Properties

Label 256.8.b.b.129.2
Level $256$
Weight $8$
Character 256.129
Analytic conductor $79.971$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,8,Mod(129,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.129");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 256.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.9705665239\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 2)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 256.129
Dual form 256.8.b.b.129.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+12.0000i q^{3} +210.000i q^{5} -1016.00 q^{7} +2043.00 q^{9} -1092.00i q^{11} +1382.00i q^{13} -2520.00 q^{15} +14706.0 q^{17} -39940.0i q^{19} -12192.0i q^{21} -68712.0 q^{23} +34025.0 q^{25} +50760.0i q^{27} -102570. i q^{29} +227552. q^{31} +13104.0 q^{33} -213360. i q^{35} -160526. i q^{37} -16584.0 q^{39} -10842.0 q^{41} +630748. i q^{43} +429030. i q^{45} +472656. q^{47} +208713. q^{49} +176472. i q^{51} +1.49402e6i q^{53} +229320. q^{55} +479280. q^{57} -2.64066e6i q^{59} +827702. i q^{61} -2.07569e6 q^{63} -290220. q^{65} -126004. i q^{67} -824544. i q^{69} +1.41473e6 q^{71} -980282. q^{73} +408300. i q^{75} +1.10947e6i q^{77} -3.56680e6 q^{79} +3.85892e6 q^{81} +5.67289e6i q^{83} +3.08826e6i q^{85} +1.23084e6 q^{87} +1.19512e7 q^{89} -1.40411e6i q^{91} +2.73062e6i q^{93} +8.38740e6 q^{95} +8.68215e6 q^{97} -2.23096e6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2032 q^{7} + 4086 q^{9} - 5040 q^{15} + 29412 q^{17} - 137424 q^{23} + 68050 q^{25} + 455104 q^{31} + 26208 q^{33} - 33168 q^{39} - 21684 q^{41} + 945312 q^{47} + 417426 q^{49} + 458640 q^{55} + 958560 q^{57}+ \cdots + 17364292 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 12.0000i 0.256600i 0.991735 + 0.128300i \(0.0409521\pi\)
−0.991735 + 0.128300i \(0.959048\pi\)
\(4\) 0 0
\(5\) 210.000i 0.751319i 0.926758 + 0.375659i \(0.122584\pi\)
−0.926758 + 0.375659i \(0.877416\pi\)
\(6\) 0 0
\(7\) −1016.00 −1.11957 −0.559784 0.828638i \(-0.689116\pi\)
−0.559784 + 0.828638i \(0.689116\pi\)
\(8\) 0 0
\(9\) 2043.00 0.934156
\(10\) 0 0
\(11\) − 1092.00i − 0.247371i −0.992321 0.123685i \(-0.960529\pi\)
0.992321 0.123685i \(-0.0394713\pi\)
\(12\) 0 0
\(13\) 1382.00i 0.174464i 0.996188 + 0.0872321i \(0.0278022\pi\)
−0.996188 + 0.0872321i \(0.972198\pi\)
\(14\) 0 0
\(15\) −2520.00 −0.192789
\(16\) 0 0
\(17\) 14706.0 0.725978 0.362989 0.931793i \(-0.381756\pi\)
0.362989 + 0.931793i \(0.381756\pi\)
\(18\) 0 0
\(19\) − 39940.0i − 1.33589i −0.744211 0.667945i \(-0.767174\pi\)
0.744211 0.667945i \(-0.232826\pi\)
\(20\) 0 0
\(21\) − 12192.0i − 0.287281i
\(22\) 0 0
\(23\) −68712.0 −1.17757 −0.588783 0.808291i \(-0.700393\pi\)
−0.588783 + 0.808291i \(0.700393\pi\)
\(24\) 0 0
\(25\) 34025.0 0.435520
\(26\) 0 0
\(27\) 50760.0i 0.496305i
\(28\) 0 0
\(29\) − 102570.i − 0.780957i −0.920612 0.390479i \(-0.872310\pi\)
0.920612 0.390479i \(-0.127690\pi\)
\(30\) 0 0
\(31\) 227552. 1.37188 0.685938 0.727660i \(-0.259392\pi\)
0.685938 + 0.727660i \(0.259392\pi\)
\(32\) 0 0
\(33\) 13104.0 0.0634753
\(34\) 0 0
\(35\) − 213360.i − 0.841153i
\(36\) 0 0
\(37\) − 160526.i − 0.521002i −0.965474 0.260501i \(-0.916112\pi\)
0.965474 0.260501i \(-0.0838877\pi\)
\(38\) 0 0
\(39\) −16584.0 −0.0447675
\(40\) 0 0
\(41\) −10842.0 −0.0245678 −0.0122839 0.999925i \(-0.503910\pi\)
−0.0122839 + 0.999925i \(0.503910\pi\)
\(42\) 0 0
\(43\) 630748.i 1.20981i 0.796299 + 0.604904i \(0.206788\pi\)
−0.796299 + 0.604904i \(0.793212\pi\)
\(44\) 0 0
\(45\) 429030.i 0.701849i
\(46\) 0 0
\(47\) 472656. 0.664053 0.332026 0.943270i \(-0.392268\pi\)
0.332026 + 0.943270i \(0.392268\pi\)
\(48\) 0 0
\(49\) 208713. 0.253433
\(50\) 0 0
\(51\) 176472.i 0.186286i
\(52\) 0 0
\(53\) 1.49402e6i 1.37845i 0.724548 + 0.689224i \(0.242048\pi\)
−0.724548 + 0.689224i \(0.757952\pi\)
\(54\) 0 0
\(55\) 229320. 0.185854
\(56\) 0 0
\(57\) 479280. 0.342789
\(58\) 0 0
\(59\) − 2.64066e6i − 1.67390i −0.547277 0.836952i \(-0.684335\pi\)
0.547277 0.836952i \(-0.315665\pi\)
\(60\) 0 0
\(61\) 827702.i 0.466895i 0.972369 + 0.233448i \(0.0750008\pi\)
−0.972369 + 0.233448i \(0.924999\pi\)
\(62\) 0 0
\(63\) −2.07569e6 −1.04585
\(64\) 0 0
\(65\) −290220. −0.131078
\(66\) 0 0
\(67\) − 126004.i − 0.0511826i −0.999672 0.0255913i \(-0.991853\pi\)
0.999672 0.0255913i \(-0.00814686\pi\)
\(68\) 0 0
\(69\) − 824544.i − 0.302164i
\(70\) 0 0
\(71\) 1.41473e6 0.469104 0.234552 0.972104i \(-0.424638\pi\)
0.234552 + 0.972104i \(0.424638\pi\)
\(72\) 0 0
\(73\) −980282. −0.294931 −0.147466 0.989067i \(-0.547112\pi\)
−0.147466 + 0.989067i \(0.547112\pi\)
\(74\) 0 0
\(75\) 408300.i 0.111754i
\(76\) 0 0
\(77\) 1.10947e6i 0.276948i
