Properties

Label 576.8.a.f.1.1
Level $576$
Weight $8$
Character 576.1
Self dual yes
Analytic conductor $179.934$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,8,Mod(1,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 576.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(179.933774679\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 576.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-210.000 q^{5} -1016.00 q^{7} -1092.00 q^{11} -1382.00 q^{13} -14706.0 q^{17} -39940.0 q^{19} +68712.0 q^{23} -34025.0 q^{25} -102570. q^{29} -227552. q^{31} +213360. q^{35} -160526. q^{37} -10842.0 q^{41} -630748. q^{43} +472656. q^{47} +208713. q^{49} -1.49402e6 q^{53} +229320. q^{55} -2.64066e6 q^{59} -827702. q^{61} +290220. q^{65} -126004. q^{67} -1.41473e6 q^{71} +980282. q^{73} +1.10947e6 q^{77} +3.56680e6 q^{79} -5.67289e6 q^{83} +3.08826e6 q^{85} +1.19512e7 q^{89} +1.40411e6 q^{91} +8.38740e6 q^{95} +8.68215e6 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −210.000 −0.751319 −0.375659 0.926758i \(-0.622584\pi\)
−0.375659 + 0.926758i \(0.622584\pi\)
\(6\) 0 0
\(7\) −1016.00 −1.11957 −0.559784 0.828638i \(-0.689116\pi\)
−0.559784 + 0.828638i \(0.689116\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1092.00 −0.247371 −0.123685 0.992321i \(-0.539471\pi\)
−0.123685 + 0.992321i \(0.539471\pi\)
\(12\) 0 0
\(13\) −1382.00 −0.174464 −0.0872321 0.996188i \(-0.527802\pi\)
−0.0872321 + 0.996188i \(0.527802\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −14706.0 −0.725978 −0.362989 0.931793i \(-0.618244\pi\)
−0.362989 + 0.931793i \(0.618244\pi\)
\(18\) 0 0
\(19\) −39940.0 −1.33589 −0.667945 0.744211i \(-0.732826\pi\)
−0.667945 + 0.744211i \(0.732826\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 68712.0 1.17757 0.588783 0.808291i \(-0.299607\pi\)
0.588783 + 0.808291i \(0.299607\pi\)
\(24\) 0 0
\(25\) −34025.0 −0.435520
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −102570. −0.780957 −0.390479 0.920612i \(-0.627690\pi\)
−0.390479 + 0.920612i \(0.627690\pi\)
\(30\) 0 0
\(31\) −227552. −1.37188 −0.685938 0.727660i \(-0.740608\pi\)
−0.685938 + 0.727660i \(0.740608\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 213360. 0.841153
\(36\) 0 0
\(37\) −160526. −0.521002 −0.260501 0.965474i \(-0.583888\pi\)
−0.260501 + 0.965474i \(0.583888\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −10842.0 −0.0245678 −0.0122839 0.999925i \(-0.503910\pi\)
−0.0122839 + 0.999925i \(0.503910\pi\)
\(42\) 0 0
\(43\) −630748. −1.20981 −0.604904 0.796299i \(-0.706788\pi\)
−0.604904 + 0.796299i \(0.706788\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 472656. 0.664053 0.332026 0.943270i \(-0.392268\pi\)
0.332026 + 0.943270i \(0.392268\pi\)
\(48\) 0 0
\(49\) 208713. 0.253433
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.49402e6 −1.37845 −0.689224 0.724548i \(-0.742048\pi\)
−0.689224 + 0.724548i \(0.742048\pi\)
\(54\) 0 0
\(55\) 229320. 0.185854
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.64066e6 −1.67390 −0.836952 0.547277i \(-0.815665\pi\)
−0.836952 + 0.547277i \(0.815665\pi\)
\(60\) 0 0
\(61\) −827702. −0.466895 −0.233448 0.972369i \(-0.575001\pi\)
−0.233448 + 0.972369i \(0.575001\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 290220. 0.131078
\(66\) 0 0
\(67\) −126004. −0.0511826 −0.0255913 0.999672i \(-0.508147\pi\)
−0.0255913 + 0.999672i \(0.508147\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.41473e6 −0.469104 −0.234552 0.972104i \(-0.575362\pi\)
−0.234552 + 0.972104i \(0.575362\pi\)
\(72\) 0 0
\(73\) 980282. 0.294931 0.147466 0.989067i \(-0.452888\pi\)
0.147466 + 0.989067i \(0.452888\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.10947e6 0.276948
\(78\) 0 0
\(79\) 3.56680e6 0.813924 0.406962 0.913445i \(-0.366588\pi\)
0.406962 + 0.913445i \(0.366588\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.67289e6 −1.08901 −0.544504 0.838758i \(-0.683282\pi\)
−0.544504 + 0.838758i \(0.683282\pi\)
\(84\) 0 0
\(85\) 3.08826e6 0.545441
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.19512e7 1.79699 0.898496 0.438982i \(-0.144661\pi\)
0.898496 + 0.438982i \(0.144661\pi\)
\(90\) 0 0
\(91\) 1.40411e6 0.195325
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.38740e6 1.00368
