Properties

Label 162.8.c.l.55.1
Level $162$
Weight $8$
Character 162.55
Analytic conductor $50.606$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.8.c.l.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.00000 - 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(105.000 + 181.865i) q^{5} +(-508.000 + 879.882i) q^{7} -512.000 q^{8} +1680.00 q^{10} +(-546.000 + 945.700i) q^{11} +(-691.000 - 1196.85i) q^{13} +(4064.00 + 7039.05i) q^{14} +(-2048.00 + 3547.24i) q^{16} +14706.0 q^{17} -39940.0 q^{19} +(6720.00 - 11639.4i) q^{20} +(4368.00 + 7565.60i) q^{22} +(-34356.0 - 59506.3i) q^{23} +(17012.5 - 29466.5i) q^{25} -11056.0 q^{26} +65024.0 q^{28} +(51285.0 - 88828.2i) q^{29} +(-113776. - 197066. i) q^{31} +(16384.0 + 28377.9i) q^{32} +(58824.0 - 101886. i) q^{34} -213360. q^{35} +160526. q^{37} +(-159760. + 276712. i) q^{38} +(-53760.0 - 93115.1i) q^{40} +(-5421.00 - 9389.45i) q^{41} +(315374. - 546244. i) q^{43} +69888.0 q^{44} -549696. q^{46} +(-236328. + 409332. i) q^{47} +(-104357. - 180751. i) q^{49} +(-136100. - 235732. i) q^{50} +(-44224.0 + 76598.2i) q^{52} -1.49402e6 q^{53} -229320. q^{55} +(260096. - 450499. i) q^{56} +(-410280. - 710626. i) q^{58} +(-1.32033e6 - 2.28688e6i) q^{59} +(-413851. + 716811. i) q^{61} -1.82042e6 q^{62} +262144. q^{64} +(145110. - 251338. i) q^{65} +(63002.0 + 109123. i) q^{67} +(-470592. - 815089. i) q^{68} +(-853440. + 1.47820e6i) q^{70} -1.41473e6 q^{71} +980282. q^{73} +(642104. - 1.11216e6i) q^{74} +(1.27808e6 + 2.21370e6i) q^{76} +(-554736. - 960831. i) q^{77} +(1.78340e6 - 3.08894e6i) q^{79} -860160. q^{80} -86736.0 q^{82} +(-2.83645e6 + 4.91287e6i) q^{83} +(1.54413e6 + 2.67451e6i) q^{85} +(-2.52299e6 - 4.36995e6i) q^{86} +(279552. - 484198. i) q^{88} -1.19512e7 q^{89} +1.40411e6 q^{91} +(-2.19878e6 + 3.80841e6i) q^{92} +(1.89062e6 + 3.27466e6i) q^{94} +(-4.19370e6 - 7.26370e6i) q^{95} +(-4.34107e6 + 7.51896e6i) q^{97} -1.66970e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 64 q^{4} + 210 q^{5} - 1016 q^{7} - 1024 q^{8} + 3360 q^{10} - 1092 q^{11} - 1382 q^{13} + 8128 q^{14} - 4096 q^{16} + 29412 q^{17} - 79880 q^{19} + 13440 q^{20} + 8736 q^{22} - 68712 q^{23}+ \cdots - 3339408 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 6.92820i 0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) 105.000 + 181.865i 0.375659 + 0.650661i 0.990425 0.138048i \(-0.0440829\pi\)
−0.614766 + 0.788709i \(0.710750\pi\)
\(6\) 0 0
\(7\) −508.000 + 879.882i −0.559784 + 0.969575i 0.437730 + 0.899107i \(0.355783\pi\)
−0.997514 + 0.0704680i \(0.977551\pi\)
\(8\) −512.000 −0.353553
\(9\) 0 0
\(10\) 1680.00 0.531263
\(11\) −546.000 + 945.700i −0.123685 + 0.214229i −0.921218 0.389046i \(-0.872805\pi\)
0.797533 + 0.603275i \(0.206138\pi\)
\(12\) 0 0
\(13\) −691.000 1196.85i −0.0872321 0.151090i 0.819108 0.573639i \(-0.194469\pi\)
−0.906340 + 0.422549i \(0.861136\pi\)
\(14\) 4064.00 + 7039.05i 0.395827 + 0.685593i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) 14706.0 0.725978 0.362989 0.931793i \(-0.381756\pi\)
0.362989 + 0.931793i \(0.381756\pi\)
\(18\) 0 0
\(19\) −39940.0 −1.33589 −0.667945 0.744211i \(-0.732826\pi\)
−0.667945 + 0.744211i \(0.732826\pi\)
\(20\) 6720.00 11639.4i 0.187830 0.325331i
\(21\) 0 0
\(22\) 4368.00 + 7565.60i 0.0874587 + 0.151483i
\(23\) −34356.0 59506.3i −0.588783 1.01980i −0.994392 0.105755i \(-0.966274\pi\)
0.405609 0.914047i \(-0.367059\pi\)
\(24\) 0 0
\(25\) 17012.5 29466.5i 0.217760 0.377171i
\(26\) −11056.0 −0.123365
\(27\) 0 0
\(28\) 65024.0 0.559784
\(29\) 51285.0 88828.2i 0.390479 0.676329i −0.602034 0.798470i \(-0.705643\pi\)
0.992513 + 0.122141i \(0.0389762\pi\)
\(30\) 0 0
\(31\) −113776. 197066.i −0.685938 1.18808i −0.973141 0.230209i \(-0.926059\pi\)
0.287203 0.957870i \(-0.407274\pi\)
\(32\) 16384.0 + 28377.9i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 58824.0 101886.i 0.256672 0.444569i
\(35\) −213360. −0.841153
\(36\) 0 0
\(37\) 160526. 0.521002 0.260501 0.965474i \(-0.416112\pi\)
0.260501 + 0.965474i \(0.416112\pi\)
\(38\) −159760. + 276712.i −0.472308 + 0.818062i
\(39\) 0 0
\(40\) −53760.0 93115.1i −0.132816 0.230043i
\(41\) −5421.00 9389.45i −0.0122839 0.0212763i 0.859818 0.510600i \(-0.170577\pi\)
−0.872102 + 0.489324i \(0.837244\pi\)
\(42\) 0 0
\(43\) 315374. 546244.i 0.604904 1.04772i −0.387163 0.922011i \(-0.626545\pi\)
0.992067 0.125713i \(-0.0401218\pi\)
\(44\) 69888.0 0.123685
\(45\) 0 0
\(46\) −549696. −0.832665
\(47\) −236328. + 409332.i −0.332026 + 0.575087i −0.982909 0.184092i \(-0.941066\pi\)
0.650883 + 0.759178i \(0.274399\pi\)
\(48\) 0 0
\(49\) −104357. 180751.i −0.126717 0.219479i
\(50\) −136100. 235732.i −0.153980 0.266700i
\(51\) 0 0
\(52\) −44224.0 + 76598.2i −0.0436160 + 0.0755452i
\(53\) −1.49402e6 −1.37845 −0.689224 0.724548i \(-0.742048\pi\)
−0.689224 + 0.724548i \(0.742048\pi\)
\(54\) 0 0
\(55\) −229320. −0.185854
\(56\) 260096. 450499.i 0.197914 0.342796i
\(57\) 0 0
\(58\) −410280. 710626.i −0.276110 0.478237i
\(59\) −1.32033e6 2.28688e6i −0.836952 1.44964i −0.892431 0.451183i \(-0.851002\pi\)
0.0554795 0.998460i \(-0.482331\pi\)
\(60\) 0 0
\(61\) −413851. + 716811.i −0.233448 + 0.404343i −0.958820 0.284013i \(-0.908334\pi\)
0.725373 + 0.688356i \(0.241667\pi\)
\(62\) −1.82042e6 −0.970063
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 145110. 251338.i 0.0655391 0.113517i
\(66\) 0 0
\(67\) 63002.0 + 109123.i 0.0255913 + 0.0443255i 0.878537 0.477674i \(-0.158520\pi\)
−0.852946 + 0.521999i \(0.825186\pi\)
\(68\) −470592. 815089.i −0.181494 0.314358i
\(69\) 0 0
\(70\) −853440. + 1.47820e6i −0.297392 + 0.515099i
\(71\) −1.41473e6 −0.469104 −0.234552 0.972104i \(-0.575362\pi\)
−0.234552 + 0.972104i \(0.575362\pi\)
\(72\) 0 0
\(73\) 980282. 0.294931 0.147466 0.989067i \(-0.452888\pi\)
0.147466 + 0.989067i \(0.452888\pi\)
\(74\) 642104. 1.11216e6i 0.184202 0.319047i
\(75\) 0 0
\(76\) 1.27808e6 + 2.21370e6i 0.333972 + 0.578457i
\(77\) −554736. 960831.i −0.138474 0.239844i
\(78\) 0 0
\(79\) 1.78340e6 3.08894e6i 0.406962 0.704879i −0.587586 0.809162i \(-0.699921\pi\)
0.994548 + 0.104283i \(0.0332548\pi\)
\(80\) −860160. −0.187830
\(81\) 0 0
\(82\) −86736.0 −0.0173720
\(83\) −2.83645e6 + 4.91287e6i −0.544504 + 0.943109i 0.454134 + 0.890934i \(0.349949\pi\)
