Properties

Label 170.2.o.a.7.2
Level $170$
Weight $2$
Character 170.7
Analytic conductor $1.357$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [170,2,Mod(3,170)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(170, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([12, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("170.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 170 = 2 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 170.o (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.35745683436\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 7.2
Character \(\chi\) \(=\) 170.7
Dual form 170.2.o.a.73.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.923880 + 0.382683i) q^{2} +(-0.241738 - 1.21530i) q^{3} +(0.707107 - 0.707107i) q^{4} +(1.17123 + 1.90479i) q^{5} +(0.688411 + 1.03028i) q^{6} +(-0.590918 + 0.394839i) q^{7} +(-0.382683 + 0.923880i) q^{8} +(1.35312 - 0.560483i) q^{9} +O(q^{10})\) \(q+(-0.923880 + 0.382683i) q^{2} +(-0.241738 - 1.21530i) q^{3} +(0.707107 - 0.707107i) q^{4} +(1.17123 + 1.90479i) q^{5} +(0.688411 + 1.03028i) q^{6} +(-0.590918 + 0.394839i) q^{7} +(-0.382683 + 0.923880i) q^{8} +(1.35312 - 0.560483i) q^{9} +(-1.81101 - 1.31159i) q^{10} +(3.89081 - 2.59976i) q^{11} +(-1.03028 - 0.688411i) q^{12} -0.327094i q^{13} +(0.394839 - 0.590918i) q^{14} +(2.03176 - 1.88385i) q^{15} -1.00000i q^{16} +(4.06450 + 0.692689i) q^{17} +(-1.03564 + 1.03564i) q^{18} +(-0.470758 - 0.194994i) q^{19} +(2.17507 + 0.518705i) q^{20} +(0.622694 + 0.622694i) q^{21} +(-2.59976 + 3.89081i) q^{22} +(-0.729154 - 0.145038i) q^{23} +(1.21530 + 0.241738i) q^{24} +(-2.25644 + 4.46189i) q^{25} +(0.125173 + 0.302195i) q^{26} +(-3.07349 - 4.59980i) q^{27} +(-0.138649 + 0.697035i) q^{28} +(1.37720 + 6.92365i) q^{29} +(-1.15618 + 2.51797i) q^{30} +(-2.70560 - 1.80782i) q^{31} +(0.382683 + 0.923880i) q^{32} +(-4.10004 - 4.10004i) q^{33} +(-4.02019 + 0.915457i) q^{34} +(-1.44419 - 0.663128i) q^{35} +(0.560483 - 1.35312i) q^{36} +(-10.7368 + 2.13568i) q^{37} +0.509545 q^{38} +(-0.397517 + 0.0790710i) q^{39} +(-2.20801 + 0.353144i) q^{40} +(1.39655 - 7.02092i) q^{41} +(-0.813590 - 0.337000i) q^{42} +(-0.310490 - 0.128609i) q^{43} +(0.912914 - 4.58953i) q^{44} +(2.65242 + 1.92096i) q^{45} +(0.729154 - 0.145038i) q^{46} -4.22197 q^{47} +(-1.21530 + 0.241738i) q^{48} +(-2.48550 + 6.00052i) q^{49} +(0.377191 - 4.98575i) q^{50} +(-0.140721 - 5.10703i) q^{51} +(-0.231290 - 0.231290i) q^{52} +(-1.65775 - 4.00217i) q^{53} +(4.59980 + 3.07349i) q^{54} +(9.50903 + 4.36627i) q^{55} +(-0.138649 - 0.697035i) q^{56} +(-0.123176 + 0.619249i) q^{57} +(-3.92193 - 5.86959i) q^{58} +(1.52485 + 3.68132i) q^{59} +(0.104584 - 2.76875i) q^{60} +(-6.63783 - 1.32035i) q^{61} +(3.19147 + 0.634823i) q^{62} +(-0.578286 + 0.865466i) q^{63} +(-0.707107 - 0.707107i) q^{64} +(0.623045 - 0.383102i) q^{65} +(5.35696 + 2.21893i) q^{66} +(0.274816 - 0.274816i) q^{67} +(3.36384 - 2.38423i) q^{68} +0.921201i q^{69} +(1.58802 + 0.0599842i) q^{70} +(-8.70794 + 13.0324i) q^{71} +1.46461i q^{72} +(9.94566 + 6.64548i) q^{73} +(9.10222 - 6.08191i) q^{74} +(5.96800 + 1.66364i) q^{75} +(-0.470758 + 0.194994i) q^{76} +(-1.27267 + 3.07249i) q^{77} +(0.336998 - 0.225175i) q^{78} +(-5.34800 - 8.00385i) q^{79} +(1.90479 - 1.17123i) q^{80} +(-1.74024 + 1.74024i) q^{81} +(1.39655 + 7.02092i) q^{82} +(11.5972 - 4.80373i) q^{83} +0.880623 q^{84} +(3.44104 + 8.55332i) q^{85} +0.336072 q^{86} +(8.08138 - 3.34742i) q^{87} +(0.912914 + 4.58953i) q^{88} +(-0.374770 + 0.374770i) q^{89} +(-3.18564 - 0.759702i) q^{90} +(0.129149 + 0.193286i) q^{91} +(-0.618147 + 0.413033i) q^{92} +(-1.54300 + 3.72513i) q^{93} +(3.90059 - 1.61568i) q^{94} +(-0.179942 - 1.12508i) q^{95} +(1.03028 - 0.688411i) q^{96} +(-8.19271 - 5.47419i) q^{97} -6.49492i q^{98} +(3.80764 - 5.69853i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q+O(q^{10}) \) Copy content Toggle raw display \( 32 q + 8 q^{10} - 40 q^{15} + 16 q^{18} + 8 q^{20} - 8 q^{25} + 8 q^{26} - 72 q^{27} + 8 q^{28} + 8 q^{29} - 16 q^{31} - 64 q^{33} - 24 q^{34} + 32 q^{35} + 16 q^{37} + 32 q^{39} - 8 q^{40} + 16 q^{41} - 40 q^{42} + 48 q^{43} + 16 q^{44} + 24 q^{45} - 64 q^{47} + 16 q^{49} + 32 q^{50} + 32 q^{51} - 16 q^{52} - 24 q^{54} + 8 q^{55} + 8 q^{56} - 8 q^{57} - 16 q^{58} + 64 q^{59} - 48 q^{60} - 24 q^{61} - 24 q^{62} - 24 q^{63} - 16 q^{65} - 16 q^{67} - 16 q^{68} + 24 q^{70} + 8 q^{71} + 16 q^{73} - 8 q^{74} - 8 q^{75} + 40 q^{77} + 48 q^{78} - 72 q^{79} + 8 q^{80} + 48 q^{81} + 16 q^{82} + 16 q^{83} - 8 q^{85} - 64 q^{86} + 24 q^{87} + 16 q^{88} - 16 q^{89} + 48 q^{90} + 48 q^{91} + 8 q^{92} + 8 q^{93} - 8 q^{94} + 40 q^{95} + 16 q^{97} + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/170\mathbb{Z}\right)^\times\).

\(n\) \(71\) \(137\)
\(\chi(n)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.923880 + 0.382683i −0.653281 + 0.270598i
\(3\) −0.241738 1.21530i −0.139567 0.701653i −0.985677 0.168644i \(-0.946061\pi\)
0.846110 0.533009i \(-0.178939\pi\)
\(4\) 0.707107 0.707107i 0.353553 0.353553i
\(5\) 1.17123 + 1.90479i 0.523790 + 0.851848i
\(6\) 0.688411 + 1.03028i 0.281043 + 0.420610i
\(7\) −0.590918 + 0.394839i −0.223346 + 0.149235i −0.662210 0.749319i \(-0.730381\pi\)
0.438864 + 0.898554i \(0.355381\pi\)
\(8\) −0.382683 + 0.923880i −0.135299 + 0.326641i
\(9\) 1.35312 0.560483i 0.451042 0.186828i
\(10\) −1.81101 1.31159i −0.572690 0.414760i
\(11\) 3.89081 2.59976i 1.17312 0.783857i 0.192798 0.981239i \(-0.438244\pi\)
0.980327 + 0.197382i \(0.0632439\pi\)
\(12\) −1.03028 0.688411i −0.297416 0.198727i
\(13\) 0.327094i 0.0907195i −0.998971 0.0453597i \(-0.985557\pi\)
0.998971 0.0453597i \(-0.0144434\pi\)
\(14\) 0.394839 0.590918i 0.105525 0.157930i
\(15\) 2.03176 1.88385i 0.524597 0.486409i
\(16\) 1.00000i 0.250000i
\(17\) 4.06450 + 0.692689i 0.985787 + 0.168002i
\(18\) −1.03564 + 1.03564i −0.244102 + 0.244102i
\(19\) −0.470758 0.194994i −0.107999 0.0447348i 0.328030 0.944667i \(-0.393615\pi\)
−0.436029 + 0.899933i \(0.643615\pi\)
\(20\) 2.17507 + 0.518705i 0.486361 + 0.115986i
\(21\) 0.622694 + 0.622694i 0.135883 + 0.135883i
\(22\) −2.59976 + 3.89081i −0.554270 + 0.829524i
\(23\) −0.729154 0.145038i −0.152039 0.0302425i 0.118484 0.992956i \(-0.462197\pi\)
−0.270523 + 0.962714i \(0.587197\pi\)
\(24\) 1.21530 + 0.241738i 0.248072 + 0.0493445i
\(25\) −2.25644 + 4.46189i −0.451289 + 0.892378i
\(26\) 0.125173 + 0.302195i 0.0245485 + 0.0592654i
\(27\) −3.07349 4.59980i −0.591493 0.885232i
\(28\) −0.138649 + 0.697035i −0.0262022 + 0.131727i
\(29\) 1.37720 + 6.92365i 0.255740 + 1.28569i 0.868606 + 0.495503i \(0.165016\pi\)
−0.612867 + 0.790186i \(0.709984\pi\)
\(30\) −1.15618 + 2.51797i −0.211089 + 0.459717i
\(31\) −2.70560 1.80782i −0.485940 0.324695i 0.288351 0.957525i \(-0.406893\pi\)
−0.774291 + 0.632830i \(0.781893\pi\)
\(32\) 0.382683 + 0.923880i 0.0676495 + 0.163320i
\(33\) −4.10004 4.10004i −0.713725 0.713725i
\(34\) −4.02019 + 0.915457i −0.689457 + 0.157000i
\(35\) −1.44419 0.663128i −0.244112 0.112089i
\(36\) 0.560483 1.35312i 0.0934138 0.225521i
\(37\) −10.7368 + 2.13568i −1.76512 + 0.351104i −0.967658 0.252265i \(-0.918824\pi\)
−0.797462 + 0.603369i \(0.793824\pi\)
\(38\) 0.509545 0.0826591
\(39\) −0.397517 + 0.0790710i −0.0636536 + 0.0126615i
\(40\) −2.20801 + 0.353144i −0.349116 + 0.0558369i
\(41\) 1.39655 7.02092i 0.218104 1.09648i −0.704195 0.710007i \(-0.748692\pi\)
0.922299 0.386477i \(-0.126308\pi\)
\(42\) −0.813590 0.337000i −0.125540 0.0520002i
\(43\) −0.310490 0.128609i −0.0473492 0.0196127i 0.358883 0.933382i \(-0.383158\pi\)
−0.406232 + 0.913770i \(0.633158\pi\)
\(44\) 0.912914 4.58953i 0.137627 0.691897i
\(45\) 2.65242 + 1.92096i 0.395400 + 0.286360i
\(46\) 0.729154 0.145038i 0.107508 0.0213847i
\(47\) −4.22197 −0.615838 −0.307919 0.951413i \(-0.599632\pi\)
−0.307919 + 0.951413i \(0.599632\pi\)
\(48\) −1.21530 + 0.241738i −0.175413 + 0.0348919i
\(49\) −2.48550 + 6.00052i −0.355071 + 0.857217i
\(50\) 0.377191 4.98575i 0.0533428 0.705092i
\(51\) −0.140721 5.10703i −0.0197049 0.715128i
