 7.88967i 0.268723i
\(863\) 15.2655 0.519644 0.259822 0.965657i \(-0.416336\pi\)
0.259822 + 0.965657i \(0.416336\pi\)
\(864\) 0 0
\(865\) 2.91455 + 15.0680i 0.0990978 + 0.512327i
\(866\) −25.6213 −0.870647
\(867\) 0 0
\(868\) 0 0
\(869\) 4.30233i 0.145946i
\(870\) 0 0
\(871\) 8.12361i 0.275258i
\(872\) −51.7795 −1.75348
\(873\) 0 0
\(874\) 31.3344i 1.05990i
\(875\) 0 0
\(876\) 0 0
\(877\) 34.6255i 1.16922i 0.811315 + 0.584609i \(0.198752\pi\)
−0.811315 + 0.584609i \(0.801248\pi\)
\(878\) 36.7157i 1.23909i
\(879\) 0 0
\(880\) 3.48717 + 18.0284i 0.117552 + 0.607736i
\(881\) 18.2805 0.615887 0.307943 0.951405i \(-0.400359\pi\)
0.307943 + 0.951405i \(0.400359\pi\)
\(882\) 0 0
\(883\) 15.7048i 0.528508i −0.964453 0.264254i \(-0.914874\pi\)
0.964453 0.264254i \(-0.0851257\pi\)
\(884\) 0.425788i 0.0143208i
\(885\) 0 0
\(886\) 30.8913 1.03781
\(887\) 31.6876i 1.06397i 0.846755 + 0.531983i \(0.178553\pi\)
−0.846755 + 0.531983i \(0.821447\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −1.27845 + 0.247287i −0.0428539 + 0.00828909i
\(891\) 0 0
\(892\) 2.61873 0.0876817
\(893\) −41.6232 −1.39287
\(894\) 0 0
\(895\) −4.97168 25.7032i −0.166185 0.859162i
\(896\) 0 0
\(897\) 0 0
\(898\) 20.8134i 0.694554i
\(899\) −48.7226 −1.62499
\(900\) 0 0
\(901\) 12.2061i 0.406645i
\(902\) 5.95601i 0.198314i
\(903\) 0 0
\(904\) 17.6652 0.587537
\(905\) 7.36749 + 38.0893i 0.244904 + 1.26613i
\(906\) 0 0
\(907\) 3.21264i 0.106674i 0.998577 + 0.0533369i \(0.0169857\pi\)
−0.998577 + 0.0533369i \(0.983014\pi\)
\(908\) 1.22478i 0.0406458i
\(909\) 0 0
\(910\) 0 0
\(911\) 43.0454i 1.42616i −0.701084 0.713079i \(-0.747300\pi\)
0.701084 0.713079i \(-0.252700\pi\)
\(912\) 0 0
\(913\) 23.1836 0.767264
\(914\) 35.2212i 1.16501i
\(915\) 0 0
\(916\) 3.73224i 0.123317i
\(917\) 0 0
\(918\) 0 0
\(919\) 35.8575 1.18283 0.591414 0.806368i \(-0.298570\pi\)
0.591414 + 0.806368i \(0.298570\pi\)
\(920\) −37.7828 + 7.30821i −1.24566 + 0.240944i
\(921\) 0 0
\(922\) −43.7382 −1.44044
\(923\) 3.80324i 0.125185i
\(924\) 0 0
\(925\) −7.40786 18.4325i −0.243569 0.606058i
\(926\) 11.8849i 0.390562i
\(927\) 0 0
\(928\) 8.18697i 0.268750i
\(929\) −6.89137 −0.226098 −0.113049 0.993589i \(-0.536062\pi\)
−0.113049 + 0.993589i \(0.536062\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 5.83947 0.191278
\(933\) 0 0
\(934\) 42.8076i 1.40071i
\(935\) 5.08107 0.982816i 0.166169 0.0321415i
\(936\) 0 0
\(937\) −13.8533 −0.452566 −0.226283 0.974062i \(-0.572657\pi\)
−0.226283 + 0.974062i \(0.572657\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1.12368 + 5.80934i 0.0366505 + 0.189480i
\(941\) 30.4006 0.991032 0.495516 0.868599i \(-0.334979\pi\)
0.495516 + 0.868599i \(0.334979\pi\)
\(942\) 0 0
\(943\) −10.8198 −0.352342
\(944\) 23.0838 0.751315
\(945\) 0 0
\(946\) 32.6295 1.06088
\(947\) −26.7755 −0.870088 −0.435044 0.900409i \(-0.643267\pi\)
−0.435044 + 0.900409i \(0.643267\pi\)
\(948\) 0 0
\(949\) 24.8897 0.807954
\(950\) −10.1229 25.1882i −0.328430 0.817214i
\(951\) 0 0
\(952\) 0 0
\(953\) 23.9462 0.775693 0.387846 0.921724i \(-0.373219\pi\)
0.387846 + 0.921724i \(0.373219\pi\)
\(954\) 0 0
\(955\) −8.02568 41.4921i −0.259705 1.34265i
\(956\) 1.67484i 0.0541682i
\(957\) 0 0
\(958\) 5.49255 0.177456