\(78\) 0 0
\(79\) −3.56680e6 −0.813924 −0.406962 0.913445i \(-0.633412\pi\)
−0.406962 + 0.913445i \(0.633412\pi\)
\(80\) 0 0
\(81\) 3.85892e6 0.806805
\(82\) 0 0
\(83\) 5.67289e6i 1.08901i 0.838758 + 0.544504i \(0.183282\pi\)
−0.838758 + 0.544504i \(0.816718\pi\)
\(84\) 0 0
\(85\) 3.08826e6i 0.545441i
\(86\) 0 0
\(87\) 1.23084e6 0.200394
\(88\) 0 0
\(89\) 1.19512e7 1.79699 0.898496 0.438982i \(-0.144661\pi\)
0.898496 + 0.438982i \(0.144661\pi\)
\(90\) 0 0
\(91\) − 1.40411e6i − 0.195325i
\(92\) 0 0
\(93\) 2.73062e6i 0.352023i
\(94\) 0 0
\(95\) 8.38740e6 1.00368
\(96\) 0 0
\(97\) 8.68215e6 0.965886 0.482943 0.875652i \(-0.339568\pi\)
0.482943 + 0.875652i \(0.339568\pi\)
\(98\) 0 0
\(99\) − 2.23096e6i − 0.231083i
\(100\) 0 0
\(101\) 1.00795e7i 0.973455i 0.873554 + 0.486727i \(0.161810\pi\)
−0.873554 + 0.486727i \(0.838190\pi\)
\(102\) 0 0
\(103\) −3.74799e6 −0.337962 −0.168981 0.985619i \(-0.554048\pi\)
−0.168981 + 0.985619i \(0.554048\pi\)
\(104\) 0 0
\(105\) 2.56032e6 0.215840
\(106\) 0 0
\(107\) 1.79856e7i 1.41932i 0.704543 + 0.709661i \(0.251152\pi\)
−0.704543 + 0.709661i \(0.748848\pi\)
\(108\) 0 0
\(109\) 1.22570e7i 0.906552i 0.891370 + 0.453276i \(0.149745\pi\)
−0.891370 + 0.453276i \(0.850255\pi\)
\(110\) 0 0
\(111\) 1.92631e6 0.133689
\(112\) 0 0
\(113\) 1.65950e7 1.08194 0.540968 0.841043i \(-0.318058\pi\)
0.540968 + 0.841043i \(0.318058\pi\)
\(114\) 0 0
\(115\) − 1.44295e7i − 0.884727i
\(116\) 0 0
\(117\) 2.82343e6i 0.162977i
\(118\) 0 0
\(119\) −1.49413e7 −0.812782
\(120\) 0 0
\(121\) 1.82947e7 0.938808
\(122\) 0 0
\(123\) − 130104.i − 0.00630410i
\(124\) 0 0
\(125\) 2.35515e7i 1.07853i
\(126\) 0 0
\(127\) 1.16826e6 0.0506087 0.0253043 0.999680i \(-0.491945\pi\)
0.0253043 + 0.999680i \(0.491945\pi\)
\(128\) 0 0
\(129\) −7.56898e6 −0.310437
\(130\) 0 0
\(131\) − 7.92383e6i − 0.307954i −0.988074 0.153977i \(-0.950792\pi\)
0.988074 0.153977i \(-0.0492081\pi\)
\(132\) 0 0
\(133\) 4.05790e7i 1.49562i
\(134\) 0 0
\(135\) −1.06596e7 −0.372883
\(136\) 0 0
\(137\) 315654. 0.0104879 0.00524396 0.999986i \(-0.498331\pi\)
0.00524396 + 0.999986i \(0.498331\pi\)
\(138\) 0 0
\(139\) − 3.92038e7i − 1.23816i −0.785329 0.619079i \(-0.787506\pi\)
0.785329 0.619079i \(-0.212494\pi\)
\(140\) 0 0
\(141\) 5.67187e6i 0.170396i
\(142\) 0 0
\(143\) 1.50914e6 0.0431573
\(144\) 0 0
\(145\) 2.15397e7 0.586748
\(146\) 0 0
\(147\) 2.50456e6i 0.0650309i
\(148\) 0 0
\(149\) 2.18860e7i 0.542020i 0.962577 + 0.271010i \(0.0873577\pi\)
−0.962577 + 0.271010i \(0.912642\pi\)
\(150\) 0 0
\(151\) 2.94154e7 0.695274 0.347637 0.937629i \(-0.386984\pi\)
0.347637 + 0.937629i \(0.386984\pi\)
\(152\) 0 0
\(153\) 3.00444e7 0.678177
\(154\) 0 0
\(155\) 4.77859e7i 1.03072i
\(156\) 0 0
\(157\) 6.05550e7i 1.24882i 0.781095 + 0.624412i \(0.214661\pi\)
−0.781095 + 0.624412i \(0.785339\pi\)
\(158\) 0 0
\(159\) −1.79282e7 −0.353710
\(160\) 0 0
\(161\) 6.98114e7 1.31837
\(162\) 0 0
\(163\) 5.70853e7i 1.03245i 0.856454 + 0.516223i \(0.172663\pi\)
−0.856454 + 0.516223i \(0.827337\pi\)
\(164\) 0 0
\(165\) 2.75184e6i 0.0476902i
\(166\) 0 0
\(167\) 8.77265e7 1.45755 0.728775 0.684754i \(-0.240090\pi\)
0.728775 + 0.684754i \(0.240090\pi\)
\(168\) 0 0
\(169\) 6.08386e7 0.969562
\(170\) 0 0
\(171\) − 8.15974e7i − 1.24793i
\(172\) 0 0
\(173\) 8.56954e6i 0.125833i 0.998019 + 0.0629167i \(0.0200403\pi\)
−0.998019 + 0.0629167i \(0.979960\pi\)
\(174\) 0 0
\(175\) −3.45694e7 −0.487594
\(176\) 0 0
\(177\) 3.16879e7 0.429524
\(178\) 0 0
\(179\) 1.88041e7i 0.245056i 0.992465 + 0.122528i \(0.0391002\pi\)
−0.992465 + 0.122528i \(0.960900\pi\)
\(180\) 0 0
\(181\) 5.99625e7i 0.751631i 0.926694 + 0.375816i \(0.122637\pi\)
−0.926694 + 0.375816i \(0.877363\pi\)
\(182\) 0 0
\(183\) −9.93242e6 −0.119805
\(184\) 0 0
\(185\) 3.37105e7 0.391439
\(186\) 0 0
\(187\) − 1.60590e7i − 0.179586i
\(188\) 0 0
\(189\) − 5.15722e7i − 0.555647i
\(190\) 0 0
\(191\) 9.39861e7 0.975993 0.487997 0.872845i \(-0.337728\pi\)
0.487997 + 0.872845i \(0.337728\pi\)
\(192\) 0 0
\(193\) −3.51946e7 −0.352391 −0.176196 0.984355i \(-0.556379\pi\)
−0.176196 + 0.984355i \(0.556379\pi\)
\(194\) 0 0
\(195\) − 3.48264e6i − 0.0336347i
\(196\) 0 0
\(197\) − 1.02985e8i − 0.959718i −0.877346 0.479859i \(-0.840688\pi\)
0.877346 0.479859i \(-0.159312\pi\)
\(198\) 0 0
\(199\) −8.36376e7 −0.752342 −0.376171 0.926550i \(-0.622760\pi\)
−0.376171 + 0.926550i \(0.622760\pi\)
\(200\) 0 0
\(201\) 1.51205e6 0.0131335
\(202\) 0 0
\(203\) 1.04211e8i 0.874335i
\(204\) 0 0
\(205\) − 2.27682e6i − 0.0184582i
\(206\) 0 0
\(207\) −1.40379e8 −1.10003
\(208\) 0 0
\(209\) −4.36145e7 −0.330460
\(210\) 0 0
\(211\) − 9.74010e7i − 0.713797i −0.934143 0.356899i \(-0.883834\pi\)
