Properties

Label 850.2.v.c.143.2
Level $850$
Weight $2$
Character 850.143
Analytic conductor $6.787$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(107,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.v (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 143.2
Character \(\chi\) \(=\) 850.143
Dual form 850.2.v.c.107.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.382683 - 0.923880i) q^{2} +(-1.21530 + 0.241738i) q^{3} +(-0.707107 + 0.707107i) q^{4} +(0.688411 + 1.03028i) q^{6} +(-0.394839 - 0.590918i) q^{7} +(0.923880 + 0.382683i) q^{8} +(-1.35312 + 0.560483i) q^{9} +(3.89081 - 2.59976i) q^{11} +(0.688411 - 1.03028i) q^{12} -0.327094 q^{13} +(-0.394839 + 0.590918i) q^{14} -1.00000i q^{16} +(-0.692689 + 4.06450i) q^{17} +(1.03564 + 1.03564i) q^{18} +(0.470758 + 0.194994i) q^{19} +(0.622694 + 0.622694i) q^{21} +(-3.89081 - 2.59976i) q^{22} +(-0.145038 + 0.729154i) q^{23} +(-1.21530 - 0.241738i) q^{24} +(0.125173 + 0.302195i) q^{26} +(4.59980 - 3.07349i) q^{27} +(0.697035 + 0.138649i) q^{28} +(-1.37720 - 6.92365i) q^{29} +(-2.70560 - 1.80782i) q^{31} +(-0.923880 + 0.382683i) q^{32} +(-4.10004 + 4.10004i) q^{33} +(4.02019 - 0.915457i) q^{34} +(0.560483 - 1.35312i) q^{36} +(-2.13568 - 10.7368i) q^{37} -0.509545i q^{38} +(0.397517 - 0.0790710i) q^{39} +(1.39655 - 7.02092i) q^{41} +(0.337000 - 0.813590i) q^{42} +(-0.128609 + 0.310490i) q^{43} +(-0.912914 + 4.58953i) q^{44} +(0.729154 - 0.145038i) q^{46} -4.22197i q^{47} +(0.241738 + 1.21530i) q^{48} +(2.48550 - 6.00052i) q^{49} +(-0.140721 - 5.10703i) q^{51} +(0.231290 - 0.231290i) q^{52} +(-4.00217 + 1.65775i) q^{53} +(-4.59980 - 3.07349i) q^{54} +(-0.138649 - 0.697035i) q^{56} +(-0.619249 - 0.123176i) q^{57} +(-5.86959 + 3.92193i) q^{58} +(-1.52485 - 3.68132i) q^{59} +(-6.63783 - 1.32035i) q^{61} +(-0.634823 + 3.19147i) q^{62} +(0.865466 + 0.578286i) q^{63} +(0.707107 + 0.707107i) q^{64} +(5.35696 + 2.21893i) q^{66} +(0.274816 + 0.274816i) q^{67} +(-2.38423 - 3.36384i) q^{68} -0.921201i q^{69} +(-8.70794 + 13.0324i) q^{71} -1.46461 q^{72} +(6.64548 - 9.94566i) q^{73} +(-9.10222 + 6.08191i) q^{74} +(-0.470758 + 0.194994i) q^{76} +(-3.07249 - 1.27267i) q^{77} +(-0.225175 - 0.336998i) q^{78} +(5.34800 + 8.00385i) q^{79} +(-1.74024 + 1.74024i) q^{81} +(-7.02092 + 1.39655i) q^{82} +(-4.80373 - 11.5972i) q^{83} -0.880623 q^{84} +0.336072 q^{86} +(3.34742 + 8.08138i) q^{87} +(4.58953 - 0.912914i) q^{88} +(0.374770 - 0.374770i) q^{89} +(0.129149 + 0.193286i) q^{91} +(-0.413033 - 0.618147i) q^{92} +(3.72513 + 1.54300i) q^{93} +(-3.90059 + 1.61568i) q^{94} +(1.03028 - 0.688411i) q^{96} +(5.47419 - 8.19271i) q^{97} -6.49492 q^{98} +(-3.80764 + 5.69853i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{18} + 8 q^{26} - 24 q^{27} + 8 q^{28} - 8 q^{29} - 16 q^{31} - 64 q^{33} + 24 q^{34} + 32 q^{37} - 32 q^{39} + 16 q^{41} + 24 q^{42} + 16 q^{43} - 16 q^{44} - 16 q^{49} + 32 q^{51} + 16 q^{52}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{11}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.382683 0.923880i −0.270598 0.653281i