\(96\) 0 0
\(97\) 8.68215e6 0.965886 0.482943 0.875652i \(-0.339568\pi\)
0.482943 + 0.875652i \(0.339568\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.00795e7 −0.973455 −0.486727 0.873554i \(-0.661810\pi\)
−0.486727 + 0.873554i \(0.661810\pi\)
\(102\) 0 0
\(103\) −3.74799e6 −0.337962 −0.168981 0.985619i \(-0.554048\pi\)
−0.168981 + 0.985619i \(0.554048\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.79856e7 1.41932 0.709661 0.704543i \(-0.248848\pi\)
0.709661 + 0.704543i \(0.248848\pi\)
\(108\) 0 0
\(109\) −1.22570e7 −0.906552 −0.453276 0.891370i \(-0.649745\pi\)
−0.453276 + 0.891370i \(0.649745\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.65950e7 −1.08194 −0.540968 0.841043i \(-0.681942\pi\)
−0.540968 + 0.841043i \(0.681942\pi\)
\(114\) 0 0
\(115\) −1.44295e7 −0.884727
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.49413e7 0.812782
\(120\) 0 0
\(121\) −1.82947e7 −0.938808
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.35515e7 1.07853
\(126\) 0 0
\(127\) −1.16826e6 −0.0506087 −0.0253043 0.999680i \(-0.508055\pi\)
−0.0253043 + 0.999680i \(0.508055\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.92383e6 0.307954 0.153977 0.988074i \(-0.450792\pi\)
0.153977 + 0.988074i \(0.450792\pi\)
\(132\) 0 0
\(133\) 4.05790e7 1.49562
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 315654. 0.0104879 0.00524396 0.999986i \(-0.498331\pi\)
0.00524396 + 0.999986i \(0.498331\pi\)
\(138\) 0 0
\(139\) 3.92038e7 1.23816 0.619079 0.785329i \(-0.287506\pi\)
0.619079 + 0.785329i \(0.287506\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.50914e6 0.0431573
\(144\) 0 0
\(145\) 2.15397e7 0.586748
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.18860e7 −0.542020 −0.271010 0.962577i \(-0.587358\pi\)
−0.271010 + 0.962577i \(0.587358\pi\)
\(150\) 0 0
\(151\) 2.94154e7 0.695274 0.347637 0.937629i \(-0.386984\pi\)
0.347637 + 0.937629i \(0.386984\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.77859e7 1.03072
\(156\) 0 0
\(157\) −6.05550e7 −1.24882 −0.624412 0.781095i \(-0.714661\pi\)
−0.624412 + 0.781095i \(0.714661\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.98114e7 −1.31837
\(162\) 0 0
\(163\) 5.70853e7 1.03245 0.516223 0.856454i \(-0.327337\pi\)
0.516223 + 0.856454i \(0.327337\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.77265e7 −1.45755 −0.728775 0.684754i \(-0.759910\pi\)
−0.728775 + 0.684754i \(0.759910\pi\)
\(168\) 0 0
\(169\) −6.08386e7 −0.969562
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.56954e6 0.125833 0.0629167 0.998019i \(-0.479960\pi\)
0.0629167 + 0.998019i \(0.479960\pi\)
\(174\) 0 0
\(175\) 3.45694e7 0.487594
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.88041e7 −0.245056 −0.122528 0.992465i \(-0.539100\pi\)
−0.122528 + 0.992465i \(0.539100\pi\)
\(180\) 0 0
\(181\) 5.99625e7 0.751631 0.375816 0.926694i \(-0.377363\pi\)
0.375816 + 0.926694i \(0.377363\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.37105e7 0.391439
\(186\) 0 0
\(187\) 1.60590e7 0.179586
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.39861e7 0.975993 0.487997 0.872845i \(-0.337728\pi\)
0.487997 + 0.872845i \(0.337728\pi\)
\(192\) 0 0
\(193\) −3.51946e7 −0.352391 −0.176196 0.984355i \(-0.556379\pi\)
−0.176196 + 0.984355i \(0.556379\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.02985e8 0.959718 0.479859 0.877346i \(-0.340688\pi\)
0.479859 + 0.877346i \(0.340688\pi\)
\(198\) 0 0
\(199\) −8.36376e7 −0.752342 −0.376171 0.926550i \(-0.622760\pi\)
−0.376171 + 0.926550i \(0.622760\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.04211e8 0.874335
\(204\) 0 0
\(205\) 2.27682e6 0.0184582
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.36145e7 0.330460
\(210\) 0 0
\(211\) −9.74010e7 −0.713797 −0.356899 0.934143i \(-0.616166\pi\)
−0.356899 + 0.934143i \(0.616166\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.32457e8 0.908951
\(216\) 0 0
\(217\) 2.31193e8 1.53591
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.03237e7 0.126657
\(222\) 0 0
\(223\) 1.46457e7 0.0884390 0.0442195 0.999022i \(-0.485920\pi\)
0.0442195 + 0.999022i \(0.485920\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.84541e8 1.04713 0.523567 0.851985i \(-0.324601\pi\)
