Properties

Label 338.8.b.d.337.2
Level $338$
Weight $8$
Character 338.337
Analytic conductor $105.586$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,8,Mod(337,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.337");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 338.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(105.586138614\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 2)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 338.337
Dual form 338.8.b.d.337.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000i q^{2} +12.0000 q^{3} -64.0000 q^{4} +210.000i q^{5} +96.0000i q^{6} +1016.00i q^{7} -512.000i q^{8} -2043.00 q^{9} -1680.00 q^{10} +1092.00i q^{11} -768.000 q^{12} -8128.00 q^{14} +2520.00i q^{15} +4096.00 q^{16} -14706.0 q^{17} -16344.0i q^{18} +39940.0i q^{19} -13440.0i q^{20} +12192.0i q^{21} -8736.00 q^{22} -68712.0 q^{23} -6144.00i q^{24} +34025.0 q^{25} -50760.0 q^{27} -65024.0i q^{28} -102570. q^{29} -20160.0 q^{30} -227552. i q^{31} +32768.0i q^{32} +13104.0i q^{33} -117648. i q^{34} -213360. q^{35} +130752. q^{36} +160526. i q^{37} -319520. q^{38} +107520. q^{40} -10842.0i q^{41} -97536.0 q^{42} +630748. q^{43} -69888.0i q^{44} -429030. i q^{45} -549696. i q^{46} +472656. i q^{47} +49152.0 q^{48} -208713. q^{49} +272200. i q^{50} -176472. q^{51} -1.49402e6 q^{53} -406080. i q^{54} -229320. q^{55} +520192. q^{56} +479280. i q^{57} -820560. i q^{58} +2.64066e6i q^{59} -161280. i q^{60} +827702. q^{61} +1.82042e6 q^{62} -2.07569e6i q^{63} -262144. q^{64} -104832. q^{66} +126004. i q^{67} +941184. q^{68} -824544. q^{69} -1.70688e6i q^{70} +1.41473e6i q^{71} +1.04602e6i q^{72} +980282. i q^{73} -1.28421e6 q^{74} +408300. q^{75} -2.55616e6i q^{76} -1.10947e6 q^{77} -3.56680e6 q^{79} +860160. i q^{80} +3.85892e6 q^{81} +86736.0 q^{82} -5.67289e6i q^{83} -780288. i q^{84} -3.08826e6i q^{85} +5.04598e6i q^{86} -1.23084e6 q^{87} +559104. q^{88} -1.19512e7i q^{89} +3.43224e6 q^{90} +4.39757e6 q^{92} -2.73062e6i q^{93} -3.78125e6 q^{94} -8.38740e6 q^{95} +393216. i q^{96} -8.68215e6i q^{97} -1.66970e6i q^{98} -2.23096e6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 24 q^{3} - 128 q^{4} - 4086 q^{9} - 3360 q^{10} - 1536 q^{12} - 16256 q^{14} + 8192 q^{16} - 29412 q^{17} - 17472 q^{22} - 137424 q^{23} + 68050 q^{25} - 101520 q^{27} - 205140 q^{29} - 40320 q^{30}+ \cdots - 16774800 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000i 0.707107i
\(3\) 12.0000 0.256600 0.128300 0.991735i \(-0.459048\pi\)
0.128300 + 0.991735i \(0.459048\pi\)
\(4\) −64.0000 −0.500000
\(5\) 210.000i 0.751319i 0.926758 + 0.375659i \(0.122584\pi\)
−0.926758 + 0.375659i \(0.877416\pi\)
\(6\) 96.0000i 0.181444i
\(7\) 1016.00i 1.11957i 0.828638 + 0.559784i \(0.189116\pi\)
−0.828638 + 0.559784i \(0.810884\pi\)
\(8\) − 512.000i − 0.353553i
\(9\) −2043.00 −0.934156
\(10\) −1680.00 −0.531263
\(11\) 1092.00i 0.247371i 0.992321 + 0.123685i \(0.0394713\pi\)
−0.992321 + 0.123685i \(0.960529\pi\)
\(12\) −768.000 −0.128300
\(13\) 0 0
\(14\) −8128.00 −0.791654
\(15\) 2520.00i 0.192789i
\(16\) 4096.00 0.250000
\(17\) −14706.0 −0.725978 −0.362989 0.931793i \(-0.618244\pi\)
−0.362989 + 0.931793i \(0.618244\pi\)
\(18\) − 16344.0i − 0.660548i
\(19\) 39940.0i 1.33589i 0.744211 + 0.667945i \(0.232826\pi\)
−0.744211 + 0.667945i \(0.767174\pi\)
\(20\) − 13440.0i − 0.375659i
\(21\) 12192.0i 0.287281i
\(22\) −8736.00 −0.174917
\(23\) −68712.0 −1.17757 −0.588783 0.808291i \(-0.700393\pi\)
−0.588783 + 0.808291i \(0.700393\pi\)
\(24\) − 6144.00i − 0.0907218i
\(25\) 34025.0 0.435520
\(26\) 0 0
\(27\) −50760.0 −0.496305
\(28\) − 65024.0i − 0.559784i
\(29\) −102570. −0.780957 −0.390479 0.920612i \(-0.627690\pi\)
−0.390479 + 0.920612i \(0.627690\pi\)
\(30\) −20160.0 −0.136322
\(31\) − 227552.i − 1.37188i −0.727660 0.685938i \(-0.759392\pi\)
0.727660 0.685938i \(-0.240608\pi\)
\(32\) 32768.0i 0.176777i
\(33\) 13104.0i 0.0634753i
\(34\) − 117648.i − 0.513344i
\(35\) −213360. −0.841153
\(36\) 130752. 0.467078
\(37\) 160526.i 0.521002i 0.965474 + 0.260501i \(0.0838877\pi\)
−0.965474 + 0.260501i \(0.916112\pi\)
\(38\) −319520. −0.944616
\(39\) 0 0
\(40\) 107520. 0.265631
\(41\) − 10842.0i − 0.0245678i −0.999925 0.0122839i \(-0.996090\pi\)
0.999925 0.0122839i \(-0.00391018\pi\)
\(42\) −97536.0 −0.203139
\(43\) 630748. 1.20981 0.604904 0.796299i \(-0.293212\pi\)
0.604904 + 0.796299i \(0.293212\pi\)
\(44\) − 69888.0i − 0.123685i
\(45\) − 429030.i − 0.701849i
\(46\) − 549696.i − 0.832665i
\(47\) 472656.i 0.664053i 0.943270 + 0.332026i \(0.107732\pi\)
−0.943270 + 0.332026i \(0.892268\pi\)
\(48\) 49152.0 0.0641500
\(49\) −208713. −0.253433
\(50\) 272200.i 0.307959i
\(51\) −176472. −0.186286
\(52\) 0 0
\(53\) −1.49402e6 −1.37845 −0.689224 0.724548i \(-0.742048\pi\)
−0.689224 + 0.724548i \(0.742048\pi\)
\(54\) − 406080.i − 0.350940i
\(55\) −229320. −0.185854
\(56\) 520192. 0.395827
\(57\) 479280.i 0.342789i
\(58\) − 820560.i − 0.552220i
\(59\) 2.64066e6i 1.67390i 0.547277 + 0.836952i \(0.315665\pi\)
−0.547277 + 0.836952i \(0.684335\pi\)
\(60\) − 161280.i − 0.0963943i
\(61\) 827702. 0.466895 0.233448 0.972369i \(-0.424999\pi\)
0.233448 + 0.972369i \(0.424999\pi\)
\(62\) 1.82042e6 0.970063
\(63\) − 2.07569e6i − 1.04585i
\(64\) −262144. −0.125000
\(65\) 0 0
\(66\) −104832. −0.0448838
\(67\) 126004.i 0.0511826i 0.999672 + 0.0255913i \(0.00814686\pi\)
−0.999672 + 0.0255913i \(0.991853\pi\)
\(68\) 941184. 0.362989
\(69\) −824544. −0.302164
\(70\) − 1.70688e6i − 0.594785i
\(71\) 1.41473e6i 0.469104i 0.972104 + 0.234552i \(0.0753622\pi\)
−0.972104 + 0.234552i \(0.924638\pi\)
\(72\) 1.04602e6i 0.330274i
\(73\) 980282.i 0.294931i 0.989067 + 0.147466i \(0.0471116\pi\)
