Properties

Label 1575.2.bk.i.26.7
Level $1575$
Weight $2$
Character 1575.26
Analytic conductor $12.576$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,2,Mod(26,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1575.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5764383184\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.7
Character \(\chi\) \(=\) 1575.26
Dual form 1575.2.bk.i.1151.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14177 + 0.659204i) q^{2} +(-0.130901 - 0.226727i) q^{4} +(1.57437 - 2.12635i) q^{7} -2.98198i q^{8} +(2.08688 - 1.20486i) q^{11} +1.69332i q^{13} +(3.19927 - 1.38998i) q^{14} +(1.70393 - 2.95129i) q^{16} +(-0.480231 - 0.831785i) q^{17} +(-3.56633 - 2.05902i) q^{19} +3.17699 q^{22} +(-4.99818 - 2.88570i) q^{23} +(-1.11625 + 1.93339i) q^{26} +(-0.688188 - 0.0786111i) q^{28} -5.56553i q^{29} +(-7.58148 + 4.37717i) q^{31} +(-1.27393 + 0.735506i) q^{32} -1.26628i q^{34} +(-1.98654 + 3.44079i) q^{37} +(-2.71463 - 4.70187i) q^{38} +1.87474 q^{41} +10.2706 q^{43} +(-0.546349 - 0.315435i) q^{44} +(-3.80453 - 6.58963i) q^{46} +(5.05376 - 8.75337i) q^{47} +(-2.04272 - 6.69532i) q^{49} +(0.383923 - 0.221658i) q^{52} +(11.0060 - 6.35430i) q^{53} +(-6.34072 - 4.69473i) q^{56} +(3.66882 - 6.35458i) q^{58} +(3.38686 + 5.86621i) q^{59} +(1.98485 + 1.14595i) q^{61} -11.5418 q^{62} -8.75510 q^{64} +(-2.39872 - 4.15470i) q^{67} +(-0.125726 + 0.217763i) q^{68} -2.24602i q^{71} +(12.7295 - 7.34937i) q^{73} +(-4.53637 + 2.61907i) q^{74} +1.07811i q^{76} +(0.723564 - 6.33432i) q^{77} +(-0.892703 + 1.54621i) q^{79} +(2.14052 + 1.23583i) q^{82} -9.62086 q^{83} +(11.7267 + 6.77039i) q^{86} +(-3.59286 - 6.22302i) q^{88} +(0.220850 - 0.382523i) q^{89} +(3.60060 + 2.66592i) q^{91} +1.51096i q^{92} +(11.5405 - 6.66292i) q^{94} +12.4926i q^{97} +(2.08125 - 8.99111i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 36 q^{19} - 60 q^{31} - 24 q^{46} - 36 q^{49} + 48 q^{61} - 48 q^{64} + 60 q^{79} + 60 q^{91} - 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(1226\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14177 + 0.659204i 0.807356 + 0.466127i 0.846037 0.533124i \(-0.178982\pi\)
−0.0386807 + 0.999252i \(0.512316\pi\)
\(3\) 0 0
\(4\) −0.130901 0.226727i −0.0654506 0.113364i
\(5\) 0 0
\(6\) 0 0
\(7\) 1.57437 2.12635i 0.595056 0.803685i
\(8\) 2.98198i 1.05429i
\(9\) 0 0
\(10\) 0 0
\(11\) 2.08688 1.20486i 0.629217 0.363279i −0.151232 0.988498i \(-0.548324\pi\)
0.780449 + 0.625220i \(0.214991\pi\)
\(12\) 0 0
\(13\) 1.69332i 0.469643i 0.972038 + 0.234822i \(0.0754506\pi\)
−0.972038 + 0.234822i \(0.924549\pi\)
\(14\) 3.19927 1.38998i 0.855041 0.371488i
\(15\) 0 0
\(16\) 1.70393 2.95129i 0.425982 0.737822i
\(17\) −0.480231 0.831785i −0.116473 0.201737i 0.801895 0.597466i \(-0.203826\pi\)
−0.918368 + 0.395728i \(0.870492\pi\)
\(18\) 0 0
\(19\) −3.56633 2.05902i −0.818172 0.472372i 0.0316139 0.999500i \(-0.489935\pi\)
−0.849786 + 0.527129i \(0.823269\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 3.17699 0.677336
\(23\) −4.99818 2.88570i −1.04219 0.601710i −0.121738 0.992562i \(-0.538847\pi\)
−0.920453 + 0.390853i \(0.872180\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.11625 + 1.93339i −0.218914 + 0.379170i
\(27\) 0 0
\(28\) −0.688188 0.0786111i −0.130055 0.0148561i
\(29\) 5.56553i 1.03349i −0.856138 0.516747i \(-0.827143\pi\)
0.856138 0.516747i \(-0.172857\pi\)
\(30\) 0 0
\(31\) −7.58148 + 4.37717i −1.36167 + 0.786163i −0.989847 0.142139i \(-0.954602\pi\)
−0.371827 + 0.928302i \(0.621269\pi\)
\(32\) −1.27393 + 0.735506i −0.225202 + 0.130020i
\(33\) 0 0
\(34\) 1.26628i 0.217165i
\(35\) 0 0
\(36\) 0 0
\(37\) −1.98654 + 3.44079i −0.326586 + 0.565663i −0.981832 0.189752i \(-0.939231\pi\)
0.655246 + 0.755415i \(0.272565\pi\)
\(38\) −2.71463 4.70187i −0.440371 0.762744i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.87474 0.292784 0.146392 0.989227i \(-0.453234\pi\)
0.146392 + 0.989227i \(0.453234\pi\)
\(42\) 0 0
\(43\) 10.2706 1.56625 0.783123 0.621867i \(-0.213625\pi\)
0.783123 + 0.621867i \(0.213625\pi\)
\(44\) −0.546349 0.315435i −0.0823652 0.0475536i
\(45\) 0 0
\(46\) −3.80453 6.58963i −0.560947 0.971588i
\(47\) 5.05376 8.75337i 0.737167 1.27681i −0.216599 0.976261i \(-0.569496\pi\)
0.953766 0.300550i \(-0.0971702\pi\)
\(48\) 0 0
\(49\) −2.04272 6.69532i −0.291818 0.956474i
\(50\) 0 0
\(51\) 0 0
\(52\) 0.383923 0.221658i 0.0532405 0.0307384i
\(53\) 11.0060 6.35430i 1.51179 0.872830i 0.511880 0.859057i \(-0.328949\pi\)
0.999905 0.0137732i \(-0.00438427\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −6.34072 4.69473i −0.847315 0.627360i
\(57\) 0 0
\(58\) 3.66882 6.35458i 0.481740 0.834398i
\(59\) 3.38686 + 5.86621i 0.440931 + 0.763715i 0.997759 0.0669127i \(-0.0213149\pi\)
−0.556828 + 0.830628i \(0.687982\pi\)
\(60\) 0 0
\(61\) 1.98485 + 1.14595i 0.254134 + 0.146724i 0.621656 0.783291i \(-0.286460\pi\)
−0.367522 + 0.930015i \(0.619794\pi\)
\(62\) −11.5418 −1.46581
\(63\) 0 0
\(64\) −8.75510 −1.09439
\(65\) 0 0
\(66\) 0 0
\(67\) −2.39872 4.15470i −0.293050 0.507577i 0.681480 0.731837i \(-0.261337\pi\)
−0.974529 + 0.224260i \(0.928004\pi\)
\(68\) −0.125726 + 0.217763i −0.0152465 + 0.0264077i
\(69\) 0 0
\(70\) 0 0
\(71\) 2.24602i 0.266554i −0.991079 0.133277i \(-0.957450\pi\)
0.991079 0.133277i \(-0.0425500\pi\)
\(72\) 0 0
\(73\) 12.7295 7.34937i 1.48987 0.860178i 0.489940 0.871756i \(-0.337019\pi\)
0.999933 + 0.0115780i \(0.00368547\pi\)
\(74\) −4.53637 + 2.61907i −0.527342 + 0.304461i
\(75\) 0 0
\(76\) 1.07811i 0.123668i
\(77\) 0.723564 6.33432i 0.0824577 0.721863i
\(78\) 0 0