0.523567 + 0.851985i \(0.324601\pi\)
\(228\) 0 0
\(229\) 8.75461e6 0.0481740 0.0240870 0.999710i \(-0.492332\pi\)
0.0240870 + 0.999710i \(0.492332\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.19556e8 0.619193 0.309597 0.950868i \(-0.399806\pi\)
0.309597 + 0.950868i \(0.399806\pi\)
\(234\) 0 0
\(235\) −9.92578e7 −0.498915
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.96209e8 1.87729 0.938646 0.344883i \(-0.112081\pi\)
0.938646 + 0.344883i \(0.112081\pi\)
\(240\) 0 0
\(241\) −2.56606e8 −1.18089 −0.590443 0.807080i \(-0.701047\pi\)
−0.590443 + 0.807080i \(0.701047\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.38297e7 −0.190409
\(246\) 0 0
\(247\) 5.51971e7 0.233065
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.34775e7 0.293290 0.146645 0.989189i \(-0.453153\pi\)
0.146645 + 0.989189i \(0.453153\pi\)
\(252\) 0 0
\(253\) −7.50335e7 −0.291295
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.02701e8 0.744886 0.372443 0.928055i \(-0.378520\pi\)
0.372443 + 0.928055i \(0.378520\pi\)
\(258\) 0 0
\(259\) 1.63094e8 0.583297
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.54254e8 0.522867 0.261434 0.965221i \(-0.415805\pi\)
0.261434 + 0.965221i \(0.415805\pi\)
\(264\) 0 0
\(265\) 3.13744e8 1.03565
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.24018e8 −1.95463 −0.977315 0.211793i \(-0.932070\pi\)
−0.977315 + 0.211793i \(0.932070\pi\)
\(270\) 0 0
\(271\) 3.87983e8 1.18419 0.592094 0.805869i \(-0.298302\pi\)
0.592094 + 0.805869i \(0.298302\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.71553e7 0.107735
\(276\) 0 0
\(277\) −4.53952e8 −1.28331 −0.641654 0.766994i \(-0.721752\pi\)
−0.641654 + 0.766994i \(0.721752\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3.33770e8 −0.897377 −0.448689 0.893688i \(-0.648109\pi\)
−0.448689 + 0.893688i \(0.648109\pi\)
\(282\) 0 0
\(283\) 5.37695e8 1.41021 0.705104 0.709104i \(-0.250900\pi\)
0.705104 + 0.709104i \(0.250900\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.10155e7 0.0275053
\(288\) 0 0
\(289\) −1.94072e8 −0.472956
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.35600e8 0.779445 0.389722 0.920932i \(-0.372571\pi\)
0.389722 + 0.920932i \(0.372571\pi\)
\(294\) 0 0
\(295\) 5.54539e8 1.25764
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.49600e7 −0.205443
\(300\) 0 0
\(301\) 6.40840e8 1.35446
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.73817e8 0.350787
\(306\) 0 0
\(307\) 2.15029e8 0.424143 0.212072 0.977254i \(-0.431979\pi\)
0.212072 + 0.977254i \(0.431979\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.92062e8 1.49313 0.746565 0.665313i \(-0.231702\pi\)
0.746565 + 0.665313i \(0.231702\pi\)
\(312\) 0 0
\(313\) −1.18457e8 −0.218352 −0.109176 0.994022i \(-0.534821\pi\)
−0.109176 + 0.994022i \(0.534821\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.07310e7 −0.0894470 −0.0447235 0.998999i \(-0.514241\pi\)
−0.0447235 + 0.998999i \(0.514241\pi\)
\(318\) 0 0
\(319\) 1.12006e8 0.193186
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.87358e8 0.969826
\(324\) 0 0
\(325\) 4.70226e7 0.0759826
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.80218e8 −0.743453
\(330\) 0 0
\(331\) 2.73757e8 0.414923 0.207461 0.978243i \(-0.433480\pi\)
0.207461 + 0.978243i \(0.433480\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.64608e7 0.0384545
\(336\) 0 0
\(337\) −9.18512e7 −0.130732 −0.0653658 0.997861i \(-0.520821\pi\)
−0.0653658 + 0.997861i \(0.520821\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.48487e8 0.339362
\(342\) 0 0
\(343\) 6.24667e8 0.835833
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.36700e9 1.75637 0.878187 0.478318i \(-0.158753\pi\)
0.878187 + 0.478318i \(0.158753\pi\)
\(348\) 0 0
\(349\) −1.13143e9 −1.42475 −0.712377 0.701797i \(-0.752381\pi\)
−0.712377 + 0.701797i \(0.752381\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.48395e7 0.0542562 0.0271281 0.999632i \(-0.491364\pi\)
0.0271281 + 0.999632i \(0.491364\pi\)
\(354\) 0 0
\(355\) 2.97093e8 0.352446
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.98281e8 0.454317 0.227158 0.973858i \(-0.427057\pi\)
0.227158 + 0.973858i \(0.427057\pi\)
\(360\) 0 0