\(52\) −0.231290 0.231290i −0.0320742 0.0320742i
\(53\) −1.65775 4.00217i −0.227710 0.549740i 0.768188 0.640224i \(-0.221158\pi\)
−0.995898 + 0.0904843i \(0.971158\pi\)
\(54\) 4.59980 + 3.07349i 0.625954 + 0.418249i
\(55\) 9.50903 + 4.36627i 1.28220 + 0.588747i
\(56\) −0.138649 0.697035i −0.0185277 0.0931453i
\(57\) −0.123176 + 0.619249i −0.0163151 + 0.0820216i
\(58\) −3.92193 5.86959i −0.514975 0.770714i
\(59\) 1.52485 + 3.68132i 0.198519 + 0.479267i 0.991520 0.129953i \(-0.0414826\pi\)
−0.793001 + 0.609220i \(0.791483\pi\)
\(60\) 0.104584 2.76875i 0.0135017 0.357445i
\(61\) −6.63783 1.32035i −0.849887 0.169053i −0.249116 0.968474i \(-0.580140\pi\)
−0.600772 + 0.799421i \(0.705140\pi\)
\(62\) 3.19147 + 0.634823i 0.405317 + 0.0806226i
\(63\) −0.578286 + 0.865466i −0.0728572 + 0.109038i
\(64\) −0.707107 0.707107i −0.0883883 0.0883883i
\(65\) 0.623045 0.383102i 0.0772792 0.0475179i
\(66\) 5.35696 + 2.21893i 0.659396 + 0.273131i
\(67\) 0.274816 0.274816i 0.0335741 0.0335741i −0.690120 0.723695i \(-0.742442\pi\)
0.723695 + 0.690120i \(0.242442\pi\)
\(68\) 3.36384 2.38423i 0.407926 0.289131i
\(69\) 0.921201i 0.110900i
\(70\) 1.58802 + 0.0599842i 0.189805 + 0.00716948i
\(71\) −8.70794 + 13.0324i −1.03344 + 1.54666i −0.211262 + 0.977429i \(0.567757\pi\)
−0.822180 + 0.569227i \(0.807243\pi\)
\(72\) 1.46461i 0.172606i
\(73\) 9.94566 + 6.64548i 1.16405 + 0.777795i 0.978784 0.204893i \(-0.0656848\pi\)
0.185268 + 0.982688i \(0.440685\pi\)
\(74\) 9.10222 6.08191i 1.05811 0.707008i
\(75\) 5.96800 + 1.66364i 0.689125 + 0.192101i
\(76\) −0.470758 + 0.194994i −0.0539997 + 0.0223674i
\(77\) −1.27267 + 3.07249i −0.145034 + 0.350143i
\(78\) 0.336998 0.225175i 0.0381575 0.0254961i
\(79\) −5.34800 8.00385i −0.601697 0.900504i 0.398161 0.917315i \(-0.369648\pi\)
−0.999859 + 0.0168118i \(0.994648\pi\)
\(80\) 1.90479 1.17123i 0.212962 0.130947i
\(81\) −1.74024 + 1.74024i −0.193360 + 0.193360i
\(82\) 1.39655 + 7.02092i 0.154223 + 0.775331i
\(83\) 11.5972 4.80373i 1.27296 0.527278i 0.359098 0.933300i \(-0.383084\pi\)
0.913863 + 0.406022i \(0.133084\pi\)
\(84\) 0.880623 0.0960838
\(85\) 3.44104 + 8.55332i 0.373233 + 0.927738i
\(86\) 0.336072 0.0362395
\(87\) 8.08138 3.34742i 0.866415 0.358881i
\(88\) 0.912914 + 4.58953i 0.0973169 + 0.489245i
\(89\) −0.374770 + 0.374770i −0.0397255 + 0.0397255i −0.726691 0.686965i \(-0.758943\pi\)
0.686965 + 0.726691i \(0.258943\pi\)
\(90\) −3.18564 0.759702i −0.335796 0.0800796i
\(91\) 0.129149 + 0.193286i 0.0135385 + 0.0202618i
\(92\) −0.618147 + 0.413033i −0.0644463 + 0.0430616i
\(93\) −1.54300 + 3.72513i −0.160002 + 0.386278i
\(94\) 3.90059 1.61568i 0.402315 0.166644i
\(95\) −0.179942 1.12508i −0.0184617 0.115431i
\(96\) 1.03028 0.688411i 0.105153 0.0702607i
\(97\) −8.19271 5.47419i −0.831844 0.555820i 0.0651439 0.997876i \(-0.479249\pi\)
−0.896988 + 0.442056i \(0.854249\pi\)
\(98\) 6.49492i 0.656086i
\(99\) 3.80764 5.69853i 0.382682 0.572724i
\(100\) 1.55949 + 4.75058i 0.155949 + 0.475058i
\(101\) 14.4498i 1.43781i −0.695108 0.718906i \(-0.744643\pi\)
0.695108 0.718906i \(-0.255357\pi\)
\(102\) 2.08439 + 4.66443i 0.206385 + 0.461848i
\(103\) 8.21768 8.21768i 0.809712 0.809712i −0.174878 0.984590i \(-0.555953\pi\)
0.984590 + 0.174878i \(0.0559531\pi\)
\(104\) 0.302195 + 0.125173i 0.0296327 + 0.0122743i
\(105\) −0.456784 + 1.91542i −0.0445775 + 0.186926i
\(106\) 3.06313 + 3.06313i 0.297517 + 0.297517i
\(107\) 5.33929 7.99081i 0.516168 0.772501i −0.478226 0.878237i \(-0.658720\pi\)
0.994394 + 0.105736i \(0.0337200\pi\)
\(108\) −5.42584 1.07927i −0.522101 0.103852i
\(109\) −4.69116 0.933131i −0.449332 0.0893777i −0.0347631 0.999396i \(-0.511068\pi\)
−0.414569 + 0.910018i \(0.636068\pi\)
\(110\) −10.4561 0.394957i −0.996949 0.0376577i
\(111\) 5.19099 + 12.5321i 0.492707 + 1.18950i
\(112\) 0.394839 + 0.590918i 0.0373088 + 0.0558365i
\(113\) −1.83151 + 9.20761i −0.172294 + 0.866179i 0.793838 + 0.608130i \(0.208080\pi\)
−0.966132 + 0.258050i \(0.916920\pi\)
\(114\) −0.123176 0.619249i −0.0115365 0.0579980i
\(115\) −0.577740 1.55876i −0.0538746 0.145355i
\(116\) 5.86959 + 3.92193i 0.544977 + 0.364142i
\(117\) −0.183330 0.442599i −0.0169489 0.0409183i
\(118\) −2.81756 2.81756i −0.259377 0.259377i
\(119\) −2.67529 + 1.19550i −0.245243 + 0.109591i
\(120\) 0.962934 + 2.59802i 0.0879034 + 0.237166i
\(121\) 4.17017 10.0677i 0.379106 0.915243i
\(122\) 6.63783 1.32035i 0.600961 0.119539i
\(123\) −8.87012 −0.799792
\(124\) −3.19147 + 0.634823i −0.286603 + 0.0570088i
\(125\) −11.1418 + 0.927847i −0.996550 + 0.0829891i
\(126\) 0.203067 1.02089i 0.0180906 0.0909478i
\(127\) −0.944755 0.391330i −0.0838334 0.0347249i 0.340373 0.940291i \(-0.389447\pi\)
−0.424206 + 0.905566i \(0.639447\pi\)
\(128\) 0.923880 + 0.382683i 0.0816602 + 0.0338248i
\(129\) −0.0812413 + 0.408427i −0.00715289 + 0.0359600i
\(130\) −0.429011 + 0.592369i −0.0376268 + 0.0519542i
\(131\) −19.6520 + 3.90902i −1.71700 + 0.341532i −0.952835 0.303489i \(-0.901848\pi\)
−0.764164 + 0.645022i \(0.776848\pi\)
\(132\) −5.79833 −0.504680
\(133\) 0.355171 0.0706479i 0.0307972 0.00612595i
\(134\) −0.148729 + 0.359064i −0.0128482 + 0.0310184i
\(135\) 5.16189 11.2418i 0.444265 0.967538i
\(136\) −2.19538 + 3.49003i −0.188252 + 0.299268i
\(137\) 12.6973 + 12.6973i 1.08480 + 1.08480i 0.996054 + 0.0887476i \(0.0282864\pi\)
0.0887476 + 0.996054i \(0.471714\pi\)
\(138\) −0.352528 0.851079i −0.0300092 0.0724486i
\(139\) −13.6528 9.12249i −1.15801 0.773759i −0.180280 0.983615i \(-0.557700\pi\)
−0.977732 + 0.209856i \(0.932700\pi\)
\(140\) −1.49010 + 0.552291i −0.125936 + 0.0466771i
\(141\) 1.02061 + 5.13095i 0.0859509 + 0.432104i
\(142\) 3.05782 15.3727i 0.256607 1.29005i
\(143\) −0.850365 1.27266i −0.0711111 0.106425i
\(144\) −0.560483 1.35312i −0.0467069 0.112760i
\(145\) −11.5751 + 10.7325i −0.961258 + 0.891282i
\(146\) −11.7317 2.33358i −0.970923 0.193129i
\(147\) 7.89327 + 1.57007i 0.651026 + 0.129497i
\(148\) −6.08191 + 9.10222i −0.499930 + 0.748198i
\(149\) 4.02675 + 4.02675i 0.329884 + 0.329884i 0.852542 0.522658i \(-0.175060\pi\)
−0.522658 + 0.852542i \(0.675060\pi\)
\(150\) −6.15036 + 0.746846i −0.502175 + 0.0609797i
\(151\) 9.87709 + 4.09122i 0.803786 + 0.332939i 0.746472 0.665417i \(-0.231746\pi\)
0.0573142 + 0.998356i \(0.481746\pi\)
\(152\) 0.360303 0.360303i 0.0292244 0.0292244i
\(153\) 5.88802 1.34079i 0.476018 0.108396i
\(154\) 3.32564i 0.267987i
\(155\) 0.274646 7.27097i 0.0220601 0.584018i
\(156\) −0.225175 + 0.336998i −0.0180284 + 0.0269815i
\(157\) 16.1039i 1.28523i −0.766189 0.642616i \(-0.777849\pi\)
0.766189 0.642616i \(-0.222151\pi\)
\(158\) 8.00385 + 5.34800i 0.636752 + 0.425464i
\(159\) −4.46309 + 2.98214i −0.353946 + 0.236499i
\(160\) −1.31159 + 1.81101i −0.103690 + 0.143173i
\(161\) 0.488137 0.202193i 0.0384706 0.0159350i
\(162\) 0.941813 2.27374i 0.0739958 0.178642i
\(163\) −18.2797 + 12.2141i −1.43178 + 0.956684i −0.433317 + 0.901242i \(0.642657\pi\)
−0.998462 + 0.0554422i \(0.982343\pi\)
\(164\) −3.97703 5.95205i −0.310554 0.464777i
\(165\) 3.00762 12.6118i 0.234143 0.981827i
\(166\) −8.87613 + 8.87613i −0.688922 + 0.688922i
\(167\) 3.23562 + 16.2666i 0.250380 + 1.25875i 0.877406 + 0.479748i \(0.159272\pi\)
−0.627026 + 0.778998i \(0.715728\pi\)
\(168\) −0.813590 + 0.337000i −0.0627698 + 0.0260001i
\(169\) 12.8930 0.991770
\(170\) −6.45232 6.58541i −0.494870 0.505078i
\(171\) −0.746286 −0.0570699
\(172\) −0.310490 + 0.128609i −0.0236746 + 0.00980635i
\(173\) 1.67213 + 8.40635i 0.127129 + 0.639123i 0.990830 + 0.135117i \(0.0431410\pi\)
−0.863700 + 0.504006i \(0.831859\pi\)
\(174\) −6.18522 + 6.18522i −0.468900 + 0.468900i
\(175\) −0.428354 3.52754i −0.0323805 0.266657i
\(176\) −2.59976 3.89081i −0.195964 0.293281i
\(177\) 4.10529 2.74307i 0.308572 0.206181i
\(178\) 0.202824 0.489660i 0.0152023 0.0367016i
\(179\) −18.8787 + 7.81980i −1.41106 + 0.584479i −0.952597 0.304235i \(-0.901599\pi\)
−0.458461 + 0.888715i \(0.651599\pi\)
\(180\) 3.23387 0.517218i 0.241039 0.0385512i
\(181\) 3.58349 2.39441i 0.266359 0.177975i −0.415218 0.909722i \(-0.636295\pi\)