0.934143 0.356899i \(-0.116166\pi\)
\(212\) 0 0
\(213\) 1.69767e7i 0.120372i
\(214\) 0 0
\(215\) −1.32457e8 −0.908951
\(216\) 0 0
\(217\) −2.31193e8 −1.53591
\(218\) 0 0
\(219\) − 1.17634e7i − 0.0756794i
\(220\) 0 0
\(221\) 2.03237e7i 0.126657i
\(222\) 0 0
\(223\) −1.46457e7 −0.0884390 −0.0442195 0.999022i \(-0.514080\pi\)
−0.0442195 + 0.999022i \(0.514080\pi\)
\(224\) 0 0
\(225\) 6.95131e7 0.406844
\(226\) 0 0
\(227\) − 1.84541e8i − 1.04713i −0.851985 0.523567i \(-0.824601\pi\)
0.851985 0.523567i \(-0.175399\pi\)
\(228\) 0 0
\(229\) 8.75461e6i 0.0481740i 0.999710 + 0.0240870i \(0.00766787\pi\)
−0.999710 + 0.0240870i \(0.992332\pi\)
\(230\) 0 0
\(231\) −1.33137e7 −0.0710650
\(232\) 0 0
\(233\) 1.19556e8 0.619193 0.309597 0.950868i \(-0.399806\pi\)
0.309597 + 0.950868i \(0.399806\pi\)
\(234\) 0 0
\(235\) 9.92578e7i 0.498915i
\(236\) 0 0
\(237\) − 4.28016e7i − 0.208853i
\(238\) 0 0
\(239\) 3.96209e8 1.87729 0.938646 0.344883i \(-0.112081\pi\)
0.938646 + 0.344883i \(0.112081\pi\)
\(240\) 0 0
\(241\) −2.56606e8 −1.18089 −0.590443 0.807080i \(-0.701047\pi\)
−0.590443 + 0.807080i \(0.701047\pi\)
\(242\) 0 0
\(243\) 1.57319e8i 0.703331i
\(244\) 0 0
\(245\) 4.38297e7i 0.190409i
\(246\) 0 0
\(247\) 5.51971e7 0.233065
\(248\) 0 0
\(249\) −6.80747e7 −0.279440
\(250\) 0 0
\(251\) 7.34775e7i 0.293290i 0.989189 + 0.146645i \(0.0468474\pi\)
−0.989189 + 0.146645i \(0.953153\pi\)
\(252\) 0 0
\(253\) 7.50335e7i 0.291295i
\(254\) 0 0
\(255\) −3.70591e7 −0.139960
\(256\) 0 0
\(257\) −2.02701e8 −0.744886 −0.372443 0.928055i \(-0.621480\pi\)
−0.372443 + 0.928055i \(0.621480\pi\)
\(258\) 0 0
\(259\) 1.63094e8i 0.583297i
\(260\) 0 0
\(261\) − 2.09551e8i − 0.729536i
\(262\) 0 0
\(263\) −1.54254e8 −0.522867 −0.261434 0.965221i \(-0.584195\pi\)
−0.261434 + 0.965221i \(0.584195\pi\)
\(264\) 0 0
\(265\) −3.13744e8 −1.03565
\(266\) 0 0
\(267\) 1.43414e8i 0.461108i
\(268\) 0 0
\(269\) − 6.24018e8i − 1.95463i −0.211793 0.977315i \(-0.567930\pi\)
0.211793 0.977315i \(-0.432070\pi\)
\(270\) 0 0
\(271\) −3.87983e8 −1.18419 −0.592094 0.805869i \(-0.701698\pi\)
−0.592094 + 0.805869i \(0.701698\pi\)
\(272\) 0 0
\(273\) 1.68493e7 0.0501203
\(274\) 0 0
\(275\) − 3.71553e7i − 0.107735i
\(276\) 0 0
\(277\) − 4.53952e8i − 1.28331i −0.766994 0.641654i \(-0.778248\pi\)
0.766994 0.641654i \(-0.221752\pi\)
\(278\) 0 0
\(279\) 4.64889e8 1.28155
\(280\) 0 0
\(281\) −3.33770e8 −0.897377 −0.448689 0.893688i \(-0.648109\pi\)
−0.448689 + 0.893688i \(0.648109\pi\)
\(282\) 0 0
\(283\) − 5.37695e8i − 1.41021i −0.709104 0.705104i \(-0.750900\pi\)
0.709104 0.705104i \(-0.249100\pi\)
\(284\) 0 0
\(285\) 1.00649e8i 0.257544i
\(286\) 0 0
\(287\) 1.10155e7 0.0275053
\(288\) 0 0
\(289\) −1.94072e8 −0.472956
\(290\) 0 0
\(291\) 1.04186e8i 0.247847i
\(292\) 0 0
\(293\) − 3.35600e8i − 0.779445i −0.920932 0.389722i \(-0.872571\pi\)
0.920932 0.389722i \(-0.127429\pi\)
\(294\) 0 0
\(295\) 5.54539e8 1.25764
\(296\) 0 0
\(297\) 5.54299e7 0.122771
\(298\) 0 0
\(299\) − 9.49600e7i − 0.205443i
\(300\) 0 0
\(301\) − 6.40840e8i − 1.35446i
\(302\) 0 0
\(303\) −1.20954e8 −0.249789
\(304\) 0 0
\(305\) −1.73817e8 −0.350787
\(306\) 0 0
\(307\) 2.15029e8i 0.424143i 0.977254 + 0.212072i \(0.0680210\pi\)
−0.977254 + 0.212072i \(0.931979\pi\)
\(308\) 0 0
\(309\) − 4.49759e7i − 0.0867212i
\(310\) 0 0
\(311\) −7.92062e8 −1.49313 −0.746565 0.665313i \(-0.768298\pi\)
−0.746565 + 0.665313i \(0.768298\pi\)
\(312\) 0 0
\(313\) 1.18457e8 0.218352 0.109176 0.994022i \(-0.465179\pi\)
0.109176 + 0.994022i \(0.465179\pi\)
\(314\) 0 0
\(315\) − 4.35894e8i − 0.785768i
\(316\) 0 0
\(317\) − 5.07310e7i − 0.0894470i −0.998999 0.0447235i \(-0.985759\pi\)
0.998999 0.0447235i \(-0.0142407\pi\)
\(318\) 0 0
\(319\) −1.12006e8 −0.193186
\(320\) 0 0
\(321\) −2.15827e8 −0.364198
\(322\) 0 0
\(323\) − 5.87358e8i − 0.969826i
\(324\) 0 0
\(325\) 4.70226e7i 0.0759826i
\(326\) 0 0
\(327\) −1.47084e8 −0.232621
\(328\) 0 0
\(329\) −4.80218e8 −0.743453
\(330\) 0 0
\(331\) − 2.73757e8i − 0.414923i −0.978243 0.207461i \(-0.933480\pi\)
0.978243 0.207461i \(-0.0665201\pi\)
\(332\) 0 0
\(333\) − 3.27955e8i − 0.486697i
\(334\) 0 0
\(335\) 2.64608e7 0.0384545
\(336\) 0 0
\(337\) −9.18512e7 −0.130732 −0.0653658 0.997861i \(-0.520821\pi\)
−0.0653658 + 0.997861i \(0.520821\pi\)
\(338\) 0 0
\(339\) 1.99140e8i 0.277625i
\(340\) 0 0
\(341\) − 2.48487e8i − 0.339362i
\(342\) 0 0
\(343\) 6.24667e8 0.835833
\(344\) 0 0
\(345\) 1.73154e8 0.227021
\(346\) 0 0
\(347\) 1.36700e9i 1.75637i 0.478318 + 0.878187i \(0.341247\pi\)
−0.478318 + 0.878187i \(0.658753\pi\)
\(348\) 0 0
\(349\) 1.13143e9i 1.42475i 0.701797 + 0.712377i \(0.252381\pi\)