−0.998638 + 0.0521754i \(0.983385\pi\)
\(84\) 0 0
\(85\) 1.54413e6 + 2.67451e6i 0.272720 + 0.472366i
\(86\) −2.52299e6 4.36995e6i −0.427732 0.740853i
\(87\) 0 0
\(88\) 279552. 484198.i 0.0437294 0.0757415i
\(89\) −1.19512e7 −1.79699 −0.898496 0.438982i \(-0.855339\pi\)
−0.898496 + 0.438982i \(0.855339\pi\)
\(90\) 0 0
\(91\) 1.40411e6 0.195325
\(92\) −2.19878e6 + 3.80841e6i −0.294391 + 0.509901i
\(93\) 0 0
\(94\) 1.89062e6 + 3.27466e6i 0.234778 + 0.406648i
\(95\) −4.19370e6 7.26370e6i −0.501839 0.869211i
\(96\) 0 0
\(97\) −4.34107e6 + 7.51896e6i −0.482943 + 0.836482i −0.999808 0.0195848i \(-0.993766\pi\)
0.516865 + 0.856067i \(0.327099\pi\)
\(98\) −1.66970e6 −0.179204
\(99\) 0 0
\(100\) −2.17760e6 −0.217760
\(101\) 5.03977e6 8.72914e6i 0.486727 0.843037i −0.513156 0.858295i \(-0.671524\pi\)
0.999884 + 0.0152586i \(0.00485716\pi\)
\(102\) 0 0
\(103\) −1.87400e6 3.24586e6i −0.168981 0.292684i 0.769081 0.639152i \(-0.220714\pi\)
−0.938062 + 0.346468i \(0.887381\pi\)
\(104\) 353792. + 612786.i 0.0308412 + 0.0534185i
\(105\) 0 0
\(106\) −5.97607e6 + 1.03509e7i −0.487355 + 0.844123i
\(107\) −1.79856e7 −1.41932 −0.709661 0.704543i \(-0.751152\pi\)
−0.709661 + 0.704543i \(0.751152\pi\)
\(108\) 0 0
\(109\) 1.22570e7 0.906552 0.453276 0.891370i \(-0.350255\pi\)
0.453276 + 0.891370i \(0.350255\pi\)
\(110\) −917280. + 1.58878e6i −0.0657094 + 0.113812i
\(111\) 0 0
\(112\) −2.08077e6 3.60400e6i −0.139946 0.242394i
\(113\) −8.29748e6 1.43717e7i −0.540968 0.936984i −0.998849 0.0479706i \(-0.984725\pi\)
0.457881 0.889014i \(-0.348609\pi\)
\(114\) 0 0
\(115\) 7.21476e6 1.24963e7i 0.442364 0.766196i
\(116\) −6.56448e6 −0.390479
\(117\) 0 0
\(118\) −2.11253e7 −1.18363
\(119\) −7.47065e6 + 1.29395e7i −0.406391 + 0.703890i
\(120\) 0 0
\(121\) 9.14735e6 + 1.58437e7i 0.469404 + 0.813031i
\(122\) 3.31081e6 + 5.73449e6i 0.165072 + 0.285914i
\(123\) 0 0
\(124\) −7.28166e6 + 1.26122e7i −0.342969 + 0.594040i
\(125\) 2.35515e7 1.07853
\(126\) 0 0
\(127\) 1.16826e6 0.0506087 0.0253043 0.999680i \(-0.491945\pi\)
0.0253043 + 0.999680i \(0.491945\pi\)
\(128\) 1.04858e6 1.81619e6i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −1.16088e6 2.01070e6i −0.0463432 0.0802687i
\(131\) 3.96191e6 + 6.86224e6i 0.153977 + 0.266696i 0.932686 0.360689i \(-0.117459\pi\)
−0.778709 + 0.627385i \(0.784125\pi\)
\(132\) 0 0
\(133\) 2.02895e7 3.51425e7i 0.747810 1.29524i
\(134\) 1.00803e6 0.0361916
\(135\) 0 0
\(136\) −7.52947e6 −0.256672
\(137\) 157827. 273364.i 0.00524396 0.00908280i −0.863392 0.504535i \(-0.831664\pi\)
0.868635 + 0.495452i \(0.164997\pi\)
\(138\) 0 0
\(139\) −1.96019e7 3.39515e7i −0.619079 1.07228i −0.989654 0.143474i \(-0.954173\pi\)
0.370575 0.928803i \(-0.379161\pi\)
\(140\) 6.82752e6 + 1.18256e7i 0.210288 + 0.364230i
\(141\) 0 0
\(142\) −5.65891e6 + 9.80152e6i −0.165853 + 0.287266i
\(143\) 1.50914e6 0.0431573
\(144\) 0 0
\(145\) 2.15397e7 0.586748
\(146\) 3.92113e6 6.79159e6i 0.104274 0.180608i
\(147\) 0 0
\(148\) −5.13683e6 8.89725e6i −0.130250 0.225600i
\(149\) 1.09430e7 + 1.89539e7i 0.271010 + 0.469403i 0.969121 0.246587i \(-0.0793090\pi\)
−0.698111 + 0.715990i \(0.745976\pi\)
\(150\) 0 0
\(151\) 1.47077e7 2.54745e7i 0.347637 0.602125i −0.638192 0.769877i \(-0.720317\pi\)
0.985829 + 0.167752i \(0.0536508\pi\)
\(152\) 2.04493e7 0.472308
\(153\) 0 0
\(154\) −8.87578e6 −0.195832
\(155\) 2.38930e7 4.13838e7i 0.515358 0.892626i
\(156\) 0 0
\(157\) −3.02775e7 5.24421e7i −0.624412 1.08151i −0.988654 0.150209i \(-0.952005\pi\)
0.364243 0.931304i \(-0.381328\pi\)
\(158\) −1.42672e7 2.47115e7i −0.287766 0.498425i
\(159\) 0 0
\(160\) −3.44064e6 + 5.95936e6i −0.0664078 + 0.115022i
\(161\) 6.98114e7 1.31837
\(162\) 0 0
\(163\) 5.70853e7 1.03245 0.516223 0.856454i \(-0.327337\pi\)
0.516223 + 0.856454i \(0.327337\pi\)
\(164\) −346944. + 600925.i −0.00614194 + 0.0106382i
\(165\) 0 0
\(166\) 2.26916e7 + 3.93029e7i 0.385023 + 0.666879i
\(167\) 4.38633e7 + 7.59734e7i 0.728775 + 1.26227i 0.957401 + 0.288760i \(0.0932431\pi\)
−0.228627 + 0.973514i \(0.573424\pi\)
\(168\) 0 0
\(169\) 3.04193e7 5.26878e7i 0.484781 0.839666i
\(170\) 2.47061e7 0.385685
\(171\) 0 0
\(172\) −4.03679e7 −0.604904
\(173\) −4.28477e6 + 7.42144e6i −0.0629167 + 0.108975i −0.895768 0.444522i \(-0.853374\pi\)
0.832851 + 0.553497i \(0.186707\pi\)
\(174\) 0 0
\(175\) 1.72847e7 + 2.99380e7i 0.243797 + 0.422269i
\(176\) −2.23642e6 3.87359e6i −0.0309213 0.0535573i
\(177\) 0 0
\(178\) −4.78048e7 + 8.28003e7i −0.635333 + 1.10043i
\(179\) 1.88041e7 0.245056 0.122528 0.992465i \(-0.460900\pi\)
0.122528 + 0.992465i \(0.460900\pi\)
\(180\) 0 0
\(181\) −5.99625e7 −0.751631 −0.375816 0.926694i \(-0.622637\pi\)
−0.375816 + 0.926694i \(0.622637\pi\)
\(182\) 5.61645e6 9.72797e6i 0.0690577 0.119611i
\(183\) 0 0
\(184\) 1.75903e7 + 3.04672e7i 0.208166 + 0.360554i
\(185\) 1.68552e7 + 2.91941e7i 0.195719 + 0.338996i
\(186\) 0 0
\(187\) −8.02948e6 + 1.39075e7i −0.0897928 + 0.155526i
\(188\) 3.02500e7 0.332026
\(189\) 0 0
\(190\) −6.70992e7 −0.709708
\(191\) −4.69931e7 + 8.13944e7i −0.487997 + 0.845235i −0.999905 0.0138052i \(-0.995606\pi\)
0.511908 + 0.859040i \(0.328939\pi\)
\(192\) 0 0
\(193\) 1.75973e7 + 3.04794e7i 0.176196 + 0.305180i 0.940574 0.339588i \(-0.110288\pi\)
−0.764379 + 0.644767i \(0.776954\pi\)
\(194\) 3.47286e7 + 6.01517e7i 0.341492 + 0.591482i
\(195\) 0 0
\(196\) −6.67882e6 + 1.15680e7i −0.0633583 + 0.109740i
\(197\) 1.02985e8 0.959718 0.479859 0.877346i \(-0.340688\pi\)
0.479859 + 0.877346i \(0.340688\pi\)
\(198\) 0 0
\(199\) 8.36376e7 0.752342 0.376171 0.926550i \(-0.377240\pi\)
0.376171 + 0.926550i \(0.377240\pi\)
\(200\) −8.71040e6 + 1.50869e7i −0.0769898 + 0.133350i
\(201\) 0 0
\(202\) −4.03182e7 6.98331e7i −0.344168 0.596117i
\(203\) 5.21056e7 + 9.02495e7i 0.437168 + 0.757196i
\(204\) 0 0
\(205\) 1.13841e6 1.97178e6i 0.00922912 0.0159853i
\(206\) −2.99839e7 −0.238975
\(207\) 0 0
\(208\) 5.66067e6 0.0436160
\(209\) 2.18072e7 3.77712e7i 0.165230 0.286187i
\(210\) 0 0
\(211\) 4.87005e7 + 8.43518e7i 0.356899 + 0.618167i 0.987441 0.157988i \(-0.0505008\pi\)
−0.630542 + 0.776155i \(0.717167\pi\)
\(212\) 4.78086e7 + 8.28069e7i 0.344612 + 0.596885i
\(213\) 0 0
\(214\) −7.19423e7 + 1.24608e8i −0.501806 + 0.869153i
\(215\) 1.32457e8 0.908951