−0.989067 + 0.147466i \(0.952888\pi\)
\(74\) −1.28421e6 −0.368404
\(75\) 408300. 0.111754
\(76\) − 2.55616e6i − 0.667945i
\(77\) −1.10947e6 −0.276948
\(78\) 0 0
\(79\) −3.56680e6 −0.813924 −0.406962 0.913445i \(-0.633412\pi\)
−0.406962 + 0.913445i \(0.633412\pi\)
\(80\) 860160.i 0.187830i
\(81\) 3.85892e6 0.806805
\(82\) 86736.0 0.0173720
\(83\) − 5.67289e6i − 1.08901i −0.838758 0.544504i \(-0.816718\pi\)
0.838758 0.544504i \(-0.183282\pi\)
\(84\) − 780288.i − 0.143641i
\(85\) − 3.08826e6i − 0.545441i
\(86\) 5.04598e6i 0.855463i
\(87\) −1.23084e6 −0.200394
\(88\) 559104. 0.0874587
\(89\) − 1.19512e7i − 1.79699i −0.438982 0.898496i \(-0.644661\pi\)
0.438982 0.898496i \(-0.355339\pi\)
\(90\) 3.43224e6 0.496282
\(91\) 0 0
\(92\) 4.39757e6 0.588783
\(93\) − 2.73062e6i − 0.352023i
\(94\) −3.78125e6 −0.469556
\(95\) −8.38740e6 −1.00368
\(96\) 393216.i 0.0453609i
\(97\) − 8.68215e6i − 0.965886i −0.875652 0.482943i \(-0.839568\pi\)
0.875652 0.482943i \(-0.160432\pi\)
\(98\) − 1.66970e6i − 0.179204i
\(99\) − 2.23096e6i − 0.231083i
\(100\) −2.17760e6 −0.217760
\(101\) 1.00795e7 0.973455 0.486727 0.873554i \(-0.338190\pi\)
0.486727 + 0.873554i \(0.338190\pi\)
\(102\) − 1.41178e6i − 0.131724i
\(103\) −3.74799e6 −0.337962 −0.168981 0.985619i \(-0.554048\pi\)
−0.168981 + 0.985619i \(0.554048\pi\)
\(104\) 0 0
\(105\) −2.56032e6 −0.215840
\(106\) − 1.19521e7i − 0.974710i
\(107\) −1.79856e7 −1.41932 −0.709661 0.704543i \(-0.751152\pi\)
−0.709661 + 0.704543i \(0.751152\pi\)
\(108\) 3.24864e6 0.248152
\(109\) − 1.22570e7i − 0.906552i −0.891370 0.453276i \(-0.850255\pi\)
0.891370 0.453276i \(-0.149745\pi\)
\(110\) − 1.83456e6i − 0.131419i
\(111\) 1.92631e6i 0.133689i
\(112\) 4.16154e6i 0.279892i
\(113\) 1.65950e7 1.08194 0.540968 0.841043i \(-0.318058\pi\)
0.540968 + 0.841043i \(0.318058\pi\)
\(114\) −3.83424e6 −0.242389
\(115\) − 1.44295e7i − 0.884727i
\(116\) 6.56448e6 0.390479
\(117\) 0 0
\(118\) −2.11253e7 −1.18363
\(119\) − 1.49413e7i − 0.812782i
\(120\) 1.29024e6 0.0681610
\(121\) 1.82947e7 0.938808
\(122\) 6.62162e6i 0.330145i
\(123\) − 130104.i − 0.00630410i
\(124\) 1.45633e7i 0.685938i
\(125\) 2.35515e7i 1.07853i
\(126\) 1.66055e7 0.739529
\(127\) −1.16826e6 −0.0506087 −0.0253043 0.999680i \(-0.508055\pi\)
−0.0253043 + 0.999680i \(0.508055\pi\)
\(128\) − 2.09715e6i − 0.0883883i
\(129\) 7.56898e6 0.310437
\(130\) 0 0
\(131\) −7.92383e6 −0.307954 −0.153977 0.988074i \(-0.549208\pi\)
−0.153977 + 0.988074i \(0.549208\pi\)
\(132\) − 838656.i − 0.0317377i
\(133\) −4.05790e7 −1.49562
\(134\) −1.00803e6 −0.0361916
\(135\) − 1.06596e7i − 0.372883i
\(136\) 7.52947e6i 0.256672i
\(137\) − 315654.i − 0.0104879i −0.999986 0.00524396i \(-0.998331\pi\)
0.999986 0.00524396i \(-0.00166921\pi\)
\(138\) − 6.59635e6i − 0.213662i
\(139\) 3.92038e7 1.23816 0.619079 0.785329i \(-0.287506\pi\)
0.619079 + 0.785329i \(0.287506\pi\)
\(140\) 1.36550e7 0.420576
\(141\) 5.67187e6i 0.170396i
\(142\) −1.13178e7 −0.331706
\(143\) 0 0
\(144\) −8.36813e6 −0.233539
\(145\) − 2.15397e7i − 0.586748i
\(146\) −7.84226e6 −0.208548
\(147\) −2.50456e6 −0.0650309
\(148\) − 1.02737e7i − 0.260501i
\(149\) 2.18860e7i 0.542020i 0.962577 + 0.271010i \(0.0873577\pi\)
−0.962577 + 0.271010i \(0.912642\pi\)
\(150\) 3.26640e6i 0.0790224i
\(151\) − 2.94154e7i − 0.695274i −0.937629 0.347637i \(-0.886984\pi\)
0.937629 0.347637i \(-0.113016\pi\)
\(152\) 2.04493e7 0.472308
\(153\) 3.00444e7 0.678177
\(154\) − 8.87578e6i − 0.195832i
\(155\) 4.77859e7 1.03072
\(156\) 0 0
\(157\) 6.05550e7 1.24882 0.624412 0.781095i \(-0.285339\pi\)
0.624412 + 0.781095i \(0.285339\pi\)
\(158\) − 2.85344e7i − 0.575531i
\(159\) −1.79282e7 −0.353710
\(160\) −6.88128e6 −0.132816
\(161\) − 6.98114e7i − 1.31837i
\(162\) 3.08714e7i 0.570497i
\(163\) 5.70853e7i 1.03245i 0.856454 + 0.516223i \(0.172663\pi\)
−0.856454 + 0.516223i \(0.827337\pi\)
\(164\) 693888.i 0.0122839i
\(165\) −2.75184e6 −0.0476902
\(166\) 4.53831e7 0.770045
\(167\) − 8.77265e7i − 1.45755i −0.684754 0.728775i \(-0.740090\pi\)
0.684754 0.728775i \(-0.259910\pi\)
\(168\) 6.24230e6 0.101569
\(169\) 0 0
\(170\) 2.47061e7 0.385685
\(171\) − 8.15974e7i − 1.24793i
\(172\) −4.03679e7 −0.604904
\(173\) −8.56954e6 −0.125833 −0.0629167 0.998019i \(-0.520040\pi\)
−0.0629167 + 0.998019i \(0.520040\pi\)
\(174\) − 9.84672e6i − 0.141700i
\(175\) 3.45694e7i 0.487594i
\(176\) 4.47283e6i 0.0618427i
\(177\) 3.16879e7i 0.429524i
\(178\) 9.56095e7 1.27067
\(179\) −1.88041e7 −0.245056 −0.122528 0.992465i \(-0.539100\pi\)
−0.122528 + 0.992465i \(0.539100\pi\)
\(180\) 2.74579e7i 0.350925i
\(181\) 5.99625e7 0.751631 0.375816 0.926694i \(-0.377363\pi\)
0.375816 + 0.926694i \(0.377363\pi\)
\(182\) 0 0
\(183\) 9.93242e6 0.119805
\(184\) 3.51805e7i 0.416332i
\(185\) −3.37105e7 −0.391439
\(186\) 2.18450e7 0.248918
\(187\) − 1.60590e7i − 0.179586i
\(188\) − 3.02500e7i − 0.332026i
\(189\) − 5.15722e7i − 0.555647i
\(190\) − 6.70992e7i − 0.709708i
\(191\) 9.39861e7 0.975993 0.487997 0.872845i \(-0.337728\pi\)
0.487997 + 0.872845i \(0.337728\pi\)
\(192\) −3.14573e6 −0.0320750
\(193\) − 3.51946e7i − 0.352391i −0.984355 0.176196i \(-0.943621\pi\)
0.984355 0.176196i \(-0.0563791\pi\)
\(194\) 6.94572e7 0.682985
\(195\) 0 0
\(196\) 1.33576e7 0.126717
\(197\) − 1.02985e8i − 0.959718i −0.877346 0.479859i \(-0.840688\pi\)
0.877346 0.479859i \(-0.159312\pi\)
\(198\) 1.78476e7 0.163400
\(199\) −8.36376e7 −0.752342 −0.376171 0.926550i \(-0.622760\pi\)
−0.376171 + 0.926550i \(0.622760\pi\)
\(200\) − 1.74208e7i − 0.153980i
\(201\) 1.51205e6i 0.0131335i
\(202\) 8.06363e7i 0.688337i
\(203\) − 1.04211e8i − 0.874335i
\(204\) 1.12942e7 0.0931430
\(205\) 2.27682e6 0.0184582
\(206\) − 2.99839e7i − 0.238975i