0.681577 + 0.731747i \(0.261295\pi\)
\(182\) −0.193286 0.129149i −0.0143273 0.00957318i
\(183\) 8.38613i 0.619920i
\(184\) 0.413033 0.618147i 0.0304492 0.0455704i
\(185\) −16.6433 17.9500i −1.22364 1.31971i
\(186\) 4.03205i 0.295644i
\(187\) 17.6150 7.87160i 1.28814 0.575629i
\(188\) −2.98538 + 2.98538i −0.217731 + 0.217731i
\(189\) 3.63236 + 1.50457i 0.264215 + 0.109442i
\(190\) 0.596794 + 0.970576i 0.0432960 + 0.0704130i
\(191\) 11.4696 + 11.4696i 0.829911 + 0.829911i 0.987504 0.157593i \(-0.0503733\pi\)
−0.157593 + 0.987504i \(0.550373\pi\)
\(192\) −0.688411 + 1.03028i −0.0496818 + 0.0743541i
\(193\) 0.0549621 + 0.0109326i 0.00395626 + 0.000786949i 0.197068 0.980390i \(-0.436858\pi\)
−0.193112 + 0.981177i \(0.561858\pi\)
\(194\) 9.66396 + 1.92228i 0.693832 + 0.138012i
\(195\) −0.616197 0.664575i −0.0441267 0.0475912i
\(196\) 2.48550 + 6.00052i 0.177536 + 0.428609i
\(197\) −2.06071 3.08408i −0.146820 0.219731i 0.750769 0.660565i \(-0.229683\pi\)
−0.897589 + 0.440833i \(0.854683\pi\)
\(198\) −1.33706 + 6.72188i −0.0950210 + 0.477703i
\(199\) 1.29609 + 6.51587i 0.0918771 + 0.461898i 0.999145 + 0.0413442i \(0.0131640\pi\)
−0.907268 + 0.420553i \(0.861836\pi\)
\(200\) −3.25875 3.79217i −0.230428 0.268147i
\(201\) −0.400417 0.267550i −0.0282432 0.0188715i
\(202\) 5.52971 + 13.3499i 0.389069 + 0.939295i
\(203\) −3.54754 3.54754i −0.248988 0.248988i
\(204\) −3.71072 3.51171i −0.259803 0.245869i
\(205\) 15.0091 5.56298i 1.04828 0.388535i
\(206\) −4.44738 + 10.7369i −0.309863 + 0.748077i
\(207\) −1.06793 + 0.212424i −0.0742261 + 0.0147645i
\(208\) −0.327094 −0.0226799
\(209\) −2.33857 + 0.465170i −0.161762 + 0.0321765i
\(210\) −0.310986 1.94442i −0.0214601 0.134178i
\(211\) 3.42608 17.2241i 0.235861 1.18575i −0.663373 0.748289i \(-0.730876\pi\)
0.899235 0.437466i \(-0.144124\pi\)
\(212\) −4.00217 1.65775i −0.274870 0.113855i
\(213\) 17.9432 + 7.43234i 1.22945 + 0.509255i
\(214\) −1.87491 + 9.42580i −0.128166 + 0.644334i
\(215\) −0.118682 0.742048i −0.00809401 0.0506073i
\(216\) 5.42584 1.07927i 0.369181 0.0734348i
\(217\) 2.31259 0.156989
\(218\) 4.69116 0.933131i 0.317726 0.0631996i
\(219\) 5.67200 13.6934i 0.383278 0.925315i
\(220\) 9.81131 3.63648i 0.661479 0.245171i
\(221\) 0.226574 1.32947i 0.0152410 0.0894300i
\(222\) −9.59169 9.59169i −0.643752 0.643752i
\(223\) 3.99002 + 9.63276i 0.267192 + 0.645058i 0.999349 0.0360779i \(-0.0114864\pi\)
−0.732157 + 0.681136i \(0.761486\pi\)
\(224\) −0.590918 0.394839i −0.0394824 0.0263813i
\(225\) −0.552438 + 7.30219i −0.0368292 + 0.486813i
\(226\) −1.83151 9.20761i −0.121830 0.612481i
\(227\) 2.39499 12.0404i 0.158961 0.799152i −0.816220 0.577742i \(-0.803934\pi\)
0.975181 0.221410i \(-0.0710659\pi\)
\(228\) 0.350776 + 0.524974i 0.0232307 + 0.0347673i
\(229\) −1.03397 2.49621i −0.0683263 0.164954i 0.886028 0.463633i \(-0.153454\pi\)
−0.954354 + 0.298678i \(0.903454\pi\)
\(230\) 1.13027 + 1.21901i 0.0745280 + 0.0803793i
\(231\) 4.04164 + 0.803933i 0.265921 + 0.0528949i
\(232\) −6.92365 1.37720i −0.454560 0.0904176i
\(233\) 10.8532 16.2429i 0.711014 1.06411i −0.283446 0.958988i \(-0.591478\pi\)
0.994460 0.105119i \(-0.0335224\pi\)
\(234\) 0.338750 + 0.338750i 0.0221448 + 0.0221448i
\(235\) −4.94489 8.04196i −0.322569 0.524600i
\(236\) 3.68132 + 1.52485i 0.239633 + 0.0992594i
\(237\) −8.43425 + 8.43425i −0.547864 + 0.547864i
\(238\) 2.01415 2.12829i 0.130558 0.137956i
\(239\) 25.3901i 1.64235i 0.570679 + 0.821173i \(0.306680\pi\)
−0.570679 + 0.821173i \(0.693320\pi\)
\(240\) −1.88385 2.03176i −0.121602 0.131149i
\(241\) 4.45194 6.66280i 0.286775 0.429189i −0.659913 0.751342i \(-0.729407\pi\)
0.946687 + 0.322154i \(0.104407\pi\)
\(242\) 10.8972i 0.700497i
\(243\) −11.2638 7.52624i −0.722574 0.482808i
\(244\) −5.62728 + 3.76003i −0.360250 + 0.240711i
\(245\) −14.3408 + 2.29364i −0.916201 + 0.146535i
\(246\) 8.19492 3.39445i 0.522489 0.216422i
\(247\) −0.0637814 + 0.153982i −0.00405832 + 0.00979764i
\(248\) 2.70560 1.80782i 0.171806 0.114797i
\(249\) −8.64145 12.9329i −0.547630 0.819586i
\(250\) 9.93858 5.12099i 0.628571 0.323880i
\(251\) −14.7371 + 14.7371i −0.930197 + 0.930197i −0.997718 0.0675209i \(-0.978491\pi\)
0.0675209 + 0.997718i \(0.478491\pi\)
\(252\) 0.203067 + 1.02089i 0.0127920 + 0.0643098i
\(253\) −3.21407 + 1.33131i −0.202067 + 0.0836987i
\(254\) 1.02260 0.0641633
\(255\) 9.56301 6.24955i 0.598859 0.391362i
\(256\) −1.00000 −0.0625000
\(257\) −7.87318 + 3.26118i −0.491115 + 0.203427i −0.614476 0.788935i \(-0.710633\pi\)
0.123361 + 0.992362i \(0.460633\pi\)
\(258\) −0.0812413 0.408427i −0.00505786 0.0254276i
\(259\) 5.50132 5.50132i 0.341836 0.341836i
\(260\) 0.169665 0.711453i 0.0105222 0.0441224i
\(261\) 5.74411 + 8.59667i 0.355551 + 0.532120i
\(262\) 16.6601 11.1319i 1.02927 0.687733i
\(263\) 8.47208 20.4534i 0.522411 1.26121i −0.413991 0.910281i \(-0.635865\pi\)
0.936402 0.350930i \(-0.114135\pi\)
\(264\) 5.35696 2.21893i 0.329698 0.136565i
\(265\) 5.68168 7.84512i 0.349023 0.481922i
\(266\) −0.301099 + 0.201188i −0.0184616 + 0.0123356i
\(267\) 0.546053 + 0.364861i 0.0334179 + 0.0223291i
\(268\) 0.388648i 0.0237405i
\(269\) 13.2164 19.7798i 0.805819 1.20599i −0.169573 0.985518i \(-0.554239\pi\)
0.975392 0.220476i \(-0.0707611\pi\)
\(270\) −0.466926 + 12.3614i −0.0284162 + 0.752292i
\(271\) 20.8191i 1.26467i 0.774694 + 0.632336i \(0.217904\pi\)
−0.774694 + 0.632336i \(0.782096\pi\)
\(272\) 0.692689 4.06450i 0.0420004 0.246447i
\(273\) 0.203679 0.203679i 0.0123272 0.0123272i
\(274\) −16.5898 6.87172i −1.00223 0.415136i
\(275\) 2.82043 + 23.2266i 0.170079 + 1.40062i
\(276\) 0.651388 + 0.651388i 0.0392089 + 0.0392089i
\(277\) 2.22543 3.33059i 0.133713 0.200116i −0.758571 0.651591i \(-0.774102\pi\)
0.892284 + 0.451475i \(0.149102\pi\)
\(278\) 16.1045 + 3.20339i 0.965886 + 0.192127i
\(279\) −4.67427 0.929769i −0.279841 0.0556638i
\(280\) 1.16532 1.08049i 0.0696409 0.0645714i
\(281\) 5.55980 + 13.4226i 0.331670 + 0.800722i 0.998460 + 0.0554766i \(0.0176678\pi\)
−0.666790 + 0.745246i \(0.732332\pi\)
\(282\) −2.90645 4.34981i −0.173077 0.259028i
\(283\) −2.47657 + 12.4506i −0.147217 + 0.740110i 0.834686 + 0.550726i \(0.185649\pi\)
−0.981903 + 0.189384i \(0.939351\pi\)
\(284\) 3.05782 + 15.3727i 0.181448 + 0.912203i
\(285\) −1.32381 + 0.490658i −0.0784156 + 0.0290641i
\(286\) 1.27266 + 0.850365i 0.0752540 + 0.0502831i
\(287\) 1.94689 + 4.70020i 0.114921 + 0.277444i
\(288\) 1.03564 + 1.03564i 0.0610255 + 0.0610255i
\(289\) 16.0404 + 5.63087i 0.943551 + 0.331228i
\(290\) 6.58684 14.3451i 0.386793 0.842372i
\(291\) −4.67229 + 11.2799i −0.273895 + 0.661240i
\(292\) 11.7317 2.33358i 0.686546 0.136563i
\(293\) −8.34021 −0.487240 −0.243620 0.969871i \(-0.578335\pi\)
−0.243620 + 0.969871i \(0.578335\pi\)
\(294\) −7.89327 + 1.57007i −0.460345 + 0.0915682i
\(295\) −5.22619 + 7.21619i −0.304280 + 0.420143i
\(296\) 2.13568 10.7368i 0.124134 0.624064i
\(297\) −23.9167 9.90664i −1.38779 0.574842i
\(298\) −5.26121 2.17926i −0.304773 0.126241i
\(299\) −0.0474409 + 0.238502i −0.00274358 + 0.0137929i
\(300\) 5.39639 3.04364i 0.311560 0.175724i
\(301\) 0.234254 0.0465960i 0.0135022 0.00268575i
\(302\) −10.6909 −0.615191
\(303\) −17.5608 + 3.49307i −1.00884 + 0.200672i
\(304\) −0.194994 + 0.470758i −0.0111837 + 0.0269998i
\(305\) −5.25944 14.1901i −0.301155 0.812523i
\(306\) −4.92672 + 3.49198i −0.281642 + 0.199623i
\(307\) 0.0891571 + 0.0891571i 0.00508847 + 0.00508847i 0.709646 0.704558i \(-0.248855\pi\)
−0.704558 + 0.709646i \(0.748855\pi\)
\(308\) 1.27267 + 3.07249i 0.0725169 + 0.175071i
\(309\) −11.9735 8.00041i −0.681146 0.455128i
\(310\) 2.52874 + 6.82260i 0.143623 + 0.387498i
\(311\) −1.86727 9.38742i −0.105883 0.532312i −0.996923 0.0783864i \(-0.975023\pi\)
0.891040 0.453926i \(-0.149977\pi\)
\(312\) 0.0790710 0.397517i 0.00447651 0.0225049i
\(313\) 9.66650 + 14.4669i 0.546383 + 0.817719i 0.997191 0.0749013i \(-0.0238642\pi\)
−0.450808 + 0.892621i \(0.648864\pi\)
\(314\) 6.16270 + 14.8781i 0.347781 + 0.839618i
\(315\) −2.32583 0.0878535i −0.131046 0.00494999i