\(79\) −0.892703 + 1.54621i −0.100437 + 0.173962i −0.911865 0.410491i \(-0.865357\pi\)
0.811428 + 0.584453i \(0.198691\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 2.14052 + 1.23583i 0.236381 + 0.136475i
\(83\) −9.62086 −1.05603 −0.528013 0.849236i \(-0.677063\pi\)
−0.528013 + 0.849236i \(0.677063\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 11.7267 + 6.77039i 1.26452 + 0.730070i
\(87\) 0 0
\(88\) −3.59286 6.22302i −0.383000 0.663376i
\(89\) 0.220850 0.382523i 0.0234100 0.0405474i −0.854083 0.520137i \(-0.825881\pi\)
0.877493 + 0.479589i \(0.159214\pi\)
\(90\) 0 0
\(91\) 3.60060 + 2.66592i 0.377445 + 0.279464i
\(92\) 1.51096i 0.157529i
\(93\) 0 0
\(94\) 11.5405 6.66292i 1.19031 0.687227i
\(95\) 0 0
\(96\) 0 0
\(97\) 12.4926i 1.26843i 0.773157 + 0.634215i \(0.218677\pi\)
−0.773157 + 0.634215i \(0.781323\pi\)
\(98\) 2.08125 8.99111i 0.210238 0.908239i
\(99\) 0 0
\(100\) 0 0
\(101\) −4.74466 8.21799i −0.472111 0.817720i 0.527380 0.849630i \(-0.323175\pi\)
−0.999491 + 0.0319094i \(0.989841\pi\)
\(102\) 0 0
\(103\) 6.99979 + 4.04133i 0.689710 + 0.398204i 0.803503 0.595300i \(-0.202967\pi\)
−0.113793 + 0.993504i \(0.536300\pi\)
\(104\) 5.04945 0.495139
\(105\) 0 0
\(106\) 16.7551 1.62740
\(107\) −4.69926 2.71312i −0.454294 0.262287i 0.255348 0.966849i \(-0.417810\pi\)
−0.709642 + 0.704562i \(0.751143\pi\)
\(108\) 0 0
\(109\) 8.68208 + 15.0378i 0.831592 + 1.44036i 0.896775 + 0.442487i \(0.145904\pi\)
−0.0651830 + 0.997873i \(0.520763\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −3.59286 8.26956i −0.339493 0.781400i
\(113\) 5.92400i 0.557283i −0.960395 0.278642i \(-0.910116\pi\)
0.960395 0.278642i \(-0.0898841\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.26186 + 0.728535i −0.117161 + 0.0676427i
\(117\) 0 0
\(118\) 8.93051i 0.822121i
\(119\) −2.52473 0.288397i −0.231441 0.0264373i
\(120\) 0 0
\(121\) −2.59663 + 4.49750i −0.236057 + 0.408863i
\(122\) 1.51083 + 2.61684i 0.136784 + 0.236917i
\(123\) 0 0
\(124\) 1.98485 + 1.14595i 0.178245 + 0.102910i
\(125\) 0 0
\(126\) 0 0
\(127\) 5.01325 0.444854 0.222427 0.974949i \(-0.428602\pi\)
0.222427 + 0.974949i \(0.428602\pi\)
\(128\) −7.44848 4.30038i −0.658359 0.380104i
\(129\) 0 0
\(130\) 0 0
\(131\) −8.52739 + 14.7699i −0.745042 + 1.29045i 0.205134 + 0.978734i \(0.434237\pi\)
−0.950175 + 0.311716i \(0.899096\pi\)
\(132\) 0 0
\(133\) −9.99291 + 4.34160i −0.866495 + 0.376464i
\(134\) 6.32497i 0.546394i
\(135\) 0 0
\(136\) −2.48036 + 1.43204i −0.212689 + 0.122796i
\(137\) 8.59026 4.95959i 0.733915 0.423726i −0.0859376 0.996301i \(-0.527389\pi\)
0.819853 + 0.572574i \(0.194055\pi\)
\(138\) 0 0
\(139\) 15.1104i 1.28164i 0.767689 + 0.640822i \(0.221407\pi\)
−0.767689 + 0.640822i \(0.778593\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.48059 2.56445i 0.124248 0.215204i
\(143\) 2.04022 + 3.53376i 0.170611 + 0.295508i
\(144\) 0 0
\(145\) 0 0
\(146\) 19.3789 1.60381
\(147\) 0 0
\(148\) 1.04016 0.0855008
\(149\) −2.02420 1.16867i −0.165829 0.0957413i 0.414789 0.909918i \(-0.363856\pi\)
−0.580618 + 0.814176i \(0.697189\pi\)
\(150\) 0 0
\(151\) −5.01515 8.68650i −0.408127 0.706897i 0.586553 0.809911i \(-0.300485\pi\)
−0.994680 + 0.103014i \(0.967151\pi\)
\(152\) −6.13995 + 10.6347i −0.498016 + 0.862588i
\(153\) 0 0
\(154\) 5.00175 6.75539i 0.403053 0.544365i
\(155\) 0 0
\(156\) 0 0
\(157\) 17.9727 10.3765i 1.43437 0.828137i 0.436924 0.899498i \(-0.356068\pi\)
0.997451 + 0.0713615i \(0.0227344\pi\)
\(158\) −2.03853 + 1.17695i −0.162177 + 0.0936328i
\(159\) 0 0
\(160\) 0 0
\(161\) −14.0050 + 6.08471i −1.10375 + 0.479543i
\(162\) 0 0
\(163\) −7.81001 + 13.5273i −0.611727 + 1.05954i 0.379222 + 0.925306i \(0.376192\pi\)
−0.990949 + 0.134237i \(0.957142\pi\)
\(164\) −0.245405 0.425054i −0.0191629 0.0331911i
\(165\) 0 0
\(166\) −10.9848 6.34211i −0.852590 0.492243i
\(167\) 14.7858 1.14416 0.572080 0.820198i \(-0.306137\pi\)
0.572080 + 0.820198i \(0.306137\pi\)
\(168\) 0 0
\(169\) 10.1327 0.779435
\(170\) 0 0
\(171\) 0 0
\(172\) −1.34443 2.32862i −0.102512 0.177555i
\(173\) 3.43176 5.94398i 0.260912 0.451912i −0.705573 0.708637i \(-0.749310\pi\)
0.966484 + 0.256725i \(0.0826435\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 8.21197i 0.619000i
\(177\) 0 0
\(178\) 0.504321 0.291170i 0.0378005 0.0218241i
\(179\) −10.1393 + 5.85393i −0.757847 + 0.437543i −0.828522 0.559956i \(-0.810818\pi\)
0.0706751 + 0.997499i \(0.477485\pi\)
\(180\) 0 0
\(181\) 17.3498i 1.28960i 0.764351 + 0.644800i \(0.223059\pi\)
−0.764351 + 0.644800i \(0.776941\pi\)
\(182\) 2.35369 + 5.41740i 0.174467 + 0.401565i
\(183\) 0 0
\(184\) −8.60508 + 14.9044i −0.634375 + 1.09877i
\(185\) 0 0
\(186\) 0 0
\(187\) −2.00437 1.15722i −0.146574 0.0846244i
\(188\) −2.64617 −0.192992
\(189\) 0 0
\(190\) 0 0
\(191\) −16.3677 9.44988i −1.18432 0.683770i −0.227313 0.973822i \(-0.572994\pi\)
−0.957011 + 0.290052i \(0.906327\pi\)
\(192\) 0 0
\(193\) −11.6611 20.1976i −0.839382 1.45385i −0.890412 0.455155i \(-0.849584\pi\)
0.0510306 0.998697i \(-0.483749\pi\)
\(194\) −8.23516 + 14.2637i −0.591250 + 1.02407i
\(195\) 0 0
\(196\) −1.25062 + 1.33957i −0.0893298 + 0.0956833i
\(197\) 0.842929i 0.0600562i −0.999549 0.0300281i \(-0.990440\pi\)
0.999549 0.0300281i \(-0.00955968\pi\)
\(198\) 0 0
\(199\) 0.739952 0.427211i 0.0524538 0.0302842i −0.473544 0.880770i \(-0.657025\pi\)
0.525998 + 0.850486i \(0.323692\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 12.5108i 0.880255i
\(203\) −11.8343 8.76220i −0.830603 0.614986i
\(204\) 0 0
\(205\) 0 0
\(206\) 5.32812 + 9.22857i 0.371228 + 0.642985i
\(207\) 0 0
\(208\) 4.99749 + 2.88530i 0.346513 + 0.200060i