−0.701797 + 0.712377i \(0.747619\pi\)
\(350\) 0 0
\(351\) −7.01503e7 −0.0865874
\(352\) 0 0
\(353\) −4.48395e7 −0.0542562 −0.0271281 0.999632i \(-0.508636\pi\)
−0.0271281 + 0.999632i \(0.508636\pi\)
\(354\) 0 0
\(355\) 2.97093e8i 0.352446i
\(356\) 0 0
\(357\) − 1.79296e8i − 0.208560i
\(358\) 0 0
\(359\) −3.98281e8 −0.454317 −0.227158 0.973858i \(-0.572943\pi\)
−0.227158 + 0.973858i \(0.572943\pi\)
\(360\) 0 0
\(361\) −7.01332e8 −0.784600
\(362\) 0 0
\(363\) 2.19536e8i 0.240898i
\(364\) 0 0
\(365\) − 2.05859e8i − 0.221588i
\(366\) 0 0
\(367\) 1.63472e9 1.72628 0.863140 0.504964i \(-0.168494\pi\)
0.863140 + 0.504964i \(0.168494\pi\)
\(368\) 0 0
\(369\) −2.21502e7 −0.0229501
\(370\) 0 0
\(371\) − 1.51792e9i − 1.54327i
\(372\) 0 0
\(373\) 1.54633e9i 1.54284i 0.636325 + 0.771421i \(0.280454\pi\)
−0.636325 + 0.771421i \(0.719546\pi\)
\(374\) 0 0
\(375\) −2.82618e8 −0.276752
\(376\) 0 0
\(377\) 1.41752e8 0.136249
\(378\) 0 0
\(379\) 1.05688e9i 0.997216i 0.866828 + 0.498608i \(0.166155\pi\)
−0.866828 + 0.498608i \(0.833845\pi\)
\(380\) 0 0
\(381\) 1.40191e7i 0.0129862i
\(382\) 0 0
\(383\) 2.24910e8 0.204556 0.102278 0.994756i \(-0.467387\pi\)
0.102278 + 0.994756i \(0.467387\pi\)
\(384\) 0 0
\(385\) −2.32989e8 −0.208077
\(386\) 0 0
\(387\) 1.28862e9i 1.13015i
\(388\) 0 0
\(389\) − 1.01788e9i − 0.876746i −0.898793 0.438373i \(-0.855555\pi\)
0.898793 0.438373i \(-0.144445\pi\)
\(390\) 0 0
\(391\) −1.01048e9 −0.854887
\(392\) 0 0
\(393\) 9.50859e7 0.0790210
\(394\) 0 0
\(395\) − 7.49028e8i − 0.611517i
\(396\) 0 0
\(397\) − 1.47565e9i − 1.18363i −0.806072 0.591817i \(-0.798411\pi\)
0.806072 0.591817i \(-0.201589\pi\)
\(398\) 0 0
\(399\) −4.86948e8 −0.383776
\(400\) 0 0
\(401\) 2.74912e8 0.212906 0.106453 0.994318i \(-0.466051\pi\)
0.106453 + 0.994318i \(0.466051\pi\)
\(402\) 0 0
\(403\) 3.14477e8i 0.239343i
\(404\) 0 0
\(405\) 8.10373e8i 0.606167i
\(406\) 0 0
\(407\) −1.75294e8 −0.128881
\(408\) 0 0
\(409\) 1.63427e9 1.18112 0.590558 0.806995i \(-0.298908\pi\)
0.590558 + 0.806995i \(0.298908\pi\)
\(410\) 0 0
\(411\) 3.78785e6i 0.00269120i
\(412\) 0 0
\(413\) 2.68291e9i 1.87405i
\(414\) 0 0
\(415\) −1.19131e9 −0.818192
\(416\) 0 0
\(417\) 4.70445e8 0.317712
\(418\) 0 0
\(419\) − 1.11280e9i − 0.739039i −0.929223 0.369519i \(-0.879522\pi\)
0.929223 0.369519i \(-0.120478\pi\)
\(420\) 0 0
\(421\) − 9.22528e8i − 0.602549i −0.953537 0.301274i \(-0.902588\pi\)
0.953537 0.301274i \(-0.0974120\pi\)
\(422\) 0 0
\(423\) 9.65636e8 0.620329
\(424\) 0 0
\(425\) 5.00372e8 0.316178
\(426\) 0 0
\(427\) − 8.40945e8i − 0.522721i
\(428\) 0 0
\(429\) 1.81097e7i 0.0110742i
\(430\) 0 0
\(431\) −9.81508e8 −0.590505 −0.295252 0.955419i \(-0.595404\pi\)
−0.295252 + 0.955419i \(0.595404\pi\)
\(432\) 0 0
\(433\) 2.84998e9 1.68707 0.843537 0.537071i \(-0.180469\pi\)
0.843537 + 0.537071i \(0.180469\pi\)
\(434\) 0 0
\(435\) 2.58476e8i 0.150560i
\(436\) 0 0
\(437\) 2.74436e9i 1.57310i
\(438\) 0 0
\(439\) 1.05622e9 0.595838 0.297919 0.954591i \(-0.403708\pi\)
0.297919 + 0.954591i \(0.403708\pi\)
\(440\) 0 0
\(441\) 4.26401e8 0.236746
\(442\) 0 0
\(443\) − 1.82325e9i − 0.996401i −0.867062 0.498201i \(-0.833994\pi\)
0.867062 0.498201i \(-0.166006\pi\)
\(444\) 0 0
\(445\) 2.50975e9i 1.35011i
\(446\) 0 0
\(447\) −2.62633e8 −0.139082
\(448\) 0 0
\(449\) 1.84846e9 0.963713 0.481856 0.876250i \(-0.339963\pi\)
0.481856 + 0.876250i \(0.339963\pi\)
\(450\) 0 0
\(451\) 1.18395e7i 0.00607735i
\(452\) 0 0
\(453\) 3.52985e8i 0.178407i
\(454\) 0 0
\(455\) 2.94864e8 0.146751
\(456\) 0 0
\(457\) 2.98066e9 1.46085 0.730425 0.682993i \(-0.239322\pi\)
0.730425 + 0.682993i \(0.239322\pi\)
\(458\) 0 0
\(459\) 7.46477e8i 0.360306i
\(460\) 0 0
\(461\) − 2.52781e9i − 1.20169i −0.799367 0.600843i \(-0.794832\pi\)
0.799367 0.600843i \(-0.205168\pi\)
\(462\) 0 0
\(463\) −8.90291e8 −0.416868 −0.208434 0.978036i \(-0.566837\pi\)
−0.208434 + 0.978036i \(0.566837\pi\)
\(464\) 0 0
\(465\) −5.73431e8 −0.264482
\(466\) 0 0
\(467\) 2.65667e9i 1.20706i 0.797341 + 0.603529i \(0.206239\pi\)
−0.797341 + 0.603529i \(0.793761\pi\)
\(468\) 0 0
\(469\) 1.28020e8i 0.0573024i
\(470\) 0 0
\(471\) −7.26660e8 −0.320448
\(472\) 0 0
\(473\) 6.88777e8 0.299271
\(474\) 0 0
\(475\) − 1.35896e9i − 0.581806i
\(476\) 0 0
\(477\) 3.05228e9i 1.28769i
\(478\) 0 0
\(479\) 1.30093e9 0.540855 0.270428 0.962740i \(-0.412835\pi\)
0.270428 + 0.962740i \(0.412835\pi\)
\(480\) 0 0
\(481\) 2.21847e8 0.0908962
\(482\) 0 0
\(483\) 8.37737e8i 0.338293i
\(484\) 0 0
\(485\) 1.82325e9i 0.725689i
\(486\) 0 0
\(487\) 1.07447e9 0.421542 0.210771 0.977535i \(-0.432402\pi\)
0.210771 + 0.977535i \(0.432402\pi\)
\(488\) 0 0
\(489\) −6.85024e8 −0.264926