\(316\) −9.44119 1.87797i −0.531108 0.105644i
\(317\) 19.6461 + 3.90786i 1.10344 + 0.219487i 0.713015 0.701149i \(-0.247329\pi\)
0.390422 + 0.920636i \(0.372329\pi\)
\(318\) 2.98214 4.46309i 0.167230 0.250277i
\(319\) 23.3582 + 23.3582i 1.30781 + 1.30781i
\(320\) 0.518705 2.17507i 0.0289965 0.121590i
\(321\) −11.0019 4.55715i −0.614068 0.254355i
\(322\) −0.373604 + 0.373604i −0.0208201 + 0.0208201i
\(323\) −1.77833 1.11864i −0.0989488 0.0622430i
\(324\) 2.46108i 0.136726i
\(325\) 1.45946 + 0.738069i 0.0809561 + 0.0409407i
\(326\) 12.2141 18.2797i 0.676478 1.01242i
\(327\) 5.92674i 0.327749i
\(328\) 5.95205 + 3.97703i 0.328647 + 0.219595i
\(329\) 2.49484 1.66700i 0.137545 0.0919045i
\(330\) 2.04764 + 12.8028i 0.112719 + 0.704768i
\(331\) 13.3662 5.53646i 0.734673 0.304312i 0.0162023 0.999869i \(-0.494842\pi\)
0.718471 + 0.695557i \(0.244842\pi\)
\(332\) 4.80373 11.5972i 0.263639 0.636480i
\(333\) −13.3312 + 8.90764i −0.730547 + 0.488136i
\(334\) −9.21428 13.7901i −0.504183 0.754563i
\(335\) 0.845338 + 0.201594i 0.0461858 + 0.0110142i
\(336\) 0.622694 0.622694i 0.0339708 0.0339708i
\(337\) 1.57543 + 7.92021i 0.0858190 + 0.431441i 0.999677 + 0.0254078i \(0.00808841\pi\)
−0.913858 + 0.406034i \(0.866912\pi\)
\(338\) −11.9116 + 4.93394i −0.647905 + 0.268371i
\(339\) 11.6327 0.631804
\(340\) 8.48129 + 3.61493i 0.459963 + 0.196047i
\(341\) −15.2269 −0.824582
\(342\) 0.689478 0.285591i 0.0372827 0.0154430i
\(343\) −1.87106 9.40644i −0.101028 0.507900i
\(344\) 0.237639 0.237639i 0.0128126 0.0128126i
\(345\) −1.75469 + 1.07894i −0.0944695 + 0.0580881i
\(346\) −4.76181 7.12656i −0.255997 0.383126i
\(347\) −14.2098 + 9.49472i −0.762825 + 0.509703i −0.875081 0.483976i \(-0.839192\pi\)
0.112257 + 0.993679i \(0.464192\pi\)
\(348\) 3.34742 8.08138i 0.179440 0.433207i
\(349\) 24.1690 10.0111i 1.29374 0.535884i 0.373641 0.927573i \(-0.378109\pi\)
0.920098 + 0.391689i \(0.128109\pi\)
\(350\) 1.74568 + 3.09510i 0.0933105 + 0.165440i
\(351\) −1.50457 + 1.00532i −0.0803078 + 0.0536600i
\(352\) 3.89081 + 2.59976i 0.207381 + 0.138568i
\(353\) 34.0507i 1.81234i −0.422919 0.906168i \(-0.638994\pi\)
0.422919 0.906168i \(-0.361006\pi\)
\(354\) −2.74307 + 4.10529i −0.145792 + 0.218194i
\(355\) −35.0229 1.32292i −1.85882 0.0702131i
\(356\) 0.530005i 0.0280902i
\(357\) 2.09961 + 2.96228i 0.111123 + 0.156780i
\(358\) 14.4491 14.4491i 0.763659 0.763659i
\(359\) 1.81224 + 0.750656i 0.0956465 + 0.0396181i 0.429994 0.902832i \(-0.358516\pi\)
−0.334347 + 0.942450i \(0.608516\pi\)
\(360\) −2.78978 + 1.71540i −0.147034 + 0.0904093i
\(361\) −13.2514 13.2514i −0.697444 0.697444i
\(362\) −2.39441 + 3.58349i −0.125847 + 0.188344i
\(363\) −13.2433 2.63426i −0.695094 0.138263i
\(364\) 0.227996 + 0.0453512i 0.0119502 + 0.00237705i
\(365\) −1.00959 + 26.7278i −0.0528441 + 1.39900i
\(366\) −3.20923 7.74777i −0.167749 0.404983i
\(367\) −9.32545 13.9565i −0.486785 0.728525i 0.504040 0.863681i \(-0.331847\pi\)
−0.990824 + 0.135156i \(0.956847\pi\)
\(368\) −0.145038 + 0.729154i −0.00756062 + 0.0380098i
\(369\) −2.04540 10.2829i −0.106479 0.535308i
\(370\) 22.2456 + 10.2145i 1.15649 + 0.531027i
\(371\) 2.55981 + 1.71041i 0.132898 + 0.0887999i
\(372\) 1.54300 + 3.72513i 0.0800008 + 0.193139i
\(373\) −5.16638 5.16638i −0.267505 0.267505i 0.560589 0.828094i \(-0.310575\pi\)
−0.828094 + 0.560589i \(0.810575\pi\)
\(374\) −13.2618 + 14.0134i −0.685754 + 0.724616i
\(375\) 3.82100 + 13.3163i 0.197316 + 0.687650i
\(376\) 1.61568 3.90059i 0.0833222 0.201158i
\(377\) 2.26468 0.450473i 0.116637 0.0232006i
\(378\) −3.93164 −0.202222
\(379\) −35.1483 + 6.99144i −1.80545 + 0.359126i −0.978996 0.203879i \(-0.934645\pi\)
−0.826453 + 0.563005i \(0.809645\pi\)
\(380\) −0.922789 0.668312i −0.0473381 0.0342837i
\(381\) −0.247200 + 1.24276i −0.0126644 + 0.0636685i
\(382\) −14.9858 6.20731i −0.766738 0.317593i
\(383\) −15.2856 6.33151i −0.781058 0.323525i −0.0437158 0.999044i \(-0.513920\pi\)
−0.737343 + 0.675519i \(0.763920\pi\)
\(384\) 0.241738 1.21530i 0.0123361 0.0620179i
\(385\) −7.34303 + 1.17443i −0.374235 + 0.0598544i
\(386\) −0.0549621 + 0.0109326i −0.00279750 + 0.000556457i
\(387\) −0.492215 −0.0250207
\(388\) −9.66396 + 1.92228i −0.490613 + 0.0975890i
\(389\) 7.18782 17.3529i 0.364437 0.879829i −0.630203 0.776430i \(-0.717028\pi\)
0.994640 0.103398i \(-0.0329717\pi\)
\(390\) 0.823613 + 0.378179i 0.0417053 + 0.0191498i
\(391\) −2.86318 1.09458i −0.144797 0.0553554i
\(392\) −4.59260 4.59260i −0.231961 0.231961i
\(393\) 9.50125 + 22.9380i 0.479274 + 1.15707i
\(394\) 3.08408 + 2.06071i 0.155373 + 0.103817i
\(395\) 8.98191 19.5612i 0.451929 0.984229i
\(396\) −1.33706 6.72188i −0.0671900 0.337787i
\(397\) −1.60682 + 8.07804i −0.0806440 + 0.405425i 0.919286 + 0.393590i \(0.128767\pi\)
−0.999930 + 0.0118346i \(0.996233\pi\)
\(398\) −3.69094 5.52389i −0.185010 0.276887i
\(399\) −0.171717 0.414560i −0.00859658 0.0207540i
\(400\) 4.46189 + 2.25644i 0.223094 + 0.112822i
\(401\) −7.93345 1.57806i −0.396178 0.0788046i −0.00701892 0.999975i \(-0.502234\pi\)
−0.389159 + 0.921171i \(0.627234\pi\)
\(402\) 0.472324 + 0.0939510i 0.0235574 + 0.00468585i
\(403\) −0.591328 + 0.884984i −0.0294561 + 0.0440842i
\(404\) −10.2176 10.2176i −0.508343 0.508343i
\(405\) −5.35302 1.27657i −0.265994 0.0634334i
\(406\) 4.63508 + 1.91991i 0.230035 + 0.0952837i
\(407\) −36.2226 + 36.2226i −1.79549 + 1.79549i
\(408\) 4.77214 + 1.82437i 0.236256 + 0.0903197i
\(409\) 6.01170i 0.297259i 0.988893 + 0.148630i \(0.0474863\pi\)
−0.988893 + 0.148630i \(0.952514\pi\)
\(410\) −11.7377 + 10.8832i −0.579684 + 0.537485i
\(411\) 12.3616 18.5004i 0.609751 0.912557i
\(412\) 11.6216i 0.572553i
\(413\) −2.35459 1.57329i −0.115862 0.0774164i
\(414\) 0.905345 0.604932i 0.0444953 0.0297308i
\(415\) 22.7331 + 16.4640i 1.11592 + 0.808186i
\(416\) 0.302195 0.125173i 0.0148163 0.00613713i
\(417\) −7.78616 + 18.7974i −0.381290 + 0.920515i
\(418\) 1.98254 1.32469i 0.0969694 0.0647929i
\(419\) 3.45852 + 5.17603i 0.168960 + 0.252866i 0.906280 0.422677i \(-0.138909\pi\)
−0.737321 + 0.675543i \(0.763909\pi\)
\(420\) 1.03141 + 1.67740i 0.0503277 + 0.0818488i
\(421\) 18.1423 18.1423i 0.884200 0.884200i −0.109759 0.993958i \(-0.535008\pi\)
0.993958 + 0.109759i \(0.0350078\pi\)
\(422\) 3.42608 + 17.2241i 0.166779 + 0.838455i
\(423\) −5.71285 + 2.36634i −0.277768 + 0.115055i
\(424\) 4.33191 0.210376
\(425\) −12.2620 + 16.5724i −0.594795 + 0.803877i
\(426\) −19.4216 −0.940981
\(427\) 4.44374 1.84066i 0.215048 0.0890757i
\(428\) −1.87491 9.42580i −0.0906271 0.455613i
\(429\) −1.34110 + 1.34110i −0.0647488 + 0.0647488i
\(430\) 0.393617 + 0.640146i 0.0189819 + 0.0308706i
\(431\) 20.5669 + 30.7805i 0.990671 + 1.48264i 0.871877 + 0.489725i \(0.162903\pi\)
0.118795 + 0.992919i \(0.462097\pi\)
\(432\) −4.59980 + 3.07349i −0.221308 + 0.147873i
\(433\) 2.79464 6.74685i 0.134302 0.324233i −0.842394 0.538862i \(-0.818854\pi\)
0.976696 + 0.214629i \(0.0688543\pi\)
\(434\) −2.13655 + 0.884988i −0.102558 + 0.0424808i
\(435\) 15.8413 + 11.4727i 0.759531 + 0.550075i
\(436\) −3.97698 + 2.65733i −0.190463 + 0.127263i
\(437\) 0.314974 + 0.210459i 0.0150672 + 0.0100676i
\(438\) 14.8216i 0.708206i
\(439\) 17.4852 26.1685i 0.834523 1.24895i −0.131711 0.991288i \(-0.542047\pi\)
0.966235 0.257664i \(-0.0829528\pi\)
\(440\) −7.67285 + 7.11430i −0.365789 + 0.339161i
\(441\) 9.51253i 0.452978i
\(442\) 0.299440 + 1.31498i 0.0142429 + 0.0625472i
\(443\) 11.7784 11.7784i 0.559607 0.559607i −0.369589 0.929195i \(-0.620501\pi\)
0.929195 + 0.369589i \(0.120501\pi\)
\(444\) 12.5321 + 5.19099i 0.594749 + 0.246353i
\(445\) −1.15280 0.274916i −0.0546479 0.0130323i
\(446\) −7.37260 7.37260i −0.349103 0.349103i
\(447\) 3.92029 5.86713i 0.185423 0.277506i
\(448\) 0.697035 + 0.138649i 0.0329318 + 0.00655055i
\(449\) −15.7553 3.13392i −0.743537 0.147899i −0.191237 0.981544i \(-0.561250\pi\)
−0.552300 + 0.833645i \(0.686250\pi\)
\(450\) −2.28404 6.95776i −0.107671 0.327992i
\(451\) −12.8190 30.9478i −0.603623 1.45727i
\(452\) 5.21569 + 7.80584i 0.245326 + 0.367156i