\(209\) −9.92331 −0.686410
\(210\) 0 0
\(211\) 16.1933 1.11479 0.557395 0.830247i \(-0.311801\pi\)
0.557395 + 0.830247i \(0.311801\pi\)
\(212\) −2.88139 1.66357i −0.197894 0.114254i
\(213\) 0 0
\(214\) −3.57699 6.19553i −0.244518 0.423518i
\(215\) 0 0
\(216\) 0 0
\(217\) −2.62866 + 23.0122i −0.178445 + 1.56217i
\(218\) 22.8930i 1.55051i
\(219\) 0 0
\(220\) 0 0
\(221\) 1.40848 0.813187i 0.0947447 0.0547009i
\(222\) 0 0
\(223\) 10.0027i 0.669832i 0.942248 + 0.334916i \(0.108708\pi\)
−0.942248 + 0.334916i \(0.891292\pi\)
\(224\) −0.441699 + 3.86679i −0.0295123 + 0.258361i
\(225\) 0 0
\(226\) 3.90512 6.76387i 0.259765 0.449926i
\(227\) 2.33913 + 4.05150i 0.155254 + 0.268908i 0.933151 0.359484i \(-0.117047\pi\)
−0.777898 + 0.628391i \(0.783714\pi\)
\(228\) 0 0
\(229\) −12.3460 7.12797i −0.815848 0.471030i 0.0331349 0.999451i \(-0.489451\pi\)
−0.848982 + 0.528421i \(0.822784\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −16.5963 −1.08960
\(233\) 19.3166 + 11.1524i 1.26547 + 0.730621i 0.974128 0.225997i \(-0.0725639\pi\)
0.291345 + 0.956618i \(0.405897\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.886687 1.53579i 0.0577184 0.0999712i
\(237\) 0 0
\(238\) −2.69255 1.99359i −0.174532 0.129225i
\(239\) 6.39734i 0.413810i 0.978361 + 0.206905i \(0.0663391\pi\)
−0.978361 + 0.206905i \(0.933661\pi\)
\(240\) 0 0
\(241\) −6.20841 + 3.58443i −0.399919 + 0.230893i −0.686449 0.727178i \(-0.740832\pi\)
0.286530 + 0.958071i \(0.407498\pi\)
\(242\) −5.92953 + 3.42342i −0.381165 + 0.220066i
\(243\) 0 0
\(244\) 0.600026i 0.0384127i
\(245\) 0 0
\(246\) 0 0
\(247\) 3.48659 6.03895i 0.221846 0.384249i
\(248\) 13.0526 + 22.6078i 0.828842 + 1.43560i
\(249\) 0 0
\(250\) 0 0
\(251\) 16.3470 1.03181 0.515906 0.856645i \(-0.327455\pi\)
0.515906 + 0.856645i \(0.327455\pi\)
\(252\) 0 0
\(253\) −13.9074 −0.874353
\(254\) 5.72400 + 3.30475i 0.359156 + 0.207359i
\(255\) 0 0
\(256\) 3.08545 + 5.34415i 0.192840 + 0.334009i
\(257\) −6.11896 + 10.5984i −0.381690 + 0.661107i −0.991304 0.131592i \(-0.957991\pi\)
0.609614 + 0.792699i \(0.291325\pi\)
\(258\) 0 0
\(259\) 4.18878 + 9.64116i 0.260278 + 0.599073i
\(260\) 0 0
\(261\) 0 0
\(262\) −19.4727 + 11.2426i −1.20303 + 0.694569i
\(263\) 8.15918 4.71070i 0.503117 0.290474i −0.226883 0.973922i \(-0.572854\pi\)
0.730000 + 0.683448i \(0.239520\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −14.2716 1.63024i −0.875051 0.0999563i
\(267\) 0 0
\(268\) −0.627989 + 1.08771i −0.0383605 + 0.0664424i
\(269\) 3.81600 + 6.60950i 0.232666 + 0.402988i 0.958592 0.284784i \(-0.0919219\pi\)
−0.725926 + 0.687773i \(0.758589\pi\)
\(270\) 0 0
\(271\) −4.71908 2.72456i −0.286664 0.165505i 0.349773 0.936835i \(-0.386259\pi\)
−0.636436 + 0.771329i \(0.719592\pi\)
\(272\) −3.27312 −0.198462
\(273\) 0 0
\(274\) 13.0775 0.790041
\(275\) 0 0
\(276\) 0 0
\(277\) 8.52809 + 14.7711i 0.512403 + 0.887508i 0.999897 + 0.0143815i \(0.00457793\pi\)
−0.487494 + 0.873127i \(0.662089\pi\)
\(278\) −9.96081 + 17.2526i −0.597410 + 1.03474i
\(279\) 0 0
\(280\) 0 0
\(281\) 25.3828i 1.51421i −0.653292 0.757106i \(-0.726613\pi\)
0.653292 0.757106i \(-0.273387\pi\)
\(282\) 0 0
\(283\) 8.29651 4.78999i 0.493176 0.284735i −0.232715 0.972545i \(-0.574761\pi\)
0.725891 + 0.687810i \(0.241428\pi\)
\(284\) −0.509235 + 0.294007i −0.0302175 + 0.0174461i
\(285\) 0 0
\(286\) 5.37967i 0.318107i
\(287\) 2.95153 3.98634i 0.174223 0.235306i
\(288\) 0 0
\(289\) 8.03876 13.9235i 0.472868 0.819031i
\(290\) 0 0
\(291\) 0 0
\(292\) −3.33261 1.92408i −0.195026 0.112598i
\(293\) 1.44713 0.0845421 0.0422710 0.999106i \(-0.486541\pi\)
0.0422710 + 0.999106i \(0.486541\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 10.2604 + 5.92382i 0.596372 + 0.344315i
\(297\) 0 0
\(298\) −1.54079 2.66872i −0.0892553 0.154595i
\(299\) 4.88642 8.46353i 0.282589 0.489459i
\(300\) 0 0
\(301\) 16.1697 21.8388i 0.932004 1.25877i
\(302\) 13.2240i 0.760957i
\(303\) 0 0
\(304\) −12.1535 + 7.01684i −0.697053 + 0.402444i
\(305\) 0 0
\(306\) 0 0
\(307\) 7.69871i 0.439388i 0.975569 + 0.219694i \(0.0705059\pi\)
−0.975569 + 0.219694i \(0.929494\pi\)
\(308\) −1.53088 + 0.665118i −0.0872299 + 0.0378986i
\(309\) 0 0
\(310\) 0 0
\(311\) 16.5875 + 28.7304i 0.940592 + 1.62915i 0.764345 + 0.644807i \(0.223062\pi\)
0.176247 + 0.984346i \(0.443604\pi\)
\(312\) 0 0
\(313\) 7.32351 + 4.22823i 0.413950 + 0.238994i 0.692485 0.721432i \(-0.256516\pi\)
−0.278536 + 0.960426i \(0.589849\pi\)
\(314\) 27.3610 1.54407
\(315\) 0 0
\(316\) 0.467423 0.0262946
\(317\) −5.14563 2.97083i −0.289008 0.166859i 0.348487 0.937314i \(-0.386696\pi\)
−0.637494 + 0.770455i \(0.720029\pi\)
\(318\) 0 0
\(319\) −6.70568 11.6146i −0.375446 0.650292i
\(320\) 0 0
\(321\) 0 0
\(322\) −20.0016 2.28476i −1.11464 0.127325i
\(323\) 3.95522i 0.220074i
\(324\) 0 0
\(325\) 0 0
\(326\) −17.8345 + 10.2968i −0.987764 + 0.570286i
\(327\) 0 0
\(328\) 5.59042i 0.308679i
\(329\) −10.6562 24.5271i −0.587498 1.35222i
\(330\) 0 0
\(331\) −13.2551 + 22.9585i −0.728566 + 1.26191i 0.228923 + 0.973445i \(0.426480\pi\)
−0.957489 + 0.288469i \(0.906854\pi\)
\(332\) 1.25938 + 2.18131i 0.0691175 + 0.119715i
\(333\) 0 0
\(334\) 16.8820 + 9.74685i 0.923744 + 0.533324i
\(335\) 0 0
\(336\) 0 0
\(337\) −3.42106 −0.186357 −0.0931784 0.995649i \(-0.529703\pi\)
−0.0931784 + 0.995649i \(0.529703\pi\)
\(338\) 11.5692 + 6.67948i 0.629282 + 0.363316i
\(339\) 0 0
\(340\) 0 0
\(341\) −10.5477 + 18.2692i −0.571192 + 0.989334i
\(342\) 0 0
\(343\) −17.4526 6.19736i −0.942351 0.334626i
\(344\) 30.6266i 1.65127i
\(345\) 0 0
\(346\) 7.83658 4.52445i 0.421297 0.243236i