\(216\) 0 0
\(217\) 2.31193e8 1.53591
\(218\) 4.90281e7 8.49192e7i 0.320514 0.555147i
\(219\) 0 0
\(220\) 7.33824e6 + 1.27102e7i 0.0464636 + 0.0804773i
\(221\) −1.01618e7 1.76008e7i −0.0633286 0.109688i
\(222\) 0 0
\(223\) 7.32286e6 1.26836e7i 0.0442195 0.0765904i −0.843069 0.537806i \(-0.819253\pi\)
0.887288 + 0.461216i \(0.152587\pi\)
\(224\) −3.32923e7 −0.197914
\(225\) 0 0
\(226\) −1.32760e8 −0.765045
\(227\) 9.22704e7 1.59817e8i 0.523567 0.906844i −0.476057 0.879414i \(-0.657934\pi\)
0.999624 0.0274298i \(-0.00873228\pi\)
\(228\) 0 0
\(229\) 4.37730e6 + 7.58171e6i 0.0240870 + 0.0417199i 0.877818 0.478995i \(-0.158999\pi\)
−0.853731 + 0.520715i \(0.825665\pi\)
\(230\) −5.77181e7 9.99706e7i −0.312798 0.541783i
\(231\) 0 0
\(232\) −2.62579e7 + 4.54801e7i −0.138055 + 0.239118i
\(233\) −1.19556e8 −0.619193 −0.309597 0.950868i \(-0.600194\pi\)
−0.309597 + 0.950868i \(0.600194\pi\)
\(234\) 0 0
\(235\) −9.92578e7 −0.498915
\(236\) −8.45011e7 + 1.46360e8i −0.418476 + 0.724822i
\(237\) 0 0
\(238\) 5.97652e7 + 1.03516e8i 0.287362 + 0.497725i
\(239\) −1.98105e8 3.43127e8i −0.938646 1.62578i −0.768000 0.640450i \(-0.778748\pi\)
−0.170646 0.985332i \(-0.554585\pi\)
\(240\) 0 0
\(241\) 1.28303e8 2.22228e8i 0.590443 1.02268i −0.403730 0.914878i \(-0.632287\pi\)
0.994173 0.107799i \(-0.0343801\pi\)
\(242\) 1.46358e8 0.663837
\(243\) 0 0
\(244\) 5.29729e7 0.233448
\(245\) 2.19149e7 3.79577e7i 0.0952045 0.164899i
\(246\) 0 0
\(247\) 2.75985e7 + 4.78021e7i 0.116532 + 0.201840i
\(248\) 5.82533e7 + 1.00898e8i 0.242516 + 0.420049i
\(249\) 0 0
\(250\) 9.42060e7 1.63170e8i 0.381319 0.660464i
\(251\) −7.34775e7 −0.293290 −0.146645 0.989189i \(-0.546847\pi\)
−0.146645 + 0.989189i \(0.546847\pi\)
\(252\) 0 0
\(253\) 7.50335e7 0.291295
\(254\) 4.67302e6 8.09391e6i 0.0178929 0.0309914i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) 1.01351e8 + 1.75544e8i 0.372443 + 0.645091i 0.989941 0.141482i \(-0.0451868\pi\)
−0.617498 + 0.786573i \(0.711853\pi\)
\(258\) 0 0
\(259\) −8.15472e7 + 1.41244e8i −0.291649 + 0.505150i
\(260\) −1.85741e7 −0.0655391
\(261\) 0 0
\(262\) 6.33906e7 0.217756
\(263\) −7.71270e7 + 1.33588e8i −0.261434 + 0.452816i −0.966623 0.256203i \(-0.917529\pi\)
0.705189 + 0.709019i \(0.250862\pi\)
\(264\) 0 0
\(265\) −1.56872e8 2.71710e8i −0.517827 0.896902i
\(266\) −1.62316e8 2.81140e8i −0.528781 0.915876i
\(267\) 0 0
\(268\) 4.03213e6 6.98385e6i 0.0127957 0.0221627i
\(269\) −6.24018e8 −1.95463 −0.977315 0.211793i \(-0.932070\pi\)
−0.977315 + 0.211793i \(0.932070\pi\)
\(270\) 0 0
\(271\) −3.87983e8 −1.18419 −0.592094 0.805869i \(-0.701698\pi\)
−0.592094 + 0.805869i \(0.701698\pi\)
\(272\) −3.01179e7 + 5.21657e7i −0.0907472 + 0.157179i
\(273\) 0 0
\(274\) −1.26262e6 2.18692e6i −0.00370804 0.00642251i
\(275\) 1.85776e7 + 3.21774e7i 0.0538674 + 0.0933011i
\(276\) 0 0
\(277\) −2.26976e8 + 3.93134e8i −0.641654 + 1.11138i 0.343409 + 0.939186i \(0.388418\pi\)
−0.985063 + 0.172192i \(0.944915\pi\)
\(278\) −3.13630e8 −0.875510
\(279\) 0 0
\(280\) 1.09240e8 0.297392
\(281\) −1.66885e8 + 2.89053e8i −0.448689 + 0.777152i −0.998301 0.0582682i \(-0.981442\pi\)
0.549612 + 0.835420i \(0.314775\pi\)
\(282\) 0 0
\(283\) −2.68847e8 4.65657e8i −0.705104 1.22128i −0.966654 0.256086i \(-0.917567\pi\)
0.261550 0.965190i \(-0.415766\pi\)
\(284\) 4.52713e7 + 7.84122e7i 0.117276 + 0.203128i
\(285\) 0 0
\(286\) 6.03658e6 1.04557e7i 0.0152584 0.0264284i
\(287\) 1.10155e7 0.0275053
\(288\) 0 0
\(289\) −1.94072e8 −0.472956
\(290\) 8.61588e7 1.49231e8i 0.207447 0.359308i
\(291\) 0 0
\(292\) −3.13690e7 5.43327e7i −0.0737329 0.127709i
\(293\) −1.67800e8 2.90638e8i −0.389722 0.675019i 0.602690 0.797976i \(-0.294096\pi\)
−0.992412 + 0.122957i \(0.960762\pi\)
\(294\) 0 0
\(295\) 2.77269e8 4.80245e8i 0.628818 1.08914i
\(296\) −8.21893e7 −0.184202
\(297\) 0 0
\(298\) 1.75088e8 0.383266
\(299\) −4.74800e7 + 8.22378e7i −0.102722 + 0.177919i
\(300\) 0 0
\(301\) 3.20420e8 + 5.54984e8i 0.677231 + 1.17300i
\(302\) −1.17662e8 2.03796e8i −0.245817 0.425767i
\(303\) 0 0
\(304\) 8.17971e7 1.41677e8i 0.166986 0.289229i
\(305\) −1.73817e8 −0.350787
\(306\) 0 0
\(307\) 2.15029e8 0.424143 0.212072 0.977254i \(-0.431979\pi\)
0.212072 + 0.977254i \(0.431979\pi\)
\(308\) −3.55031e7 + 6.14932e7i −0.0692371 + 0.119922i
\(309\) 0 0
\(310\) −1.91144e8 3.31071e8i −0.364413 0.631182i
\(311\) −3.96031e8 6.85945e8i −0.746565 1.29309i −0.949460 0.313888i \(-0.898368\pi\)
0.202895 0.979200i \(-0.434965\pi\)
\(312\) 0 0
\(313\) 5.92287e7 1.02587e8i 0.109176 0.189098i −0.806261 0.591560i \(-0.798512\pi\)
0.915437 + 0.402462i \(0.131845\pi\)
\(314\) −4.84440e8 −0.883051
\(315\) 0 0
\(316\) −2.28275e8 −0.406962
\(317\) 2.53655e7 4.39343e7i 0.0447235 0.0774633i −0.842797 0.538231i \(-0.819093\pi\)
0.887521 + 0.460768i \(0.152426\pi\)
\(318\) 0 0
\(319\) 5.60032e7 + 9.70004e7i 0.0965930 + 0.167304i
\(320\) 2.75251e7 + 4.76749e7i 0.0469574 + 0.0813327i
\(321\) 0 0
\(322\) 2.79246e8 4.83668e8i 0.466112 0.807331i
\(323\) −5.87358e8 −0.969826
\(324\) 0 0
\(325\) −4.70226e7 −0.0759826
\(326\) 2.28341e8 3.95499e8i 0.365025 0.632242i
\(327\) 0 0
\(328\) 2.77555e6 + 4.80740e6i 0.00434301 + 0.00752232i
\(329\) −2.40109e8 4.15881e8i −0.371726 0.643849i
\(330\) 0 0
\(331\) −1.36878e8 + 2.37080e8i −0.207461 + 0.359334i −0.950914 0.309455i \(-0.899853\pi\)
0.743453 + 0.668788i \(0.233187\pi\)
\(332\) 3.63065e8 0.544504
\(333\) 0 0
\(334\) 7.01812e8 1.03064
\(335\) −1.32304e7 + 2.29158e7i −0.0192272 + 0.0333025i
\(336\) 0 0
\(337\) 4.59256e7 + 7.95455e7i 0.0653658 + 0.113217i 0.896856 0.442322i \(-0.145845\pi\)
−0.831490 + 0.555539i \(0.812512\pi\)
\(338\) −2.43354e8 4.21502e8i −0.342792 0.593733i
\(339\) 0 0
\(340\) 9.88243e7 1.71169e8i 0.136360 0.236183i
\(341\) 2.48487e8 0.339362
\(342\) 0 0
\(343\) −6.24667e8 −0.835833
\(344\) −1.61471e8 + 2.79677e8i −0.213866 + 0.370426i
\(345\) 0 0
\(346\) 3.42782e7 + 5.93715e7i 0.0444889 + 0.0770570i
\(347\) 6.83502e8 + 1.18386e9i 0.878187 + 1.52106i 0.853329 + 0.521373i \(0.174580\pi\)
0.0248578 + 0.999691i \(0.492087\pi\)
\(348\) 0 0
\(349\) −5.65716e8 + 9.79849e8i −0.712377 + 1.23387i 0.251586 + 0.967835i \(0.419048\pi\)
−0.963963 + 0.266038i \(0.914285\pi\)
\(350\) 2.76555e8 0.344781
\(351\) 0 0
\(352\) −3.57827e7 −0.0437294