\(453\) 2.58439 12.9926i 0.121425 0.610446i
\(454\) 2.39499 + 12.0404i 0.112403 + 0.565086i
\(455\) −0.216905 + 0.472384i −0.0101687 + 0.0221457i
\(456\) −0.524974 0.350776i −0.0245842 0.0164266i
\(457\) 3.23943 + 7.82067i 0.151534 + 0.365835i 0.981358 0.192190i \(-0.0615591\pi\)
−0.829824 + 0.558026i \(0.811559\pi\)
\(458\) 1.91052 + 1.91052i 0.0892727 + 0.0892727i
\(459\) −9.30598 20.8249i −0.434366 0.972022i
\(460\) −1.51073 0.693684i −0.0704382 0.0323432i
\(461\) 12.8444 31.0091i 0.598223 1.44424i −0.277168 0.960822i \(-0.589396\pi\)
0.875391 0.483416i \(-0.160604\pi\)
\(462\) −4.04164 + 0.803933i −0.188034 + 0.0374023i
\(463\) 5.72199 0.265924 0.132962 0.991121i \(-0.457551\pi\)
0.132962 + 0.991121i \(0.457551\pi\)
\(464\) 6.92365 1.37720i 0.321422 0.0639349i
\(465\) −8.90279 + 1.42389i −0.412857 + 0.0660314i
\(466\) −3.81112 + 19.1598i −0.176547 + 0.887561i
\(467\) 34.3166 + 14.2144i 1.58798 + 0.657764i 0.989652 0.143485i \(-0.0458310\pi\)
0.598330 + 0.801249i \(0.295831\pi\)
\(468\) −0.442599 0.183330i −0.0204591 0.00847445i
\(469\) −0.0538857 + 0.270902i −0.00248821 + 0.0125091i
\(470\) 7.64601 + 5.53747i 0.352684 + 0.255425i
\(471\) −19.5711 + 3.89292i −0.901787 + 0.179377i
\(472\) −3.98463 −0.183408
\(473\) −1.54241 + 0.306804i −0.0709201 + 0.0141069i
\(474\) 4.56459 11.0199i 0.209658 0.506160i
\(475\) 1.93228 1.66048i 0.0886592 0.0761879i
\(476\) −1.04637 + 2.73706i −0.0479602 + 0.125453i
\(477\) −4.48629 4.48629i −0.205413 0.205413i
\(478\) −9.71636 23.4574i −0.444416 1.07291i
\(479\) −16.0975 10.7560i −0.735513 0.491454i 0.130517 0.991446i \(-0.458336\pi\)
−0.866030 + 0.499992i \(0.833336\pi\)
\(480\) 2.51797 + 1.15618i 0.114929 + 0.0527721i
\(481\) 0.698569 + 3.51194i 0.0318520 + 0.160131i
\(482\) −1.56331 + 7.85931i −0.0712070 + 0.357982i
\(483\) −0.363726 0.544354i −0.0165501 0.0247690i
\(484\) −4.17017 10.0677i −0.189553 0.457621i
\(485\) 0.831643 22.0169i 0.0377630 0.999737i
\(486\) 13.2866 + 2.64286i 0.602691 + 0.119883i
\(487\) −1.95796 0.389463i −0.0887238 0.0176483i 0.150529 0.988606i \(-0.451902\pi\)
−0.239253 + 0.970957i \(0.576902\pi\)
\(488\) 3.76003 5.62728i 0.170209 0.254735i
\(489\) 19.2627 + 19.2627i 0.871090 + 0.871090i
\(490\) 12.3714 7.60704i 0.558885 0.343651i
\(491\) 18.8235 + 7.79693i 0.849491 + 0.351871i 0.764589 0.644519i \(-0.222942\pi\)
0.0849021 + 0.996389i \(0.472942\pi\)
\(492\) −6.27212 + 6.27212i −0.282769 + 0.282769i
\(493\) 0.801699 + 29.0952i 0.0361067 + 1.31038i
\(494\) 0.166669i 0.00749879i
\(495\) 15.3141 + 0.578459i 0.688318 + 0.0259998i
\(496\) −1.80782 + 2.70560i −0.0811737 + 0.121485i
\(497\) 11.1393i 0.499665i
\(498\) 12.9329 + 8.64145i 0.579535 + 0.387233i
\(499\) 12.9080 8.62482i 0.577840 0.386100i −0.232031 0.972708i \(-0.574537\pi\)
0.809871 + 0.586608i \(0.199537\pi\)
\(500\) −7.22234 + 8.53451i −0.322993 + 0.381675i
\(501\) 18.9866 7.86450i 0.848258 0.351360i
\(502\) 7.97566 19.2549i 0.355971 0.859390i
\(503\) 35.9136 23.9967i 1.60131 1.06996i 0.650808 0.759242i \(-0.274430\pi\)
0.950502 0.310719i \(-0.100570\pi\)
\(504\) −0.578286 0.865466i −0.0257589 0.0385509i
\(505\) 27.5239 16.9241i 1.22480 0.753111i
\(506\) 2.45994 2.45994i 0.109358 0.109358i
\(507\) −3.11673 15.6689i −0.138419 0.695878i
\(508\) −0.944755 + 0.391330i −0.0419167 + 0.0173625i
\(509\) 35.6718 1.58113 0.790563 0.612381i \(-0.209788\pi\)
0.790563 + 0.612381i \(0.209788\pi\)
\(510\) −6.44347 + 9.43344i −0.285321 + 0.417720i
\(511\) −8.50097 −0.376061
\(512\) 0.923880 0.382683i 0.0408301 0.0169124i
\(513\) 0.549934 + 2.76471i 0.0242802 + 0.122065i
\(514\) 6.02587 6.02587i 0.265790 0.265790i
\(515\) 25.2777 + 6.02816i 1.11387 + 0.265633i
\(516\) 0.231356 + 0.346248i 0.0101849 + 0.0152427i
\(517\) −16.4269 + 10.9761i −0.722454 + 0.482728i
\(518\) −2.97729 + 7.18782i −0.130815 + 0.315815i
\(519\) 9.81200 4.06426i 0.430699 0.178401i
\(520\) 0.115511 + 0.722225i 0.00506549 + 0.0316717i
\(521\) 6.25857 4.18185i 0.274193 0.183210i −0.410870 0.911694i \(-0.634775\pi\)
0.685063 + 0.728484i \(0.259775\pi\)
\(522\) −8.59667 5.74411i −0.376266 0.251413i
\(523\) 17.7492i 0.776116i −0.921635 0.388058i \(-0.873146\pi\)
0.921635 0.388058i \(-0.126854\pi\)
\(524\) −11.1319 + 16.6601i −0.486301 + 0.727801i
\(525\) −4.18347 + 1.37332i −0.182582 + 0.0599366i
\(526\) 22.1386i 0.965289i
\(527\) −9.74465 9.22204i −0.424484 0.401718i
\(528\) −4.10004 + 4.10004i −0.178431 + 0.178431i
\(529\) −20.7386 8.59021i −0.901678 0.373487i
\(530\) −2.24699 + 9.42223i −0.0976028 + 0.409275i
\(531\) 4.12663 + 4.12663i 0.179081 + 0.179081i
\(532\) 0.201188 0.301099i 0.00872261 0.0130543i
\(533\) −2.29650 0.456802i −0.0994725 0.0197863i
\(534\) −0.644114 0.128122i −0.0278735 0.00554439i
\(535\) 21.4743 + 0.811148i 0.928416 + 0.0350690i
\(536\) 0.148729 + 0.359064i 0.00642412 + 0.0155092i
\(537\) 14.0671 + 21.0529i 0.607039 + 0.908499i
\(538\) −4.64099 + 23.3318i −0.200087 + 1.00591i
\(539\) 5.92930 + 29.8086i 0.255393 + 1.28395i
\(540\) −4.29912 11.5991i −0.185005 0.499148i
\(541\) 8.89263 + 5.94187i 0.382324 + 0.255461i 0.731850 0.681466i \(-0.238657\pi\)
−0.349526 + 0.936927i \(0.613657\pi\)
\(542\) −7.96714 19.2344i −0.342218 0.826187i
\(543\) −3.77619 3.77619i −0.162052 0.162052i
\(544\) 0.915457 + 4.02019i 0.0392499 + 0.172364i
\(545\) −3.71701 10.0286i −0.159219 0.429578i
\(546\) −0.110231 + 0.266120i −0.00471743 + 0.0113889i
\(547\) −13.3586 + 2.65720i −0.571174 + 0.113614i −0.472224 0.881479i \(-0.656548\pi\)
−0.0989503 + 0.995092i \(0.531548\pi\)
\(548\) 17.9567 0.767071
\(549\) −9.72185 + 1.93380i −0.414918 + 0.0825324i
\(550\) −11.4942 20.3792i −0.490113 0.868974i
\(551\) 0.701745 3.52791i 0.0298953 0.150294i
\(552\) −0.851079 0.352528i −0.0362243 0.0150046i
\(553\) 6.32046 + 2.61802i 0.268773 + 0.111330i
\(554\) −0.781467 + 3.92870i −0.0332013 + 0.166914i
\(555\) −17.7913 + 24.5658i −0.755197 + 1.04276i
\(556\) −16.1045 + 3.20339i −0.682985 + 0.135854i
\(557\) −1.23472 −0.0523168 −0.0261584 0.999658i \(-0.508327\pi\)
−0.0261584 + 0.999658i \(0.508327\pi\)
\(558\) 4.67427 0.929769i 0.197877 0.0393603i
\(559\) −0.0420672 + 0.101559i −0.00177925 + 0.00429550i
\(560\) −0.663128 + 1.44419i −0.0280223 + 0.0610280i
\(561\) −13.8246 19.5047i −0.583674 0.823488i
\(562\) −10.2732 10.2732i −0.433348 0.433348i
\(563\) 8.16721 + 19.7174i 0.344207 + 0.830989i 0.997281 + 0.0736946i \(0.0234790\pi\)
−0.653074 + 0.757294i \(0.726521\pi\)
\(564\) 4.34981 + 2.90645i 0.183160 + 0.122384i
\(565\) −19.6837 + 7.29559i −0.828099 + 0.306928i
\(566\) −2.47657 12.4506i −0.104098 0.523337i
\(567\) 0.341226 1.71546i 0.0143301 0.0720424i
\(568\) −8.70794 13.0324i −0.365377 0.546826i
\(569\) 12.6066 + 30.4351i 0.528498 + 1.27591i 0.932507 + 0.361152i \(0.117616\pi\)
−0.404009 + 0.914755i \(0.632384\pi\)
\(570\) 1.03527 0.959908i 0.0433628 0.0402061i
\(571\) 42.1343 + 8.38102i 1.76326 + 0.350735i 0.967110 0.254359i \(-0.0818646\pi\)
0.796154 + 0.605094i \(0.206865\pi\)
\(572\) −1.50121 0.298608i −0.0627685 0.0124854i
\(573\) 11.1664 16.7116i 0.466481 0.698138i
\(574\) −3.59738 3.59738i −0.150152 0.150152i
\(575\) 2.29244 2.92614i 0.0956013 0.122028i
\(576\) −1.35312 0.560483i −0.0563802 0.0233534i
\(577\) −32.4025 + 32.4025i −1.34893 + 1.34893i −0.462109 + 0.886823i \(0.652907\pi\)
−0.886823 + 0.462109i \(0.847093\pi\)
\(578\) −16.9742 + 0.936137i −0.706034 + 0.0389382i
\(579\) 0.0694382i 0.00288575i
\(580\) −0.595822 + 15.7738i −0.0247402 + 0.654972i
\(581\) −4.95631 + 7.41765i −0.205622 + 0.307736i
\(582\) 12.2093i 0.506091i
\(583\) −16.8547 11.2619i −0.698049 0.466421i
\(584\) −9.94566 + 6.64548i −0.411554 + 0.274992i
\(585\) 0.628335 0.867590i 0.0259785 0.0358704i
\(586\) 7.70535 3.19166i 0.318305 0.131846i
\(587\) 5.23957 12.6495i 0.216260 0.522099i −0.778101 0.628139i \(-0.783817\pi\)
0.994362 + 0.106040i \(0.0338171\pi\)
\(588\) 6.69159 4.47118i 0.275956 0.184388i
\(589\) 0.921167 + 1.37862i 0.0379560 + 0.0568052i
\(590\) 2.06685 8.66687i 0.0850908 0.356809i
\(591\) −3.24992 + 3.24992i −0.133684 + 0.133684i
\(592\) 2.13568 + 10.7368i 0.0877760 + 0.441280i