\(207\) 1.40379e8 1.10003
\(208\) 0 0
\(209\) −4.36145e7 −0.330460
\(210\) − 2.04826e7i − 0.152622i
\(211\) −9.74010e7 −0.713797 −0.356899 0.934143i \(-0.616166\pi\)
−0.356899 + 0.934143i \(0.616166\pi\)
\(212\) 9.56172e7 0.689224
\(213\) 1.69767e7i 0.120372i
\(214\) − 1.43885e8i − 1.00361i
\(215\) 1.32457e8i 0.908951i
\(216\) 2.59891e7i 0.175470i
\(217\) 2.31193e8 1.53591
\(218\) 9.80562e7 0.641029
\(219\) 1.17634e7i 0.0756794i
\(220\) 1.46765e7 0.0929271
\(221\) 0 0
\(222\) −1.54105e7 −0.0945325
\(223\) 1.46457e7i 0.0884390i 0.999022 + 0.0442195i \(0.0140801\pi\)
−0.999022 + 0.0442195i \(0.985920\pi\)
\(224\) −3.32923e7 −0.197914
\(225\) −6.95131e7 −0.406844
\(226\) 1.32760e8i 0.765045i
\(227\) 1.84541e8i 1.04713i 0.851985 + 0.523567i \(0.175399\pi\)
−0.851985 + 0.523567i \(0.824601\pi\)
\(228\) − 3.06739e7i − 0.171395i
\(229\) − 8.75461e6i − 0.0481740i −0.999710 0.0240870i \(-0.992332\pi\)
0.999710 0.0240870i \(-0.00766787\pi\)
\(230\) 1.15436e8 0.625597
\(231\) −1.33137e7 −0.0710650
\(232\) 5.25158e7i 0.276110i
\(233\) 1.19556e8 0.619193 0.309597 0.950868i \(-0.399806\pi\)
0.309597 + 0.950868i \(0.399806\pi\)
\(234\) 0 0
\(235\) −9.92578e7 −0.498915
\(236\) − 1.69002e8i − 0.836952i
\(237\) −4.28016e7 −0.208853
\(238\) 1.19530e8 0.574723
\(239\) − 3.96209e8i − 1.87729i −0.344883 0.938646i \(-0.612081\pi\)
0.344883 0.938646i \(-0.387919\pi\)
\(240\) 1.03219e7i 0.0481971i
\(241\) − 2.56606e8i − 1.18089i −0.807080 0.590443i \(-0.798953\pi\)
0.807080 0.590443i \(-0.201047\pi\)
\(242\) 1.46358e8i 0.663837i
\(243\) 1.57319e8 0.703331
\(244\) −5.29729e7 −0.233448
\(245\) − 4.38297e7i − 0.190409i
\(246\) 1.04083e6 0.00445767
\(247\) 0 0
\(248\) −1.16507e8 −0.485031
\(249\) − 6.80747e7i − 0.279440i
\(250\) −1.88412e8 −0.762638
\(251\) 7.34775e7 0.293290 0.146645 0.989189i \(-0.453153\pi\)
0.146645 + 0.989189i \(0.453153\pi\)
\(252\) 1.32844e8i 0.522926i
\(253\) − 7.50335e7i − 0.291295i
\(254\) − 9.34605e6i − 0.0357857i
\(255\) − 3.70591e7i − 0.139960i
\(256\) 1.67772e7 0.0625000
\(257\) 2.02701e8 0.744886 0.372443 0.928055i \(-0.378520\pi\)
0.372443 + 0.928055i \(0.378520\pi\)
\(258\) 6.05518e7i 0.219512i
\(259\) −1.63094e8 −0.583297
\(260\) 0 0
\(261\) 2.09551e8 0.729536
\(262\) − 6.33906e7i − 0.217756i
\(263\) 1.54254e8 0.522867 0.261434 0.965221i \(-0.415805\pi\)
0.261434 + 0.965221i \(0.415805\pi\)
\(264\) 6.70925e6 0.0224419
\(265\) − 3.13744e8i − 1.03565i
\(266\) − 3.24632e8i − 1.05756i
\(267\) − 1.43414e8i − 0.461108i
\(268\) − 8.06426e6i − 0.0255913i
\(269\) −6.24018e8 −1.95463 −0.977315 0.211793i \(-0.932070\pi\)
−0.977315 + 0.211793i \(0.932070\pi\)
\(270\) 8.52768e7 0.263668
\(271\) − 3.87983e8i − 1.18419i −0.805869 0.592094i \(-0.798302\pi\)
0.805869 0.592094i \(-0.201698\pi\)
\(272\) −6.02358e7 −0.181494
\(273\) 0 0
\(274\) 2.52523e6 0.00741608
\(275\) 3.71553e7i 0.107735i
\(276\) 5.27708e7 0.151082
\(277\) −4.53952e8 −1.28331 −0.641654 0.766994i \(-0.721752\pi\)
−0.641654 + 0.766994i \(0.721752\pi\)
\(278\) 3.13630e8i 0.875510i
\(279\) 4.64889e8i 1.28155i
\(280\) 1.09240e8i 0.297392i
\(281\) 3.33770e8i 0.897377i 0.893688 + 0.448689i \(0.148109\pi\)
−0.893688 + 0.448689i \(0.851891\pi\)
\(282\) −4.53750e7 −0.120488
\(283\) −5.37695e8 −1.41021 −0.705104 0.709104i \(-0.749100\pi\)
−0.705104 + 0.709104i \(0.749100\pi\)
\(284\) − 9.05426e7i − 0.234552i
\(285\) −1.00649e8 −0.257544
\(286\) 0 0
\(287\) 1.10155e7 0.0275053
\(288\) − 6.69450e7i − 0.165137i
\(289\) −1.94072e8 −0.472956
\(290\) 1.72318e8 0.414894
\(291\) − 1.04186e8i − 0.247847i
\(292\) − 6.27380e7i − 0.147466i
\(293\) 3.35600e8i 0.779445i 0.920932 + 0.389722i \(0.127429\pi\)
−0.920932 + 0.389722i \(0.872571\pi\)
\(294\) − 2.00364e7i − 0.0459838i
\(295\) −5.54539e8 −1.25764
\(296\) 8.21893e7 0.184202
\(297\) − 5.54299e7i − 0.122771i
\(298\) −1.75088e8 −0.383266
\(299\) 0 0
\(300\) −2.61312e7 −0.0558772
\(301\) 6.40840e8i 1.35446i
\(302\) 2.35324e8 0.491633
\(303\) 1.20954e8 0.249789
\(304\) 1.63594e8i 0.333972i
\(305\) 1.73817e8i 0.350787i
\(306\) 2.40355e8i 0.479543i
\(307\) 2.15029e8i 0.424143i 0.977254 + 0.212072i \(0.0680210\pi\)
−0.977254 + 0.212072i \(0.931979\pi\)
\(308\) 7.10062e7 0.138474
\(309\) −4.49759e7 −0.0867212
\(310\) 3.82287e8i 0.728826i
\(311\) −7.92062e8 −1.49313 −0.746565 0.665313i \(-0.768298\pi\)
−0.746565 + 0.665313i \(0.768298\pi\)
\(312\) 0 0
\(313\) −1.18457e8 −0.218352 −0.109176 0.994022i \(-0.534821\pi\)
−0.109176 + 0.994022i \(0.534821\pi\)
\(314\) 4.84440e8i 0.883051i
\(315\) 4.35894e8 0.785768
\(316\) 2.28275e8 0.406962
\(317\) 5.07310e7i 0.0894470i 0.998999 + 0.0447235i \(0.0142407\pi\)
−0.998999 + 0.0447235i \(0.985759\pi\)
\(318\) − 1.43426e8i − 0.250111i
\(319\) − 1.12006e8i − 0.193186i
\(320\) − 5.50502e7i − 0.0939149i
\(321\) −2.15827e8 −0.364198
\(322\) 5.58491e8 0.932225
\(323\) − 5.87358e8i − 0.969826i
\(324\) −2.46971e8 −0.403402
\(325\) 0 0
\(326\) −4.56682e8 −0.730050
\(327\) − 1.47084e8i − 0.232621i
\(328\) −5.55110e6 −0.00868602
\(329\) −4.80218e8 −0.743453
\(330\) − 2.20147e7i − 0.0337221i
\(331\) − 2.73757e8i − 0.414923i −0.978243 0.207461i \(-0.933480\pi\)
0.978243 0.207461i \(-0.0665201\pi\)
\(332\) 3.63065e8i 0.544504i
\(333\) − 3.27955e8i − 0.486697i
\(334\) 7.01812e8 1.03064
\(335\) −2.64608e7 −0.0384545
\(336\) 4.99384e7i 0.0718203i
\(337\) 9.18512e7 0.130732 0.0653658 0.997861i \(-0.479179\pi\)
0.0653658 + 0.997861i \(0.479179\pi\)
\(338\) 0 0
\(339\) 1.99140e8 0.277625
\(340\) 1.97649e8i 0.272720i
\(341\) 2.48487e8 0.339362
\(342\) 6.52779e8 0.882419
\(343\) 6.24667e8i 0.835833i
\(344\) − 3.22943e8i − 0.427732i
\(345\) − 1.73154e8i − 0.227021i
\(346\) − 6.85563e7i − 0.0889777i