\(353\) 2.24198e7 3.88322e7i 0.0271281 0.0469873i −0.852143 0.523310i \(-0.824697\pi\)
0.879271 + 0.476322i \(0.158030\pi\)
\(354\) 0 0
\(355\) −1.48546e8 2.57290e8i −0.176223 0.305227i
\(356\) 3.82438e8 + 6.62402e8i 0.449248 + 0.778120i
\(357\) 0 0
\(358\) 7.52162e7 1.30278e8i 0.0866405 0.150066i
\(359\) 3.98281e8 0.454317 0.227158 0.973858i \(-0.427057\pi\)
0.227158 + 0.973858i \(0.427057\pi\)
\(360\) 0 0
\(361\) 7.01332e8 0.784600
\(362\) −2.39850e8 + 4.15432e8i −0.265742 + 0.460278i
\(363\) 0 0
\(364\) −4.49316e7 7.78238e7i −0.0488311 0.0845780i
\(365\) 1.02930e8 + 1.78279e8i 0.110794 + 0.191900i
\(366\) 0 0
\(367\) −8.17359e8 + 1.41571e9i −0.863140 + 1.49500i 0.00574132 + 0.999984i \(0.498172\pi\)
−0.868882 + 0.495020i \(0.835161\pi\)
\(368\) 2.81444e8 0.294391
\(369\) 0 0
\(370\) 2.69684e8 0.276789
\(371\) 7.58961e8 1.31456e9i 0.771633 1.33651i
\(372\) 0 0
\(373\) 7.73166e8 + 1.33916e9i 0.771421 + 1.33614i 0.936784 + 0.349908i \(0.113787\pi\)
−0.165363 + 0.986233i \(0.552879\pi\)
\(374\) 6.42358e7 + 1.11260e8i 0.0634931 + 0.109973i
\(375\) 0 0
\(376\) 1.21000e8 2.09578e8i 0.117389 0.203324i
\(377\) −1.41752e8 −0.136249
\(378\) 0 0
\(379\) −1.05688e9 −0.997216 −0.498608 0.866828i \(-0.666155\pi\)
−0.498608 + 0.866828i \(0.666155\pi\)
\(380\) −2.68397e8 + 4.64877e8i −0.250920 + 0.434606i
\(381\) 0 0
\(382\) 3.75944e8 + 6.51155e8i 0.345066 + 0.597671i
\(383\) −1.12455e8 1.94778e8i −0.102278 0.177151i 0.810345 0.585953i \(-0.199280\pi\)
−0.912623 + 0.408802i \(0.865947\pi\)
\(384\) 0 0
\(385\) 1.16495e8 2.01774e8i 0.104038 0.180200i
\(386\) 2.81556e8 0.249178
\(387\) 0 0
\(388\) 5.55657e8 0.482943
\(389\) −5.08941e8 + 8.81512e8i −0.438373 + 0.759284i −0.997564 0.0697544i \(-0.977778\pi\)
0.559191 + 0.829039i \(0.311112\pi\)
\(390\) 0 0
\(391\) −5.05239e8 8.75100e8i −0.427443 0.740353i
\(392\) 5.34305e7 + 9.25444e7i 0.0448011 + 0.0775977i
\(393\) 0 0
\(394\) 4.11941e8 7.13503e8i 0.339311 0.587705i
\(395\) 7.49028e8 0.611517
\(396\) 0 0
\(397\) −1.47565e9 −1.18363 −0.591817 0.806072i \(-0.701589\pi\)
−0.591817 + 0.806072i \(0.701589\pi\)
\(398\) 3.34550e8 5.79458e8i 0.265993 0.460714i
\(399\) 0 0
\(400\) 6.96832e7 + 1.20695e8i 0.0544400 + 0.0942928i
\(401\) −1.37456e8 2.38081e8i −0.106453 0.184382i 0.807878 0.589350i \(-0.200616\pi\)
−0.914331 + 0.404968i \(0.867283\pi\)
\(402\) 0 0
\(403\) −1.57238e8 + 2.72345e8i −0.119672 + 0.207277i
\(404\) −6.45090e8 −0.486727
\(405\) 0 0
\(406\) 8.33689e8 0.618248
\(407\) −8.76472e7 + 1.51809e8i −0.0644403 + 0.111614i
\(408\) 0 0
\(409\) 8.17136e8 + 1.41532e9i 0.590558 + 1.02288i 0.994157 + 0.107941i \(0.0344258\pi\)
−0.403599 + 0.914936i \(0.632241\pi\)
\(410\) −9.10728e6 1.57743e7i −0.00652597 0.0113033i
\(411\) 0 0
\(412\) −1.19936e8 + 2.07735e8i −0.0844906 + 0.146342i
\(413\) 2.68291e9 1.87405
\(414\) 0 0
\(415\) −1.19131e9 −0.818192
\(416\) 2.26427e7 3.92183e7i 0.0154206 0.0267093i
\(417\) 0 0
\(418\) −1.74458e8 3.02170e8i −0.116835 0.202365i
\(419\) 5.56399e8 + 9.63711e8i 0.369519 + 0.640026i 0.989490 0.144598i \(-0.0461890\pi\)
−0.619971 + 0.784625i \(0.712856\pi\)
\(420\) 0 0
\(421\) −4.61264e8 + 7.98933e8i −0.301274 + 0.521823i −0.976425 0.215857i \(-0.930745\pi\)
0.675150 + 0.737680i \(0.264079\pi\)
\(422\) 7.79208e8 0.504731
\(423\) 0 0
\(424\) 7.64937e8 0.487355
\(425\) 2.50186e8 4.33335e8i 0.158089 0.273818i
\(426\) 0 0
\(427\) −4.20473e8 7.28280e8i −0.261361 0.452690i
\(428\) 5.75538e8 + 9.96861e8i 0.354830 + 0.614584i
\(429\) 0 0
\(430\) 5.29828e8 9.17690e8i 0.321363 0.556617i
\(431\) −9.81508e8 −0.590505 −0.295252 0.955419i \(-0.595404\pi\)
−0.295252 + 0.955419i \(0.595404\pi\)
\(432\) 0 0
\(433\) 2.84998e9 1.68707 0.843537 0.537071i \(-0.180469\pi\)
0.843537 + 0.537071i \(0.180469\pi\)
\(434\) 9.24771e8 1.60175e9i 0.543026 0.940548i
\(435\) 0 0
\(436\) −3.92225e8 6.79354e8i −0.226638 0.392548i
\(437\) 1.37218e9 + 2.37668e9i 0.786549 + 1.36234i
\(438\) 0 0
\(439\) 5.28109e8 9.14712e8i 0.297919 0.516011i −0.677741 0.735301i \(-0.737041\pi\)
0.975660 + 0.219290i \(0.0703742\pi\)
\(440\) 1.17412e8 0.0657094
\(441\) 0 0
\(442\) −1.62590e8 −0.0895601
\(443\) −9.11627e8 + 1.57899e9i −0.498201 + 0.862909i −0.999998 0.00207637i \(-0.999339\pi\)
0.501797 + 0.864985i \(0.332672\pi\)
\(444\) 0 0
\(445\) −1.25487e9 2.17351e9i −0.675057 1.16923i
\(446\) −5.85829e7 1.01469e8i −0.0312679 0.0541576i
\(447\) 0 0
\(448\) −1.33169e8 + 2.30656e8i −0.0699730 + 0.121197i
\(449\) 1.84846e9 0.963713 0.481856 0.876250i \(-0.339963\pi\)
0.481856 + 0.876250i \(0.339963\pi\)
\(450\) 0 0
\(451\) 1.18395e7 0.00607735
\(452\) −5.31039e8 + 9.19786e8i −0.270484 + 0.468492i
\(453\) 0 0
\(454\) −7.38164e8 1.27854e9i −0.370218 0.641236i
\(455\) 1.47432e8 + 2.55359e8i 0.0733755 + 0.127090i
\(456\) 0 0
\(457\) 1.49033e9 2.58133e9i 0.730425 1.26513i −0.226276 0.974063i \(-0.572655\pi\)
0.956702 0.291071i \(-0.0940114\pi\)
\(458\) 7.00369e7 0.0340642
\(459\) 0 0
\(460\) −9.23489e8 −0.442364
\(461\) 1.26390e9 2.18915e9i 0.600843 1.04069i −0.391851 0.920029i \(-0.628165\pi\)
0.992694 0.120661i \(-0.0385015\pi\)
\(462\) 0 0
\(463\) 4.45145e8 + 7.71014e8i 0.208434 + 0.361018i 0.951221 0.308509i \(-0.0998300\pi\)
−0.742787 + 0.669527i \(0.766497\pi\)
\(464\) 2.10063e8 + 3.63840e8i 0.0976197 + 0.169082i
\(465\) 0 0
\(466\) −4.78225e8 + 8.28310e8i −0.218918 + 0.379177i
\(467\) 2.65667e9 1.20706 0.603529 0.797341i \(-0.293761\pi\)
0.603529 + 0.797341i \(0.293761\pi\)
\(468\) 0 0
\(469\) −1.28020e8 −0.0573024
\(470\) −3.97031e8 + 6.87678e8i −0.176393 + 0.305522i
\(471\) 0 0
\(472\) 6.76009e8 + 1.17088e9i 0.295907 + 0.512526i
\(473\) 3.44388e8 + 5.96498e8i 0.149635 + 0.259176i
\(474\) 0 0
\(475\) −6.79479e8 + 1.17689e9i −0.290903 + 0.503859i
\(476\) 9.56243e8 0.406391
\(477\) 0 0
\(478\) −3.16967e9 −1.32745
\(479\) −6.50467e8 + 1.12664e9i −0.270428 + 0.468394i −0.968971 0.247173i \(-0.920498\pi\)
0.698544 + 0.715567i \(0.253832\pi\)
\(480\) 0 0
\(481\) −1.10923e8 1.92125e8i −0.0454481 0.0787184i
\(482\) −1.02643e9 1.77782e9i −0.417506 0.723142i
\(483\) 0 0
\(484\) 5.85431e8 1.01400e9i 0.234702 0.406516i
\(485\) −1.82325e9 −0.725689
\(486\) 0 0
\(487\) −1.07447e9 −0.421542 −0.210771 0.977535i \(-0.567598\pi\)
−0.210771 + 0.977535i \(0.567598\pi\)