\(593\) 9.66064 4.00157i 0.396715 0.164325i −0.175402 0.984497i \(-0.556122\pi\)
0.572117 + 0.820172i \(0.306122\pi\)
\(594\) 25.8873 1.06217
\(595\) −5.41055 3.69565i −0.221811 0.151507i
\(596\) 5.69469 0.233264
\(597\) 7.60541 3.15026i 0.311269 0.128932i
\(598\) −0.0474409 0.238502i −0.00194000 0.00975306i
\(599\) −9.67035 + 9.67035i −0.395120 + 0.395120i −0.876508 0.481388i \(-0.840133\pi\)
0.481388 + 0.876508i \(0.340133\pi\)
\(600\) −3.82086 + 4.87706i −0.155986 + 0.199105i
\(601\) 9.25488 + 13.8509i 0.377514 + 0.564990i 0.970766 0.240027i \(-0.0771562\pi\)
−0.593252 + 0.805017i \(0.702156\pi\)
\(602\) −0.198591 + 0.132694i −0.00809396 + 0.00540821i
\(603\) 0.217831 0.525890i 0.00887075 0.0214159i
\(604\) 9.87709 4.09122i 0.401893 0.166470i
\(605\) 24.0610 3.84826i 0.978219 0.156454i
\(606\) 14.8874 9.94742i 0.604758 0.404086i
\(607\) −8.81933 5.89289i −0.357966 0.239185i 0.363563 0.931570i \(-0.381560\pi\)
−0.721529 + 0.692385i \(0.756560\pi\)
\(608\) 0.509545i 0.0206648i
\(609\) −3.45374 + 5.16889i −0.139953 + 0.209454i
\(610\) 10.2894 + 11.0972i 0.416606 + 0.449314i
\(611\) 1.38098i 0.0558685i
\(612\) 3.21538 5.11154i 0.129974 0.206622i
\(613\) −29.6325 + 29.6325i −1.19685 + 1.19685i −0.221742 + 0.975105i \(0.571174\pi\)
−0.975105 + 0.221742i \(0.928826\pi\)
\(614\) −0.116489 0.0482515i −0.00470113 0.00194727i
\(615\) −10.3889 16.8957i −0.418923 0.681301i
\(616\) −2.35158 2.35158i −0.0947479 0.0947479i
\(617\) 21.3342 31.9289i 0.858882 1.28541i −0.0980747 0.995179i \(-0.531268\pi\)
0.956957 0.290229i \(-0.0937316\pi\)
\(618\) 14.1237 + 2.80937i 0.568137 + 0.113009i
\(619\) −2.57153 0.511509i −0.103358 0.0205593i 0.143140 0.989702i \(-0.454280\pi\)
−0.246499 + 0.969143i \(0.579280\pi\)
\(620\) −4.94715 5.33556i −0.198682 0.214281i
\(621\) 1.57390 + 3.79974i 0.0631585 + 0.152478i
\(622\) 5.31755 + 7.95827i 0.213214 + 0.319098i
\(623\) 0.0734846 0.369432i 0.00294410 0.0148010i
\(624\) 0.0790710 + 0.397517i 0.00316537 + 0.0159134i
\(625\) −14.8169 20.1360i −0.592677 0.805440i
\(626\) −14.4669 9.66650i −0.578215 0.386351i
\(627\) 1.13064 + 2.72961i 0.0451535 + 0.109010i
\(628\) −11.3872 11.3872i −0.454398 0.454398i
\(629\) −45.1191 + 1.24323i −1.79902 + 0.0495708i
\(630\) 2.18241 0.808892i 0.0869493 0.0322270i
\(631\) −3.04583 + 7.35329i −0.121253 + 0.292730i −0.972838 0.231486i \(-0.925641\pi\)
0.851586 + 0.524216i \(0.175641\pi\)
\(632\) 9.44119 1.87797i 0.375550 0.0747016i
\(633\) −21.7606 −0.864907
\(634\) −19.6461 + 3.90786i −0.780247 + 0.155201i
\(635\) −0.361123 2.25790i −0.0143307 0.0896019i
\(636\) −1.04719 + 5.26457i −0.0415237 + 0.208754i
\(637\) 1.96273 + 0.812991i 0.0777663 + 0.0322119i
\(638\) −30.5190 12.6414i −1.20826 0.500477i
\(639\) −4.47852 + 22.5151i −0.177168 + 0.890682i
\(640\) 0.353144 + 2.20801i 0.0139592 + 0.0872791i
\(641\) −20.1899 + 4.01602i −0.797453 + 0.158623i −0.576968 0.816767i \(-0.695764\pi\)
−0.220485 + 0.975390i \(0.570764\pi\)
\(642\) 11.9084 0.469987
\(643\) −29.8237 + 5.93231i −1.17613 + 0.233947i −0.744199 0.667958i \(-0.767169\pi\)
−0.431934 + 0.901905i \(0.642169\pi\)
\(644\) 0.202193 0.488137i 0.00796752 0.0192353i
\(645\) −0.873120 + 0.323615i −0.0343791 + 0.0127423i
\(646\) 2.07105 + 0.352956i 0.0814842 + 0.0138869i
\(647\) −34.7745 34.7745i −1.36712 1.36712i −0.864511 0.502614i \(-0.832372\pi\)
−0.502614 0.864511i \(-0.667628\pi\)
\(648\) −0.941813 2.27374i −0.0369979 0.0893209i
\(649\) 15.5035 + 10.3591i 0.608564 + 0.406629i
\(650\) −1.63081 0.123377i −0.0639656 0.00483923i
\(651\) −0.559040 2.81048i −0.0219105 0.110151i
\(652\) −4.28903 + 21.5624i −0.167971 + 0.844449i
\(653\) 3.53808 + 5.29511i 0.138456 + 0.207214i 0.894217 0.447633i \(-0.147733\pi\)
−0.755761 + 0.654847i \(0.772733\pi\)
\(654\) −2.26806 5.47559i −0.0886884 0.214113i
\(655\) −30.4628 32.8545i −1.19028 1.28373i
\(656\) −7.02092 1.39655i −0.274121 0.0545261i
\(657\) 17.1824 + 3.41779i 0.670349 + 0.133341i
\(658\) −1.66700 + 2.49484i −0.0649863 + 0.0972589i
\(659\) −19.7490 19.7490i −0.769313 0.769313i 0.208672 0.977986i \(-0.433086\pi\)
−0.977986 + 0.208672i \(0.933086\pi\)
\(660\) −6.79118 11.0446i −0.264346 0.429910i
\(661\) −2.39578 0.992363i −0.0931849 0.0385984i 0.335604 0.942003i \(-0.391060\pi\)
−0.428789 + 0.903405i \(0.641060\pi\)
\(662\) −10.2301 + 10.2301i −0.397602 + 0.397602i
\(663\) −1.67048 + 0.0460290i −0.0648760 + 0.00178762i
\(664\) 12.5527i 0.487141i
\(665\) 0.550556 + 0.593781i 0.0213496 + 0.0230258i
\(666\) 8.90764 13.3312i 0.345164 0.516575i
\(667\) 5.24815i 0.203209i
\(668\) 13.7901 + 9.21428i 0.533557 + 0.356511i
\(669\) 10.7421 7.17767i 0.415315 0.277505i
\(670\) −0.858138 + 0.137249i −0.0331527 + 0.00530238i
\(671\) −29.2592 + 12.1195i −1.12954 + 0.467870i
\(672\) −0.337000 + 0.813590i −0.0130000 + 0.0313849i
\(673\) −9.14587 + 6.11108i −0.352548 + 0.235565i −0.719215 0.694787i \(-0.755499\pi\)
0.366668 + 0.930352i \(0.380499\pi\)
\(674\) −4.48644 6.71443i −0.172811 0.258630i
\(675\) 27.4590 3.33438i 1.05690 0.128340i
\(676\) 9.11673 9.11673i 0.350644 0.350644i
\(677\) −1.15687 5.81600i −0.0444623 0.223527i 0.952165 0.305583i \(-0.0988514\pi\)
−0.996628 + 0.0820560i \(0.973851\pi\)
\(678\) −10.7473 + 4.45166i −0.412746 + 0.170965i
\(679\) 7.00265 0.268737
\(680\) −9.21906 0.0941074i −0.353535 0.00360885i
\(681\) −15.2117 −0.582913
\(682\) 14.0678 5.82707i 0.538684 0.223130i
\(683\) 4.12555 + 20.7405i 0.157860 + 0.793615i 0.975860 + 0.218397i \(0.0700828\pi\)
−0.818000 + 0.575218i \(0.804917\pi\)
\(684\) −0.527704 + 0.527704i −0.0201772 + 0.0201772i
\(685\) −9.31421 + 39.0571i −0.355878 + 1.49229i
\(686\) 5.32832 + 7.97439i 0.203436 + 0.304464i
\(687\) −2.78370 + 1.86001i −0.106205 + 0.0709637i
\(688\) −0.128609 + 0.310490i −0.00490317 + 0.0118373i
\(689\) −1.30908 + 0.542240i −0.0498721 + 0.0206577i
\(690\) 1.20823 1.66830i 0.0459967 0.0635111i
\(691\) −11.6317 + 7.77206i −0.442491 + 0.295663i −0.756787 0.653662i \(-0.773232\pi\)
0.314295 + 0.949325i \(0.398232\pi\)
\(692\) 7.12656 + 4.76181i 0.270911 + 0.181017i
\(693\) 4.87077i 0.185025i
\(694\) 9.49472 14.2098i 0.360415 0.539398i
\(695\) 1.38589 36.6902i 0.0525700 1.39174i
\(696\) 8.74722i 0.331563i
\(697\) 10.5396 27.5692i 0.399215 1.04426i
\(698\) −18.4982 + 18.4982i −0.700167 + 0.700167i
\(699\) −22.3636 9.26330i −0.845868 0.350370i
\(700\) −2.79724 2.19146i −0.105726 0.0828293i
\(701\) −29.0853 29.0853i −1.09853 1.09853i −0.994582 0.103953i \(-0.966851\pi\)
−0.103953 0.994582i \(-0.533149\pi\)
\(702\) 1.00532 1.50457i 0.0379433 0.0567862i
\(703\) 5.47088 + 1.08823i 0.206338 + 0.0410432i
\(704\) −4.58953 0.912914i −0.172974 0.0344067i
\(705\) −8.57802 + 7.95357i −0.323067 + 0.299549i
\(706\) 13.0306 + 31.4587i 0.490414 + 1.18397i
\(707\) 5.70535 + 8.53866i 0.214572 + 0.321129i
\(708\) 0.963237 4.84252i 0.0362006 0.181993i
\(709\) 5.86964 + 29.5087i 0.220439 + 1.10822i 0.919479 + 0.393139i \(0.128611\pi\)
−0.699040 + 0.715082i \(0.746389\pi\)
\(710\) 32.8632 12.1805i 1.23333 0.457125i
\(711\) −11.7225 7.83275i −0.439629 0.293751i
\(712\) −0.202824 0.489660i −0.00760115 0.0183508i
\(713\) 1.71060 + 1.71060i 0.0640623 + 0.0640623i
\(714\) −3.07340 1.93330i −0.115019 0.0723520i
\(715\) 1.42818 3.11034i 0.0534108 0.116320i
\(716\) −7.81980 + 18.8787i −0.292240 + 0.705529i
\(717\) 30.8565 6.13774i 1.15236 0.229218i
\(718\) −1.96156 −0.0732047
\(719\) 42.2633 8.40669i 1.57616 0.313517i 0.671944 0.740602i \(-0.265460\pi\)
0.904211 + 0.427085i \(0.140460\pi\)
\(720\) 1.92096 2.65242i 0.0715901 0.0988499i
\(721\) −1.61132 + 8.10064i −0.0600086 + 0.301683i
\(722\) 17.3138 + 7.17163i 0.644354 + 0.266900i
\(723\) −9.17350 3.79979i −0.341166 0.141316i
\(724\) 0.840805 4.22701i 0.0312483 0.157096i
\(725\) −34.0001 9.47791i −1.26273 0.352001i
\(726\) 13.2433 2.63426i 0.491505 0.0977665i
\(727\) 22.7691 0.844459 0.422230 0.906489i \(-0.361248\pi\)
0.422230 + 0.906489i \(0.361248\pi\)
\(728\) −0.227996 + 0.0453512i −0.00845009 + 0.00168083i
\(729\) −9.24917 + 22.3295i −0.342562 + 0.827018i
\(730\) −9.29554 25.0796i −0.344043 0.928237i