\(361\) 7.01332e8 0.784600
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.05859e8 −0.221588
\(366\) 0 0
\(367\) −1.63472e9 −1.72628 −0.863140 0.504964i \(-0.831506\pi\)
−0.863140 + 0.504964i \(0.831506\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.51792e9 1.54327
\(372\) 0 0
\(373\) 1.54633e9 1.54284 0.771421 0.636325i \(-0.219546\pi\)
0.771421 + 0.636325i \(0.219546\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.41752e8 0.136249
\(378\) 0 0
\(379\) −1.05688e9 −0.997216 −0.498608 0.866828i \(-0.666155\pi\)
−0.498608 + 0.866828i \(0.666155\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.24910e8 0.204556 0.102278 0.994756i \(-0.467387\pi\)
0.102278 + 0.994756i \(0.467387\pi\)
\(384\) 0 0
\(385\) −2.32989e8 −0.208077
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.01788e9 0.876746 0.438373 0.898793i \(-0.355555\pi\)
0.438373 + 0.898793i \(0.355555\pi\)
\(390\) 0 0
\(391\) −1.01048e9 −0.854887
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.49028e8 −0.611517
\(396\) 0 0
\(397\) 1.47565e9 1.18363 0.591817 0.806072i \(-0.298411\pi\)
0.591817 + 0.806072i \(0.298411\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.74912e8 −0.212906 −0.106453 0.994318i \(-0.533949\pi\)
−0.106453 + 0.994318i \(0.533949\pi\)
\(402\) 0 0
\(403\) 3.14477e8 0.239343
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.75294e8 0.128881
\(408\) 0 0
\(409\) −1.63427e9 −1.18112 −0.590558 0.806995i \(-0.701092\pi\)
−0.590558 + 0.806995i \(0.701092\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.68291e9 1.87405
\(414\) 0 0
\(415\) 1.19131e9 0.818192
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.11280e9 0.739039 0.369519 0.929223i \(-0.379522\pi\)
0.369519 + 0.929223i \(0.379522\pi\)
\(420\) 0 0
\(421\) −9.22528e8 −0.602549 −0.301274 0.953537i \(-0.597412\pi\)
−0.301274 + 0.953537i \(0.597412\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.00372e8 0.316178
\(426\) 0 0
\(427\) 8.40945e8 0.522721
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9.81508e8 −0.590505 −0.295252 0.955419i \(-0.595404\pi\)
−0.295252 + 0.955419i \(0.595404\pi\)
\(432\) 0 0
\(433\) 2.84998e9 1.68707 0.843537 0.537071i \(-0.180469\pi\)
0.843537 + 0.537071i \(0.180469\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.74436e9 −1.57310
\(438\) 0 0
\(439\) 1.05622e9 0.595838 0.297919 0.954591i \(-0.403708\pi\)
0.297919 + 0.954591i \(0.403708\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.82325e9 −0.996401 −0.498201 0.867062i \(-0.666006\pi\)
−0.498201 + 0.867062i \(0.666006\pi\)
\(444\) 0 0
\(445\) −2.50975e9 −1.35011
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.84846e9 −0.963713 −0.481856 0.876250i \(-0.660037\pi\)
−0.481856 + 0.876250i \(0.660037\pi\)
\(450\) 0 0
\(451\) 1.18395e7 0.00607735
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.94864e8 −0.146751
\(456\) 0 0
\(457\) −2.98066e9 −1.46085 −0.730425 0.682993i \(-0.760678\pi\)
−0.730425 + 0.682993i \(0.760678\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.52781e9 −1.20169 −0.600843 0.799367i \(-0.705168\pi\)
−0.600843 + 0.799367i \(0.705168\pi\)
\(462\) 0 0
\(463\) 8.90291e8 0.416868 0.208434 0.978036i \(-0.433163\pi\)
0.208434 + 0.978036i \(0.433163\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.65667e9 −1.20706 −0.603529 0.797341i \(-0.706239\pi\)
−0.603529 + 0.797341i \(0.706239\pi\)
\(468\) 0 0
\(469\) 1.28020e8 0.0573024
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.88777e8 0.299271
\(474\) 0 0
\(475\) 1.35896e9 0.581806
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.30093e9 0.540855 0.270428 0.962740i \(-0.412835\pi\)
0.270428 + 0.962740i \(0.412835\pi\)
\(480\) 0 0
\(481\) 2.21847e8 0.0908962
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.82325e9 −0.725689
\(486\) 0 0
\(487\) 1.07447e9 0.421542 0.210771 0.977535i \(-0.432402\pi\)
0.210771 + 0.977535i \(0.432402\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.83344e8 0.298653 0.149327 0.988788i \(-0.452289\pi\)
0.149327 + 0.988788i \(0.452289\pi\)
\(492\) 0 0
\(493\) 1.50839e9 0.566958
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.43736e9 0.525193
\(498\) 0 0
\(499\) −6.23188e8 −0.224526 −0.112263 0.993679i \(-0.535810\pi\)