\(959\) 0 0
\(960\) 0 0
\(961\) −45.6384 −1.47221
\(962\) 8.86987i 0.285976i
\(963\) 0 0
\(964\) 1.87682i 0.0604484i
\(965\) 9.90362 + 51.2008i 0.318809 + 1.64821i
\(966\) 0 0
\(967\) 12.8640i 0.413678i −0.978375 0.206839i \(-0.933682\pi\)
0.978375 0.206839i \(-0.0663177\pi\)
\(968\) −15.4862 −0.497745
\(969\) 0 0
\(970\) 36.1585 6.99403i 1.16098 0.224565i
\(971\) −34.9755 −1.12242 −0.561209 0.827674i \(-0.689664\pi\)
−0.561209 + 0.827674i \(0.689664\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 27.2031i 0.871642i
\(975\) 0 0
\(976\) 7.81048i 0.250007i
\(977\) 8.83328 0.282602 0.141301 0.989967i \(-0.454872\pi\)
0.141301 + 0.989967i \(0.454872\pi\)
\(978\) 0 0
\(979\) 1.06437i 0.0340174i
\(980\) 0 0
\(981\) 0 0
\(982\) 44.3481i 1.41521i
\(983\) 51.3192i 1.63683i −0.574629 0.818414i \(-0.694854\pi\)
0.574629 0.818414i \(-0.305146\pi\)
\(984\) 0 0
\(985\) 1.85055 0.357945i 0.0589633 0.0114051i
\(986\) 7.04753 0.224439
\(987\) 0 0
\(988\) 1.82559i 0.0580798i
\(989\) 59.2755i 1.88485i
\(990\) 0 0
\(991\) −18.0854 −0.574503 −0.287252 0.957855i \(-0.592742\pi\)
−0.287252 + 0.957855i \(0.592742\pi\)
\(992\) 12.8777i 0.408869i
\(993\) 0 0
\(994\) 0 0
\(995\) −0.362826 1.87578i −0.0115024 0.0594662i
\(996\) 0 0
\(997\) 33.2250 1.05225 0.526124 0.850408i \(-0.323645\pi\)
0.526124 + 0.850408i \(0.323645\pi\)
\(998\) 35.3809 1.11996
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.2.g.b.2204.16 24
3.2 odd 2 inner 2205.2.g.b.2204.10 24
5.4 even 2 inner 2205.2.g.b.2204.12 24
7.4 even 3 315.2.bb.b.89.5 24
7.5 odd 6 315.2.bb.b.269.6 yes 24
7.6 odd 2 inner 2205.2.g.b.2204.15 24
15.14 odd 2 inner 2205.2.g.b.2204.14 24
21.5 even 6 315.2.bb.b.269.7 yes 24
21.11 odd 6 315.2.bb.b.89.8 yes 24
21.20 even 2 inner 2205.2.g.b.2204.9 24
35.4 even 6 315.2.bb.b.89.7 yes 24
35.12 even 12 1575.2.bk.i.1151.7 24
35.18 odd 12 1575.2.bk.i.26.8 24
35.19 odd 6 315.2.bb.b.269.8 yes 24
35.32 odd 12 1575.2.bk.i.26.6 24
35.33 even 12 1575.2.bk.i.1151.5 24
35.34 odd 2 inner 2205.2.g.b.2204.11 24
105.32 even 12 1575.2.bk.i.26.7 24
105.47 odd 12 1575.2.bk.i.1151.6 24
105.53 even 12 1575.2.bk.i.26.5 24
105.68 odd 12 1575.2.bk.i.1151.8 24
105.74 odd 6 315.2.bb.b.89.6 yes 24
105.89 even 6 315.2.bb.b.269.5 yes 24
105.104 even 2 inner 2205.2.g.b.2204.13 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.bb.b.89.5 24 7.4 even 3
315.2.bb.b.89.6 yes 24 105.74 odd 6
315.2.bb.b.89.7 yes 24 35.4 even 6
315.2.bb.b.89.8 yes 24 21.11 odd 6
315.2.bb.b.269.5 yes 24 105.89 even 6
315.2.bb.b.269.6 yes 24 7.5 odd 6
315.2.bb.b.269.7 yes 24 21.5 even 6
315.2.bb.b.269.8 yes 24 35.19 odd 6
1575.2.bk.i.26.5 24 105.53 even 12
1575.2.bk.i.26.6 24 35.32 odd 12
1575.2.bk.i.26.7 24 105.32 even 12
1575.2.bk.i.26.8 24 35.18 odd 12
1575.2.bk.i.1151.5 24 35.33 even 12
1575.2.bk.i.1151.6 24 105.47 odd 12
1575.2.bk.i.1151.7 24 35.12 even 12
1575.2.bk.i.1151.8 24 105.68 odd 12
2205.2.g.b.2204.9 24 21.20 even 2 inner
2205.2.g.b.2204.10 24 3.2 odd 2 inner
2205.2.g.b.2204.11 24 35.34 odd 2 inner
2205.2.g.b.2204.12 24 5.4 even 2 inner
2205.2.g.b.2204.13 24 105.104 even 2 inner
2205.2.g.b.2204.14 24 15.14 odd 2 inner
2205.2.g.b.2204.15 24 7.6 odd 2 inner
2205.2.g.b.2204.16 24 1.1 even 1 trivial