\(347\) −1.36700e9 −1.75637 −0.878187 0.478318i \(-0.841247\pi\)
−0.878187 + 0.478318i \(0.841247\pi\)
\(348\) 7.87738e7 0.100197
\(349\) 1.13143e9i 1.42475i 0.701797 + 0.712377i \(0.252381\pi\)
−0.701797 + 0.712377i \(0.747619\pi\)
\(350\) −2.76555e8 −0.344781
\(351\) 0 0
\(352\) −3.57827e7 −0.0437294
\(353\) 4.48395e7i 0.0542562i 0.999632 + 0.0271281i \(0.00863620\pi\)
−0.999632 + 0.0271281i \(0.991364\pi\)
\(354\) −2.53503e8 −0.303719
\(355\) −2.97093e8 −0.352446
\(356\) 7.64876e8i 0.898496i
\(357\) − 1.79296e8i − 0.208560i
\(358\) − 1.50432e8i − 0.173281i
\(359\) 3.98281e8i 0.454317i 0.973858 + 0.227158i \(0.0729435\pi\)
−0.973858 + 0.227158i \(0.927057\pi\)
\(360\) −2.19663e8 −0.248141
\(361\) −7.01332e8 −0.784600
\(362\) 4.79700e8i 0.531483i
\(363\) 2.19536e8 0.240898
\(364\) 0 0
\(365\) −2.05859e8 −0.221588
\(366\) 7.94594e7i 0.0847152i
\(367\) 1.63472e9 1.72628 0.863140 0.504964i \(-0.168494\pi\)
0.863140 + 0.504964i \(0.168494\pi\)
\(368\) −2.81444e8 −0.294391
\(369\) 2.21502e7i 0.0229501i
\(370\) − 2.69684e8i − 0.276789i
\(371\) − 1.51792e9i − 1.54327i
\(372\) 1.74760e8i 0.176012i
\(373\) −1.54633e9 −1.54284 −0.771421 0.636325i \(-0.780454\pi\)
−0.771421 + 0.636325i \(0.780454\pi\)
\(374\) 1.28472e8 0.126986
\(375\) 2.82618e8i 0.276752i
\(376\) 2.42000e8 0.234778
\(377\) 0 0
\(378\) 4.12577e8 0.392902
\(379\) 1.05688e9i 0.997216i 0.866828 + 0.498608i \(0.166155\pi\)
−0.866828 + 0.498608i \(0.833845\pi\)
\(380\) 5.36794e8 0.501839
\(381\) −1.40191e7 −0.0129862
\(382\) 7.51889e8i 0.690132i
\(383\) − 2.24910e8i − 0.204556i −0.994756 0.102278i \(-0.967387\pi\)
0.994756 0.102278i \(-0.0326132\pi\)
\(384\) − 2.51658e7i − 0.0226805i
\(385\) − 2.32989e8i − 0.208077i
\(386\) 2.81556e8 0.249178
\(387\) −1.28862e9 −1.13015
\(388\) 5.55657e8i 0.482943i
\(389\) −1.01788e9 −0.876746 −0.438373 0.898793i \(-0.644445\pi\)
−0.438373 + 0.898793i \(0.644445\pi\)
\(390\) 0 0
\(391\) 1.01048e9 0.854887
\(392\) 1.06861e8i 0.0896021i
\(393\) −9.50859e7 −0.0790210
\(394\) 8.23883e8 0.678623
\(395\) − 7.49028e8i − 0.611517i
\(396\) 1.42781e8i 0.115541i
\(397\) − 1.47565e9i − 1.18363i −0.806072 0.591817i \(-0.798411\pi\)
0.806072 0.591817i \(-0.201589\pi\)
\(398\) − 6.69100e8i − 0.531986i
\(399\) −4.86948e8 −0.383776
\(400\) 1.39366e8 0.108880
\(401\) 2.74912e8i 0.212906i 0.994318 + 0.106453i \(0.0339494\pi\)
−0.994318 + 0.106453i \(0.966051\pi\)
\(402\) −1.20964e7 −0.00928676
\(403\) 0 0
\(404\) −6.45090e8 −0.486727
\(405\) 8.10373e8i 0.606167i
\(406\) 8.33689e8 0.618248
\(407\) −1.75294e8 −0.128881
\(408\) 9.03537e7i 0.0658620i
\(409\) 1.63427e9i 1.18112i 0.806995 + 0.590558i \(0.201092\pi\)
−0.806995 + 0.590558i \(0.798908\pi\)
\(410\) 1.82146e7i 0.0130519i
\(411\) − 3.78785e6i − 0.00269120i
\(412\) 2.39871e8 0.168981
\(413\) −2.68291e9 −1.87405
\(414\) 1.12303e9i 0.777839i
\(415\) 1.19131e9 0.818192
\(416\) 0 0
\(417\) 4.70445e8 0.317712
\(418\) − 3.48916e8i − 0.233670i
\(419\) −1.11280e9 −0.739039 −0.369519 0.929223i \(-0.620478\pi\)
−0.369519 + 0.929223i \(0.620478\pi\)
\(420\) 1.63860e8 0.107920
\(421\) − 9.22528e8i − 0.602549i −0.953537 0.301274i \(-0.902588\pi\)
0.953537 0.301274i \(-0.0974120\pi\)
\(422\) − 7.79208e8i − 0.504731i
\(423\) − 9.65636e8i − 0.620329i
\(424\) 7.64937e8i 0.487355i
\(425\) −5.00372e8 −0.316178
\(426\) −1.35814e8 −0.0851159
\(427\) 8.40945e8i 0.522721i
\(428\) 1.15108e9 0.709661
\(429\) 0 0
\(430\) −1.05966e9 −0.642726
\(431\) 9.81508e8i 0.590505i 0.955419 + 0.295252i \(0.0954037\pi\)
−0.955419 + 0.295252i \(0.904596\pi\)
\(432\) −2.07913e8 −0.124076
\(433\) −2.84998e9 −1.68707 −0.843537 0.537071i \(-0.819531\pi\)
−0.843537 + 0.537071i \(0.819531\pi\)
\(434\) 1.84954e9i 1.08605i
\(435\) − 2.58476e8i − 0.150560i
\(436\) 7.84450e8i 0.453276i
\(437\) − 2.74436e9i − 1.57310i
\(438\) −9.41071e7 −0.0535134
\(439\) 1.05622e9 0.595838 0.297919 0.954591i \(-0.403708\pi\)
0.297919 + 0.954591i \(0.403708\pi\)
\(440\) 1.17412e8i 0.0657094i
\(441\) 4.26401e8 0.236746
\(442\) 0 0
\(443\) 1.82325e9 0.996401 0.498201 0.867062i \(-0.333994\pi\)
0.498201 + 0.867062i \(0.333994\pi\)
\(444\) − 1.23284e8i − 0.0668446i
\(445\) 2.50975e9 1.35011
\(446\) −1.17166e8 −0.0625358
\(447\) 2.62633e8i 0.139082i
\(448\) − 2.66338e8i − 0.139946i
\(449\) 1.84846e9i 0.963713i 0.876250 + 0.481856i \(0.160037\pi\)
−0.876250 + 0.481856i \(0.839963\pi\)
\(450\) − 5.56105e8i − 0.287682i
\(451\) 1.18395e7 0.00607735
\(452\) −1.06208e9 −0.540968
\(453\) − 3.52985e8i − 0.178407i
\(454\) −1.47633e9 −0.740435
\(455\) 0 0
\(456\) 2.45391e8 0.121194
\(457\) 2.98066e9i 1.46085i 0.682993 + 0.730425i \(0.260678\pi\)
−0.682993 + 0.730425i \(0.739322\pi\)
\(458\) 7.00369e7 0.0340642
\(459\) 7.46477e8 0.360306
\(460\) 9.23489e8i 0.442364i
\(461\) 2.52781e9i 1.20169i 0.799367 + 0.600843i \(0.205168\pi\)
−0.799367 + 0.600843i \(0.794832\pi\)
\(462\) − 1.06509e8i − 0.0502505i
\(463\) − 8.90291e8i − 0.416868i −0.978036 0.208434i \(-0.933163\pi\)
0.978036 0.208434i \(-0.0668366\pi\)
\(464\) −4.20127e8 −0.195239
\(465\) 5.73431e8 0.264482
\(466\) 9.56450e8i 0.437836i
\(467\) −2.65667e9 −1.20706 −0.603529 0.797341i \(-0.706239\pi\)
−0.603529 + 0.797341i \(0.706239\pi\)
\(468\) 0 0
\(469\) −1.28020e8 −0.0573024
\(470\) − 7.94062e8i − 0.352786i
\(471\) 7.26660e8 0.320448
\(472\) 1.35202e9 0.591814
\(473\) 6.88777e8i 0.299271i
\(474\) − 3.42413e8i − 0.147681i
\(475\) 1.35896e9i 0.581806i
\(476\) 9.56243e8i 0.406391i
\(477\) 3.05228e9 1.28769
\(478\) 3.16967e9 1.32745
\(479\) 1.30093e9i 0.540855i 0.962740 + 0.270428i \(0.0871651\pi\)
−0.962740 + 0.270428i \(0.912835\pi\)
\(480\) −8.25754e7 −0.0340805
\(481\) 0 0
\(482\) 2.05285e9 0.835012
\(483\) − 8.37737e8i − 0.338293i
\(484\) −1.17086e9 −0.469404