\(347\) 11.6038 6.69946i 0.622925 0.359646i −0.155082 0.987902i \(-0.549564\pi\)
0.778007 + 0.628256i \(0.216231\pi\)
\(348\) 0 0
\(349\) 15.2584i 0.816762i −0.912812 0.408381i \(-0.866094\pi\)
0.912812 0.408381i \(-0.133906\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.77236 + 3.06982i −0.0944672 + 0.163622i
\(353\) 18.4609 + 31.9752i 0.982574 + 1.70187i 0.652258 + 0.757997i \(0.273822\pi\)
0.330316 + 0.943871i \(0.392845\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.115638 −0.00612880
\(357\) 0 0
\(358\) −15.4357 −0.815804
\(359\) 7.71108 + 4.45200i 0.406975 + 0.234967i 0.689489 0.724296i \(-0.257835\pi\)
−0.282514 + 0.959263i \(0.591168\pi\)
\(360\) 0 0
\(361\) −1.02087 1.76820i −0.0537301 0.0930633i
\(362\) −11.4370 + 19.8095i −0.601118 + 1.04117i
\(363\) 0 0
\(364\) 0.133114 1.16533i 0.00697707 0.0610797i
\(365\) 0 0
\(366\) 0 0
\(367\) 12.5174 7.22690i 0.653401 0.377241i −0.136357 0.990660i \(-0.543539\pi\)
0.789758 + 0.613419i \(0.210206\pi\)
\(368\) −17.0331 + 9.83404i −0.887910 + 0.512635i
\(369\) 0 0
\(370\) 0 0
\(371\) 3.81600 33.4065i 0.198117 1.73438i
\(372\) 0 0
\(373\) −10.5607 + 18.2917i −0.546812 + 0.947107i 0.451678 + 0.892181i \(0.350826\pi\)
−0.998490 + 0.0549259i \(0.982508\pi\)
\(374\) −1.52569 2.64257i −0.0788915 0.136644i
\(375\) 0 0
\(376\) −26.1024 15.0702i −1.34613 0.777186i
\(377\) 9.42425 0.485374
\(378\) 0 0
\(379\) 0.0133979 0.000688205 0.000344103 1.00000i \(-0.499890\pi\)
0.000344103 1.00000i \(0.499890\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −12.4588 21.5793i −0.637447 1.10409i
\(383\) −8.61124 + 14.9151i −0.440014 + 0.762127i −0.997690 0.0679321i \(-0.978360\pi\)
0.557676 + 0.830059i \(0.311693\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 30.7481i 1.56504i
\(387\) 0 0
\(388\) 2.83241 1.63529i 0.143794 0.0830194i
\(389\) 22.3077 12.8793i 1.13104 0.653008i 0.186846 0.982389i \(-0.440173\pi\)
0.944197 + 0.329381i \(0.106840\pi\)
\(390\) 0 0
\(391\) 5.54321i 0.280332i
\(392\) −19.9653 + 6.09135i −1.00840 + 0.307660i
\(393\) 0 0
\(394\) 0.555662 0.962434i 0.0279938 0.0484867i
\(395\) 0 0
\(396\) 0 0
\(397\) 13.2051 + 7.62398i 0.662746 + 0.382637i 0.793322 0.608802i \(-0.208349\pi\)
−0.130576 + 0.991438i \(0.541683\pi\)
\(398\) 1.12648 0.0564652
\(399\) 0 0
\(400\) 0 0
\(401\) 11.3640 + 6.56104i 0.567494 + 0.327643i 0.756148 0.654401i \(-0.227079\pi\)
−0.188654 + 0.982044i \(0.560412\pi\)
\(402\) 0 0
\(403\) −7.41196 12.8379i −0.369216 0.639501i
\(404\) −1.24216 + 2.15149i −0.0617999 + 0.107041i
\(405\) 0 0
\(406\) −7.73598 17.8057i −0.383930 0.883680i
\(407\) 9.57401i 0.474566i
\(408\) 0 0
\(409\) −28.4692 + 16.4367i −1.40771 + 0.812744i −0.995167 0.0981933i \(-0.968694\pi\)
−0.412546 + 0.910937i \(0.635360\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.11606i 0.104251i
\(413\) 17.8058 + 2.03394i 0.876165 + 0.100084i
\(414\) 0 0
\(415\) 0 0
\(416\) −1.24545 2.15718i −0.0610632 0.105765i
\(417\) 0 0
\(418\) −11.3302 6.54148i −0.554177 0.319954i
\(419\) 9.33114 0.455856 0.227928 0.973678i \(-0.426805\pi\)
0.227928 + 0.973678i \(0.426805\pi\)
\(420\) 0 0
\(421\) −13.0720 −0.637093 −0.318546 0.947907i \(-0.603195\pi\)
−0.318546 + 0.947907i \(0.603195\pi\)
\(422\) 18.4890 + 10.6747i 0.900033 + 0.519634i
\(423\) 0 0
\(424\) −18.9484 32.8195i −0.920214 1.59386i
\(425\) 0 0
\(426\) 0 0
\(427\) 5.56158 2.41633i 0.269144 0.116934i
\(428\) 1.42060i 0.0686673i
\(429\) 0 0
\(430\) 0 0
\(431\) −5.18251 + 2.99212i −0.249633 + 0.144125i −0.619596 0.784921i \(-0.712704\pi\)
0.369963 + 0.929046i \(0.379370\pi\)
\(432\) 0 0
\(433\) 19.4335i 0.933916i 0.884280 + 0.466958i \(0.154650\pi\)
−0.884280 + 0.466958i \(0.845350\pi\)
\(434\) −18.1710 + 24.5419i −0.872237 + 1.17805i
\(435\) 0 0
\(436\) 2.27299 3.93693i 0.108856 0.188545i
\(437\) 11.8834 + 20.5827i 0.568461 + 0.984603i
\(438\) 0 0
\(439\) −24.1175 13.9242i −1.15107 0.664568i −0.201919 0.979402i \(-0.564718\pi\)
−0.949147 + 0.314834i \(0.898051\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2.14422 0.101990
\(443\) −20.2916 11.7154i −0.964084 0.556614i −0.0666564 0.997776i \(-0.521233\pi\)
−0.897428 + 0.441162i \(0.854566\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −6.59383 + 11.4208i −0.312227 + 0.540793i
\(447\) 0 0
\(448\) −13.7838 + 18.6164i −0.651222 + 0.879543i
\(449\) 15.7868i 0.745025i 0.928027 + 0.372513i \(0.121504\pi\)
−0.928027 + 0.372513i \(0.878496\pi\)
\(450\) 0 0
\(451\) 3.91234 2.25879i 0.184225 0.106362i
\(452\) −1.34313 + 0.775458i −0.0631757 + 0.0364745i
\(453\) 0 0
\(454\) 6.16786i 0.289472i
\(455\) 0 0
\(456\) 0 0
\(457\) −13.3575 + 23.1358i −0.624836 + 1.08225i 0.363737 + 0.931502i \(0.381501\pi\)
−0.988573 + 0.150746i \(0.951833\pi\)
\(458\) −9.39757 16.2771i −0.439120 0.760578i
\(459\) 0 0
\(460\) 0 0
\(461\) 33.1750 1.54512 0.772558 0.634944i \(-0.218977\pi\)
0.772558 + 0.634944i \(0.218977\pi\)
\(462\) 0 0
\(463\) 9.01458 0.418943 0.209472 0.977815i \(-0.432826\pi\)
0.209472 + 0.977815i \(0.432826\pi\)
\(464\) −16.4255 9.48327i −0.762535 0.440250i
\(465\) 0 0
\(466\) 14.7035 + 25.4672i 0.681125 + 1.17974i
\(467\) 16.2346 28.1192i 0.751248 1.30120i −0.195970 0.980610i \(-0.562786\pi\)
0.947218 0.320590i \(-0.103881\pi\)
\(468\) 0 0
\(469\) −12.6108 1.44052i −0.582313 0.0665171i
\(470\) 0 0
\(471\) 0 0
\(472\) 17.4929 10.0995i 0.805176 0.464869i
\(473\) 21.4334 12.3746i 0.985509 0.568984i
\(474\) 0 0
\(475\) 0 0
\(476\) 0.265102 + 0.610176i 0.0121509 + 0.0279674i
\(477\) 0 0
\(478\) −4.21715 + 7.30432i −0.192888 + 0.334092i
\(479\) −2.08303 3.60791i −0.0951759 0.164849i 0.814506 0.580155i \(-0.197008\pi\)