\(490\) 0 0
\(491\) 7.83344e8i 0.298653i 0.988788 + 0.149327i \(0.0477106\pi\)
−0.988788 + 0.149327i \(0.952289\pi\)
\(492\) 0 0
\(493\) − 1.50839e9i − 0.566958i
\(494\) 0 0
\(495\) 4.68501e8 0.173617
\(496\) 0 0
\(497\) −1.43736e9 −0.525193
\(498\) 0 0
\(499\) − 6.23188e8i − 0.224526i −0.993679 0.112263i \(-0.964190\pi\)
0.993679 0.112263i \(-0.0358100\pi\)
\(500\) 0 0
\(501\) 1.05272e9i 0.374007i
\(502\) 0 0
\(503\) 2.70927e9 0.949215 0.474607 0.880198i \(-0.342590\pi\)
0.474607 + 0.880198i \(0.342590\pi\)
\(504\) 0 0
\(505\) −2.11670e9 −0.731375
\(506\) 0 0
\(507\) 7.30063e8i 0.248790i
\(508\) 0 0
\(509\) 3.49943e9i 1.17621i 0.808784 + 0.588106i \(0.200126\pi\)
−0.808784 + 0.588106i \(0.799874\pi\)
\(510\) 0 0
\(511\) 9.95967e8 0.330196
\(512\) 0 0
\(513\) 2.02735e9 0.663008
\(514\) 0 0
\(515\) − 7.87078e8i − 0.253918i
\(516\) 0 0
\(517\) − 5.16140e8i − 0.164267i
\(518\) 0 0
\(519\) −1.02835e8 −0.0322889
\(520\) 0 0
\(521\) 1.37683e9 0.426530 0.213265 0.976994i \(-0.431590\pi\)
0.213265 + 0.976994i \(0.431590\pi\)
\(522\) 0 0
\(523\) 2.86154e9i 0.874669i 0.899299 + 0.437334i \(0.144077\pi\)
−0.899299 + 0.437334i \(0.855923\pi\)
\(524\) 0 0
\(525\) − 4.14833e8i − 0.125117i
\(526\) 0 0
\(527\) 3.34638e9 0.995951
\(528\) 0 0
\(529\) 1.31651e9 0.386661
\(530\) 0 0
\(531\) − 5.39487e9i − 1.56369i
\(532\) 0 0
\(533\) − 1.49836e7i − 0.00428620i
\(534\) 0 0
\(535\) −3.77697e9 −1.06636
\(536\) 0 0
\(537\) −2.25649e8 −0.0628815
\(538\) 0 0
\(539\) − 2.27915e8i − 0.0626919i
\(540\) 0 0
\(541\) 5.34467e9i 1.45121i 0.688111 + 0.725605i \(0.258440\pi\)
−0.688111 + 0.725605i \(0.741560\pi\)
\(542\) 0 0
\(543\) −7.19550e8 −0.192869
\(544\) 0 0
\(545\) −2.57398e9 −0.681109
\(546\) 0 0
\(547\) − 3.37135e9i − 0.880740i −0.897816 0.440370i \(-0.854847\pi\)
0.897816 0.440370i \(-0.145153\pi\)
\(548\) 0 0
\(549\) 1.69100e9i 0.436153i
\(550\) 0 0
\(551\) −4.09665e9 −1.04327
\(552\) 0 0
\(553\) 3.62387e9 0.911244
\(554\) 0 0
\(555\) 4.04526e8i 0.100443i
\(556\) 0 0
\(557\) − 5.61106e9i − 1.37579i −0.725811 0.687894i \(-0.758535\pi\)
0.725811 0.687894i \(-0.241465\pi\)
\(558\) 0 0
\(559\) −8.71694e8 −0.211068
\(560\) 0 0
\(561\) 1.92707e8 0.0460817
\(562\) 0 0
\(563\) 6.69690e9i 1.58159i 0.612081 + 0.790795i \(0.290333\pi\)
−0.612081 + 0.790795i \(0.709667\pi\)
\(564\) 0 0
\(565\) 3.48494e9i 0.812879i
\(566\) 0 0
\(567\) −3.92066e9 −0.903273
\(568\) 0 0
\(569\) −1.96850e9 −0.447964 −0.223982 0.974593i \(-0.571906\pi\)
−0.223982 + 0.974593i \(0.571906\pi\)
\(570\) 0 0
\(571\) − 1.02926e9i − 0.231365i −0.993286 0.115682i \(-0.963094\pi\)
0.993286 0.115682i \(-0.0369055\pi\)
\(572\) 0 0
\(573\) 1.12783e9i 0.250440i
\(574\) 0 0
\(575\) −2.33793e9 −0.512853
\(576\) 0 0
\(577\) 3.31179e9 0.717708 0.358854 0.933394i \(-0.383168\pi\)
0.358854 + 0.933394i \(0.383168\pi\)
\(578\) 0 0
\(579\) − 4.22335e8i − 0.0904236i
\(580\) 0 0
\(581\) − 5.76366e9i − 1.21922i
\(582\) 0 0
\(583\) 1.63147e9 0.340988
\(584\) 0 0
\(585\) −5.92919e8 −0.122448
\(586\) 0 0
\(587\) 5.59411e8i 0.114156i 0.998370 + 0.0570778i \(0.0181783\pi\)
−0.998370 + 0.0570778i \(0.981822\pi\)
\(588\) 0 0
\(589\) − 9.08843e9i − 1.83267i
\(590\) 0 0
\(591\) 1.23582e9 0.246264
\(592\) 0 0
\(593\) −3.02459e9 −0.595628 −0.297814 0.954624i \(-0.596258\pi\)
−0.297814 + 0.954624i \(0.596258\pi\)
\(594\) 0 0
\(595\) − 3.13767e9i − 0.610658i
\(596\) 0 0
\(597\) − 1.00365e9i − 0.193051i
\(598\) 0 0
\(599\) 5.63246e9 1.07079 0.535395 0.844602i \(-0.320163\pi\)
0.535395 + 0.844602i \(0.320163\pi\)
\(600\) 0 0
\(601\) −3.40792e8 −0.0640366 −0.0320183 0.999487i \(-0.510193\pi\)
−0.0320183 + 0.999487i \(0.510193\pi\)
\(602\) 0 0
\(603\) − 2.57426e8i − 0.0478126i
\(604\) 0 0
\(605\) 3.84189e9i 0.705344i
\(606\) 0 0
\(607\) 3.85420e9 0.699477 0.349739 0.936847i \(-0.386270\pi\)
0.349739 + 0.936847i \(0.386270\pi\)
\(608\) 0 0
\(609\) −1.25053e9 −0.224355
\(610\) 0 0
\(611\) 6.53211e8i 0.115853i
\(612\) 0 0
\(613\) − 9.22245e9i − 1.61709i −0.588434 0.808545i \(-0.700255\pi\)
0.588434 0.808545i \(-0.299745\pi\)
\(614\) 0 0
\(615\) 2.73218e7 0.00473639
\(616\) 0 0
\(617\) −6.53611e9 −1.12027 −0.560133 0.828402i \(-0.689250\pi\)
−0.560133 + 0.828402i \(0.689250\pi\)
\(618\) 0 0
\(619\) − 1.36559e9i − 0.231420i −0.993283 0.115710i \(-0.963086\pi\)
0.993283 0.115710i \(-0.0369144\pi\)
\(620\) 0 0
\(621\) − 3.48782e9i − 0.584431i
\(622\) 0 0
\(623\) −1.21424e10 −2.01186
\(624\) 0 0
\(625\) −2.28761e9 −0.374802
\(626\) 0 0
\(627\) − 5.23374e8i − 0.0847960i
\(628\) 0 0
\(629\) − 2.36070e9i − 0.378236i
\(630\) 0 0
\(631\) −1.54079e9 −0.244141 −0.122070 0.992521i \(-0.538953\pi\)
−0.122070 + 0.992521i \(0.538953\pi\)