\(485\) 1.82325e9 0.725689
\(486\) 1.25855e9i 0.497330i
\(487\) 1.07447e9i 0.421542i 0.977535 + 0.210771i \(0.0675975\pi\)
−0.977535 + 0.210771i \(0.932402\pi\)
\(488\) − 4.23783e8i − 0.165072i
\(489\) 6.85024e8i 0.264926i
\(490\) 3.50638e8 0.134640
\(491\) 7.83344e8 0.298653 0.149327 0.988788i \(-0.452289\pi\)
0.149327 + 0.988788i \(0.452289\pi\)
\(492\) 8.32666e6i 0.00315205i
\(493\) 1.50839e9 0.566958
\(494\) 0 0
\(495\) 4.68501e8 0.173617
\(496\) − 9.32053e8i − 0.342969i
\(497\) −1.43736e9 −0.525193
\(498\) 5.44598e8 0.197594
\(499\) 6.23188e8i 0.224526i 0.993679 + 0.112263i \(0.0358100\pi\)
−0.993679 + 0.112263i \(0.964190\pi\)
\(500\) − 1.50730e9i − 0.539267i
\(501\) − 1.05272e9i − 0.374007i
\(502\) 5.87820e8i 0.207387i
\(503\) −2.70927e9 −0.949215 −0.474607 0.880198i \(-0.657410\pi\)
−0.474607 + 0.880198i \(0.657410\pi\)
\(504\) −1.06275e9 −0.369764
\(505\) 2.11670e9i 0.731375i
\(506\) 6.00268e8 0.205977
\(507\) 0 0
\(508\) 7.47684e7 0.0253043
\(509\) − 3.49943e9i − 1.17621i −0.808784 0.588106i \(-0.799874\pi\)
0.808784 0.588106i \(-0.200126\pi\)
\(510\) 2.96473e8 0.0989668
\(511\) −9.95967e8 −0.330196
\(512\) 1.34218e8i 0.0441942i
\(513\) − 2.02735e9i − 0.663008i
\(514\) 1.62161e9i 0.526714i
\(515\) − 7.87078e8i − 0.253918i
\(516\) −4.84414e8 −0.155218
\(517\) −5.16140e8 −0.164267
\(518\) − 1.30476e9i − 0.412453i
\(519\) −1.02835e8 −0.0322889
\(520\) 0 0
\(521\) −1.37683e9 −0.426530 −0.213265 0.976994i \(-0.568410\pi\)
−0.213265 + 0.976994i \(0.568410\pi\)
\(522\) 1.67640e9i 0.515860i
\(523\) −2.86154e9 −0.874669 −0.437334 0.899299i \(-0.644077\pi\)
−0.437334 + 0.899299i \(0.644077\pi\)
\(524\) 5.07125e8 0.153977
\(525\) 4.14833e8i 0.125117i
\(526\) 1.23403e9i 0.369723i
\(527\) 3.34638e9i 0.995951i
\(528\) 5.36740e7i 0.0158688i
\(529\) 1.31651e9 0.386661
\(530\) 2.50995e9 0.732318
\(531\) − 5.39487e9i − 1.56369i
\(532\) 2.59706e9 0.747810
\(533\) 0 0
\(534\) 1.14731e9 0.326053
\(535\) − 3.77697e9i − 1.06636i
\(536\) 6.45140e7 0.0180958
\(537\) −2.25649e8 −0.0628815
\(538\) − 4.99215e9i − 1.38213i
\(539\) − 2.27915e8i − 0.0626919i
\(540\) 6.82214e8i 0.186442i
\(541\) 5.34467e9i 1.45121i 0.688111 + 0.725605i \(0.258440\pi\)
−0.688111 + 0.725605i \(0.741560\pi\)
\(542\) 3.10387e9 0.837347
\(543\) 7.19550e8 0.192869
\(544\) − 4.81886e8i − 0.128336i
\(545\) 2.57398e9 0.681109
\(546\) 0 0
\(547\) −3.37135e9 −0.880740 −0.440370 0.897816i \(-0.645153\pi\)
−0.440370 + 0.897816i \(0.645153\pi\)
\(548\) 2.02019e7i 0.00524396i
\(549\) −1.69100e9 −0.436153
\(550\) −2.97242e8 −0.0761801
\(551\) − 4.09665e9i − 1.04327i
\(552\) 4.22167e8i 0.106831i
\(553\) − 3.62387e9i − 0.911244i
\(554\) − 3.63162e9i − 0.907436i
\(555\) −4.04526e8 −0.100443
\(556\) −2.50904e9 −0.619079
\(557\) − 5.61106e9i − 1.37579i −0.725811 0.687894i \(-0.758535\pi\)
0.725811 0.687894i \(-0.241465\pi\)
\(558\) −3.71911e9 −0.906190
\(559\) 0 0
\(560\) −8.73923e8 −0.210288
\(561\) − 1.92707e8i − 0.0460817i
\(562\) −2.67016e9 −0.634542
\(563\) −6.69690e9 −1.58159 −0.790795 0.612081i \(-0.790333\pi\)
−0.790795 + 0.612081i \(0.790333\pi\)
\(564\) − 3.63000e8i − 0.0851980i
\(565\) 3.48494e9i 0.812879i
\(566\) − 4.30156e9i − 0.997168i
\(567\) 3.92066e9i 0.903273i
\(568\) 7.24341e8 0.165853
\(569\) −1.96850e9 −0.447964 −0.223982 0.974593i \(-0.571906\pi\)
−0.223982 + 0.974593i \(0.571906\pi\)
\(570\) − 8.05190e8i − 0.182111i
\(571\) −1.02926e9 −0.231365 −0.115682 0.993286i \(-0.536906\pi\)
−0.115682 + 0.993286i \(0.536906\pi\)
\(572\) 0 0
\(573\) 1.12783e9 0.250440
\(574\) 8.81238e7i 0.0194492i
\(575\) −2.33793e9 −0.512853
\(576\) 5.35560e8 0.116770
\(577\) − 3.31179e9i − 0.717708i −0.933394 0.358854i \(-0.883168\pi\)
0.933394 0.358854i \(-0.116832\pi\)
\(578\) − 1.55258e9i − 0.334431i
\(579\) − 4.22335e8i − 0.0904236i
\(580\) 1.37854e9i 0.293374i
\(581\) 5.76366e9 1.21922
\(582\) 8.33486e8 0.175254
\(583\) − 1.63147e9i − 0.340988i
\(584\) 5.01904e8 0.104274
\(585\) 0 0
\(586\) −2.68480e9 −0.551151
\(587\) 5.59411e8i 0.114156i 0.998370 + 0.0570778i \(0.0181783\pi\)
−0.998370 + 0.0570778i \(0.981822\pi\)
\(588\) 1.60292e8 0.0325155
\(589\) 9.08843e9 1.83267
\(590\) − 4.43631e9i − 0.889282i
\(591\) − 1.23582e9i − 0.246264i
\(592\) 6.57514e8i 0.130250i
\(593\) − 3.02459e9i − 0.595628i −0.954624 0.297814i \(-0.903742\pi\)
0.954624 0.297814i \(-0.0962575\pi\)
\(594\) 4.43439e8 0.0868124
\(595\) 3.13767e9 0.610658
\(596\) − 1.40071e9i − 0.271010i
\(597\) −1.00365e9 −0.193051
\(598\) 0 0
\(599\) −5.63246e9 −1.07079 −0.535395 0.844602i \(-0.679837\pi\)
−0.535395 + 0.844602i \(0.679837\pi\)
\(600\) − 2.09050e8i − 0.0395112i
\(601\) 3.40792e8 0.0640366 0.0320183 0.999487i \(-0.489807\pi\)
0.0320183 + 0.999487i \(0.489807\pi\)
\(602\) −5.12672e9 −0.957749
\(603\) − 2.57426e8i − 0.0478126i
\(604\) 1.88259e9i 0.347637i
\(605\) 3.84189e9i 0.705344i
\(606\) 9.67636e8i 0.176627i
\(607\) 3.85420e9 0.699477 0.349739 0.936847i \(-0.386270\pi\)
0.349739 + 0.936847i \(0.386270\pi\)
\(608\) −1.30875e9 −0.236154
\(609\) − 1.25053e9i − 0.224355i
\(610\) −1.39054e9 −0.248044
\(611\) 0 0
\(612\) −1.92284e9 −0.339088
\(613\) − 9.22245e9i − 1.61709i −0.588434 0.808545i \(-0.700255\pi\)
0.588434 0.808545i \(-0.299745\pi\)
\(614\) −1.72023e9 −0.299915
\(615\) 2.73218e7 0.00473639
\(616\) 5.68050e8i 0.0979160i
\(617\) − 6.53611e9i − 1.12027i −0.828402 0.560133i \(-0.810750\pi\)
0.828402 0.560133i \(-0.189250\pi\)
\(618\) − 3.59807e8i − 0.0613211i
\(619\) 1.36559e9i 0.231420i 0.993283 + 0.115710i \(0.0369144\pi\)
−0.993283 + 0.115710i \(0.963086\pi\)
\(620\) −3.05830e9 −0.515358
\(621\) 3.48782e9 0.584431
\(622\) − 6.33649e9i − 1.05580i
\(623\) 1.21424e10 2.01186
\(624\) 0 0
\(625\) −2.28761e9 −0.374802