−0.112263 + 0.993679i \(0.535810\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.70927e9 −0.949215 −0.474607 0.880198i \(-0.657410\pi\)
−0.474607 + 0.880198i \(0.657410\pi\)
\(504\) 0 0
\(505\) 2.11670e9 0.731375
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.49943e9 1.17621 0.588106 0.808784i \(-0.299874\pi\)
0.588106 + 0.808784i \(0.299874\pi\)
\(510\) 0 0
\(511\) −9.95967e8 −0.330196
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.87078e8 0.253918
\(516\) 0 0
\(517\) −5.16140e8 −0.164267
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.37683e9 0.426530 0.213265 0.976994i \(-0.431590\pi\)
0.213265 + 0.976994i \(0.431590\pi\)
\(522\) 0 0
\(523\) −2.86154e9 −0.874669 −0.437334 0.899299i \(-0.644077\pi\)
−0.437334 + 0.899299i \(0.644077\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.34638e9 0.995951
\(528\) 0 0
\(529\) 1.31651e9 0.386661
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.49836e7 0.00428620
\(534\) 0 0
\(535\) −3.77697e9 −1.06636
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.27915e8 −0.0626919
\(540\) 0 0
\(541\) −5.34467e9 −1.45121 −0.725605 0.688111i \(-0.758440\pi\)
−0.725605 + 0.688111i \(0.758440\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.57398e9 0.681109
\(546\) 0 0
\(547\) −3.37135e9 −0.880740 −0.440370 0.897816i \(-0.645153\pi\)
−0.440370 + 0.897816i \(0.645153\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.09665e9 1.04327
\(552\) 0 0
\(553\) −3.62387e9 −0.911244
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.61106e9 −1.37579 −0.687894 0.725811i \(-0.741465\pi\)
−0.687894 + 0.725811i \(0.741465\pi\)
\(558\) 0 0
\(559\) 8.71694e8 0.211068
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.69690e9 −1.58159 −0.790795 0.612081i \(-0.790333\pi\)
−0.790795 + 0.612081i \(0.790333\pi\)
\(564\) 0 0
\(565\) 3.48494e9 0.812879
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.96850e9 −0.447964 −0.223982 0.974593i \(-0.571906\pi\)
−0.223982 + 0.974593i \(0.571906\pi\)
\(570\) 0 0
\(571\) 1.02926e9 0.231365 0.115682 0.993286i \(-0.463094\pi\)
0.115682 + 0.993286i \(0.463094\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.33793e9 −0.512853
\(576\) 0 0
\(577\) 3.31179e9 0.717708 0.358854 0.933394i \(-0.383168\pi\)
0.358854 + 0.933394i \(0.383168\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5.76366e9 1.21922
\(582\) 0 0
\(583\) 1.63147e9 0.340988
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.59411e8 0.114156 0.0570778 0.998370i \(-0.481822\pi\)
0.0570778 + 0.998370i \(0.481822\pi\)
\(588\) 0 0
\(589\) 9.08843e9 1.83267
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.02459e9 0.595628 0.297814 0.954624i \(-0.403742\pi\)
0.297814 + 0.954624i \(0.403742\pi\)
\(594\) 0 0
\(595\) −3.13767e9 −0.610658
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5.63246e9 −1.07079 −0.535395 0.844602i \(-0.679837\pi\)
−0.535395 + 0.844602i \(0.679837\pi\)
\(600\) 0 0
\(601\) 3.40792e8 0.0640366 0.0320183 0.999487i \(-0.489807\pi\)
0.0320183 + 0.999487i \(0.489807\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.84189e9 0.705344
\(606\) 0 0
\(607\) −3.85420e9 −0.699477 −0.349739 0.936847i \(-0.613730\pi\)
−0.349739 + 0.936847i \(0.613730\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.53211e8 −0.115853
\(612\) 0 0
\(613\) −9.22245e9 −1.61709 −0.808545 0.588434i \(-0.799745\pi\)
−0.808545 + 0.588434i \(0.799745\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.53611e9 −1.12027 −0.560133 0.828402i \(-0.689250\pi\)
−0.560133 + 0.828402i \(0.689250\pi\)
\(618\) 0 0
\(619\) 1.36559e9 0.231420 0.115710 0.993283i \(-0.463086\pi\)
0.115710 + 0.993283i \(0.463086\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.21424e10 −2.01186
\(624\) 0 0
\(625\) −2.28761e9 −0.374802
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.36070e9 0.378236
\(630\) 0 0
\(631\) −1.54079e9 −0.244141 −0.122070 0.992521i \(-0.538953\pi\)
−0.122070 + 0.992521i \(0.538953\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.45334e8 0.0380233
\(636\) 0 0
\(637\) −2.88441e8 −0.0442150
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.54018e9 0.680879 0.340440 0.940266i \(-0.389424\pi\)
0.340440 + 0.940266i \(0.389424\pi\)