\(632\) 0 0
\(633\) 1.16881e9 0.183160
\(634\) 0 0
\(635\) 2.45334e8i 0.0380233i
\(636\) 0 0
\(637\) 2.88441e8i 0.0442150i
\(638\) 0 0
\(639\) 2.89029e9 0.438216
\(640\) 0 0
\(641\) −4.54018e9 −0.680879 −0.340440 0.940266i \(-0.610576\pi\)
−0.340440 + 0.940266i \(0.610576\pi\)
\(642\) 0 0
\(643\) 1.14054e10i 1.69189i 0.533272 + 0.845944i \(0.320962\pi\)
−0.533272 + 0.845944i \(0.679038\pi\)
\(644\) 0 0
\(645\) − 1.58948e9i − 0.233237i
\(646\) 0 0
\(647\) 1.26393e10 1.83468 0.917338 0.398109i \(-0.130334\pi\)
0.917338 + 0.398109i \(0.130334\pi\)
\(648\) 0 0
\(649\) −2.88360e9 −0.414075
\(650\) 0 0
\(651\) − 2.77431e9i − 0.394114i
\(652\) 0 0
\(653\) − 1.05004e10i − 1.47575i −0.674940 0.737873i \(-0.735830\pi\)
0.674940 0.737873i \(-0.264170\pi\)
\(654\) 0 0
\(655\) 1.66400e9 0.231371
\(656\) 0 0
\(657\) −2.00272e9 −0.275512
\(658\) 0 0
\(659\) 9.64818e9i 1.31325i 0.754219 + 0.656624i \(0.228016\pi\)
−0.754219 + 0.656624i \(0.771984\pi\)
\(660\) 0 0
\(661\) 6.58299e9i 0.886580i 0.896378 + 0.443290i \(0.146189\pi\)
−0.896378 + 0.443290i \(0.853811\pi\)
\(662\) 0 0
\(663\) −2.43884e8 −0.0325002
\(664\) 0 0
\(665\) −8.52160e9 −1.12369
\(666\) 0 0
\(667\) 7.04779e9i 0.919629i
\(668\) 0 0
\(669\) − 1.75749e8i − 0.0226935i
\(670\) 0 0
\(671\) 9.03851e8 0.115496
\(672\) 0 0
\(673\) −8.54649e9 −1.08077 −0.540387 0.841416i \(-0.681722\pi\)
−0.540387 + 0.841416i \(0.681722\pi\)
\(674\) 0 0
\(675\) 1.72711e9i 0.216151i
\(676\) 0 0
\(677\) − 8.71305e9i − 1.07922i −0.841915 0.539610i \(-0.818572\pi\)
0.841915 0.539610i \(-0.181428\pi\)
\(678\) 0 0
\(679\) −8.82106e9 −1.08138
\(680\) 0 0
\(681\) 2.21449e9 0.268695
\(682\) 0 0
\(683\) − 1.46109e10i − 1.75470i −0.479849 0.877351i \(-0.659308\pi\)
0.479849 0.877351i \(-0.340692\pi\)
\(684\) 0 0
\(685\) 6.62873e7i 0.00787977i
\(686\) 0 0
\(687\) −1.05055e8 −0.0123615
\(688\) 0 0
\(689\) −2.06473e9 −0.240490
\(690\) 0 0
\(691\) − 1.47348e10i − 1.69891i −0.527662 0.849454i \(-0.676931\pi\)
0.527662 0.849454i \(-0.323069\pi\)
\(692\) 0 0
\(693\) 2.26665e9i 0.258713i
\(694\) 0 0
\(695\) 8.23279e9 0.930252
\(696\) 0 0
\(697\) −1.59442e8 −0.0178357
\(698\) 0 0
\(699\) 1.43467e9i 0.158885i
\(700\) 0 0
\(701\) 1.31502e9i 0.144185i 0.997398 + 0.0720923i \(0.0229676\pi\)
−0.997398 + 0.0720923i \(0.977032\pi\)
\(702\) 0 0
\(703\) −6.41141e9 −0.696001
\(704\) 0 0
\(705\) −1.19109e9 −0.128022
\(706\) 0 0
\(707\) − 1.02408e10i − 1.08985i
\(708\) 0 0
\(709\) − 6.64028e8i − 0.0699721i −0.999388 0.0349860i \(-0.988861\pi\)
0.999388 0.0349860i \(-0.0111387\pi\)
\(710\) 0 0
\(711\) −7.28697e9 −0.760332
\(712\) 0 0
\(713\) −1.56356e10 −1.61547
\(714\) 0 0
\(715\) 3.16920e8i 0.0324249i
\(716\) 0 0
\(717\) 4.75451e9i 0.481713i
\(718\) 0 0
\(719\) 4.95034e9 0.496689 0.248344 0.968672i \(-0.420114\pi\)
0.248344 + 0.968672i \(0.420114\pi\)
\(720\) 0 0
\(721\) 3.80796e9 0.378372
\(722\) 0 0
\(723\) − 3.07928e9i − 0.303015i
\(724\) 0 0
\(725\) − 3.48994e9i − 0.340123i
\(726\) 0 0
\(727\) −8.81101e9 −0.850463 −0.425231 0.905085i \(-0.639807\pi\)
−0.425231 + 0.905085i \(0.639807\pi\)
\(728\) 0 0
\(729\) 6.55163e9 0.626330
\(730\) 0 0
\(731\) 9.27578e9i 0.878293i
\(732\) 0 0
\(733\) − 1.49414e8i − 0.0140129i −0.999975 0.00700643i \(-0.997770\pi\)
0.999975 0.00700643i \(-0.00223023\pi\)
\(734\) 0 0
\(735\) −5.25957e8 −0.0488590
\(736\) 0 0
\(737\) −1.37596e8 −0.0126611
\(738\) 0 0
\(739\) − 4.70806e9i − 0.429127i −0.976710 0.214564i \(-0.931167\pi\)
0.976710 0.214564i \(-0.0688329\pi\)
\(740\) 0 0
\(741\) 6.62365e8i 0.0598045i
\(742\) 0 0
\(743\) −1.69676e9 −0.151761 −0.0758805 0.997117i \(-0.524177\pi\)
−0.0758805 + 0.997117i \(0.524177\pi\)
\(744\) 0 0
\(745\) −4.59607e9 −0.407230
\(746\) 0 0
\(747\) 1.15897e10i 1.01730i
\(748\) 0 0
\(749\) − 1.82733e10i − 1.58903i
\(750\) 0 0
\(751\) 1.06650e10 0.918800 0.459400 0.888229i \(-0.348064\pi\)
0.459400 + 0.888229i \(0.348064\pi\)
\(752\) 0 0
\(753\) −8.81731e8 −0.0752581
\(754\) 0 0
\(755\) 6.17724e9i 0.522373i
\(756\) 0 0
\(757\) − 6.22876e9i − 0.521874i −0.965356 0.260937i \(-0.915968\pi\)
0.965356 0.260937i \(-0.0840315\pi\)
\(758\) 0 0
\(759\) −9.00402e8 −0.0747464
\(760\) 0 0
\(761\) 8.38334e9 0.689558 0.344779 0.938684i \(-0.387954\pi\)
0.344779 + 0.938684i \(0.387954\pi\)
\(762\) 0 0
\(763\) − 1.24531e10i − 1.01495i
\(764\) 0 0
\(765\) 6.30932e9i 0.509527i
\(766\) 0 0
\(767\) 3.64939e9 0.292036
\(768\) 0 0
\(769\) −1.18649e10 −0.940852 −0.470426 0.882439i \(-0.655900\pi\)
−0.470426 + 0.882439i \(0.655900\pi\)
\(770\) 0 0
\(771\) − 2.43241e9i − 0.191138i
\(772\) 0 0
\(773\) − 5.56680e9i − 0.433488i −0.976228 0.216744i \(-0.930456\pi\)
0.976228 0.216744i \(-0.0695438\pi\)