\(626\) − 9.47659e8i − 0.154398i
\(627\) −5.23374e8 −0.0847960
\(628\) −3.87552e9 −0.624412
\(629\) − 2.36070e9i − 0.378236i
\(630\) 3.48716e9i 0.555622i
\(631\) 1.54079e9i 0.244141i 0.992521 + 0.122070i \(0.0389533\pi\)
−0.992521 + 0.122070i \(0.961047\pi\)
\(632\) 1.82620e9i 0.287766i
\(633\) −1.16881e9 −0.183160
\(634\) −4.05848e8 −0.0632486
\(635\) − 2.45334e8i − 0.0380233i
\(636\) 1.14741e9 0.176855
\(637\) 0 0
\(638\) 8.96052e8 0.136603
\(639\) − 2.89029e9i − 0.438216i
\(640\) 4.40402e8 0.0664078
\(641\) 4.54018e9 0.680879 0.340440 0.940266i \(-0.389424\pi\)
0.340440 + 0.940266i \(0.389424\pi\)
\(642\) − 1.72661e9i − 0.257527i
\(643\) − 1.14054e10i − 1.69189i −0.533272 0.845944i \(-0.679038\pi\)
0.533272 0.845944i \(-0.320962\pi\)
\(644\) 4.46793e9i 0.659183i
\(645\) 1.58948e9i 0.233237i
\(646\) 4.69886e9 0.685770
\(647\) 1.26393e10 1.83468 0.917338 0.398109i \(-0.130334\pi\)
0.917338 + 0.398109i \(0.130334\pi\)
\(648\) − 1.97577e9i − 0.285248i
\(649\) −2.88360e9 −0.414075
\(650\) 0 0
\(651\) 2.77431e9 0.394114
\(652\) − 3.65346e9i − 0.516223i
\(653\) −1.05004e10 −1.47575 −0.737873 0.674940i \(-0.764170\pi\)
−0.737873 + 0.674940i \(0.764170\pi\)
\(654\) 1.17667e9 0.164488
\(655\) − 1.66400e9i − 0.231371i
\(656\) − 4.44088e7i − 0.00614194i
\(657\) − 2.00272e9i − 0.275512i
\(658\) − 3.84175e9i − 0.525700i
\(659\) 9.64818e9 1.31325 0.656624 0.754219i \(-0.271984\pi\)
0.656624 + 0.754219i \(0.271984\pi\)
\(660\) 1.76118e8 0.0238451
\(661\) − 6.58299e9i − 0.886580i −0.896378 0.443290i \(-0.853811\pi\)
0.896378 0.443290i \(-0.146189\pi\)
\(662\) 2.19006e9 0.293395
\(663\) 0 0
\(664\) −2.90452e9 −0.385023
\(665\) − 8.52160e9i − 1.12369i
\(666\) 2.62364e9 0.344147
\(667\) 7.04779e9 0.919629
\(668\) 5.61450e9i 0.728775i
\(669\) 1.75749e8i 0.0226935i
\(670\) − 2.11687e8i − 0.0271914i
\(671\) 9.03851e8i 0.115496i
\(672\) −3.99507e8 −0.0507846
\(673\) 8.54649e9 1.08077 0.540387 0.841416i \(-0.318278\pi\)
0.540387 + 0.841416i \(0.318278\pi\)
\(674\) 7.34810e8i 0.0924411i
\(675\) −1.72711e9 −0.216151
\(676\) 0 0
\(677\) 8.71305e9 1.07922 0.539610 0.841915i \(-0.318572\pi\)
0.539610 + 0.841915i \(0.318572\pi\)
\(678\) 1.59312e9i 0.196311i
\(679\) 8.82106e9 1.08138
\(680\) −1.58119e9 −0.192842
\(681\) 2.21449e9i 0.268695i
\(682\) 1.98789e9i 0.239965i
\(683\) 1.46109e10i 1.75470i 0.479849 + 0.877351i \(0.340692\pi\)
−0.479849 + 0.877351i \(0.659308\pi\)
\(684\) 5.22223e9i 0.623965i
\(685\) 6.62873e7 0.00787977
\(686\) −4.99734e9 −0.591023
\(687\) − 1.05055e8i − 0.0123615i
\(688\) 2.58354e9 0.302452
\(689\) 0 0
\(690\) 1.38523e9 0.160528
\(691\) 1.47348e10i 1.69891i 0.527662 + 0.849454i \(0.323069\pi\)
−0.527662 + 0.849454i \(0.676931\pi\)
\(692\) 5.48451e8 0.0629167
\(693\) 2.26665e9 0.258713
\(694\) − 1.09360e10i − 1.24194i
\(695\) 8.23279e9i 0.930252i
\(696\) 6.30190e8i 0.0708499i
\(697\) 1.59442e8i 0.0178357i
\(698\) −9.05146e9 −1.00745
\(699\) 1.43467e9 0.158885
\(700\) − 2.21244e9i − 0.243797i
\(701\) −1.31502e9 −0.144185 −0.0720923 0.997398i \(-0.522968\pi\)
−0.0720923 + 0.997398i \(0.522968\pi\)
\(702\) 0 0
\(703\) −6.41141e9 −0.696001
\(704\) − 2.86261e8i − 0.0309213i
\(705\) −1.19109e9 −0.128022
\(706\) −3.58716e8 −0.0383649
\(707\) 1.02408e10i 1.08985i
\(708\) − 2.02803e9i − 0.214762i
\(709\) 6.64028e8i 0.0699721i 0.999388 + 0.0349860i \(0.0111387\pi\)
−0.999388 + 0.0349860i \(0.988861\pi\)
\(710\) − 2.37674e9i − 0.249217i
\(711\) 7.28697e9 0.760332
\(712\) −6.11901e9 −0.635333
\(713\) 1.56356e10i 1.61547i
\(714\) 1.43436e9 0.147474
\(715\) 0 0
\(716\) 1.20346e9 0.122528
\(717\) − 4.75451e9i − 0.481713i
\(718\) −3.18624e9 −0.321250
\(719\) −4.95034e9 −0.496689 −0.248344 0.968672i \(-0.579886\pi\)
−0.248344 + 0.968672i \(0.579886\pi\)
\(720\) − 1.75731e9i − 0.175462i
\(721\) − 3.80796e9i − 0.378372i
\(722\) − 5.61065e9i − 0.554796i
\(723\) − 3.07928e9i − 0.303015i
\(724\) −3.83760e9 −0.375816
\(725\) −3.48994e9 −0.340123
\(726\) 1.75629e9i 0.170341i
\(727\) −8.81101e9 −0.850463 −0.425231 0.905085i \(-0.639807\pi\)
−0.425231 + 0.905085i \(0.639807\pi\)
\(728\) 0 0
\(729\) −6.55163e9 −0.626330
\(730\) − 1.64687e9i − 0.156686i
\(731\) −9.27578e9 −0.878293
\(732\) −6.35675e8 −0.0599027
\(733\) 1.49414e8i 0.0140129i 0.999975 + 0.00700643i \(0.00223023\pi\)
−0.999975 + 0.00700643i \(0.997770\pi\)
\(734\) 1.30777e10i 1.22066i
\(735\) − 5.25957e8i − 0.0488590i
\(736\) − 2.25155e9i − 0.208166i
\(737\) −1.37596e8 −0.0126611
\(738\) −1.77202e8 −0.0162282
\(739\) − 4.70806e9i − 0.429127i −0.976710 0.214564i \(-0.931167\pi\)
0.976710 0.214564i \(-0.0688329\pi\)
\(740\) 2.15747e9 0.195719
\(741\) 0 0
\(742\) 1.21434e10 1.09125
\(743\) − 1.69676e9i − 0.151761i −0.997117 0.0758805i \(-0.975823\pi\)
0.997117 0.0758805i \(-0.0241768\pi\)
\(744\) −1.39808e9 −0.124459
\(745\) −4.59607e9 −0.407230
\(746\) − 1.23707e10i − 1.09095i
\(747\) 1.15897e10i 1.01730i
\(748\) 1.02777e9i 0.0897928i
\(749\) − 1.82733e10i − 1.58903i
\(750\) −2.26094e9 −0.195693
\(751\) −1.06650e10 −0.918800 −0.459400 0.888229i \(-0.651936\pi\)
−0.459400 + 0.888229i \(0.651936\pi\)
\(752\) 1.93600e9i 0.166013i
\(753\) 8.81731e8 0.0752581
\(754\) 0 0
\(755\) 6.17724e9 0.522373
\(756\) 3.30062e9i 0.277824i
\(757\) 6.22876e9 0.521874 0.260937 0.965356i \(-0.415968\pi\)
0.260937 + 0.965356i \(0.415968\pi\)
\(758\) −8.45506e9 −0.705138
\(759\) − 9.00402e8i − 0.0747464i
\(760\) 4.29435e9i 0.354854i
\(761\) − 8.38334e9i − 0.689558i −0.938684 0.344779i \(-0.887954\pi\)
0.938684 0.344779i \(-0.112046\pi\)
\(762\) − 1.12153e8i − 0.00918263i
\(763\) 1.24531e10 1.01495
\(764\) −6.01511e9 −0.487997
\(765\) 6.30932e9i 0.509527i
\(766\) 1.79928e9 0.144643
\(767\) 0 0
\(768\) 2.01327e8 0.0160375