\(642\) 0 0
\(643\) 1.14054e10 1.69189 0.845944 0.533272i \(-0.179038\pi\)
0.845944 + 0.533272i \(0.179038\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.26393e10 −1.83468 −0.917338 0.398109i \(-0.869666\pi\)
−0.917338 + 0.398109i \(0.869666\pi\)
\(648\) 0 0
\(649\) 2.88360e9 0.414075
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.05004e10 −1.47575 −0.737873 0.674940i \(-0.764170\pi\)
−0.737873 + 0.674940i \(0.764170\pi\)
\(654\) 0 0
\(655\) −1.66400e9 −0.231371
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9.64818e9 −1.31325 −0.656624 0.754219i \(-0.728016\pi\)
−0.656624 + 0.754219i \(0.728016\pi\)
\(660\) 0 0
\(661\) 6.58299e9 0.886580 0.443290 0.896378i \(-0.353811\pi\)
0.443290 + 0.896378i \(0.353811\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.52160e9 −1.12369
\(666\) 0 0
\(667\) −7.04779e9 −0.919629
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9.03851e8 0.115496
\(672\) 0 0
\(673\) −8.54649e9 −1.08077 −0.540387 0.841416i \(-0.681722\pi\)
−0.540387 + 0.841416i \(0.681722\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8.71305e9 1.07922 0.539610 0.841915i \(-0.318572\pi\)
0.539610 + 0.841915i \(0.318572\pi\)
\(678\) 0 0
\(679\) −8.82106e9 −1.08138
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.46109e10 −1.75470 −0.877351 0.479849i \(-0.840692\pi\)
−0.877351 + 0.479849i \(0.840692\pi\)
\(684\) 0 0
\(685\) −6.62873e7 −0.00787977
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.06473e9 0.240490
\(690\) 0 0
\(691\) −1.47348e10 −1.69891 −0.849454 0.527662i \(-0.823069\pi\)
−0.849454 + 0.527662i \(0.823069\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.23279e9 −0.930252
\(696\) 0 0
\(697\) 1.59442e8 0.0178357
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.31502e9 0.144185 0.0720923 0.997398i \(-0.477032\pi\)
0.0720923 + 0.997398i \(0.477032\pi\)
\(702\) 0 0
\(703\) 6.41141e9 0.696001
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.02408e10 1.08985
\(708\) 0 0
\(709\) −6.64028e8 −0.0699721 −0.0349860 0.999388i \(-0.511139\pi\)
−0.0349860 + 0.999388i \(0.511139\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.56356e10 −1.61547
\(714\) 0 0
\(715\) −3.16920e8 −0.0324249
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.95034e9 0.496689 0.248344 0.968672i \(-0.420114\pi\)
0.248344 + 0.968672i \(0.420114\pi\)
\(720\) 0 0
\(721\) 3.80796e9 0.378372
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.48994e9 0.340123
\(726\) 0 0
\(727\) −8.81101e9 −0.850463 −0.425231 0.905085i \(-0.639807\pi\)
−0.425231 + 0.905085i \(0.639807\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9.27578e9 0.878293
\(732\) 0 0
\(733\) 1.49414e8 0.0140129 0.00700643 0.999975i \(-0.497770\pi\)
0.00700643 + 0.999975i \(0.497770\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.37596e8 0.0126611
\(738\) 0 0
\(739\) −4.70806e9 −0.429127 −0.214564 0.976710i \(-0.568833\pi\)
−0.214564 + 0.976710i \(0.568833\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.69676e9 0.151761 0.0758805 0.997117i \(-0.475823\pi\)
0.0758805 + 0.997117i \(0.475823\pi\)
\(744\) 0 0
\(745\) 4.59607e9 0.407230
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.82733e10 −1.58903
\(750\) 0 0
\(751\) −1.06650e10 −0.918800 −0.459400 0.888229i \(-0.651936\pi\)
−0.459400 + 0.888229i \(0.651936\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6.17724e9 −0.522373
\(756\) 0 0
\(757\) −6.22876e9 −0.521874 −0.260937 0.965356i \(-0.584032\pi\)
−0.260937 + 0.965356i \(0.584032\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.38334e9 0.689558 0.344779 0.938684i \(-0.387954\pi\)
0.344779 + 0.938684i \(0.387954\pi\)
\(762\) 0 0
\(763\) 1.24531e10 1.01495
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.64939e9 0.292036
\(768\) 0 0
\(769\) −1.18649e10 −0.940852 −0.470426 0.882439i \(-0.655900\pi\)
−0.470426 + 0.882439i \(0.655900\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.56680e9 0.433488 0.216744 0.976228i \(-0.430456\pi\)
0.216744 + 0.976228i \(0.430456\pi\)
\(774\) 0 0
\(775\) 7.74246e9 0.597479
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.33029e8 0.0328198
\(780\) 0 0
\(781\) 1.54488e9 0.116042
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.27165e10 0.938264