\(3\) −1.21530 + 0.241738i −0.701653 + 0.139567i −0.533009 0.846110i \(-0.678939\pi\)
−0.168644 + 0.985677i \(0.553939\pi\)
\(4\) −0.707107 + 0.707107i −0.353553 + 0.353553i
\(5\) 0 0
\(6\) 0.688411 + 1.03028i 0.281043 + 0.420610i
\(7\) −0.394839 0.590918i −0.149235 0.223346i 0.749319 0.662210i \(-0.230381\pi\)
−0.898554 + 0.438864i \(0.855381\pi\)
\(8\) 0.923880 + 0.382683i 0.326641 + 0.135299i
\(9\) −1.35312 + 0.560483i −0.451042 + 0.186828i
\(10\) 0 0
\(11\) 3.89081 2.59976i 1.17312 0.783857i 0.192798 0.981239i \(-0.438244\pi\)
0.980327 + 0.197382i \(0.0632439\pi\)
\(12\) 0.688411 1.03028i 0.198727 0.297416i
\(13\) −0.327094 −0.0907195 −0.0453597 0.998971i \(-0.514443\pi\)
−0.0453597 + 0.998971i \(0.514443\pi\)
\(14\) −0.394839 + 0.590918i −0.105525 + 0.157930i
\(15\) 0 0
\(16\) 1.00000i 0.250000i
\(17\) −0.692689 + 4.06450i −0.168002 + 0.985787i
\(18\) 1.03564 + 1.03564i 0.244102 + 0.244102i
\(19\) 0.470758 + 0.194994i 0.107999 + 0.0447348i 0.436029 0.899933i \(-0.356385\pi\)
−0.328030 + 0.944667i \(0.606385\pi\)
\(20\) 0 0
\(21\) 0.622694 + 0.622694i 0.135883 + 0.135883i
\(22\) −3.89081 2.59976i −0.829524 0.554270i
\(23\) −0.145038 + 0.729154i −0.0302425 + 0.152039i −0.992956 0.118484i \(-0.962197\pi\)
0.962714 + 0.270523i \(0.0871966\pi\)
\(24\) −1.21530 0.241738i −0.248072 0.0493445i
\(25\) 0 0
\(26\) 0.125173 + 0.302195i 0.0245485 + 0.0592654i
\(27\) 4.59980 3.07349i 0.885232 0.591493i
\(28\) 0.697035 + 0.138649i 0.131727 + 0.0262022i
\(29\) −1.37720 6.92365i −0.255740 1.28569i −0.868606 0.495503i \(-0.834984\pi\)
0.612867 0.790186i \(-0.290016\pi\)
\(30\) 0 0
\(31\) −2.70560 1.80782i −0.485940 0.324695i 0.288351 0.957525i \(-0.406893\pi\)
−0.774291 + 0.632830i \(0.781893\pi\)
\(32\) −0.923880 + 0.382683i −0.163320 + 0.0676495i
\(33\) −4.10004 + 4.10004i −0.713725 + 0.713725i
\(34\) 4.02019 0.915457i 0.689457 0.157000i
\(35\) 0 0
\(36\) 0.560483 1.35312i 0.0934138 0.225521i
\(37\) −2.13568 10.7368i −0.351104 1.76512i −0.603369 0.797462i \(-0.706176\pi\)
0.252265 0.967658i \(-0.418824\pi\)
\(38\) 0.509545i 0.0826591i
\(39\) 0.397517 0.0790710i 0.0636536 0.0126615i
\(40\) 0 0
\(41\) 1.39655 7.02092i 0.218104 1.09648i −0.704195 0.710007i \(-0.748692\pi\)
0.922299 0.386477i \(-0.126308\pi\)
\(42\) 0.337000 0.813590i 0.0520002 0.125540i
\(43\) −0.128609 + 0.310490i −0.0196127 + 0.0473492i −0.933382 0.358883i \(-0.883158\pi\)
0.913770 + 0.406232i \(0.133158\pi\)