\(769\) 1.18649e10i 0.940852i 0.882439 + 0.470426i \(0.155900\pi\)
−0.882439 + 0.470426i \(0.844100\pi\)
\(770\) 1.86391e9 0.147132
\(771\) 2.43241e9 0.191138
\(772\) 2.25245e9i 0.176196i
\(773\) − 5.56680e9i − 0.433488i −0.976228 0.216744i \(-0.930456\pi\)
0.976228 0.216744i \(-0.0695438\pi\)
\(774\) − 1.03089e10i − 0.799136i
\(775\) − 7.74246e9i − 0.597479i
\(776\) −4.44526e9 −0.341492
\(777\) −1.95713e9 −0.149674
\(778\) − 8.14306e9i − 0.619953i
\(779\) 4.33029e8 0.0328198
\(780\) 0 0
\(781\) −1.54488e9 −0.116042
\(782\) 8.08383e9i 0.604496i
\(783\) 5.20645e9 0.387593
\(784\) −8.54888e8 −0.0633583
\(785\) 1.27165e10i 0.938264i
\(786\) − 7.60687e8i − 0.0558763i
\(787\) 1.34611e8i 0.00984395i 0.999988 + 0.00492198i \(0.00156672\pi\)
−0.999988 + 0.00492198i \(0.998433\pi\)
\(788\) 6.59106e9i 0.479859i
\(789\) 1.85105e9 0.134168
\(790\) 5.99222e9 0.432408
\(791\) 1.68605e10i 1.21130i
\(792\) −1.14225e9 −0.0817001
\(793\) 0 0
\(794\) 1.18052e10 0.836955
\(795\) − 3.76493e9i − 0.265749i
\(796\) 5.35280e9 0.376171
\(797\) 7.41548e9 0.518842 0.259421 0.965764i \(-0.416468\pi\)
0.259421 + 0.965764i \(0.416468\pi\)
\(798\) − 3.89559e9i − 0.271371i
\(799\) − 6.95088e9i − 0.482088i
\(800\) 1.11493e9i 0.0769898i
\(801\) 2.44163e10i 1.67867i
\(802\) −2.19930e9 −0.150548
\(803\) −1.07047e9 −0.0729574
\(804\) − 9.67711e7i − 0.00656673i
\(805\) 1.46604e10 0.990513
\(806\) 0 0
\(807\) −7.48822e9 −0.501558
\(808\) − 5.16072e9i − 0.344168i
\(809\) −1.41542e10 −0.939863 −0.469932 0.882703i \(-0.655721\pi\)
−0.469932 + 0.882703i \(0.655721\pi\)
\(810\) −6.48299e9 −0.428625
\(811\) 2.63708e10i 1.73600i 0.496563 + 0.868001i \(0.334595\pi\)
−0.496563 + 0.868001i \(0.665405\pi\)
\(812\) 6.66951e9i 0.437168i
\(813\) − 4.65580e9i − 0.303863i
\(814\) − 1.40236e9i − 0.0911324i
\(815\) −1.19879e10 −0.775697
\(816\) −7.22829e8 −0.0465715
\(817\) 2.51921e10i 1.61617i
\(818\) −1.30742e10 −0.835176
\(819\) 0 0
\(820\) −1.45716e8 −0.00922912
\(821\) − 8.06264e9i − 0.508483i −0.967141 0.254241i \(-0.918174\pi\)
0.967141 0.254241i \(-0.0818258\pi\)
\(822\) 3.03028e7 0.00190297
\(823\) 2.34202e10 1.46451 0.732253 0.681033i \(-0.238469\pi\)
0.732253 + 0.681033i \(0.238469\pi\)
\(824\) 1.91897e9i 0.119488i
\(825\) 4.45864e8i 0.0276448i
\(826\) − 2.14633e10i − 1.32515i
\(827\) 5.55722e9i 0.341655i 0.985301 + 0.170828i \(0.0546442\pi\)
−0.985301 + 0.170828i \(0.945356\pi\)
\(828\) −8.98423e9 −0.550015
\(829\) −2.84256e10 −1.73288 −0.866440 0.499281i \(-0.833597\pi\)
−0.866440 + 0.499281i \(0.833597\pi\)
\(830\) 9.53046e9i 0.578549i
\(831\) −5.44743e9 −0.329297
\(832\) 0 0
\(833\) 3.06933e9 0.183987
\(834\) 3.76356e9i 0.224656i
\(835\) 1.84226e10 1.09508
\(836\) 2.79133e9 0.165230
\(837\) 1.15505e10i 0.680868i
\(838\) − 8.90238e9i − 0.522579i
\(839\) 1.04036e10i 0.608156i 0.952647 + 0.304078i \(0.0983484\pi\)
−0.952647 + 0.304078i \(0.901652\pi\)
\(840\) 1.31088e9i 0.0763109i
\(841\) −6.72927e9 −0.390105
\(842\) 7.38023e9 0.426066
\(843\) 4.00524e9i 0.230267i
\(844\) 6.23367e9 0.356899
\(845\) 0 0
\(846\) 7.72509e9 0.438639
\(847\) 1.85874e10i 1.05106i
\(848\) −6.11950e9 −0.344612
\(849\) −6.45234e9 −0.361860
\(850\) − 4.00297e9i − 0.223572i
\(851\) − 1.10301e10i − 0.613514i
\(852\) − 1.08651e9i − 0.0601860i
\(853\) − 1.80580e10i − 0.996205i −0.867118 0.498102i \(-0.834030\pi\)
0.867118 0.498102i \(-0.165970\pi\)
\(854\) −6.72756e9 −0.369620
\(855\) 1.71355e10 0.937593
\(856\) 9.20861e9i 0.501806i
\(857\) 6.34034e9 0.344096 0.172048 0.985089i \(-0.444962\pi\)
0.172048 + 0.985089i \(0.444962\pi\)
\(858\) 0 0
\(859\) 1.21489e10 0.653973 0.326987 0.945029i \(-0.393967\pi\)
0.326987 + 0.945029i \(0.393967\pi\)
\(860\) − 8.47725e9i − 0.454476i
\(861\) 1.32186e8 0.00705786
\(862\) −7.85206e9 −0.417550
\(863\) 2.87111e10i 1.52059i 0.649578 + 0.760295i \(0.274946\pi\)
−0.649578 + 0.760295i \(0.725054\pi\)
\(864\) − 1.66330e9i − 0.0877351i
\(865\) − 1.79960e9i − 0.0945411i
\(866\) − 2.27998e10i − 1.19294i
\(867\) −2.32887e9 −0.121361
\(868\) −1.47963e10 −0.767954
\(869\) − 3.89495e9i − 0.201341i
\(870\) 2.06781e9 0.106462
\(871\) 0 0
\(872\) −6.27560e9 −0.320514
\(873\) 1.77376e10i 0.902289i
\(874\) 2.19549e10 1.11235
\(875\) −2.39283e10 −1.20749
\(876\) − 7.52857e8i − 0.0378397i
\(877\) − 2.46021e10i − 1.23161i −0.787898 0.615806i \(-0.788831\pi\)
0.787898 0.615806i \(-0.211169\pi\)
\(878\) 8.44975e9i 0.421321i
\(879\) 4.02720e9i 0.200006i
\(880\) −9.39295e8 −0.0464636
\(881\) 1.25378e10 0.617738 0.308869 0.951105i \(-0.400049\pi\)
0.308869 + 0.951105i \(0.400049\pi\)
\(882\) 3.41121e9i 0.167405i
\(883\) −1.93097e10 −0.943873 −0.471937 0.881633i \(-0.656445\pi\)
−0.471937 + 0.881633i \(0.656445\pi\)
\(884\) 0 0
\(885\) −6.65446e9 −0.322709
\(886\) 1.45860e10i 0.704562i
\(887\) 3.20268e10 1.54092 0.770462 0.637486i \(-0.220026\pi\)
0.770462 + 0.637486i \(0.220026\pi\)
\(888\) 9.86272e8 0.0472663
\(889\) − 1.18695e9i − 0.0566599i
\(890\) 2.00780e10i 0.954675i
\(891\) 4.21394e9i 0.199580i
\(892\) − 9.37327e8i − 0.0442195i
\(893\) −1.88779e10 −0.887101
\(894\) −2.10106e9 −0.0983461
\(895\) − 3.94885e9i − 0.184115i
\(896\) 2.13071e9 0.0989568
\(897\) 0 0
\(898\) −1.47877e10 −0.681448
\(899\) 2.33400e10i 1.07138i
\(900\) 4.44884e9 0.203422
\(901\) 2.19710e10 1.00072
\(902\) 9.47157e7i 0.00429733i
\(903\) 7.69008e9i 0.347555i
\(904\) − 8.49662e9i − 0.382522i
\(905\) 1.25921e10i 0.564715i
\(906\) 2.82388e9 0.126153
\(907\) −2.33703e9 −0.104002 −0.0520008 0.998647i \(-0.516560\pi\)
−0.0520008 + 0.998647i \(0.516560\pi\)
\(908\) − 1.18106e10i − 0.523567i
\(909\) −2.05925e10 −0.909359
\(910\) 0 0
\(911\) 2.20343e10 0.965573 0.482786 0.875738i \(-0.339625\pi\)