\(731\) −1.17290 0.737804i −0.0433813 0.0272887i
\(732\) 5.92989 + 5.92989i 0.219175 + 0.219175i
\(733\) 2.78355 + 6.72010i 0.102813 + 0.248212i 0.966912 0.255109i \(-0.0821113\pi\)
−0.864099 + 0.503321i \(0.832111\pi\)
\(734\) 13.9565 + 9.32545i 0.515145 + 0.344209i
\(735\) 6.25418 + 16.8739i 0.230689 + 0.622404i
\(736\) −0.145038 0.729154i −0.00534616 0.0268770i
\(737\) 0.354802 1.78371i 0.0130693 0.0657039i
\(738\) 5.82481 + 8.71745i 0.214414 + 0.320894i
\(739\) −19.3452 46.7035i −0.711626 1.71802i −0.695898 0.718140i \(-0.744994\pi\)
−0.0157273 0.999876i \(-0.505006\pi\)
\(740\) −24.4611 0.923968i −0.899209 0.0339657i
\(741\) 0.202553 + 0.0402902i 0.00744095 + 0.00148010i
\(742\) −3.01950 0.600615i −0.110849 0.0220493i
\(743\) −13.1834 + 19.7303i −0.483651 + 0.723835i −0.990396 0.138261i \(-0.955849\pi\)
0.506745 + 0.862096i \(0.330849\pi\)
\(744\) −2.85109 2.85109i −0.104526 0.104526i
\(745\) −2.95386 + 12.3864i −0.108221 + 0.453801i
\(746\) 6.75020 + 2.79603i 0.247143 + 0.102370i
\(747\) 13.0001 13.0001i 0.475648 0.475648i
\(748\) 6.88965 18.0218i 0.251911 0.658942i
\(749\) 6.83007i 0.249565i
\(750\) −8.62607 10.8404i −0.314979 0.395836i
\(751\) 15.9309 23.8422i 0.581326 0.870016i −0.417934 0.908477i \(-0.637246\pi\)
0.999260 + 0.0384614i \(0.0122457\pi\)
\(752\) 4.22197i 0.153959i
\(753\) 21.4725 + 14.3475i 0.782501 + 0.522850i
\(754\) −1.91990 + 1.28284i −0.0699188 + 0.0467183i
\(755\) 3.77542 + 23.6055i 0.137401 + 0.859093i
\(756\) 3.63236 1.50457i 0.132108 0.0547208i
\(757\) −4.12913 + 9.96860i −0.150076 + 0.362315i −0.980982 0.194097i \(-0.937822\pi\)
0.830907 + 0.556412i \(0.187822\pi\)
\(758\) 29.7973 19.9099i 1.08229 0.723162i
\(759\) 2.39490 + 3.58422i 0.0869294 + 0.130099i
\(760\) 1.10830 + 0.264304i 0.0402022 + 0.00958730i
\(761\) 16.8074 16.8074i 0.609267 0.609267i −0.333487 0.942755i \(-0.608225\pi\)
0.942755 + 0.333487i \(0.108225\pi\)
\(762\) −0.247200 1.24276i −0.00895511 0.0450204i
\(763\) 3.14053 1.30085i 0.113695 0.0470939i
\(764\) 16.2205 0.586836
\(765\) 9.45014 + 9.64507i 0.341671 + 0.348718i
\(766\) 16.5450 0.597796
\(767\) 1.20414 0.498770i 0.0434788 0.0180095i
\(768\) 0.241738 + 1.21530i 0.00872297 + 0.0438533i
\(769\) −11.7131 + 11.7131i −0.422384 + 0.422384i −0.886024 0.463640i \(-0.846543\pi\)
0.463640 + 0.886024i \(0.346543\pi\)
\(770\) 6.33464 3.89508i 0.228285 0.140369i
\(771\) 5.86655 + 8.77991i 0.211279 + 0.316201i
\(772\) 0.0465946 0.0311335i 0.00167698 0.00112052i
\(773\) −8.01916 + 19.3600i −0.288429 + 0.696329i −0.999980 0.00630500i \(-0.997993\pi\)
0.711551 + 0.702634i \(0.247993\pi\)
\(774\) 0.454747 0.188362i 0.0163455 0.00677054i
\(775\) 14.1713 7.99283i 0.509050 0.287111i
\(776\) 8.19271 5.47419i 0.294101 0.196512i
\(777\) −8.01563 5.35587i −0.287559 0.192141i
\(778\) 18.7827i 0.673392i
\(779\) −2.02648 + 3.03284i −0.0726061 + 0.108663i
\(780\) −0.905642 0.0342087i −0.0324272 0.00122487i
\(781\) 73.3450i 2.62449i
\(782\) 3.06411 0.0844297i 0.109573 0.00301920i
\(783\) 27.6146 27.6146i 0.986866 0.986866i
\(784\) 6.00052 + 2.48550i 0.214304 + 0.0887678i
\(785\) 30.6745 18.8614i 1.09482 0.673191i
\(786\) −17.5560 17.5560i −0.626202 0.626202i
\(787\) −7.31354 + 10.9455i −0.260700 + 0.390164i −0.938610 0.344980i \(-0.887886\pi\)
0.677910 + 0.735144i \(0.262886\pi\)
\(788\) −3.63792 0.723626i −0.129595 0.0257781i
\(789\) −26.9050 5.35174i −0.957844 0.190527i
\(790\) −0.812472 + 21.5094i −0.0289065 + 0.765270i
\(791\) −2.55325 6.16410i −0.0907832 0.219170i
\(792\) 3.80764 + 5.69853i 0.135298 + 0.202488i
\(793\) −0.431877 + 2.17119i −0.0153364 + 0.0771013i
\(794\) −1.60682 8.07804i −0.0570240 0.286679i
\(795\) −10.9076 5.00847i −0.386854 0.177632i
\(796\) 5.52389 + 3.69094i 0.195789 + 0.130822i
\(797\) −6.38819 15.4224i −0.226281 0.546291i 0.769438 0.638722i \(-0.220536\pi\)
−0.995719 + 0.0924305i \(0.970536\pi\)
\(798\) 0.317291 + 0.317291i 0.0112320 + 0.0112320i
\(799\) −17.1602 2.92451i −0.607084 0.103462i
\(800\) −4.98575 0.377191i −0.176273 0.0133357i
\(801\) −0.297058 + 0.717163i −0.0104960 + 0.0253397i
\(802\) 7.93345 1.57806i 0.280140 0.0557233i
\(803\) 55.9734 1.97526
\(804\) −0.472324 + 0.0939510i −0.0166576 + 0.00331340i
\(805\) 0.956855 + 0.692984i 0.0337247 + 0.0244245i
\(806\) 0.207647 1.04391i 0.00731404 0.0367702i
\(807\) −27.2332 11.2804i −0.958655 0.397088i
\(808\) 13.3499 + 5.52971i 0.469648 + 0.194534i
\(809\) 1.40383 7.05754i 0.0493561 0.248130i −0.948229 0.317588i \(-0.897127\pi\)
0.997585 + 0.0694582i \(0.0221271\pi\)
\(810\) 5.43407 0.869113i 0.190934 0.0305375i
\(811\) −10.1395 + 2.01688i −0.356048 + 0.0708223i −0.369873 0.929082i \(-0.620599\pi\)
0.0138259 + 0.999904i \(0.495599\pi\)
\(812\) −5.01698 −0.176061
\(813\) 25.3015 5.03278i 0.887362 0.176507i
\(814\) 19.6036 47.3272i 0.687104 1.65882i
\(815\) −44.6751 20.5135i −1.56490 0.718556i
\(816\) −5.10703 + 0.140721i −0.178782 + 0.00492622i
\(817\) 0.121087 + 0.121087i 0.00423632 + 0.00423632i
\(818\) −2.30058 5.55409i −0.0804378 0.194194i
\(819\) 0.283088 + 0.189154i 0.00989191 + 0.00660956i
\(820\) 6.67939 14.5466i 0.233254 0.507990i
\(821\) 7.89804 + 39.7061i 0.275643 + 1.38575i 0.831984 + 0.554799i \(0.187205\pi\)
−0.556341 + 0.830954i \(0.687795\pi\)
\(822\) −4.34081 + 21.8227i −0.151403 + 0.761154i
\(823\) 22.4842 + 33.6500i 0.783751 + 1.17297i 0.981264 + 0.192666i \(0.0617133\pi\)
−0.197514 + 0.980300i \(0.563287\pi\)
\(824\) 4.44738 + 10.7369i 0.154932 + 0.374038i
\(825\) 27.5454 9.04242i 0.959009 0.314817i
\(826\) 2.77743 + 0.552465i 0.0966391 + 0.0192227i
\(827\) 44.2399 + 8.79987i 1.53837 + 0.306001i 0.890228 0.455515i \(-0.150545\pi\)
0.648145 + 0.761517i \(0.275545\pi\)
\(828\) −0.604932 + 0.905345i −0.0210229 + 0.0314629i
\(829\) 3.20565 + 3.20565i 0.111337 + 0.111337i 0.760580 0.649244i \(-0.224914\pi\)
−0.649244 + 0.760580i \(0.724914\pi\)
\(830\) −27.3031 6.51117i −0.947706 0.226006i
\(831\) −4.58563 1.89943i −0.159074 0.0658905i
\(832\) −0.231290 + 0.231290i −0.00801854 + 0.00801854i
\(833\) −14.2588 + 22.6675i −0.494038 + 0.785381i
\(834\) 20.3462i 0.704531i
\(835\) −27.1948 + 25.2151i −0.941113 + 0.872604i
\(836\) −1.32469 + 1.98254i −0.0458155 + 0.0685677i
\(837\) 18.0015i 0.622224i
\(838\) −5.17603 3.45852i −0.178803 0.119472i
\(839\) 5.29222 3.53615i 0.182708 0.122081i −0.460853 0.887477i \(-0.652456\pi\)
0.643561 + 0.765395i \(0.277456\pi\)
\(840\) −1.59481 1.15501i −0.0550263 0.0398517i
\(841\) −19.2477 + 7.97267i −0.663715 + 0.274920i
\(842\) −9.81852 + 23.7040i −0.338369 + 0.816894i
\(843\) 14.9684 10.0016i 0.515539 0.344472i
\(844\) −9.75666 14.6019i −0.335838 0.502617i
\(845\) 15.1007 + 24.5585i 0.519479 + 0.844837i
\(846\) 4.37243 4.37243i 0.150327 0.150327i
\(847\) 1.51088 + 7.59571i 0.0519145 + 0.260992i
\(848\) −4.00217 + 1.65775i −0.137435 + 0.0569274i
\(849\) 15.7299 0.539847
\(850\) 4.98667 20.0033i 0.171041 0.686109i
\(851\) 8.13854 0.278986
\(852\) 17.9432 7.43234i 0.614726 0.254628i
\(853\) −4.89959 24.6319i −0.167759 0.843381i −0.969383 0.245553i \(-0.921031\pi\)
0.801624 0.597828i \(-0.203969\pi\)
\(854\) −3.40109 + 3.40109i −0.116383 + 0.116383i
\(855\) −0.874071 1.42152i −0.0298926 0.0486148i
\(856\) 5.33929 + 7.99081i 0.182493 + 0.273120i
\(857\) 29.5811 19.7655i 1.01047 0.675175i 0.0639953 0.997950i \(-0.479616\pi\)
0.946476 + 0.322775i \(0.104616\pi\)
\(858\) 0.725797 1.75223i 0.0247783 0.0598201i
\(859\) −21.0814 + 8.73222i −0.719289 + 0.297939i −0.712142 0.702035i \(-0.752275\pi\)
−0.00714690 + 0.999974i \(0.502275\pi\)
\(860\) −0.608628 0.440787i −0.0207540 0.0150307i
\(861\) 5.24151 3.50227i 0.178630 0.119357i
\(862\) −30.7805 20.5669i −1.04839 0.700510i
\(863\) 25.2963i 0.861095i −0.902568 0.430548i \(-0.858320\pi\)
0.902568 0.430548i \(-0.141680\pi\)
\(864\) 3.07349 4.59980i 0.104562 0.156488i
\(865\) −14.0539 + 13.0308i −0.477846 + 0.443061i
\(866\) 7.30274i 0.248157i
\(867\) 2.96562 20.8550i 0.100718 0.708274i
\(868\) 1.63525 1.63525i 0.0555038 0.0555038i
\(869\) −41.6162 17.2380i −1.41173 0.584758i
\(870\) −19.0259 4.53723i −0.645037 0.153826i