−0.909682 + 0.415305i \(0.863675\pi\)
\(480\) 0 0
\(481\) −5.82638 3.36386i −0.265660 0.153379i
\(482\) −9.45148 −0.430503
\(483\) 0 0
\(484\) 1.35961 0.0618003
\(485\) 0 0
\(486\) 0 0
\(487\) −10.3166 17.8689i −0.467491 0.809719i 0.531819 0.846858i \(-0.321509\pi\)
−0.999310 + 0.0371394i \(0.988175\pi\)
\(488\) 3.41720 5.91877i 0.154690 0.267930i
\(489\) 0 0
\(490\) 0 0
\(491\) 33.6376i 1.51805i −0.651064 0.759023i \(-0.725677\pi\)
0.651064 0.759023i \(-0.274323\pi\)
\(492\) 0 0
\(493\) −4.62933 + 2.67274i −0.208494 + 0.120374i
\(494\) 7.96179 4.59674i 0.358218 0.206817i
\(495\) 0 0
\(496\) 29.8335i 1.33956i
\(497\) −4.77583 3.53607i −0.214225 0.158614i
\(498\) 0 0
\(499\) 13.4181 23.2408i 0.600675 1.04040i −0.392044 0.919946i \(-0.628232\pi\)
0.992719 0.120453i \(-0.0384347\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 18.6646 + 10.7760i 0.833040 + 0.480956i
\(503\) −22.8321 −1.01803 −0.509017 0.860757i \(-0.669991\pi\)
−0.509017 + 0.860757i \(0.669991\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −15.8791 9.16783i −0.705914 0.407560i
\(507\) 0 0
\(508\) −0.656240 1.13664i −0.0291159 0.0504303i
\(509\) −7.67782 + 13.2984i −0.340313 + 0.589440i −0.984491 0.175436i \(-0.943866\pi\)
0.644177 + 0.764876i \(0.277200\pi\)
\(510\) 0 0
\(511\) 4.41358 38.6379i 0.195245 1.70924i
\(512\) 25.3373i 1.11976i
\(513\) 0 0
\(514\) −13.9729 + 8.06729i −0.616320 + 0.355833i
\(515\) 0 0
\(516\) 0 0
\(517\) 24.3563i 1.07119i
\(518\) −1.57285 + 13.7693i −0.0691072 + 0.604988i
\(519\) 0 0
\(520\) 0 0
\(521\) 9.31915 + 16.1412i 0.408279 + 0.707160i 0.994697 0.102848i \(-0.0327957\pi\)
−0.586418 + 0.810009i \(0.699462\pi\)
\(522\) 0 0
\(523\) −7.96399 4.59801i −0.348241 0.201057i 0.315669 0.948869i \(-0.397771\pi\)
−0.663910 + 0.747812i \(0.731104\pi\)
\(524\) 4.46498 0.195054
\(525\) 0 0
\(526\) 12.4213 0.541592
\(527\) 7.28172 + 4.20411i 0.317197 + 0.183134i
\(528\) 0 0
\(529\) 5.15451 + 8.92787i 0.224109 + 0.388168i
\(530\) 0 0
\(531\) 0 0
\(532\) 2.29244 + 1.69735i 0.0993900 + 0.0735893i
\(533\) 3.17453i 0.137504i
\(534\) 0 0
\(535\) 0 0
\(536\) −12.3892 + 7.15291i −0.535132 + 0.308959i
\(537\) 0 0
\(538\) 10.0621i 0.433807i
\(539\) −12.3298 11.5111i −0.531083 0.495819i
\(540\) 0 0
\(541\) 4.49603 7.78736i 0.193300 0.334805i −0.753042 0.657972i \(-0.771414\pi\)
0.946342 + 0.323168i \(0.104748\pi\)
\(542\) −3.59208 6.22167i −0.154293 0.267244i
\(543\) 0 0
\(544\) 1.22357 + 0.706426i 0.0524599 + 0.0302878i
\(545\) 0 0
\(546\) 0 0
\(547\) 12.8673 0.550165 0.275082 0.961421i \(-0.411295\pi\)
0.275082 + 0.961421i \(0.411295\pi\)
\(548\) −2.24895 1.29843i −0.0960703 0.0554662i
\(549\) 0 0
\(550\) 0 0
\(551\) −11.4595 + 19.8485i −0.488193 + 0.845575i
\(552\) 0 0
\(553\) 1.88233 + 4.33250i 0.0800449 + 0.184237i
\(554\) 22.4870i 0.955380i
\(555\) 0 0
\(556\) 3.42594 1.97796i 0.145292 0.0838844i
\(557\) 5.91023 3.41227i 0.250424 0.144583i −0.369534 0.929217i \(-0.620483\pi\)
0.619959 + 0.784635i \(0.287149\pi\)
\(558\) 0 0
\(559\) 17.3914i 0.735577i
\(560\) 0 0
\(561\) 0 0
\(562\) 16.7324 28.9815i 0.705816 1.22251i
\(563\) −4.34307 7.52241i −0.183038 0.317032i 0.759875 0.650069i \(-0.225260\pi\)
−0.942914 + 0.333037i \(0.891927\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 12.6303 0.530892
\(567\) 0 0
\(568\) −6.69759 −0.281025
\(569\) 28.5427 + 16.4792i 1.19657 + 0.690842i 0.959790 0.280720i \(-0.0905733\pi\)
0.236784 + 0.971562i \(0.423907\pi\)
\(570\) 0 0
\(571\) −4.38204 7.58991i −0.183383 0.317628i 0.759648 0.650335i \(-0.225371\pi\)
−0.943030 + 0.332707i \(0.892038\pi\)
\(572\) 0.534133 0.925146i 0.0223332 0.0386823i
\(573\) 0 0
\(574\) 5.99779 2.60585i 0.250343 0.108766i
\(575\) 0 0
\(576\) 0 0
\(577\) −30.7939 + 17.7788i −1.28197 + 0.740143i −0.977207 0.212287i \(-0.931909\pi\)
−0.304758 + 0.952430i \(0.598576\pi\)
\(578\) 18.3569 10.5984i 0.763546 0.440833i
\(579\) 0 0
\(580\) 0 0
\(581\) −15.1468 + 20.4573i −0.628394 + 0.848712i
\(582\) 0 0
\(583\) 15.3121 26.5213i 0.634161 1.09840i
\(584\) −21.9156 37.9590i −0.906876 1.57075i
\(585\) 0 0
\(586\) 1.65229 + 0.953952i 0.0682556 + 0.0394074i
\(587\) −31.4362 −1.29751 −0.648755 0.760997i \(-0.724710\pi\)
−0.648755 + 0.760997i \(0.724710\pi\)
\(588\) 0 0
\(589\) 36.0507 1.48544
\(590\) 0 0
\(591\) 0 0
\(592\) 6.76985 + 11.7257i 0.278239 + 0.481924i
\(593\) −6.49446 + 11.2487i −0.266695 + 0.461930i −0.968006 0.250926i \(-0.919265\pi\)
0.701311 + 0.712855i \(0.252598\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.611922i 0.0250653i
\(597\) 0 0
\(598\) 11.1584 6.44229i 0.456300 0.263445i
\(599\) 12.7099 7.33804i 0.519311 0.299824i −0.217342 0.976096i \(-0.569739\pi\)
0.736653 + 0.676271i \(0.236405\pi\)
\(600\) 0 0
\(601\) 9.55020i 0.389561i 0.980847 + 0.194780i \(0.0623994\pi\)
−0.980847 + 0.194780i \(0.937601\pi\)
\(602\) 32.8583 14.2759i 1.33920 0.581842i
\(603\) 0 0
\(604\) −1.31298 + 2.27414i −0.0534243 + 0.0925336i
\(605\) 0 0
\(606\) 0 0
\(607\) −23.5998 13.6253i −0.957885 0.553035i −0.0623639 0.998053i \(-0.519864\pi\)
−0.895522 + 0.445018i \(0.853197\pi\)
\(608\) 6.05769 0.245672
\(609\) 0 0
\(610\) 0 0
\(611\) 14.8223 + 8.55765i 0.599646 + 0.346206i
\(612\) 0 0
\(613\) 24.2382 + 41.9818i 0.978971 + 1.69563i 0.666152 + 0.745816i \(0.267940\pi\)
0.312819 + 0.949813i \(0.398727\pi\)
\(614\) −5.07501 + 8.79018i −0.204811 + 0.354743i
\(615\) 0 0
\(616\) −18.8888 2.15765i −0.761051 0.0869342i
\(617\) 8.42587i 0.339213i −0.985512 0.169606i \(-0.945750\pi\)
0.985512 0.169606i \(-0.0542497\pi\)
\(618\) 0 0
\(619\) 14.9893 8.65410i 0.602472 0.347837i −0.167541 0.985865i \(-0.553583\pi\)