0.482786 + 0.875738i \(0.339625\pi\)
\(912\) 1.96313e9i 0.0856973i
\(913\) 6.19480e9 0.269389
\(914\) −2.38453e10 −1.03298
\(915\) 2.08581e9i 0.0900121i
\(916\) 5.60295e8i 0.0240870i
\(917\) − 8.05061e9i − 0.344775i
\(918\) 5.97181e9i 0.254775i
\(919\) −1.43277e10 −0.608938 −0.304469 0.952522i \(-0.598479\pi\)
−0.304469 + 0.952522i \(0.598479\pi\)
\(920\) −7.38791e9 −0.312798
\(921\) 2.58035e9i 0.108835i
\(922\) −2.02225e10 −0.849720
\(923\) 0 0
\(924\) 8.52074e8 0.0355325
\(925\) 5.46190e9i 0.226907i
\(926\) 7.12233e9 0.294770
\(927\) 7.65715e9 0.315710
\(928\) − 3.36101e9i − 0.138055i
\(929\) − 1.31280e10i − 0.537208i −0.963251 0.268604i \(-0.913438\pi\)
0.963251 0.268604i \(-0.0865623\pi\)
\(930\) 4.58745e9i 0.187017i
\(931\) − 8.33600e9i − 0.338558i
\(932\) −7.65160e9 −0.309597
\(933\) −9.50474e9 −0.383137
\(934\) − 2.12533e10i − 0.853519i
\(935\) 3.37238e9 0.134926
\(936\) 0 0
\(937\) −3.87626e10 −1.53930 −0.769652 0.638463i \(-0.779571\pi\)
−0.769652 + 0.638463i \(0.779571\pi\)
\(938\) − 1.02416e9i − 0.0405189i
\(939\) −1.42149e9 −0.0560291
\(940\) 6.35250e9 0.249458
\(941\) − 2.06279e10i − 0.807035i −0.914972 0.403517i \(-0.867788\pi\)
0.914972 0.403517i \(-0.132212\pi\)
\(942\) 5.81328e9i 0.226591i
\(943\) 7.44976e8i 0.0289302i
\(944\) 1.08161e10i 0.418476i
\(945\) 1.08302e10 0.417468
\(946\) −5.51021e9 −0.211617
\(947\) − 2.11705e10i − 0.810040i −0.914308 0.405020i \(-0.867264\pi\)
0.914308 0.405020i \(-0.132736\pi\)
\(948\) 2.73930e9 0.104427
\(949\) 0 0
\(950\) −1.08717e10 −0.411399
\(951\) 6.08771e8i 0.0229521i
\(952\) −7.64994e9 −0.287362
\(953\) −2.14876e10 −0.804196 −0.402098 0.915597i \(-0.631719\pi\)
−0.402098 + 0.915597i \(0.631719\pi\)
\(954\) 2.44182e10i 0.910531i
\(955\) 1.97371e10i 0.733282i
\(956\) 2.53574e10i 0.938646i
\(957\) − 1.34408e9i − 0.0495715i
\(958\) −1.04075e10 −0.382442
\(959\) 3.20704e8 0.0117419
\(960\) − 6.60603e8i − 0.0240986i
\(961\) −2.42673e10 −0.882043
\(962\) 0 0
\(963\) 3.67445e10 1.32587
\(964\) 1.64228e10i 0.590443i
\(965\) 7.39086e9 0.264758
\(966\) 6.70189e9 0.239209
\(967\) − 3.92625e10i − 1.39632i −0.715941 0.698161i \(-0.754002\pi\)
0.715941 0.698161i \(-0.245998\pi\)
\(968\) − 9.36689e9i − 0.331919i
\(969\) − 7.04829e9i − 0.248857i
\(970\) 1.45860e10i 0.513139i
\(971\) −5.62647e10 −1.97228 −0.986140 0.165917i \(-0.946941\pi\)
−0.986140 + 0.165917i \(0.946941\pi\)
\(972\) −1.00684e10 −0.351665
\(973\) 3.98310e10i 1.38620i
\(974\) −8.59573e9 −0.298076
\(975\) 0 0
\(976\) 3.39027e9 0.116724
\(977\) 8.43437e9i 0.289349i 0.989479 + 0.144674i \(0.0462135\pi\)
−0.989479 + 0.144674i \(0.953787\pi\)
\(978\) −5.48019e9 −0.187331
\(979\) 1.30507e10 0.444523
\(980\) 2.80510e9i 0.0952045i
\(981\) 2.50411e10i 0.846861i
\(982\) 6.26675e9i 0.211180i
\(983\) − 2.24230e10i − 0.752932i −0.926430 0.376466i \(-0.877139\pi\)
0.926430 0.376466i \(-0.122861\pi\)
\(984\) −6.66132e7 −0.00222883
\(985\) 2.16269e10 0.721054
\(986\) 1.20672e10i 0.400900i
\(987\) −5.76262e9 −0.190770
\(988\) 0 0
\(989\) −4.33400e10 −1.42463
\(990\) 3.74801e9i 0.122766i
\(991\) 3.46728e10 1.13170 0.565849 0.824509i \(-0.308548\pi\)
0.565849 + 0.824509i \(0.308548\pi\)
\(992\) 7.45642e9 0.242516
\(993\) − 3.28508e9i − 0.106469i
\(994\) − 1.14989e10i − 0.371368i
\(995\) − 1.75639e10i − 0.565249i
\(996\) 4.35678e9i 0.139720i
\(997\) −2.96474e10 −0.947444 −0.473722 0.880674i \(-0.657090\pi\)
−0.473722 + 0.880674i \(0.657090\pi\)
\(998\) −4.98550e9 −0.158764
\(999\) − 8.14830e9i − 0.258576i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.8.b.d.337.2 2
13.5 odd 4 338.8.a.d.1.1 1
13.8 odd 4 2.8.a.a.1.1 1
13.12 even 2 inner 338.8.b.d.337.1 2
39.8 even 4 18.8.a.b.1.1 1
52.47 even 4 16.8.a.b.1.1 1
65.8 even 4 50.8.b.c.49.2 2
65.34 odd 4 50.8.a.g.1.1 1
65.47 even 4 50.8.b.c.49.1 2
91.34 even 4 98.8.a.a.1.1 1
91.47 even 12 98.8.c.e.67.1 2
91.60 odd 12 98.8.c.d.79.1 2
91.73 even 12 98.8.c.e.79.1 2
91.86 odd 12 98.8.c.d.67.1 2
104.21 odd 4 64.8.a.c.1.1 1
104.99 even 4 64.8.a.e.1.1 1
117.34 odd 12 162.8.c.l.109.1 2
117.47 even 12 162.8.c.a.109.1 2
117.86 even 12 162.8.c.a.55.1 2
117.112 odd 12 162.8.c.l.55.1 2
143.21 even 4 242.8.a.e.1.1 1
156.47 odd 4 144.8.a.i.1.1 1
195.8 odd 4 450.8.c.g.199.1 2
195.47 odd 4 450.8.c.g.199.2 2
195.164 even 4 450.8.a.c.1.1 1
208.21 odd 4 256.8.b.b.129.1 2
208.99 even 4 256.8.b.f.129.1 2
208.125 odd 4 256.8.b.b.129.2 2
208.203 even 4 256.8.b.f.129.2 2
221.203 odd 4 578.8.a.b.1.1 1
260.47 odd 4 400.8.c.j.49.2 2
260.99 even 4 400.8.a.l.1.1 1
260.203 odd 4 400.8.c.j.49.1 2
312.125 even 4 576.8.a.g.1.1 1
312.203 odd 4 576.8.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2.8.a.a.1.1 1 13.8 odd 4
16.8.a.b.1.1 1 52.47 even 4
18.8.a.b.1.1 1 39.8 even 4
50.8.a.g.1.1 1 65.34 odd 4
50.8.b.c.49.1 2 65.47 even 4
50.8.b.c.49.2 2 65.8 even 4
64.8.a.c.1.1 1 104.21 odd 4
64.8.a.e.1.1 1 104.99 even 4
98.8.a.a.1.1 1 91.34 even 4
98.8.c.d.67.1 2 91.86 odd 12
98.8.c.d.79.1 2 91.60 odd 12
98.8.c.e.67.1 2 91.47 even 12
98.8.c.e.79.1 2 91.73 even 12
144.8.a.i.1.1 1 156.47 odd 4
162.8.c.a.55.1 2 117.86 even 12
162.8.c.a.109.1 2 117.47 even 12
162.8.c.l.55.1 2 117.112 odd 12
162.8.c.l.109.1 2 117.34 odd 12
242.8.a.e.1.1 1 143.21 even 4
256.8.b.b.129.1 2 208.21 odd 4
256.8.b.b.129.2 2 208.125 odd 4
256.8.b.f.129.1 2 208.99 even 4
256.8.b.f.129.2 2 208.203 even 4
338.8.a.d.1.1 1 13.5 odd 4
338.8.b.d.337.1 2 13.12 even 2 inner
338.8.b.d.337.2 2 1.1 even 1 trivial
400.8.a.l.1.1 1 260.99 even 4
400.8.c.j.49.1 2 260.203 odd 4
400.8.c.j.49.2 2 260.47 odd 4
450.8.a.c.1.1 1 195.164 even 4
450.8.c.g.199.1 2 195.8 odd 4
450.8.c.g.199.2 2 195.47 odd 4
576.8.a.f.1.1 1 312.203 odd 4
576.8.a.g.1.1 1 312.125 even 4
578.8.a.b.1.1 1 221.203 odd 4