\(488\) 2.11892e8 3.67007e8i 0.0825362 0.142957i
\(489\) 0 0
\(490\) −1.75319e8 3.03661e8i −0.0673198 0.116601i
\(491\) 3.91672e8 + 6.78396e8i 0.149327 + 0.258641i 0.930979 0.365073i \(-0.118956\pi\)
−0.781652 + 0.623715i \(0.785623\pi\)
\(492\) 0 0
\(493\) 7.54197e8 1.30631e9i 0.283479 0.491000i
\(494\) 4.41577e8 0.164802
\(495\) 0 0
\(496\) 9.32053e8 0.342969
\(497\) 7.18682e8 1.24479e9i 0.262597 0.454831i
\(498\) 0 0
\(499\) 3.11594e8 + 5.39697e8i 0.112263 + 0.194445i 0.916682 0.399617i \(-0.130857\pi\)
−0.804419 + 0.594062i \(0.797523\pi\)
\(500\) −7.53648e8 1.30536e9i −0.269633 0.467019i
\(501\) 0 0
\(502\) −2.93910e8 + 5.09067e8i −0.103694 + 0.179602i
\(503\) −2.70927e9 −0.949215 −0.474607 0.880198i \(-0.657410\pi\)
−0.474607 + 0.880198i \(0.657410\pi\)
\(504\) 0 0
\(505\) 2.11670e9 0.731375
\(506\) 3.00134e8 5.19847e8i 0.102988 0.178381i
\(507\) 0 0
\(508\) −3.73842e7 6.47513e7i −0.0126522 0.0219142i
\(509\) −1.74972e9 3.03060e9i −0.588106 1.01863i −0.994480 0.104923i \(-0.966540\pi\)
0.406374 0.913707i \(-0.366793\pi\)
\(510\) 0 0
\(511\) −4.97983e8 + 8.62532e8i −0.165098 + 0.285958i
\(512\) −1.34218e8 −0.0441942
\(513\) 0 0
\(514\) 1.62161e9 0.526714
\(515\) 3.93539e8 6.81630e8i 0.126959 0.219899i
\(516\) 0 0
\(517\) −2.58070e8 4.46991e8i −0.0821336 0.142260i
\(518\) 6.52378e8 + 1.12995e9i 0.206227 + 0.357195i
\(519\) 0 0
\(520\) −7.42963e7 + 1.28685e8i −0.0231716 + 0.0401343i
\(521\) −1.37683e9 −0.426530 −0.213265 0.976994i \(-0.568410\pi\)
−0.213265 + 0.976994i \(0.568410\pi\)
\(522\) 0 0
\(523\) −2.86154e9 −0.874669 −0.437334 0.899299i \(-0.644077\pi\)
−0.437334 + 0.899299i \(0.644077\pi\)
\(524\) 2.53562e8 4.39183e8i 0.0769884 0.133348i
\(525\) 0 0
\(526\) 6.17016e8 + 1.06870e9i 0.184862 + 0.320190i
\(527\) −1.67319e9 2.89805e9i −0.497976 0.862519i
\(528\) 0 0
\(529\) −6.58257e8 + 1.14013e9i −0.193331 + 0.334858i
\(530\) −2.50995e9 −0.732318
\(531\) 0 0
\(532\) −2.59706e9 −0.747810
\(533\) −7.49182e6 + 1.29762e7i −0.00214310 + 0.00371196i
\(534\) 0 0
\(535\) −1.88848e9 3.27095e9i −0.533182 0.923498i
\(536\) −3.22570e7 5.58708e7i −0.00904789 0.0156714i
\(537\) 0 0
\(538\) −2.49607e9 + 4.32333e9i −0.691066 + 1.19696i
\(539\) 2.27915e8 0.0626919
\(540\) 0 0
\(541\) 5.34467e9 1.45121 0.725605 0.688111i \(-0.241560\pi\)
0.725605 + 0.688111i \(0.241560\pi\)
\(542\) −1.55193e9 + 2.68803e9i −0.418673 + 0.725164i
\(543\) 0 0
\(544\) 2.40943e8 + 4.17326e8i 0.0641680 + 0.111142i
\(545\) 1.28699e9 + 2.22913e9i 0.340555 + 0.589858i
\(546\) 0 0
\(547\) 1.68567e9 2.91967e9i 0.440370 0.762743i −0.557347 0.830280i \(-0.688181\pi\)
0.997717 + 0.0675365i \(0.0215139\pi\)
\(548\) −2.02019e7 −0.00524396
\(549\) 0 0
\(550\) 2.97242e8 0.0761801
\(551\) −2.04832e9 + 3.54780e9i −0.521636 + 0.903501i
\(552\) 0 0
\(553\) 1.81193e9 + 3.13836e9i 0.455622 + 0.789160i
\(554\) 1.81581e9 + 3.14507e9i 0.453718 + 0.785863i
\(555\) 0 0
\(556\) −1.25452e9 + 2.17289e9i −0.309540 + 0.536138i
\(557\) −5.61106e9 −1.37579 −0.687894 0.725811i \(-0.741465\pi\)
−0.687894 + 0.725811i \(0.741465\pi\)
\(558\) 0 0
\(559\) −8.71694e8 −0.211068
\(560\) 4.36961e8 7.56839e8i 0.105144 0.182115i
\(561\) 0 0
\(562\) 1.33508e9 + 2.31243e9i 0.317271 + 0.549529i
\(563\) −3.34845e9 5.79968e9i −0.790795 1.36970i −0.925475 0.378809i \(-0.876334\pi\)
0.134680 0.990889i \(-0.456999\pi\)
\(564\) 0 0
\(565\) 1.74247e9 3.01805e9i 0.406440 0.703974i
\(566\) −4.30156e9 −0.997168
\(567\) 0 0
\(568\) 7.24341e8 0.165853
\(569\) −9.84251e8 + 1.70477e9i −0.223982 + 0.387948i −0.956013 0.293323i \(-0.905239\pi\)
0.732032 + 0.681271i \(0.238572\pi\)
\(570\) 0 0
\(571\) −5.14629e8 8.91363e8i −0.115682 0.200368i 0.802370 0.596827i \(-0.203572\pi\)
−0.918052 + 0.396459i \(0.870239\pi\)
\(572\) −4.82926e7 8.36453e7i −0.0107893 0.0186877i
\(573\) 0 0
\(574\) 4.40619e7 7.63174e7i 0.00972459 0.0168435i
\(575\) −2.33793e9 −0.512853
\(576\) 0 0
\(577\) 3.31179e9 0.717708 0.358854 0.933394i \(-0.383168\pi\)
0.358854 + 0.933394i \(0.383168\pi\)
\(578\) −7.76289e8 + 1.34457e9i −0.167215 + 0.289625i
\(579\) 0 0
\(580\) −6.89270e8 1.19385e9i −0.146687 0.254069i
\(581\) −2.88183e9 4.99147e9i −0.609610 1.05587i
\(582\) 0 0
\(583\) 8.15734e8 1.41289e9i 0.170494 0.295304i
\(584\) −5.01904e8 −0.104274
\(585\) 0 0
\(586\) −2.68480e9 −0.551151
\(587\) 2.79705e8 4.84464e8i 0.0570778 0.0988617i −0.836075 0.548616i \(-0.815155\pi\)
0.893152 + 0.449754i \(0.148488\pi\)
\(588\) 0 0
\(589\) 4.54421e9 + 7.87081e9i 0.916337 + 1.58714i
\(590\) −2.21815e9 3.84196e9i −0.444641 0.770141i
\(591\) 0 0
\(592\) −3.28757e8 + 5.69424e8i −0.0651252 + 0.112800i
\(593\) −3.02459e9 −0.595628 −0.297814 0.954624i \(-0.596258\pi\)
−0.297814 + 0.954624i \(0.596258\pi\)
\(594\) 0 0
\(595\) −3.13767e9 −0.610658
\(596\) 7.00354e8 1.21305e9i 0.135505 0.234702i
\(597\) 0 0
\(598\) 3.79840e8 + 6.57902e8i 0.0726351 + 0.125808i
\(599\) 2.81623e9 + 4.87785e9i 0.535395 + 0.927331i 0.999144 + 0.0413648i \(0.0131706\pi\)
−0.463749 + 0.885967i \(0.653496\pi\)
\(600\) 0 0
\(601\) −1.70396e8 + 2.95134e8i −0.0320183 + 0.0554573i −0.881591 0.472015i \(-0.843527\pi\)
0.849572 + 0.527472i \(0.176860\pi\)
\(602\) 5.12672e9 0.957749
\(603\) 0 0
\(604\) −1.88259e9 −0.347637
\(605\) −1.92094e9 + 3.32717e9i −0.352672 + 0.610846i
\(606\) 0 0
\(607\) −1.92710e9 3.33783e9i −0.349739 0.605765i 0.636464 0.771306i \(-0.280396\pi\)
−0.986203 + 0.165541i \(0.947063\pi\)
\(608\) −6.54377e8 1.13341e9i −0.118077 0.204515i
\(609\) 0 0
\(610\) −6.95270e8 + 1.20424e9i −0.124022 + 0.214812i
\(611\) 6.53211e8 0.115853
\(612\) 0 0
\(613\) 9.22245e9 1.61709 0.808545 0.588434i \(-0.200255\pi\)
0.808545 + 0.588434i \(0.200255\pi\)
\(614\) 8.60116e8 1.48976e9i 0.149957 0.259734i
\(615\) 0 0
\(616\) 2.84025e8 + 4.91945e8i 0.0489580 + 0.0847978i
\(617\) −3.26806e9 5.66044e9i −0.560133 0.970179i −0.997484 0.0708885i \(-0.977417\pi\)
0.437351 0.899291i \(-0.355917\pi\)
\(618\) 0 0
\(619\) −6.82793e8 + 1.18263e9i −0.115710 + 0.200416i −0.918063 0.396434i \(-0.870248\pi\)
0.802353 + 0.596849i \(0.203581\pi\)
\(620\) −3.05830e9 −0.515358
\(621\) 0 0
\(622\) −6.33649e9 −1.05580
\(623\) 6.07120e9 1.05156e10i 1.00593 1.74232i
\(624\) 0 0
\(625\) 1.14381e9 + 1.98113e9i 0.187401 + 0.324588i
\(626\) −4.73830e8 8.20697e8i −0.0771991 0.133713i