\(871\) −0.0898905 0.0898905i −0.00304582 0.00304582i
\(872\) 2.65733 3.97698i 0.0899886 0.134677i
\(873\) −14.1540 2.81540i −0.479039 0.0952867i
\(874\) −0.371537 0.0739032i −0.0125674 0.00249981i
\(875\) 6.21753 4.94749i 0.210191 0.167256i
\(876\) −5.67200 13.6934i −0.191639 0.462658i
\(877\) 7.20665 + 10.7855i 0.243351 + 0.364201i 0.932959 0.359982i \(-0.117217\pi\)
−0.689608 + 0.724183i \(0.742217\pi\)
\(878\) −6.13999 + 30.8678i −0.207214 + 1.04174i
\(879\) 2.01615 + 10.1358i 0.0680029 + 0.341874i
\(880\) 4.36627 9.50903i 0.147187 0.320549i
\(881\) 11.7274 + 7.83599i 0.395106 + 0.264001i 0.737214 0.675659i \(-0.236141\pi\)
−0.342108 + 0.939661i \(0.611141\pi\)
\(882\) −3.64029 8.78844i −0.122575 0.295922i
\(883\) 2.99147 + 2.99147i 0.100671 + 0.100671i 0.755648 0.654977i \(-0.227322\pi\)
−0.654977 + 0.755648i \(0.727322\pi\)
\(884\) −0.779867 1.10029i −0.0262298 0.0370068i
\(885\) 10.0332 + 4.60695i 0.337262 + 0.154861i
\(886\) −6.37440 + 15.3892i −0.214152 + 0.517009i
\(887\) 39.1177 7.78099i 1.31344 0.261260i 0.511822 0.859092i \(-0.328971\pi\)
0.801622 + 0.597831i \(0.203971\pi\)
\(888\) −13.5647 −0.455202
\(889\) 0.712785 0.141782i 0.0239060 0.00475521i
\(890\) 1.17025 0.187168i 0.0392270 0.00627388i
\(891\) −2.24675 + 11.2952i −0.0752690 + 0.378403i
\(892\) 9.63276 + 3.99002i 0.322529 + 0.133596i
\(893\) 1.98753 + 0.823260i 0.0665100 + 0.0275494i
\(894\) −1.37662 + 6.92075i −0.0460411 + 0.231464i
\(895\) −37.0063 26.8011i −1.23698 0.895862i
\(896\) −0.697035 + 0.138649i −0.0232863 + 0.00463194i
\(897\) 0.301319 0.0100608
\(898\) 15.7553 3.13392i 0.525760 0.104580i
\(899\) 8.79058 21.2223i 0.293182 0.707805i
\(900\) 4.77280 + 5.55406i 0.159093 + 0.185135i
\(901\) −3.96568 17.4151i −0.132116 0.580182i
\(902\) 23.6864 + 23.6864i 0.788671 + 0.788671i
\(903\) −0.113256 0.273424i −0.00376893 0.00909899i
\(904\) −7.80584 5.21569i −0.259618 0.173471i
\(905\) 8.75794 + 4.02139i 0.291124 + 0.133675i
\(906\) 2.58439 + 12.9926i 0.0858607 + 0.431651i
\(907\) −0.756884 + 3.80511i −0.0251319 + 0.126347i −0.991315 0.131512i \(-0.958017\pi\)
0.966183 + 0.257859i \(0.0830169\pi\)
\(908\) −6.82036 10.2074i −0.226342 0.338744i
\(909\) −8.09888 19.5524i −0.268623 0.648513i
\(910\) 0.0196204 0.519432i 0.000650411 0.0172190i
\(911\) −21.2127 4.21946i −0.702807 0.139797i −0.169265 0.985571i \(-0.554139\pi\)
−0.533542 + 0.845773i \(0.679139\pi\)
\(912\) 0.619249 + 0.123176i 0.0205054 + 0.00407878i
\(913\) 32.6341 48.8404i 1.08003 1.61638i
\(914\) −5.98568 5.98568i −0.197989 0.197989i
\(915\) −15.9738 + 9.82208i −0.528078 + 0.324708i
\(916\) −2.49621 1.03397i −0.0824772 0.0341632i
\(917\) 10.0693 10.0693i 0.332516 0.332516i
\(918\) 16.5669 + 15.6784i 0.546790 + 0.517466i
\(919\) 21.0567i 0.694597i 0.937755 + 0.347298i \(0.112901\pi\)
−0.937755 + 0.347298i \(0.887099\pi\)
\(920\) 1.66120 + 0.0627482i 0.0547680 + 0.00206875i
\(921\) 0.0867999 0.129905i 0.00286015 0.00428052i
\(922\) 33.5640i 1.10537i
\(923\) 4.26280 + 2.84831i 0.140312 + 0.0937534i
\(924\) 3.42634 2.28941i 0.112718 0.0753159i
\(925\) 14.6978 52.7255i 0.483261 1.73360i
\(926\) −5.28643 + 2.18971i −0.173723 + 0.0719584i
\(927\) 6.51368 15.7254i 0.213937 0.516491i
\(928\) −5.86959 + 3.92193i −0.192679 + 0.128744i
\(929\) −15.1360 22.6526i −0.496595 0.743207i 0.495512 0.868601i \(-0.334980\pi\)
−0.992107 + 0.125394i \(0.959980\pi\)
\(930\) 7.68021 4.72246i 0.251844 0.154855i
\(931\) 2.34014 2.34014i 0.0766949 0.0766949i
\(932\) −3.81112 19.1598i −0.124837 0.627600i
\(933\) −10.9571 + 4.53859i −0.358720 + 0.148587i
\(934\) −37.1440 −1.21539
\(935\) 35.6250 + 24.3335i 1.16506 + 0.795790i
\(936\) 0.479065 0.0156587
\(937\) −15.7890 + 6.54003i −0.515805 + 0.213653i −0.625373 0.780326i \(-0.715053\pi\)
0.109568 + 0.993979i \(0.465053\pi\)
\(938\) −0.0538857 0.270902i −0.00175943 0.00884525i
\(939\) 15.2449 15.2449i 0.497498 0.497498i
\(940\) −9.18309 2.18996i −0.299519 0.0714285i
\(941\) −3.01100 4.50628i −0.0981558 0.146900i 0.779141 0.626849i \(-0.215656\pi\)
−0.877297 + 0.479948i \(0.840656\pi\)
\(942\) 16.5915 11.0861i 0.540582 0.361205i
\(943\) −2.03660 + 4.91678i −0.0663208 + 0.160112i
\(944\) 3.68132 1.52485i 0.119817 0.0496297i
\(945\) 1.38843 + 8.68108i 0.0451657 + 0.282396i
\(946\) 1.30759 0.873705i 0.0425135 0.0284066i
\(947\) 4.92140 + 3.28837i 0.159924 + 0.106858i 0.632957 0.774187i \(-0.281841\pi\)
−0.473033 + 0.881045i \(0.656841\pi\)
\(948\) 11.9278i 0.387398i
\(949\) 2.17369 3.25316i 0.0705611 0.105602i
\(950\) −1.14976 + 2.27353i −0.0373031 + 0.0737632i
\(951\) 24.8206i 0.804863i
\(952\) −0.0807107 2.92914i −0.00261585 0.0949341i
\(953\) −15.4098 + 15.4098i −0.499172 + 0.499172i −0.911180 0.412008i \(-0.864827\pi\)
0.412008 + 0.911180i \(0.364827\pi\)
\(954\) 5.86162 + 2.42796i 0.189777 + 0.0786082i
\(955\) −8.41364 + 35.2807i −0.272259 + 1.14166i
\(956\) 17.9535 + 17.9535i 0.580657 + 0.580657i
\(957\) 22.7407 34.0338i 0.735101 1.10016i
\(958\) 18.9883 + 3.77700i 0.613484 + 0.122029i
\(959\) −12.5164 2.48967i −0.404177 0.0803957i
\(960\) −2.76875 0.104584i −0.0893612 0.00337543i
\(961\) −7.81115 18.8578i −0.251973 0.608315i
\(962\) −1.98935 2.97728i −0.0641394 0.0959914i
\(963\) 2.74601 13.8051i 0.0884890 0.444864i
\(964\) −1.56331 7.85931i −0.0503510 0.253131i
\(965\) 0.0435488 + 0.117496i 0.00140189 + 0.00378233i
\(966\) 0.544354 + 0.363726i 0.0175143 + 0.0117027i
\(967\) 17.7739 + 42.9099i 0.571569 + 1.37989i 0.900219 + 0.435438i \(0.143407\pi\)
−0.328649 + 0.944452i \(0.606593\pi\)
\(968\) 7.70546 + 7.70546i 0.247663 + 0.247663i
\(969\) −0.929597 + 2.43162i −0.0298630 + 0.0781148i
\(970\) 7.65717 + 20.6592i 0.245857 + 0.663328i
\(971\) −6.91456 + 16.6932i −0.221899 + 0.535711i −0.995148 0.0983915i \(-0.968630\pi\)
0.773249 + 0.634102i \(0.218630\pi\)
\(972\) −13.2866 + 2.64286i −0.426167 + 0.0847699i
\(973\) 11.6696 0.374110
\(974\) 1.95796 0.389463i 0.0627372 0.0124792i
\(975\) 0.544168 1.95209i 0.0174273 0.0625170i
\(976\) −1.32035 + 6.63783i −0.0422633 + 0.212472i
\(977\) 11.5625 + 4.78935i 0.369917 + 0.153225i 0.559895 0.828564i \(-0.310842\pi\)
−0.189978 + 0.981788i \(0.560842\pi\)
\(978\) −25.1679 10.4249i −0.804782 0.333352i
\(979\) −0.483849 + 2.43247i −0.0154639 + 0.0777421i
\(980\) −8.51864 + 11.7623i −0.272118 + 0.375734i
\(981\) −6.87074 + 1.36667i −0.219366 + 0.0436346i
\(982\) −20.3744 −0.650172
\(983\) −52.3512 + 10.4133i −1.66974 + 0.332132i −0.937254 0.348647i \(-0.886641\pi\)
−0.732489 + 0.680779i \(0.761641\pi\)
\(984\) 3.39445 8.19492i 0.108211 0.261245i
\(985\) 3.46095 7.53738i 0.110275 0.240161i
\(986\) −11.8749 26.5736i −0.378174 0.846277i
\(987\) −2.62900 2.62900i −0.0836819 0.0836819i
\(988\) 0.0637814 + 0.153982i 0.00202916 + 0.00489882i
\(989\) 0.207742 + 0.138809i 0.00660580 + 0.00441385i
\(990\) −14.3698 + 5.32603i −0.456701 + 0.169272i
\(991\) −5.61025 28.2046i −0.178216 0.895950i −0.961609 0.274424i \(-0.911513\pi\)
0.783393 0.621526i \(-0.213487\pi\)
\(992\) 0.634823 3.19147i 0.0201557 0.101329i
\(993\) −9.95958 14.9056i −0.316058 0.473014i
\(994\) 4.26282 + 10.2914i 0.135209 + 0.326422i
\(995\) −10.8933 + 10.1003i −0.345342 + 0.320202i
\(996\) −15.2553 3.03448i −0.483384 0.0961510i
\(997\) −20.8465 4.14662i −0.660215 0.131325i −0.146399 0.989226i \(-0.546768\pi\)
−0.513815 + 0.857901i \(0.671768\pi\)
\(998\) −8.62482 + 12.9080i −0.273014 + 0.408594i
\(999\) 42.8232 + 42.8232i 1.35487 + 1.35487i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 170.2.o.a.7.2 32
5.2 odd 4 850.2.v.c.143.2 32
5.3 odd 4 170.2.r.a.143.3 yes 32
5.4 even 2 850.2.s.c.7.3 32
17.5 odd 16 170.2.r.a.107.3 yes 32
85.22 even 16 850.2.s.c.243.3 32
85.39 odd 16 850.2.v.c.107.2 32
85.73 even 16 inner 170.2.o.a.73.2 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.o.a.7.2 32 1.1 even 1 trivial
170.2.o.a.73.2 yes 32 85.73 even 16 inner
170.2.r.a.107.3 yes 32 17.5 odd 16
170.2.r.a.143.3 yes 32 5.3 odd 4
850.2.s.c.7.3 32 5.4 even 2
850.2.s.c.243.3 32 85.22 even 16
850.2.v.c.107.2 32 85.39 odd 16
850.2.v.c.143.2 32 5.2 odd 4