\(786\) 0 0
\(787\) 1.34611e8 0.00984395 0.00492198 0.999988i \(-0.498433\pi\)
0.00492198 + 0.999988i \(0.498433\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.68605e10 1.21130
\(792\) 0 0
\(793\) 1.14388e9 0.0814565
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.41548e9 −0.518842 −0.259421 0.965764i \(-0.583532\pi\)
−0.259421 + 0.965764i \(0.583532\pi\)
\(798\) 0 0
\(799\) −6.95088e9 −0.482088
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.07047e9 −0.0729574
\(804\) 0 0
\(805\) 1.46604e10 0.990513
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.41542e10 0.939863 0.469932 0.882703i \(-0.344279\pi\)
0.469932 + 0.882703i \(0.344279\pi\)
\(810\) 0 0
\(811\) −2.63708e10 −1.73600 −0.868001 0.496563i \(-0.834595\pi\)
−0.868001 + 0.496563i \(0.834595\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.19879e10 −0.775697
\(816\) 0 0
\(817\) 2.51921e10 1.61617
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.06264e9 0.508483 0.254241 0.967141i \(-0.418174\pi\)
0.254241 + 0.967141i \(0.418174\pi\)
\(822\) 0 0
\(823\) 2.34202e10 1.46451 0.732253 0.681033i \(-0.238469\pi\)
0.732253 + 0.681033i \(0.238469\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −5.55722e9 −0.341655 −0.170828 0.985301i \(-0.554644\pi\)
−0.170828 + 0.985301i \(0.554644\pi\)
\(828\) 0 0
\(829\) −2.84256e10 −1.73288 −0.866440 0.499281i \(-0.833597\pi\)
−0.866440 + 0.499281i \(0.833597\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.06933e9 −0.183987
\(834\) 0 0
\(835\) 1.84226e10 1.09508
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.04036e10 0.608156 0.304078 0.952647i \(-0.401652\pi\)
0.304078 + 0.952647i \(0.401652\pi\)
\(840\) 0 0
\(841\) −6.72927e9 −0.390105
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.27761e10 0.728450
\(846\) 0 0
\(847\) 1.85874e10 1.05106
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1.10301e10 −0.613514
\(852\) 0 0
\(853\) 1.80580e10 0.996205 0.498102 0.867118i \(-0.334030\pi\)
0.498102 + 0.867118i \(0.334030\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.34034e9 0.344096 0.172048 0.985089i \(-0.444962\pi\)
0.172048 + 0.985089i \(0.444962\pi\)
\(858\) 0 0
\(859\) 1.21489e10 0.653973 0.326987 0.945029i \(-0.393967\pi\)
0.326987 + 0.945029i \(0.393967\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.87111e10 −1.52059 −0.760295 0.649578i \(-0.774946\pi\)
−0.760295 + 0.649578i \(0.774946\pi\)
\(864\) 0 0
\(865\) −1.79960e9 −0.0945411
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.89495e9 −0.201341
\(870\) 0 0
\(871\) 1.74138e8 0.00892953
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.39283e10 −1.20749
\(876\) 0 0
\(877\) −2.46021e10 −1.23161 −0.615806 0.787898i \(-0.711169\pi\)
−0.615806 + 0.787898i \(0.711169\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.25378e10 0.617738 0.308869 0.951105i \(-0.400049\pi\)
0.308869 + 0.951105i \(0.400049\pi\)
\(882\) 0 0
\(883\) 1.93097e10 0.943873 0.471937 0.881633i \(-0.343555\pi\)
0.471937 + 0.881633i \(0.343555\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.20268e10 1.54092 0.770462 0.637486i \(-0.220026\pi\)
0.770462 + 0.637486i \(0.220026\pi\)
\(888\) 0 0
\(889\) 1.18695e9 0.0566599
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.88779e10 −0.887101
\(894\) 0 0
\(895\) 3.94885e9 0.184115
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.33400e10 1.07138
\(900\) 0 0
\(901\) 2.19710e10 1.00072
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.25921e10 −0.564715
\(906\) 0 0
\(907\) 2.33703e9 0.104002 0.0520008 0.998647i \(-0.483440\pi\)
0.0520008 + 0.998647i \(0.483440\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.20343e10 0.965573 0.482786 0.875738i \(-0.339625\pi\)
0.482786 + 0.875738i \(0.339625\pi\)
\(912\) 0 0
\(913\) 6.19480e9 0.269389
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −8.05061e9 −0.344775
\(918\) 0 0
\(919\) 1.43277e10 0.608938 0.304469 0.952522i \(-0.401521\pi\)
0.304469 + 0.952522i \(0.401521\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.95515e9 0.0818418
\(924\) 0 0
\(925\) 5.46190e9 0.226907
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.31280e10 −0.537208 −0.268604 0.963251i \(-0.586562\pi\)