\(627\) 0 0
\(628\) −1.93776e9 + 3.35630e9i −0.312206 + 0.540756i
\(629\) 2.36070e9 0.378236
\(630\) 0 0
\(631\) 1.54079e9 0.244141 0.122070 0.992521i \(-0.461047\pi\)
0.122070 + 0.992521i \(0.461047\pi\)
\(632\) −9.13101e8 + 1.58154e9i −0.143883 + 0.249212i
\(633\) 0 0
\(634\) −2.02924e8 3.51474e8i −0.0316243 0.0547749i
\(635\) 1.22667e8 + 2.12465e8i 0.0190116 + 0.0329291i
\(636\) 0 0
\(637\) −1.44221e8 + 2.49798e8i −0.0221075 + 0.0382913i
\(638\) 8.96052e8 0.136603
\(639\) 0 0
\(640\) 4.40402e8 0.0664078
\(641\) 2.27009e9 3.93191e9i 0.340440 0.589659i −0.644075 0.764963i \(-0.722757\pi\)
0.984514 + 0.175304i \(0.0560908\pi\)
\(642\) 0 0
\(643\) −5.70269e9 9.87735e9i −0.845944 1.46522i −0.884799 0.465973i \(-0.845705\pi\)
0.0388554 0.999245i \(-0.487629\pi\)
\(644\) −2.23396e9 3.86934e9i −0.329591 0.570869i
\(645\) 0 0
\(646\) −2.34943e9 + 4.06933e9i −0.342885 + 0.593895i
\(647\) −1.26393e10 −1.83468 −0.917338 0.398109i \(-0.869666\pi\)
−0.917338 + 0.398109i \(0.869666\pi\)
\(648\) 0 0
\(649\) 2.88360e9 0.414075
\(650\) −1.88090e8 + 3.25782e8i −0.0268639 + 0.0465297i
\(651\) 0 0
\(652\) −1.82673e9 3.16399e9i −0.258112 0.447063i
\(653\) 5.25022e9 + 9.09365e9i 0.737873 + 1.27803i 0.953451 + 0.301547i \(0.0975029\pi\)
−0.215579 + 0.976486i \(0.569164\pi\)
\(654\) 0 0
\(655\) −8.32002e8 + 1.44107e9i −0.115686 + 0.200374i
\(656\) 4.44088e7 0.00614194
\(657\) 0 0
\(658\) −3.84175e9 −0.525700
\(659\) −4.82409e9 + 8.35557e9i −0.656624 + 1.13731i 0.324861 + 0.945762i \(0.394683\pi\)
−0.981484 + 0.191543i \(0.938651\pi\)
\(660\) 0 0
\(661\) 3.29149e9 + 5.70103e9i 0.443290 + 0.767801i 0.997931 0.0642888i \(-0.0204779\pi\)
−0.554641 + 0.832089i \(0.687145\pi\)
\(662\) 1.09503e9 + 1.89664e9i 0.146697 + 0.254087i
\(663\) 0 0
\(664\) 1.45226e9 2.51539e9i 0.192511 0.333439i
\(665\) 8.52160e9 1.12369
\(666\) 0 0
\(667\) −7.04779e9 −0.919629
\(668\) 2.80725e9 4.86230e9i 0.364387 0.631137i
\(669\) 0 0
\(670\) 1.05843e8 + 1.83326e8i 0.0135957 + 0.0235485i
\(671\) −4.51925e8 7.82758e8i −0.0577481 0.100023i
\(672\) 0 0
\(673\) 4.27324e9 7.40148e9i 0.540387 0.935978i −0.458494 0.888697i \(-0.651611\pi\)
0.998882 0.0472808i \(-0.0150556\pi\)
\(674\) 7.34810e8 0.0924411
\(675\) 0 0
\(676\) −3.89367e9 −0.484781
\(677\) −4.35652e9 + 7.54572e9i −0.539610 + 0.934631i 0.459315 + 0.888273i \(0.348095\pi\)
−0.998925 + 0.0463581i \(0.985238\pi\)
\(678\) 0 0
\(679\) −4.41053e9 7.63926e9i −0.540688 0.936499i
\(680\) −7.90595e8 1.36935e9i −0.0964212 0.167006i
\(681\) 0 0
\(682\) 9.93947e8 1.72157e9i 0.119983 0.207816i
\(683\) 1.46109e10 1.75470 0.877351 0.479849i \(-0.159308\pi\)
0.877351 + 0.479849i \(0.159308\pi\)
\(684\) 0 0
\(685\) 6.62873e7 0.00787977
\(686\) −2.49867e9 + 4.32782e9i −0.295511 + 0.511841i
\(687\) 0 0
\(688\) 1.29177e9 + 2.23741e9i 0.151226 + 0.261931i
\(689\) 1.03237e9 + 1.78811e9i 0.120245 + 0.208270i
\(690\) 0 0
\(691\) 7.36738e9 1.27607e10i 0.849454 1.47130i −0.0322413 0.999480i \(-0.510265\pi\)
0.881696 0.471818i \(-0.156402\pi\)
\(692\) 5.48451e8 0.0629167
\(693\) 0 0
\(694\) 1.09360e10 1.24194
\(695\) 4.11640e9 7.12981e9i 0.465126 0.805622i
\(696\) 0 0
\(697\) −7.97212e7 1.38081e8i −0.00891783 0.0154461i
\(698\) 4.52573e9 + 7.83879e9i 0.503726 + 0.872480i
\(699\) 0 0
\(700\) 1.10622e9 1.91603e9i 0.121899 0.211135i
\(701\) 1.31502e9 0.144185 0.0720923 0.997398i \(-0.477032\pi\)
0.0720923 + 0.997398i \(0.477032\pi\)
\(702\) 0 0
\(703\) −6.41141e9 −0.696001
\(704\) −1.43131e8 + 2.47910e8i −0.0154607 + 0.0267787i
\(705\) 0 0
\(706\) −1.79358e8 3.10657e8i −0.0191825 0.0332250i
\(707\) 5.12041e9 + 8.86880e9i 0.544925 + 0.943837i
\(708\) 0 0
\(709\) −3.32014e8 + 5.75065e8i −0.0349860 + 0.0605976i −0.882988 0.469395i \(-0.844472\pi\)
0.848002 + 0.529993i \(0.177805\pi\)
\(710\) −2.37674e9 −0.249217
\(711\) 0 0
\(712\) 6.11901e9 0.635333
\(713\) −7.81778e9 + 1.35408e10i −0.807737 + 1.39904i
\(714\) 0 0
\(715\) 1.58460e8 + 2.74461e8i 0.0162125 + 0.0280808i
\(716\) −6.01730e8 1.04223e9i −0.0612641 0.106113i
\(717\) 0 0
\(718\) 1.59312e9 2.75937e9i 0.160625 0.278211i
\(719\) 4.95034e9 0.496689 0.248344 0.968672i \(-0.420114\pi\)
0.248344 + 0.968672i \(0.420114\pi\)
\(720\) 0 0
\(721\) 3.80796e9 0.378372
\(722\) 2.80533e9 4.85897e9i 0.277398 0.480467i
\(723\) 0 0
\(724\) 1.91880e9 + 3.32346e9i 0.187908 + 0.325466i
\(725\) −1.74497e9 3.02238e9i −0.170061 0.294555i
\(726\) 0 0
\(727\) −4.40550e9 + 7.63056e9i −0.425231 + 0.736522i −0.996442 0.0842813i \(-0.973141\pi\)
0.571211 + 0.820803i \(0.306474\pi\)
\(728\) −7.18905e8 −0.0690577
\(729\) 0 0
\(730\) 1.64687e9 0.156686
\(731\) 4.63789e9 8.03306e9i 0.439147 0.760624i
\(732\) 0 0
\(733\) 7.47069e7 + 1.29396e8i 0.00700643 + 0.0121355i 0.869507 0.493920i \(-0.164436\pi\)
−0.862501 + 0.506055i \(0.831103\pi\)
\(734\) 6.53887e9 + 1.13257e10i 0.610332 + 1.05713i
\(735\) 0 0
\(736\) 1.12578e9 1.94990e9i 0.104083 0.180277i
\(737\) −1.37596e8 −0.0126611
\(738\) 0 0
\(739\) −4.70806e9 −0.429127 −0.214564 0.976710i \(-0.568833\pi\)
−0.214564 + 0.976710i \(0.568833\pi\)
\(740\) 1.07873e9 1.86842e9i 0.0978596 0.169498i
\(741\) 0 0
\(742\) −6.07169e9 1.05165e10i −0.545627 0.945054i
\(743\) −8.48381e8 1.46944e9i −0.0758805 0.131429i 0.825588 0.564273i \(-0.190843\pi\)
−0.901469 + 0.432844i \(0.857510\pi\)
\(744\) 0 0
\(745\) −2.29804e9 + 3.98031e9i −0.203615 + 0.352671i
\(746\) 1.23707e10 1.09095
\(747\) 0 0
\(748\) 1.02777e9 0.0897928
\(749\) 9.13667e9 1.58252e10i 0.794514 1.37614i
\(750\) 0 0
\(751\) −5.33250e9 9.23616e9i −0.459400 0.795704i 0.539529 0.841967i \(-0.318602\pi\)
−0.998929 + 0.0462626i \(0.985269\pi\)
\(752\) −9.67999e8 1.67662e9i −0.0830066 0.143772i
\(753\) 0 0
\(754\) −5.67007e8 + 9.82085e8i −0.0481713 + 0.0834352i
\(755\) 6.17724e9 0.522373
\(756\) 0 0
\(757\) 6.22876e9 0.521874 0.260937 0.965356i \(-0.415968\pi\)
0.260937 + 0.965356i \(0.415968\pi\)
\(758\) −4.22753e9 + 7.32229e9i −0.352569 + 0.610668i
\(759\) 0 0
\(760\) 2.14717e9 + 3.71902e9i 0.177427 + 0.307313i
\(761\) 4.19167e9 + 7.26019e9i 0.344779 + 0.597175i 0.985314 0.170755i \(-0.0546205\pi\)
−0.640535 + 0.767929i \(0.721287\pi\)
\(762\) 0 0
\(763\) −6.22657e9 + 1.07847e10i −0.507473 + 0.878969i
\(764\) 6.01511e9 0.487997
\(765\) 0 0
\(766\) −1.79928e9 −0.144643