\(774\) 0 0
\(775\) 7.74246e9 0.597479
\(776\) 0 0
\(777\) −1.95713e9 −0.149674
\(778\) 0 0
\(779\) 4.33029e8i 0.0328198i
\(780\) 0 0
\(781\) − 1.54488e9i − 0.116042i
\(782\) 0 0
\(783\) 5.20645e9 0.387593
\(784\) 0 0
\(785\) −1.27165e10 −0.938264
\(786\) 0 0
\(787\) 1.34611e8i 0.00984395i 0.999988 + 0.00492198i \(0.00156672\pi\)
−0.999988 + 0.00492198i \(0.998433\pi\)
\(788\) 0 0
\(789\) − 1.85105e9i − 0.134168i
\(790\) 0 0
\(791\) −1.68605e10 −1.21130
\(792\) 0 0
\(793\) −1.14388e9 −0.0814565
\(794\) 0 0
\(795\) − 3.76493e9i − 0.265749i
\(796\) 0 0
\(797\) − 7.41548e9i − 0.518842i −0.965764 0.259421i \(-0.916468\pi\)
0.965764 0.259421i \(-0.0835317\pi\)
\(798\) 0 0
\(799\) 6.95088e9 0.482088
\(800\) 0 0
\(801\) 2.44163e10 1.67867
\(802\) 0 0
\(803\) 1.07047e9i 0.0729574i
\(804\) 0 0
\(805\) 1.46604e10i 0.990513i
\(806\) 0 0
\(807\) 7.48822e9 0.501558
\(808\) 0 0
\(809\) 1.41542e10 0.939863 0.469932 0.882703i \(-0.344279\pi\)
0.469932 + 0.882703i \(0.344279\pi\)
\(810\) 0 0
\(811\) 2.63708e10i 1.73600i 0.496563 + 0.868001i \(0.334595\pi\)
−0.496563 + 0.868001i \(0.665405\pi\)
\(812\) 0 0
\(813\) − 4.65580e9i − 0.303863i
\(814\) 0 0
\(815\) −1.19879e10 −0.775697
\(816\) 0 0
\(817\) 2.51921e10 1.61617
\(818\) 0 0
\(819\) − 2.86860e9i − 0.182464i
\(820\) 0 0
\(821\) − 8.06264e9i − 0.508483i −0.967141 0.254241i \(-0.918174\pi\)
0.967141 0.254241i \(-0.0818258\pi\)
\(822\) 0 0
\(823\) 2.34202e10 1.46451 0.732253 0.681033i \(-0.238469\pi\)
0.732253 + 0.681033i \(0.238469\pi\)
\(824\) 0 0
\(825\) 4.45864e8 0.0276448
\(826\) 0 0
\(827\) − 5.55722e9i − 0.341655i −0.985301 0.170828i \(-0.945356\pi\)
0.985301 0.170828i \(-0.0546442\pi\)
\(828\) 0 0
\(829\) 2.84256e10i 1.73288i 0.499281 + 0.866440i \(0.333597\pi\)
−0.499281 + 0.866440i \(0.666403\pi\)
\(830\) 0 0
\(831\) 5.44743e9 0.329297
\(832\) 0 0
\(833\) 3.06933e9 0.183987
\(834\) 0 0
\(835\) 1.84226e10i 1.09508i
\(836\) 0 0
\(837\) 1.15505e10i 0.680868i
\(838\) 0 0
\(839\) −1.04036e10 −0.608156 −0.304078 0.952647i \(-0.598348\pi\)
−0.304078 + 0.952647i \(0.598348\pi\)
\(840\) 0 0
\(841\) 6.72927e9 0.390105
\(842\) 0 0
\(843\) − 4.00524e9i − 0.230267i
\(844\) 0 0
\(845\) 1.27761e10i 0.728450i
\(846\) 0 0
\(847\) −1.85874e10 −1.05106
\(848\) 0 0
\(849\) 6.45234e9 0.361860
\(850\) 0 0
\(851\) 1.10301e10i 0.613514i
\(852\) 0 0
\(853\) 1.80580e10i 0.996205i 0.867118 + 0.498102i \(0.165970\pi\)
−0.867118 + 0.498102i \(0.834030\pi\)
\(854\) 0 0
\(855\) 1.71355e10 0.937593
\(856\) 0 0
\(857\) 6.34034e9 0.344096 0.172048 0.985089i \(-0.444962\pi\)
0.172048 + 0.985089i \(0.444962\pi\)
\(858\) 0 0
\(859\) − 1.21489e10i − 0.653973i −0.945029 0.326987i \(-0.893967\pi\)
0.945029 0.326987i \(-0.106033\pi\)
\(860\) 0 0
\(861\) 1.32186e8i 0.00705786i
\(862\) 0 0
\(863\) −2.87111e10 −1.52059 −0.760295 0.649578i \(-0.774946\pi\)
−0.760295 + 0.649578i \(0.774946\pi\)
\(864\) 0 0
\(865\) −1.79960e9 −0.0945411
\(866\) 0 0
\(867\) − 2.32887e9i − 0.121361i
\(868\) 0 0
\(869\) 3.89495e9i 0.201341i
\(870\) 0 0
\(871\) 1.74138e8 0.00892953
\(872\) 0 0
\(873\) 1.77376e10 0.902289
\(874\) 0 0
\(875\) − 2.39283e10i − 1.20749i
\(876\) 0 0
\(877\) 2.46021e10i 1.23161i 0.787898 + 0.615806i \(0.211169\pi\)
−0.787898 + 0.615806i \(0.788831\pi\)
\(878\) 0 0
\(879\) 4.02720e9 0.200006
\(880\) 0 0
\(881\) −1.25378e10 −0.617738 −0.308869 0.951105i \(-0.599951\pi\)
−0.308869 + 0.951105i \(0.599951\pi\)
\(882\) 0 0
\(883\) 1.93097e10i 0.943873i 0.881633 + 0.471937i \(0.156445\pi\)
−0.881633 + 0.471937i \(0.843555\pi\)
\(884\) 0 0
\(885\) 6.65446e9i 0.322709i
\(886\) 0 0
\(887\) −3.20268e10 −1.54092 −0.770462 0.637486i \(-0.779974\pi\)
−0.770462 + 0.637486i \(0.779974\pi\)
\(888\) 0 0
\(889\) −1.18695e9 −0.0566599
\(890\) 0 0
\(891\) − 4.21394e9i − 0.199580i
\(892\) 0 0
\(893\) − 1.88779e10i − 0.887101i
\(894\) 0 0
\(895\) −3.94885e9 −0.184115
\(896\) 0 0
\(897\) 1.13952e9 0.0527167
\(898\) 0 0
\(899\) − 2.33400e10i − 1.07138i
\(900\) 0 0
\(901\) 2.19710e10i 1.00072i
\(902\) 0 0
\(903\) 7.69008e9 0.347555
\(904\) 0 0
\(905\) −1.25921e10 −0.564715
\(906\) 0 0
\(907\) − 2.33703e9i − 0.104002i −0.998647 0.0520008i \(-0.983440\pi\)
0.998647 0.0520008i \(-0.0165598\pi\)
\(908\) 0 0
\(909\) 2.05925e10i 0.909359i
\(910\) 0 0
\(911\) 2.20343e10 0.965573 0.482786 0.875738i \(-0.339625\pi\)
0.482786 + 0.875738i \(0.339625\pi\)
\(912\) 0 0
\(913\) 6.19480e9 0.269389
\(914\) 0 0
\(915\) − 2.08581e9i − 0.0900121i
\(916\) 0 0
\(917\) 8.05061e9i 0.344775i
\(918\) 0 0
\(919\) 1.43277e10 0.608938 0.304469 0.952522i \(-0.401521\pi\)
0.304469 + 0.952522i \(0.401521\pi\)
\(920\) 0 0
\(921\) −2.58035e9 −0.108835
\(922\) 0 0