0.770014 + 0.638028i \(0.220249\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 43.7382i 1.75374i
\(623\) −0.465678 1.07184i −0.0186570 0.0429422i
\(624\) 0 0
\(625\) 0 0
\(626\) 5.57453 + 9.65537i 0.222803 + 0.385906i
\(627\) 0 0
\(628\) −4.70528 2.71660i −0.187761 0.108404i
\(629\) 3.81600 0.152154
\(630\) 0 0
\(631\) 16.3945 0.652653 0.326327 0.945257i \(-0.394189\pi\)
0.326327 + 0.945257i \(0.394189\pi\)
\(632\) 4.61075 + 2.66202i 0.183406 + 0.105889i
\(633\) 0 0
\(634\) −3.91677 6.78404i −0.155555 0.269429i
\(635\) 0 0
\(636\) 0 0
\(637\) 11.3373 3.45899i 0.449202 0.137050i
\(638\) 17.6816i 0.700023i
\(639\) 0 0
\(640\) 0 0
\(641\) −12.9885 + 7.49893i −0.513016 + 0.296190i −0.734072 0.679071i \(-0.762383\pi\)
0.221057 + 0.975261i \(0.429049\pi\)
\(642\) 0 0
\(643\) 26.5806i 1.04824i −0.851645 0.524119i \(-0.824395\pi\)
0.851645 0.524119i \(-0.175605\pi\)
\(644\) 3.21284 + 2.37882i 0.126604 + 0.0937385i
\(645\) 0 0
\(646\) −2.60730 + 4.51597i −0.102583 + 0.177678i
\(647\) −11.5482 20.0021i −0.454007 0.786364i 0.544623 0.838681i \(-0.316673\pi\)
−0.998631 + 0.0523172i \(0.983339\pi\)
\(648\) 0 0
\(649\) 14.1359 + 8.16137i 0.554883 + 0.320362i
\(650\) 0 0
\(651\) 0 0
\(652\) 4.08936 0.160152
\(653\) −18.3223 10.5784i −0.717007 0.413964i 0.0966433 0.995319i \(-0.469189\pi\)
−0.813650 + 0.581355i \(0.802523\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3.19441 5.53289i 0.124721 0.216023i
\(657\) 0 0
\(658\) 4.00134 35.0290i 0.155988 1.36557i
\(659\) 34.2144i 1.33281i −0.745592 0.666403i \(-0.767833\pi\)
0.745592 0.666403i \(-0.232167\pi\)
\(660\) 0 0
\(661\) 0.188317 0.108725i 0.00732467 0.00422890i −0.496333 0.868132i \(-0.665321\pi\)
0.503658 + 0.863903i \(0.331987\pi\)
\(662\) −30.2687 + 17.4756i −1.17643 + 0.679209i
\(663\) 0 0
\(664\) 28.6892i 1.11336i
\(665\) 0 0
\(666\) 0 0
\(667\) −16.0604 + 27.8175i −0.621863 + 1.07710i
\(668\) −1.93548 3.35234i −0.0748859 0.129706i
\(669\) 0 0
\(670\) 0 0
\(671\) 5.52284 0.213207
\(672\) 0 0
\(673\) 29.8280 1.14979 0.574893 0.818229i \(-0.305044\pi\)
0.574893 + 0.818229i \(0.305044\pi\)
\(674\) −3.90607 2.25517i −0.150456 0.0868660i
\(675\) 0 0
\(676\) −1.32638 2.29735i −0.0510145 0.0883596i
\(677\) 21.0579 36.4734i 0.809321 1.40179i −0.104014 0.994576i \(-0.533169\pi\)
0.913335 0.407209i \(-0.133498\pi\)
\(678\) 0 0
\(679\) 26.5636 + 19.6679i 1.01942 + 0.754786i
\(680\) 0 0
\(681\) 0 0
\(682\) −24.0863 + 13.9062i −0.922311 + 0.532497i
\(683\) −20.1941 + 11.6590i −0.772704 + 0.446121i −0.833838 0.552009i \(-0.813862\pi\)
0.0611342 + 0.998130i \(0.480528\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −15.8416 18.5808i −0.604835 0.709418i
\(687\) 0 0
\(688\) 17.5003 30.3114i 0.667192 1.15561i
\(689\) 10.7599 + 18.6367i 0.409919 + 0.710000i
\(690\) 0 0
\(691\) 4.66296 + 2.69216i 0.177387 + 0.102415i 0.586065 0.810264i \(-0.300676\pi\)
−0.408677 + 0.912679i \(0.634010\pi\)
\(692\) −1.79688 −0.0683073
\(693\) 0 0
\(694\) 17.6652 0.670563
\(695\) 0 0
\(696\) 0 0
\(697\) −0.900306 1.55938i −0.0341015 0.0590656i
\(698\) 10.0584 17.4216i 0.380715 0.659418i
\(699\) 0 0
\(700\) 0 0
\(701\) 21.9593i 0.829391i −0.909960 0.414696i \(-0.863888\pi\)
0.909960 0.414696i \(-0.136112\pi\)
\(702\) 0 0
\(703\) 14.1693 8.18066i 0.534406 0.308540i
\(704\) −18.2708 + 10.5487i −0.688607 + 0.397568i
\(705\) 0 0
\(706\) 48.6779i 1.83202i
\(707\) −24.9442 2.84935i −0.938121 0.107161i
\(708\) 0 0
\(709\) −13.6505 + 23.6434i −0.512657 + 0.887948i 0.487236 + 0.873271i \(0.338005\pi\)
−0.999892 + 0.0146769i \(0.995328\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.14067 0.658569i −0.0427486 0.0246809i
\(713\) 50.5248 1.89217
\(714\) 0 0
\(715\) 0 0
\(716\) 2.65449 + 1.53257i 0.0992031 + 0.0572749i
\(717\) 0 0
\(718\) 5.86954 + 10.1663i 0.219049 + 0.379405i
\(719\) −16.3001 + 28.2327i −0.607893 + 1.05290i 0.383694 + 0.923460i \(0.374652\pi\)
−0.991587 + 0.129441i \(0.958682\pi\)
\(720\) 0 0
\(721\) 19.6135 8.52145i 0.730446 0.317355i
\(722\) 2.69185i 0.100180i
\(723\) 0 0
\(724\) 3.93367 2.27111i 0.146194 0.0844050i
\(725\) 0 0
\(726\) 0 0
\(727\) 4.18319i 0.155146i 0.996987 + 0.0775729i \(0.0247171\pi\)
−0.996987 + 0.0775729i \(0.975283\pi\)
\(728\) 7.94970 10.7369i 0.294636 0.397936i
\(729\) 0 0
\(730\) 0 0
\(731\) −4.93224 8.54290i −0.182426 0.315970i
\(732\) 0 0
\(733\) −0.562457 0.324735i −0.0207748 0.0119944i 0.489577 0.871960i \(-0.337151\pi\)
−0.510351 + 0.859966i \(0.670485\pi\)
\(734\) 19.0560 0.703370
\(735\) 0 0
\(736\) 8.48979 0.312938
\(737\) −10.0116 5.78023i −0.368784 0.212917i
\(738\) 0 0
\(739\) 11.5360 + 19.9810i 0.424360 + 0.735012i 0.996360 0.0852408i \(-0.0271660\pi\)
−0.572001 + 0.820253i \(0.693833\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 26.3787 35.6272i 0.968393 1.30792i
\(743\) 18.5599i 0.680897i −0.940263 0.340448i \(-0.889421\pi\)
0.940263 0.340448i \(-0.110579\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −24.1159 + 13.9233i −0.882945 + 0.509768i
\(747\) 0 0
\(748\) 0.605926i 0.0221549i
\(749\) −13.1674 + 5.72081i −0.481126 + 0.209034i
\(750\) 0 0
\(751\) −11.0882 + 19.2053i −0.404613 + 0.700811i −0.994276 0.106838i \(-0.965927\pi\)
0.589663 + 0.807649i \(0.299261\pi\)
\(752\) −17.2225 29.8302i −0.628040 1.08780i
\(753\) 0 0
\(754\) 10.7604 + 6.21250i 0.391869 + 0.226246i
\(755\) 0 0
\(756\) 0 0
\(757\) 22.4056 0.814347 0.407173 0.913351i \(-0.366515\pi\)
0.407173 + 0.913351i \(0.366515\pi\)
\(758\) 0.0152974 + 0.00883196i 0.000555627 + 0.000320791i
\(759\) 0 0
\(760\) 0 0
\(761\) 7.01527 12.1508i 0.254303 0.440466i −0.710403 0.703795i \(-0.751487\pi\)