\(767\) −1.82470e9 + 3.16047e9i −0.146018 + 0.252911i
\(768\) 0 0
\(769\) 5.93244e9 + 1.02753e10i 0.470426 + 0.814802i 0.999428 0.0338188i \(-0.0107669\pi\)
−0.529002 + 0.848621i \(0.677434\pi\)
\(770\) −9.31956e8 1.61420e9i −0.0735662 0.127420i
\(771\) 0 0
\(772\) 1.12623e9 1.95068e9i 0.0880978 0.152590i
\(773\) 5.56680e9 0.433488 0.216744 0.976228i \(-0.430456\pi\)
0.216744 + 0.976228i \(0.430456\pi\)
\(774\) 0 0
\(775\) −7.74246e9 −0.597479
\(776\) 2.22263e9 3.84971e9i 0.170746 0.295741i
\(777\) 0 0
\(778\) 4.07153e9 + 7.05209e9i 0.309977 + 0.536895i
\(779\) 2.16515e8 + 3.75015e8i 0.0164099 + 0.0284228i
\(780\) 0 0
\(781\) 7.72441e8 1.33791e9i 0.0580212 0.100496i
\(782\) −8.08383e9 −0.604496
\(783\) 0 0
\(784\) 8.54888e8 0.0633583
\(785\) 6.35827e9 1.10128e10i 0.469132 0.812561i
\(786\) 0 0
\(787\) −6.73056e7 1.16577e8i −0.00492198 0.00852512i 0.863554 0.504257i \(-0.168233\pi\)
−0.868476 + 0.495731i \(0.834900\pi\)
\(788\) −3.29553e9 5.70803e9i −0.239929 0.415570i
\(789\) 0 0
\(790\) 2.99611e9 5.18942e9i 0.216204 0.374476i
\(791\) 1.68605e10 1.21130
\(792\) 0 0
\(793\) 1.14388e9 0.0814565
\(794\) −5.90261e9 + 1.02236e10i −0.418478 + 0.724825i
\(795\) 0 0
\(796\) −2.67640e9 4.63566e9i −0.188086 0.325774i
\(797\) 3.70774e9 + 6.42199e9i 0.259421 + 0.449330i 0.966087 0.258217i \(-0.0831350\pi\)
−0.706666 + 0.707547i \(0.749802\pi\)
\(798\) 0 0
\(799\) −3.47544e9 + 6.01964e9i −0.241044 + 0.417500i
\(800\) 1.11493e9 0.0769898
\(801\) 0 0
\(802\) −2.19930e9 −0.150548
\(803\) −5.35234e8 + 9.27052e8i −0.0364787 + 0.0631829i
\(804\) 0 0
\(805\) 7.33020e9 + 1.26963e10i 0.495256 + 0.857809i
\(806\) 1.25791e9 + 2.17876e9i 0.0846206 + 0.146567i
\(807\) 0 0
\(808\) −2.58036e9 + 4.46932e9i −0.172084 + 0.298058i
\(809\) −1.41542e10 −0.939863 −0.469932 0.882703i \(-0.655721\pi\)
−0.469932 + 0.882703i \(0.655721\pi\)
\(810\) 0 0
\(811\) −2.63708e10 −1.73600 −0.868001 0.496563i \(-0.834595\pi\)
−0.868001 + 0.496563i \(0.834595\pi\)
\(812\) 3.33476e9 5.77597e9i 0.218584 0.378598i
\(813\) 0 0
\(814\) 7.01178e8 + 1.21448e9i 0.0455662 + 0.0789229i
\(815\) 5.99396e9 + 1.03818e10i 0.387848 + 0.671773i
\(816\) 0 0
\(817\) −1.25960e10 + 2.18170e10i −0.808084 + 1.39964i
\(818\) 1.30742e10 0.835176
\(819\) 0 0
\(820\) −1.45716e8 −0.00922912
\(821\) −4.03132e9 + 6.98245e9i −0.254241 + 0.440359i −0.964689 0.263391i \(-0.915159\pi\)
0.710448 + 0.703750i \(0.248492\pi\)
\(822\) 0 0
\(823\) 1.17101e10 + 2.02825e10i 0.732253 + 1.26830i 0.955918 + 0.293633i \(0.0948643\pi\)
−0.223666 + 0.974666i \(0.571802\pi\)
\(824\) 9.59486e8 + 1.66188e9i 0.0597439 + 0.103479i
\(825\) 0 0
\(826\) 1.07316e10 1.85877e10i 0.662576 1.14762i
\(827\) 5.55722e9 0.341655 0.170828 0.985301i \(-0.445356\pi\)
0.170828 + 0.985301i \(0.445356\pi\)
\(828\) 0 0
\(829\) 2.84256e10 1.73288 0.866440 0.499281i \(-0.166403\pi\)
0.866440 + 0.499281i \(0.166403\pi\)
\(830\) −4.76523e9 + 8.25362e9i −0.289275 + 0.501039i
\(831\) 0 0
\(832\) −1.81142e8 3.13746e8i −0.0109040 0.0188863i
\(833\) −1.53467e9 2.65812e9i −0.0919934 0.159337i
\(834\) 0 0
\(835\) −9.21128e9 + 1.59544e10i −0.547542 + 0.948371i
\(836\) −2.79133e9 −0.165230
\(837\) 0 0
\(838\) 8.90238e9 0.522579
\(839\) −5.20178e9 + 9.00975e9i −0.304078 + 0.526679i −0.977056 0.212984i \(-0.931682\pi\)
0.672977 + 0.739663i \(0.265015\pi\)
\(840\) 0 0
\(841\) 3.36464e9 + 5.82772e9i 0.195053 + 0.337841i
\(842\) 3.69011e9 + 6.39146e9i 0.213033 + 0.368984i
\(843\) 0 0
\(844\) 3.11683e9 5.39851e9i 0.178449 0.309083i
\(845\) 1.27761e10 0.728450
\(846\) 0 0
\(847\) −1.85874e10 −1.05106
\(848\) 3.05975e9 5.29964e9i 0.172306 0.298443i
\(849\) 0 0
\(850\) −2.00149e9 3.46668e9i −0.111786 0.193619i
\(851\) −5.51503e9 9.55231e9i −0.306757 0.531319i
\(852\) 0 0
\(853\) 9.02901e9 1.56387e10i 0.498102 0.862739i −0.501895 0.864928i \(-0.667364\pi\)
0.999998 + 0.00218977i \(0.000697026\pi\)
\(854\) −6.72756e9 −0.369620
\(855\) 0 0
\(856\) 9.20861e9 0.501806
\(857\) 3.17017e9 5.49090e9i 0.172048 0.297996i −0.767088 0.641542i \(-0.778295\pi\)
0.939136 + 0.343546i \(0.111628\pi\)
\(858\) 0 0
\(859\) −6.07444e9 1.05212e10i −0.326987 0.566358i 0.654926 0.755693i \(-0.272700\pi\)
−0.981912 + 0.189336i \(0.939367\pi\)
\(860\) −4.23863e9 7.34152e9i −0.227238 0.393587i
\(861\) 0 0
\(862\) −3.92603e9 + 6.80009e9i −0.208775 + 0.361609i
\(863\) −2.87111e10 −1.52059 −0.760295 0.649578i \(-0.774946\pi\)
−0.760295 + 0.649578i \(0.774946\pi\)
\(864\) 0 0
\(865\) −1.79960e9 −0.0945411
\(866\) 1.13999e10 1.97452e10i 0.596471 1.03312i
\(867\) 0 0
\(868\) −7.39817e9 1.28140e10i −0.383977 0.665068i
\(869\) 1.94747e9 + 3.37312e9i 0.100670 + 0.174366i
\(870\) 0 0
\(871\) 8.70688e7 1.50808e8i 0.00446477 0.00773320i
\(872\) −6.27560e9 −0.320514
\(873\) 0 0
\(874\) 2.19549e10 1.11235
\(875\) −1.19642e10 + 2.07225e10i −0.603746 + 1.04572i
\(876\) 0 0
\(877\) −1.23011e10 2.13061e10i −0.615806 1.06661i −0.990243 0.139355i \(-0.955497\pi\)
0.374437 0.927253i \(-0.377836\pi\)
\(878\) −4.22487e9 7.31770e9i −0.210660 0.364875i
\(879\) 0 0
\(880\) 4.69647e8 8.13453e8i 0.0232318 0.0402386i
\(881\) −1.25378e10 −0.617738 −0.308869 0.951105i \(-0.599951\pi\)
−0.308869 + 0.951105i \(0.599951\pi\)
\(882\) 0 0
\(883\) 1.93097e10 0.943873 0.471937 0.881633i \(-0.343555\pi\)
0.471937 + 0.881633i \(0.343555\pi\)
\(884\) −6.50358e8 + 1.12645e9i −0.0316643 + 0.0548441i
\(885\) 0 0
\(886\) 7.29302e9 + 1.26319e10i 0.352281 + 0.610169i
\(887\) −1.60134e10 2.77360e10i −0.770462 1.33448i −0.937310 0.348496i \(-0.886692\pi\)
0.166848 0.985983i \(-0.446641\pi\)
\(888\) 0 0
\(889\) −5.93474e8 + 1.02793e9i −0.0283299 + 0.0490689i
\(890\) −2.00780e10 −0.954675
\(891\) 0 0
\(892\) −9.37327e8 −0.0442195
\(893\) 9.43894e9 1.63487e10i 0.443551 0.768252i
\(894\) 0 0
\(895\) 1.97443e9 + 3.41981e9i 0.0920577 + 0.159449i
\(896\) 1.06535e9 + 1.84525e9i 0.0494784 + 0.0856991i
\(897\) 0 0
\(898\) 7.39384e9 1.28065e10i 0.340724 0.590151i
\(899\) −2.33400e10 −1.07138
\(900\) 0 0
\(901\) −2.19710e10 −1.00072
\(902\) 4.73579e7 8.20262e7i 0.00214867 0.00372160i
\(903\) 0 0
\(904\) 4.24831e9 + 7.35829e9i 0.191261 + 0.331274i
\(905\) −6.29606e9 1.09051e10i −0.282357 0.489057i
\(906\) 0 0
\(907\) −1.16852e9 + 2.02393e9i −0.0520008 + 0.0900679i −0.890854 0.454290i \(-0.849893\pi\)