\(923\) 1.95515e9i 0.0818418i
\(924\) 0 0
\(925\) − 5.46190e9i − 0.226907i
\(926\) 0 0
\(927\) −7.65715e9 −0.315710
\(928\) 0 0
\(929\) 1.31280e10 0.537208 0.268604 0.963251i \(-0.413438\pi\)
0.268604 + 0.963251i \(0.413438\pi\)
\(930\) 0 0
\(931\) − 8.33600e9i − 0.338558i
\(932\) 0 0
\(933\) − 9.50474e9i − 0.383137i
\(934\) 0 0
\(935\) 3.37238e9 0.134926
\(936\) 0 0
\(937\) 3.87626e10 1.53930 0.769652 0.638463i \(-0.220429\pi\)
0.769652 + 0.638463i \(0.220429\pi\)
\(938\) 0 0
\(939\) 1.42149e9i 0.0560291i
\(940\) 0 0
\(941\) 2.06279e10i 0.807035i 0.914972 + 0.403517i \(0.132212\pi\)
−0.914972 + 0.403517i \(0.867788\pi\)
\(942\) 0 0
\(943\) 7.44976e8 0.0289302
\(944\) 0 0
\(945\) 1.08302e10 0.417468
\(946\) 0 0
\(947\) − 2.11705e10i − 0.810040i −0.914308 0.405020i \(-0.867264\pi\)
0.914308 0.405020i \(-0.132736\pi\)
\(948\) 0 0
\(949\) − 1.35475e9i − 0.0514550i
\(950\) 0 0
\(951\) 6.08771e8 0.0229521
\(952\) 0 0
\(953\) −2.14876e10 −0.804196 −0.402098 0.915597i \(-0.631719\pi\)
−0.402098 + 0.915597i \(0.631719\pi\)
\(954\) 0 0
\(955\) 1.97371e10i 0.733282i
\(956\) 0 0
\(957\) − 1.34408e9i − 0.0495715i
\(958\) 0 0
\(959\) −3.20704e8 −0.0117419
\(960\) 0 0
\(961\) 2.42673e10 0.882043
\(962\) 0 0
\(963\) 3.67445e10i 1.32587i
\(964\) 0 0
\(965\) − 7.39086e9i − 0.264758i
\(966\) 0 0
\(967\) −3.92625e10 −1.39632 −0.698161 0.715941i \(-0.745998\pi\)
−0.698161 + 0.715941i \(0.745998\pi\)
\(968\) 0 0
\(969\) 7.04829e9 0.248857
\(970\) 0 0
\(971\) 5.62647e10i 1.97228i 0.165917 + 0.986140i \(0.446941\pi\)
−0.165917 + 0.986140i \(0.553059\pi\)
\(972\) 0 0
\(973\) 3.98310e10i 1.38620i
\(974\) 0 0
\(975\) −5.64271e8 −0.0194972
\(976\) 0 0
\(977\) −8.43437e9 −0.289349 −0.144674 0.989479i \(-0.546213\pi\)
−0.144674 + 0.989479i \(0.546213\pi\)
\(978\) 0 0
\(979\) − 1.30507e10i − 0.444523i
\(980\) 0 0
\(981\) 2.50411e10i 0.846861i
\(982\) 0 0
\(983\) 2.24230e10 0.752932 0.376466 0.926430i \(-0.377139\pi\)
0.376466 + 0.926430i \(0.377139\pi\)
\(984\) 0 0
\(985\) 2.16269e10 0.721054
\(986\) 0 0
\(987\) − 5.76262e9i − 0.190770i
\(988\) 0 0
\(989\) − 4.33400e10i − 1.42463i
\(990\) 0 0
\(991\) 3.46728e10 1.13170 0.565849 0.824509i \(-0.308548\pi\)
0.565849 + 0.824509i \(0.308548\pi\)
\(992\) 0 0
\(993\) 3.28508e9 0.106469
\(994\) 0 0
\(995\) − 1.75639e10i − 0.565249i
\(996\) 0 0
\(997\) 2.96474e10i 0.947444i 0.880674 + 0.473722i \(0.157090\pi\)
−0.880674 + 0.473722i \(0.842910\pi\)
\(998\) 0 0
\(999\) 8.14830e9 0.258576
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.8.b.b.129.2 2
4.3 odd 2 256.8.b.f.129.1 2
8.3 odd 2 256.8.b.f.129.2 2
8.5 even 2 inner 256.8.b.b.129.1 2
16.3 odd 4 64.8.a.e.1.1 1
16.5 even 4 2.8.a.a.1.1 1
16.11 odd 4 16.8.a.b.1.1 1
16.13 even 4 64.8.a.c.1.1 1
48.5 odd 4 18.8.a.b.1.1 1
48.11 even 4 144.8.a.i.1.1 1
48.29 odd 4 576.8.a.g.1.1 1
48.35 even 4 576.8.a.f.1.1 1
80.27 even 4 400.8.c.j.49.2 2
80.37 odd 4 50.8.b.c.49.1 2
80.43 even 4 400.8.c.j.49.1 2
80.53 odd 4 50.8.b.c.49.2 2
80.59 odd 4 400.8.a.l.1.1 1
80.69 even 4 50.8.a.g.1.1 1
112.5 odd 12 98.8.c.e.67.1 2
112.37 even 12 98.8.c.d.67.1 2
112.53 even 12 98.8.c.d.79.1 2
112.69 odd 4 98.8.a.a.1.1 1
112.101 odd 12 98.8.c.e.79.1 2
144.5 odd 12 162.8.c.a.55.1 2
144.85 even 12 162.8.c.l.55.1 2
144.101 odd 12 162.8.c.a.109.1 2
144.133 even 12 162.8.c.l.109.1 2
176.21 odd 4 242.8.a.e.1.1 1
208.5 odd 4 338.8.b.d.337.2 2
208.21 odd 4 338.8.b.d.337.1 2
208.181 even 4 338.8.a.d.1.1 1
240.53 even 4 450.8.c.g.199.1 2
240.149 odd 4 450.8.a.c.1.1 1
240.197 even 4 450.8.c.g.199.2 2
272.101 even 4 578.8.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2.8.a.a.1.1 1 16.5 even 4
16.8.a.b.1.1 1 16.11 odd 4
18.8.a.b.1.1 1 48.5 odd 4
50.8.a.g.1.1 1 80.69 even 4
50.8.b.c.49.1 2 80.37 odd 4
50.8.b.c.49.2 2 80.53 odd 4
64.8.a.c.1.1 1 16.13 even 4
64.8.a.e.1.1 1 16.3 odd 4
98.8.a.a.1.1 1 112.69 odd 4
98.8.c.d.67.1 2 112.37 even 12
98.8.c.d.79.1 2 112.53 even 12
98.8.c.e.67.1 2 112.5 odd 12
98.8.c.e.79.1 2 112.101 odd 12
144.8.a.i.1.1 1 48.11 even 4
162.8.c.a.55.1 2 144.5 odd 12
162.8.c.a.109.1 2 144.101 odd 12
162.8.c.l.55.1 2 144.85 even 12
162.8.c.l.109.1 2 144.133 even 12
242.8.a.e.1.1 1 176.21 odd 4
256.8.b.b.129.1 2 8.5 even 2 inner
256.8.b.b.129.2 2 1.1 even 1 trivial
256.8.b.f.129.1 2 4.3 odd 2
256.8.b.f.129.2 2 8.3 odd 2
338.8.a.d.1.1 1 208.181 even 4
338.8.b.d.337.1 2 208.21 odd 4
338.8.b.d.337.2 2 208.5 odd 4
400.8.a.l.1.1 1 80.59 odd 4
400.8.c.j.49.1 2 80.43 even 4
400.8.c.j.49.2 2 80.27 even 4
450.8.a.c.1.1 1 240.149 odd 4
450.8.c.g.199.1 2 240.53 even 4
450.8.c.g.199.2 2 240.197 even 4
576.8.a.f.1.1 1 48.35 even 4
576.8.a.g.1.1 1 48.29 odd 4
578.8.a.b.1.1 1 272.101 even 4