−0.268604 + 0.963251i \(0.586562\pi\)
\(930\) 0 0
\(931\) −8.33600e9 −0.338558
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.37238e9 −0.134926
\(936\) 0 0
\(937\) −3.87626e10 −1.53930 −0.769652 0.638463i \(-0.779571\pi\)
−0.769652 + 0.638463i \(0.779571\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2.06279e10 0.807035 0.403517 0.914972i \(-0.367788\pi\)
0.403517 + 0.914972i \(0.367788\pi\)
\(942\) 0 0
\(943\) −7.44976e8 −0.0289302
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.11705e10 0.810040 0.405020 0.914308i \(-0.367264\pi\)
0.405020 + 0.914308i \(0.367264\pi\)
\(948\) 0 0
\(949\) −1.35475e9 −0.0514550
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −2.14876e10 −0.804196 −0.402098 0.915597i \(-0.631719\pi\)
−0.402098 + 0.915597i \(0.631719\pi\)
\(954\) 0 0
\(955\) −1.97371e10 −0.733282
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3.20704e8 −0.0117419
\(960\) 0 0
\(961\) 2.42673e10 0.882043
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.39086e9 0.264758
\(966\) 0 0
\(967\) −3.92625e10 −1.39632 −0.698161 0.715941i \(-0.745998\pi\)
−0.698161 + 0.715941i \(0.745998\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.62647e10 1.97228 0.986140 0.165917i \(-0.0530585\pi\)
0.986140 + 0.165917i \(0.0530585\pi\)
\(972\) 0 0
\(973\) −3.98310e10 −1.38620
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.43437e9 0.289349 0.144674 0.989479i \(-0.453787\pi\)
0.144674 + 0.989479i \(0.453787\pi\)
\(978\) 0 0
\(979\) −1.30507e10 −0.444523
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −2.24230e10 −0.752932 −0.376466 0.926430i \(-0.622861\pi\)
−0.376466 + 0.926430i \(0.622861\pi\)
\(984\) 0 0
\(985\) −2.16269e10 −0.721054
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.33400e10 −1.42463
\(990\) 0 0
\(991\) −3.46728e10 −1.13170 −0.565849 0.824509i \(-0.691452\pi\)
−0.565849 + 0.824509i \(0.691452\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.75639e10 0.565249
\(996\) 0 0
\(997\) 2.96474e10 0.947444 0.473722 0.880674i \(-0.342910\pi\)
0.473722 + 0.880674i \(0.342910\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.8.a.f.1.1 1
3.2 odd 2 64.8.a.e.1.1 1
4.3 odd 2 576.8.a.g.1.1 1
8.3 odd 2 18.8.a.b.1.1 1
8.5 even 2 144.8.a.i.1.1 1
12.11 even 2 64.8.a.c.1.1 1
24.5 odd 2 16.8.a.b.1.1 1
24.11 even 2 2.8.a.a.1.1 1
40.3 even 4 450.8.c.g.199.1 2
40.19 odd 2 450.8.a.c.1.1 1
40.27 even 4 450.8.c.g.199.2 2
48.5 odd 4 256.8.b.f.129.1 2
48.11 even 4 256.8.b.b.129.2 2
48.29 odd 4 256.8.b.f.129.2 2
48.35 even 4 256.8.b.b.129.1 2
72.11 even 6 162.8.c.l.109.1 2
72.43 odd 6 162.8.c.a.109.1 2
72.59 even 6 162.8.c.l.55.1 2
72.67 odd 6 162.8.c.a.55.1 2
120.29 odd 2 400.8.a.l.1.1 1
120.53 even 4 400.8.c.j.49.1 2
120.59 even 2 50.8.a.g.1.1 1
120.77 even 4 400.8.c.j.49.2 2
120.83 odd 4 50.8.b.c.49.2 2
120.107 odd 4 50.8.b.c.49.1 2
168.11 even 6 98.8.c.d.79.1 2
168.59 odd 6 98.8.c.e.79.1 2
168.83 odd 2 98.8.a.a.1.1 1
168.107 even 6 98.8.c.d.67.1 2
168.131 odd 6 98.8.c.e.67.1 2
264.131 odd 2 242.8.a.e.1.1 1
312.83 odd 4 338.8.b.d.337.2 2
312.155 even 2 338.8.a.d.1.1 1
312.203 odd 4 338.8.b.d.337.1 2
408.203 even 2 578.8.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2.8.a.a.1.1 1 24.11 even 2
16.8.a.b.1.1 1 24.5 odd 2
18.8.a.b.1.1 1 8.3 odd 2
50.8.a.g.1.1 1 120.59 even 2
50.8.b.c.49.1 2 120.107 odd 4
50.8.b.c.49.2 2 120.83 odd 4
64.8.a.c.1.1 1 12.11 even 2
64.8.a.e.1.1 1 3.2 odd 2
98.8.a.a.1.1 1 168.83 odd 2
98.8.c.d.67.1 2 168.107 even 6
98.8.c.d.79.1 2 168.11 even 6
98.8.c.e.67.1 2 168.131 odd 6
98.8.c.e.79.1 2 168.59 odd 6
144.8.a.i.1.1 1 8.5 even 2
162.8.c.a.55.1 2 72.67 odd 6
162.8.c.a.109.1 2 72.43 odd 6
162.8.c.l.55.1 2 72.59 even 6
162.8.c.l.109.1 2 72.11 even 6
242.8.a.e.1.1 1 264.131 odd 2
256.8.b.b.129.1 2 48.35 even 4
256.8.b.b.129.2 2 48.11 even 4
256.8.b.f.129.1 2 48.5 odd 4
256.8.b.f.129.2 2 48.29 odd 4
338.8.a.d.1.1 1 312.155 even 2
338.8.b.d.337.1 2 312.203 odd 4
338.8.b.d.337.2 2 312.83 odd 4
400.8.a.l.1.1 1 120.29 odd 2
400.8.c.j.49.1 2 120.53 even 4
400.8.c.j.49.2 2 120.77 even 4
450.8.a.c.1.1 1 40.19 odd 2
450.8.c.g.199.1 2 40.3 even 4
450.8.c.g.199.2 2 40.27 even 4
576.8.a.f.1.1 1 1.1 even 1 trivial
576.8.a.g.1.1 1 4.3 odd 2
578.8.a.b.1.1 1 408.203 even 2