0.964706 + 0.263329i \(0.0848205\pi\)
\(762\) 0 0
\(763\) 45.6444 + 5.21392i 1.65244 + 0.188757i
\(764\) 4.94800i 0.179012i
\(765\) 0 0
\(766\) −19.6642 + 11.3531i −0.710496 + 0.410205i
\(767\) −9.93339 + 5.73505i −0.358674 + 0.207081i
\(768\) 0 0
\(769\) 40.4788i 1.45970i −0.683606 0.729851i \(-0.739589\pi\)
0.683606 0.729851i \(-0.260411\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3.05289 + 5.28777i −0.109876 + 0.190311i
\(773\) −15.6561 27.1171i −0.563110 0.975335i −0.997223 0.0744762i \(-0.976272\pi\)
0.434113 0.900858i \(-0.357062\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 37.2526 1.33729
\(777\) 0 0
\(778\) 33.9604 1.21754
\(779\) −6.68592 3.86012i −0.239548 0.138303i
\(780\) 0 0
\(781\) −2.70614 4.68717i −0.0968333 0.167720i
\(782\) −3.65410 + 6.32909i −0.130670 + 0.226328i
\(783\) 0 0
\(784\) −23.2405 5.37967i −0.830017 0.192131i
\(785\) 0 0
\(786\) 0 0
\(787\) 21.0932 12.1781i 0.751890 0.434104i −0.0744866 0.997222i \(-0.523732\pi\)
0.826376 + 0.563118i \(0.190398\pi\)
\(788\) −0.191115 + 0.110340i −0.00680819 + 0.00393071i
\(789\) 0 0
\(790\) 0 0
\(791\) −12.5965 9.32656i −0.447880 0.331614i
\(792\) 0 0
\(793\) −1.94047 + 3.36099i −0.0689081 + 0.119352i
\(794\) 10.0515 + 17.4097i 0.356715 + 0.617848i
\(795\) 0 0
\(796\) −0.193721 0.111845i −0.00686626 0.00396424i
\(797\) 42.7862 1.51557 0.757783 0.652507i \(-0.226283\pi\)
0.757783 + 0.652507i \(0.226283\pi\)
\(798\) 0 0
\(799\) −9.70789 −0.343441
\(800\) 0 0
\(801\) 0 0
\(802\) 8.65012 + 14.9824i 0.305446 + 0.529049i
\(803\) 17.7099 30.6744i 0.624969 1.08248i
\(804\) 0 0
\(805\) 0 0
\(806\) 19.5440i 0.688407i
\(807\) 0 0
\(808\) −24.5058 + 14.1485i −0.862113 + 0.497741i
\(809\) −33.0092 + 19.0579i −1.16054 + 0.670038i −0.951433 0.307854i \(-0.900389\pi\)
−0.209107 + 0.977893i \(0.567056\pi\)
\(810\) 0 0
\(811\) 43.0019i 1.51000i −0.655725 0.755000i \(-0.727637\pi\)
0.655725 0.755000i \(-0.272363\pi\)
\(812\) −0.437513 + 3.83014i −0.0153537 + 0.134411i
\(813\) 0 0
\(814\) −6.31122 + 10.9314i −0.221208 + 0.383144i
\(815\) 0 0
\(816\) 0 0
\(817\) −36.6282 21.1473i −1.28146 0.739850i
\(818\) −43.3406 −1.51537
\(819\) 0 0
\(820\) 0 0
\(821\) −6.74916 3.89663i −0.235547 0.135993i 0.377581 0.925976i \(-0.376756\pi\)
−0.613129 + 0.789983i \(0.710089\pi\)
\(822\) 0 0
\(823\) −11.5228 19.9581i −0.401661 0.695697i 0.592265 0.805743i \(-0.298234\pi\)
−0.993927 + 0.110046i \(0.964900\pi\)
\(824\) 12.0512 20.8732i 0.419822 0.727153i
\(825\) 0 0
\(826\) 18.9894 + 14.0599i 0.660726 + 0.489207i
\(827\) 0.555383i 0.0193126i 0.999953 + 0.00965628i \(0.00307374\pi\)
−0.999953 + 0.00965628i \(0.996926\pi\)
\(828\) 0 0
\(829\) −20.8718 + 12.0504i −0.724909 + 0.418526i −0.816557 0.577265i \(-0.804120\pi\)
0.0916480 + 0.995791i \(0.470787\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 14.8252i 0.513972i
\(833\) −4.58808 + 4.91441i −0.158968 + 0.170274i
\(834\) 0 0
\(835\) 0 0
\(836\) 1.29897 + 2.24989i 0.0449259 + 0.0778140i
\(837\) 0 0
\(838\) 10.6541 + 6.15112i 0.368038 + 0.212487i
\(839\) −45.5904 −1.57395 −0.786977 0.616982i \(-0.788355\pi\)
−0.786977 + 0.616982i \(0.788355\pi\)
\(840\) 0 0
\(841\) −1.97516 −0.0681090
\(842\) −14.9253 8.61714i −0.514361 0.296966i
\(843\) 0 0
\(844\) −2.11972 3.67146i −0.0729636 0.126377i
\(845\) 0 0
\(846\) 0 0
\(847\) 5.47519 + 12.6021i 0.188130 + 0.433012i
\(848\) 43.3090i 1.48724i
\(849\) 0 0
\(850\) 0 0
\(851\) 19.8582 11.4651i 0.680730 0.393019i
\(852\) 0 0
\(853\) 0.440934i 0.0150973i 0.999972 + 0.00754864i \(0.00240283\pi\)
−0.999972 + 0.00754864i \(0.997597\pi\)
\(854\) 7.94292 + 0.907313i 0.271801 + 0.0310476i
\(855\) 0 0
\(856\) −8.09045 + 14.0131i −0.276526 + 0.478957i
\(857\) 4.17631 + 7.23358i 0.142660 + 0.247094i 0.928497 0.371339i \(-0.121101\pi\)
−0.785838 + 0.618433i \(0.787768\pi\)
\(858\) 0 0
\(859\) −2.09709 1.21076i −0.0715518 0.0413104i 0.463797 0.885941i \(-0.346487\pi\)
−0.535349 + 0.844631i \(0.679820\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −7.88967 −0.268723
\(863\) −13.2203 7.63275i −0.450025 0.259822i 0.257816 0.966194i \(-0.416997\pi\)
−0.707841 + 0.706372i \(0.750331\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −12.8107 + 22.1887i −0.435324 + 0.754003i
\(867\) 0 0
\(868\) 5.56158 2.41633i 0.188772 0.0820155i
\(869\) 4.30233i 0.145946i
\(870\) 0 0
\(871\) 7.03525 4.06180i 0.238380 0.137629i
\(872\) 44.8424 25.8897i 1.51855 0.876738i
\(873\) 0 0
\(874\) 31.3344i 1.05990i
\(875\) 0 0
\(876\) 0 0
\(877\) 17.3127 29.9865i 0.584609 1.01257i −0.410315 0.911944i \(-0.634581\pi\)
0.994924 0.100629i \(-0.0320855\pi\)
\(878\) −18.3578 31.7967i −0.619547 1.07309i
\(879\) 0 0
\(880\) 0 0
\(881\) −18.2805 −0.615887 −0.307943 0.951405i \(-0.599641\pi\)
−0.307943 + 0.951405i \(0.599641\pi\)
\(882\) 0 0
\(883\) −15.7048 −0.528508 −0.264254 0.964453i \(-0.585126\pi\)
−0.264254 + 0.964453i \(0.585126\pi\)
\(884\) −0.368743 0.212894i −0.0124022 0.00716040i
\(885\) 0 0
\(886\) −15.4456 26.7526i −0.518906 0.898772i
\(887\) −15.8438 + 27.4423i −0.531983 + 0.921422i 0.467320 + 0.884088i \(0.345220\pi\)
−0.999303 + 0.0373336i \(0.988114\pi\)
\(888\) 0 0
\(889\) 7.89270 10.6599i 0.264713 0.357522i
\(890\) 0 0
\(891\) 0 0
\(892\) 2.26789 1.30937i 0.0759346 0.0438409i
\(893\) −36.0467 + 20.8116i −1.20626 + 0.696433i
\(894\) 0 0
\(895\) 0 0
\(896\) −20.8708 + 9.06769i −0.697244 + 0.302930i
\(897\) 0 0
\(898\) −10.4067 + 18.0250i −0.347277 + 0.601501i
\(899\) 24.3613 + 42.1950i 0.812494 + 1.40728i
\(900\) 0 0
\(901\) −10.5708 6.10306i −0.352165 0.203322i
\(902\) 5.95601 0.198314
\(903\) 0 0