\(44\) −0.912914 + 4.58953i −0.137627 + 0.691897i
\(45\) 0 0
\(46\) 0.729154 0.145038i 0.107508 0.0213847i
\(47\) 4.22197i 0.615838i −0.951413 0.307919i \(-0.900368\pi\)
0.951413 0.307919i \(-0.0996325\pi\)
\(48\) 0.241738 + 1.21530i 0.0348919 + 0.175413i
\(49\) 2.48550 6.00052i 0.355071 0.857217i
\(50\) 0 0
\(51\) −0.140721 5.10703i −0.0197049 0.715128i
\(52\) 0.231290 0.231290i 0.0320742 0.0320742i
\(53\) −4.00217 + 1.65775i −0.549740 + 0.227710i −0.640224 0.768188i \(-0.721158\pi\)
0.0904843 + 0.995898i \(0.471158\pi\)
\(54\) −4.59980 3.07349i −0.625954 0.418249i
\(55\) 0 0
\(56\) −0.138649 0.697035i −0.0185277 0.0931453i
\(57\) −0.619249 0.123176i −0.0820216 0.0163151i
\(58\) −5.86959 + 3.92193i −0.770714 + 0.514975i
\(59\) −1.52485 3.68132i −0.198519 0.479267i 0.793001 0.609220i \(-0.208517\pi\)
−0.991520 + 0.129953i \(0.958517\pi\)
\(60\) 0 0
\(61\) −6.63783 1.32035i −0.849887 0.169053i −0.249116 0.968474i \(-0.580140\pi\)
−0.600772 + 0.799421i \(0.705140\pi\)
\(62\) −0.634823 + 3.19147i −0.0806226 + 0.405317i
\(63\) 0.865466 + 0.578286i 0.109038 + 0.0728572i
\(64\) 0.707107 + 0.707107i 0.0883883 + 0.0883883i
\(65\) 0 0
\(66\) 5.35696 + 2.21893i 0.659396 + 0.273131i
\(67\) 0.274816 + 0.274816i 0.0335741 + 0.0335741i 0.723695 0.690120i \(-0.242442\pi\)
−0.690120 + 0.723695i \(0.742442\pi\)
\(68\) −2.38423 3.36384i −0.289131 0.407926i
\(69\) 0.921201i 0.110900i
\(70\) 0 0
\(71\) −8.70794 + 13.0324i −1.03344 + 1.54666i −0.211262 + 0.977429i \(0.567757\pi\)
−0.822180 + 0.569227i \(0.807243\pi\)
\(72\) −1.46461 −0.172606
\(73\) 6.64548 9.94566i 0.777795 1.16405i −0.204893 0.978784i \(-0.565685\pi\)
0.982688 0.185268i \(-0.0593152\pi\)
\(74\) −9.10222 + 6.08191i −1.05811 + 0.707008i
\(75\) 0 0
\(76\) −0.470758 + 0.194994i −0.0539997 + 0.0223674i
\(77\) −3.07249 1.27267i −0.350143 0.145034i
\(78\) −0.225175 0.336998i −0.0254961 0.0381575i
\(79\) 5.34800 + 8.00385i 0.601697 + 0.900504i 0.999859 0.0168118i \(-0.00535160\pi\)
−0.398161 + 0.917315i \(0.630352\pi\)
\(80\) 0 0
\(81\) −1.74024 + 1.74024i −0.193360 + 0.193360i
\(82\) −7.02092 + 1.39655i −0.775331 + 0.154223i
\(83\) −4.80373 11.5972i −0.527278 1.27296i −0.933300 0.359098i \(-0.883084\pi\)
0.406022 0.913863i \(-0.366916\pi\)
\(84\) −0.880623 −0.0960838
\(85\) 0 0
\(86\) 0.336072 0.0362395
\(87\) 3.34742 + 8.08138i 0.358881 + 0.866415i
\(88\) 4.58953 0.912914i 0.489245 0.0973169i
\(89\) 0.374770 0.374770i 0.0397255 0.0397255i −0.686965 0.726691i \(-0.741057\pi\)
0.726691 + 0.686965i \(0.241057\pi\)
\(90\) 0 0
\(91\) 0.129149 + 0.193286i 0.0135385 + 0.0202618i
\(92\) −0.413033 0.618147i −0.0430616 0.0644463i
\(93\) 3.72513 + 1.54300i 0.386278 + 0.160002i
\(94\) −3.90059 + 1.61568i −0.402315 + 0.166644i
\(95\) 0 0
\(96\) 1.03028 0.688411i 0.105153 0.0702607i