0.838853 + 0.544357i \(0.183226\pi\)
\(908\) −1.18106e10 −0.523567
\(909\) 0 0
\(910\) 2.35891e9 0.103769
\(911\) −1.10172e10 + 1.90823e10i −0.482786 + 0.836211i −0.999805 0.0197638i \(-0.993709\pi\)
0.517018 + 0.855974i \(0.327042\pi\)
\(912\) 0 0
\(913\) −3.09740e9 5.36485e9i −0.134694 0.233297i
\(914\) −1.19226e10 2.06506e10i −0.516489 0.894585i
\(915\) 0 0
\(916\) 2.80148e8 4.85230e8i 0.0120435 0.0208599i
\(917\) −8.05061e9 −0.344775
\(918\) 0 0
\(919\) −1.43277e10 −0.608938 −0.304469 0.952522i \(-0.598479\pi\)
−0.304469 + 0.952522i \(0.598479\pi\)
\(920\) −3.69396e9 + 6.39812e9i −0.156399 + 0.270891i
\(921\) 0 0
\(922\) −1.01112e10 1.75132e10i −0.424860 0.735879i
\(923\) 9.77577e8 + 1.69321e9i 0.0409209 + 0.0708771i
\(924\) 0 0
\(925\) 2.73095e9 4.73014e9i 0.113453 0.196507i
\(926\) 7.12233e9 0.294770
\(927\) 0 0
\(928\) 3.36101e9 0.138055
\(929\) −6.56399e9 + 1.13692e10i −0.268604 + 0.465236i −0.968502 0.249007i \(-0.919896\pi\)
0.699898 + 0.714243i \(0.253229\pi\)
\(930\) 0 0
\(931\) 4.16800e9 + 7.21919e9i 0.169279 + 0.293200i
\(932\) 3.82580e9 + 6.62648e9i 0.154798 + 0.268119i
\(933\) 0 0
\(934\) 1.06267e10 1.84059e10i 0.426759 0.739169i
\(935\) −3.37238e9 −0.134926
\(936\) 0 0
\(937\) −3.87626e10 −1.53930 −0.769652 0.638463i \(-0.779571\pi\)
−0.769652 + 0.638463i \(0.779571\pi\)
\(938\) −5.12080e8 + 8.86949e8i −0.0202595 + 0.0350904i
\(939\) 0 0
\(940\) 3.17625e9 + 5.50142e9i 0.124729 + 0.216037i
\(941\) −1.03140e10 1.78643e10i −0.403517 0.698912i 0.590630 0.806942i \(-0.298879\pi\)
−0.994148 + 0.108030i \(0.965546\pi\)
\(942\) 0 0
\(943\) −3.72488e8 + 6.45168e8i −0.0144651 + 0.0250543i
\(944\) 1.08161e10 0.418476
\(945\) 0 0
\(946\) 5.51021e9 0.211617
\(947\) 1.05853e10 1.83342e10i 0.405020 0.701516i −0.589304 0.807912i \(-0.700598\pi\)
0.994324 + 0.106396i \(0.0339311\pi\)
\(948\) 0 0
\(949\) −6.77375e8 1.17325e9i −0.0257275 0.0445613i
\(950\) 5.43583e9 + 9.41514e9i 0.205700 + 0.356282i
\(951\) 0 0
\(952\) 3.82497e9 6.62505e9i 0.143681 0.248863i
\(953\) 2.14876e10 0.804196 0.402098 0.915597i \(-0.368281\pi\)
0.402098 + 0.915597i \(0.368281\pi\)
\(954\) 0 0
\(955\) −1.97371e10 −0.733282
\(956\) −1.26787e10 + 2.19601e10i −0.469323 + 0.812891i
\(957\) 0 0
\(958\) 5.20374e9 + 9.01313e9i 0.191221 + 0.331205i
\(959\) 1.60352e8 + 2.77738e8i 0.00587097 + 0.0101688i
\(960\) 0 0
\(961\) −1.21336e10 + 2.10161e10i −0.441021 + 0.763871i
\(962\) −1.77478e9 −0.0642733
\(963\) 0 0
\(964\) −1.64228e10 −0.590443
\(965\) −3.69543e9 + 6.40067e9i −0.132379 + 0.229287i
\(966\) 0 0
\(967\) −1.96313e10 3.40023e10i −0.698161 1.20925i −0.969103 0.246655i \(-0.920669\pi\)
0.270943 0.962596i \(-0.412665\pi\)
\(968\) −4.68344e9 8.11196e9i −0.165959 0.287450i
\(969\) 0 0
\(970\) −7.29300e9 + 1.26319e10i −0.256570 + 0.444392i
\(971\) −5.62647e10 −1.97228 −0.986140 0.165917i \(-0.946941\pi\)
−0.986140 + 0.165917i \(0.946941\pi\)
\(972\) 0 0
\(973\) 3.98310e10 1.38620
\(974\) −4.29786e9 + 7.44412e9i −0.149038 + 0.258141i
\(975\) 0 0
\(976\) −1.69513e9 2.93606e9i −0.0583619 0.101086i
\(977\) 4.21718e9 + 7.30438e9i 0.144674 + 0.250583i 0.929251 0.369448i \(-0.120453\pi\)
−0.784577 + 0.620031i \(0.787120\pi\)
\(978\) 0 0
\(979\) 6.52535e9 1.13022e10i 0.222262 0.384968i
\(980\) −2.80510e9 −0.0952045
\(981\) 0 0
\(982\) 6.26675e9 0.211180
\(983\) 1.12115e10 1.94189e10i 0.376466 0.652058i −0.614079 0.789244i \(-0.710473\pi\)
0.990545 + 0.137186i \(0.0438059\pi\)
\(984\) 0 0
\(985\) 1.08135e10 + 1.87295e10i 0.360527 + 0.624451i
\(986\) −6.03358e9 1.04505e10i −0.200450 0.347189i
\(987\) 0 0
\(988\) 1.76631e9 3.05933e9i 0.0582662 0.100920i
\(989\) −4.33400e10 −1.42463
\(990\) 0 0
\(991\) 3.46728e10 1.13170 0.565849 0.824509i \(-0.308548\pi\)
0.565849 + 0.824509i \(0.308548\pi\)
\(992\) 3.72821e9 6.45745e9i 0.121258 0.210025i
\(993\) 0 0
\(994\) −5.74945e9 9.95835e9i −0.185684 0.321614i
\(995\) 8.78194e9 + 1.52108e10i 0.282625 + 0.489520i
\(996\) 0 0
\(997\) 1.48237e10 2.56754e10i 0.473722 0.820511i −0.525825 0.850593i \(-0.676243\pi\)
0.999547 + 0.0300818i \(0.00957679\pi\)
\(998\) 4.98550e9 0.158764
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.c.l.55.1 2
3.2 odd 2 162.8.c.a.55.1 2
9.2 odd 6 18.8.a.b.1.1 1
9.4 even 3 inner 162.8.c.l.109.1 2
9.5 odd 6 162.8.c.a.109.1 2
9.7 even 3 2.8.a.a.1.1 1
36.7 odd 6 16.8.a.b.1.1 1
36.11 even 6 144.8.a.i.1.1 1
45.2 even 12 450.8.c.g.199.2 2
45.7 odd 12 50.8.b.c.49.1 2
45.29 odd 6 450.8.a.c.1.1 1
45.34 even 6 50.8.a.g.1.1 1
45.38 even 12 450.8.c.g.199.1 2
45.43 odd 12 50.8.b.c.49.2 2
63.16 even 3 98.8.c.d.67.1 2
63.25 even 3 98.8.c.d.79.1 2
63.34 odd 6 98.8.a.a.1.1 1
63.52 odd 6 98.8.c.e.79.1 2
63.61 odd 6 98.8.c.e.67.1 2
72.11 even 6 576.8.a.f.1.1 1
72.29 odd 6 576.8.a.g.1.1 1
72.43 odd 6 64.8.a.e.1.1 1
72.61 even 6 64.8.a.c.1.1 1
99.43 odd 6 242.8.a.e.1.1 1
117.25 even 6 338.8.a.d.1.1 1
117.34 odd 12 338.8.b.d.337.1 2
117.70 odd 12 338.8.b.d.337.2 2
144.43 odd 12 256.8.b.f.129.2 2
144.61 even 12 256.8.b.b.129.2 2
144.115 odd 12 256.8.b.f.129.1 2
144.133 even 12 256.8.b.b.129.1 2
153.16 even 6 578.8.a.b.1.1 1
180.7 even 12 400.8.c.j.49.2 2
180.43 even 12 400.8.c.j.49.1 2
180.79 odd 6 400.8.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2.8.a.a.1.1 1 9.7 even 3
16.8.a.b.1.1 1 36.7 odd 6
18.8.a.b.1.1 1 9.2 odd 6
50.8.a.g.1.1 1 45.34 even 6
50.8.b.c.49.1 2 45.7 odd 12
50.8.b.c.49.2 2 45.43 odd 12
64.8.a.c.1.1 1 72.61 even 6
64.8.a.e.1.1 1 72.43 odd 6
98.8.a.a.1.1 1 63.34 odd 6
98.8.c.d.67.1 2 63.16 even 3
98.8.c.d.79.1 2 63.25 even 3
98.8.c.e.67.1 2 63.61 odd 6
98.8.c.e.79.1 2 63.52 odd 6
144.8.a.i.1.1 1 36.11 even 6
162.8.c.a.55.1 2 3.2 odd 2
162.8.c.a.109.1 2 9.5 odd 6
162.8.c.l.55.1 2 1.1 even 1 trivial
162.8.c.l.109.1 2 9.4 even 3 inner
242.8.a.e.1.1 1 99.43 odd 6
256.8.b.b.129.1 2 144.133 even 12
256.8.b.b.129.2 2 144.61 even 12
256.8.b.f.129.1 2 144.115 odd 12
256.8.b.f.129.2 2 144.43 odd 12
338.8.a.d.1.1 1 117.25 even 6
338.8.b.d.337.1 2 117.34 odd 12
338.8.b.d.337.2 2 117.70 odd 12
400.8.a.l.1.1 1 180.79 odd 6
400.8.c.j.49.1 2 180.43 even 12
400.8.c.j.49.2 2 180.7 even 12
450.8.a.c.1.1 1 45.29 odd 6
450.8.c.g.199.1 2 45.38 even 12
450.8.c.g.199.2 2 45.2 even 12
576.8.a.f.1.1 1 72.11 even 6
576.8.a.g.1.1 1 72.29 odd 6
578.8.a.b.1.1 1 153.16 even 6