\(904\) −17.6652 −0.587537
\(905\) 0 0
\(906\) 0 0
\(907\) 1.60632 + 2.78222i 0.0533369 + 0.0923822i 0.891461 0.453097i \(-0.149681\pi\)
−0.838124 + 0.545479i \(0.816348\pi\)
\(908\) 0.612391 1.06069i 0.0203229 0.0352003i
\(909\) 0 0
\(910\) 0 0
\(911\) 43.0454i 1.42616i 0.701084 + 0.713079i \(0.252700\pi\)
−0.701084 + 0.713079i \(0.747300\pi\)
\(912\) 0 0
\(913\) −20.0775 + 11.5918i −0.664470 + 0.383632i
\(914\) −30.5024 + 17.6106i −1.00893 + 0.582506i
\(915\) 0 0
\(916\) 3.73224i 0.123317i
\(917\) 17.9807 + 41.3855i 0.593773 + 1.36667i
\(918\) 0 0
\(919\) 17.9287 31.0535i 0.591414 1.02436i −0.402628 0.915364i \(-0.631903\pi\)
0.994042 0.108996i \(-0.0347635\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 37.8784 + 21.8691i 1.24746 + 0.720221i
\(923\) 3.80324 0.125185
\(924\) 0 0
\(925\) 0 0
\(926\) 10.2926 + 5.94245i 0.338236 + 0.195281i
\(927\) 0 0
\(928\) 4.09348 + 7.09012i 0.134375 + 0.232745i
\(929\) 3.44568 5.96810i 0.113049 0.195807i −0.803949 0.594698i \(-0.797272\pi\)
0.916998 + 0.398891i \(0.130605\pi\)
\(930\) 0 0
\(931\) −6.50078 + 28.0837i −0.213054 + 0.920406i
\(932\) 5.83947i 0.191278i
\(933\) 0 0
\(934\) 37.0725 21.4038i 1.21305 0.700354i
\(935\) 0 0
\(936\) 0 0
\(937\) 13.8533i 0.452566i −0.974062 0.226283i \(-0.927343\pi\)
0.974062 0.226283i \(-0.0726575\pi\)
\(938\) −13.4491 9.95784i −0.439129 0.325135i
\(939\) 0 0
\(940\) 0 0
\(941\) 15.2003 + 26.3277i 0.495516 + 0.858259i 0.999987 0.00517013i \(-0.00164571\pi\)
−0.504471 + 0.863429i \(0.668312\pi\)
\(942\) 0 0
\(943\) −9.37026 5.40992i −0.305138 0.176171i
\(944\) 23.0838 0.751315
\(945\) 0 0
\(946\) 32.6295 1.06088
\(947\) −23.1883 13.3878i −0.753519 0.435044i 0.0734452 0.997299i \(-0.476601\pi\)
−0.826964 + 0.562255i \(0.809934\pi\)
\(948\) 0 0
\(949\) 12.4449 + 21.5551i 0.403977 + 0.699709i
\(950\) 0 0
\(951\) 0 0
\(952\) −0.859993 + 7.52867i −0.0278725 + 0.244006i
\(953\) 23.9462i 0.775693i 0.921724 + 0.387846i \(0.126781\pi\)
−0.921724 + 0.387846i \(0.873219\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.45045 0.837419i 0.0469110 0.0270841i
\(957\) 0 0
\(958\) 5.49255i 0.177456i
\(959\) 2.97842 26.0741i 0.0961783 0.841977i
\(960\) 0 0
\(961\) 22.8192 39.5240i 0.736104 1.27497i
\(962\) −4.43494 7.68154i −0.142988 0.247663i
\(963\) 0 0
\(964\) 1.62538 + 0.938412i 0.0523499 + 0.0302242i
\(965\) 0 0
\(966\) 0 0
\(967\) 12.8640 0.413678 0.206839 0.978375i \(-0.433682\pi\)
0.206839 + 0.978375i \(0.433682\pi\)
\(968\) 13.4114 + 7.74309i 0.431060 + 0.248872i
\(969\) 0 0
\(970\) 0 0
\(971\) −17.4878 + 30.2897i −0.561209 + 0.972043i 0.436182 + 0.899859i \(0.356330\pi\)
−0.997391 + 0.0721846i \(0.977003\pi\)
\(972\) 0 0
\(973\) 32.1299 + 23.7893i 1.03004 + 0.762650i
\(974\) 27.2031i 0.871642i
\(975\) 0 0
\(976\) 6.76408 3.90524i 0.216513 0.125004i
\(977\) −7.64984 + 4.41664i −0.244740 + 0.141301i −0.617353 0.786686i \(-0.711795\pi\)
0.372613 + 0.927987i \(0.378462\pi\)
\(978\) 0 0
\(979\) 1.06437i 0.0340174i
\(980\) 0 0
\(981\) 0 0
\(982\) 22.1741 38.4066i 0.707603 1.22560i
\(983\) −25.6596 44.4437i −0.818414 1.41753i −0.906850 0.421453i \(-0.861520\pi\)
0.0884361 0.996082i \(-0.471813\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −7.04753 −0.224439
\(987\) 0 0
\(988\) −1.82559 −0.0580798
\(989\) −51.3341 29.6377i −1.63233 0.942425i
\(990\) 0 0
\(991\) 9.04272 + 15.6625i 0.287252 + 0.497534i 0.973153 0.230160i \(-0.0739251\pi\)
−0.685901 + 0.727695i \(0.740592\pi\)
\(992\) 6.43887 11.1524i 0.204434 0.354091i
\(993\) 0 0
\(994\) −3.12193 7.18564i −0.0990216 0.227915i
\(995\) 0 0
\(996\) 0 0
\(997\) 28.7737 16.6125i 0.911273 0.526124i 0.0304328 0.999537i \(-0.490311\pi\)
0.880841 + 0.473413i \(0.156978\pi\)
\(998\) 30.6408 17.6905i 0.969917 0.559982i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.2.bk.i.26.7 24
3.2 odd 2 inner 1575.2.bk.i.26.6 24
5.2 odd 4 315.2.bb.b.89.6 yes 24
5.3 odd 4 315.2.bb.b.89.8 yes 24
5.4 even 2 inner 1575.2.bk.i.26.5 24
7.3 odd 6 inner 1575.2.bk.i.1151.6 24
15.2 even 4 315.2.bb.b.89.7 yes 24
15.8 even 4 315.2.bb.b.89.5 24
15.14 odd 2 inner 1575.2.bk.i.26.8 24
21.17 even 6 inner 1575.2.bk.i.1151.7 24
35.2 odd 12 2205.2.g.b.2204.14 24
35.3 even 12 315.2.bb.b.269.7 yes 24
35.12 even 12 2205.2.g.b.2204.13 24
35.17 even 12 315.2.bb.b.269.5 yes 24
35.23 odd 12 2205.2.g.b.2204.10 24
35.24 odd 6 inner 1575.2.bk.i.1151.8 24
35.33 even 12 2205.2.g.b.2204.9 24
105.2 even 12 2205.2.g.b.2204.12 24
105.17 odd 12 315.2.bb.b.269.8 yes 24
105.23 even 12 2205.2.g.b.2204.16 24
105.38 odd 12 315.2.bb.b.269.6 yes 24
105.47 odd 12 2205.2.g.b.2204.11 24
105.59 even 6 inner 1575.2.bk.i.1151.5 24
105.68 odd 12 2205.2.g.b.2204.15 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.bb.b.89.5 24 15.8 even 4
315.2.bb.b.89.6 yes 24 5.2 odd 4
315.2.bb.b.89.7 yes 24 15.2 even 4
315.2.bb.b.89.8 yes 24 5.3 odd 4
315.2.bb.b.269.5 yes 24 35.17 even 12
315.2.bb.b.269.6 yes 24 105.38 odd 12
315.2.bb.b.269.7 yes 24 35.3 even 12
315.2.bb.b.269.8 yes 24 105.17 odd 12
1575.2.bk.i.26.5 24 5.4 even 2 inner
1575.2.bk.i.26.6 24 3.2 odd 2 inner
1575.2.bk.i.26.7 24 1.1 even 1 trivial
1575.2.bk.i.26.8 24 15.14 odd 2 inner
1575.2.bk.i.1151.5 24 105.59 even 6 inner
1575.2.bk.i.1151.6 24 7.3 odd 6 inner
1575.2.bk.i.1151.7 24 21.17 even 6 inner
1575.2.bk.i.1151.8 24 35.24 odd 6 inner
2205.2.g.b.2204.9 24 35.33 even 12
2205.2.g.b.2204.10 24 35.23 odd 12
2205.2.g.b.2204.11 24 105.47 odd 12
2205.2.g.b.2204.12 24 105.2 even 12
2205.2.g.b.2204.13 24 35.12 even 12
2205.2.g.b.2204.14 24 35.2 odd 12
2205.2.g.b.2204.15 24 105.68 odd 12
2205.2.g.b.2204.16 24 105.23 even 12