\(97\) 5.47419 8.19271i 0.555820 0.831844i −0.442056 0.896988i \(-0.645751\pi\)
0.997876 + 0.0651439i \(0.0207506\pi\)
\(98\) −6.49492 −0.656086
\(99\) −3.80764 + 5.69853i −0.382682 + 0.572724i
\(100\) 0 0
\(101\) 14.4498i 1.43781i −0.695108 0.718906i \(-0.744643\pi\)
0.695108 0.718906i \(-0.255357\pi\)
\(102\) −4.66443 + 2.08439i −0.461848 + 0.206385i
\(103\) −8.21768 8.21768i −0.809712 0.809712i 0.174878 0.984590i \(-0.444047\pi\)
−0.984590 + 0.174878i \(0.944047\pi\)
\(104\) −0.302195 0.125173i −0.0296327 0.0122743i
\(105\) 0 0
\(106\) 3.06313 + 3.06313i 0.297517 + 0.297517i
\(107\) 7.99081 + 5.33929i 0.772501 + 0.516168i 0.878237 0.478226i \(-0.158720\pi\)
−0.105736 + 0.994394i \(0.533720\pi\)
\(108\) −1.07927 + 5.42584i −0.103852 + 0.522101i
\(109\) 4.69116 + 0.933131i 0.449332 + 0.0893777i 0.414569 0.910018i \(-0.363932\pi\)
0.0347631 + 0.999396i \(0.488932\pi\)
\(110\) 0 0
\(111\) 5.19099 + 12.5321i 0.492707 + 1.18950i
\(112\) −0.590918 + 0.394839i −0.0558365 + 0.0373088i
\(113\) 9.20761 + 1.83151i 0.866179 + 0.172294i 0.608130 0.793838i \(-0.291920\pi\)
0.258050 + 0.966132i \(0.416920\pi\)
\(114\) 0.123176 + 0.619249i 0.0115365 + 0.0579980i
\(115\) 0 0
\(116\) 5.86959 + 3.92193i 0.544977 + 0.364142i
\(117\) 0.442599 0.183330i 0.0409183 0.0169489i
\(118\) −2.81756 + 2.81756i −0.259377 + 0.259377i
\(119\) 2.67529 1.19550i 0.245243 0.109591i
\(120\) 0 0
\(121\) 4.17017 10.0677i 0.379106 0.915243i
\(122\) 1.32035 + 6.63783i 0.119539 + 0.600961i
\(123\) 8.87012i 0.799792i
\(124\) 3.19147 0.634823i 0.286603 0.0570088i
\(125\) 0 0
\(126\) 0.203067 1.02089i 0.0180906 0.0909478i
\(127\) 0.391330 0.944755i 0.0347249 0.0838334i −0.905566 0.424206i \(-0.860553\pi\)
0.940291 + 0.340373i \(0.110553\pi\)
\(128\) 0.382683 0.923880i 0.0338248 0.0816602i
\(129\) 0.0812413 0.408427i 0.00715289 0.0359600i
\(130\) 0 0
\(131\) −19.6520 + 3.90902i −1.71700 + 0.341532i −0.952835 0.303489i \(-0.901848\pi\)
−0.764164 + 0.645022i \(0.776848\pi\)
\(132\) 5.79833i 0.504680i
\(133\) −0.0706479 0.355171i −0.00612595 0.0307972i
\(134\) 0.148729 0.359064i 0.0128482 0.0310184i
\(135\) 0 0
\(136\) −2.19538 + 3.49003i −0.188252 + 0.299268i
\(137\) −12.6973 + 12.6973i −1.08480 + 1.08480i −0.0887476 + 0.996054i \(0.528286\pi\)
−0.996054 + 0.0887476i \(0.971714\pi\)
\(138\) −0.851079 + 0.352528i −0.0724486 + 0.0300092i
\(139\) 13.6528 + 9.12249i 1.15801 + 0.773759i 0.977732 0.209856i \(-0.0672995\pi\)
0.180280 + 0.983615i \(0.442300\pi\)
\(140\) 0 0
\(141\) 1.02061 + 5.13095i 0.0859509 + 0.432104i
\(142\) 15.3727 + 3.05782i 1.29005 + 0.256607i
\(143\) −1.27266 + 0.850365i −0.106425 + 0.0711111i
\(144\) 0.560483 + 1.35312i 0.0467069 + 0.112760i
\(145\) 0 0
\(146\) −11.7317 2.33358i −0.970923 0.193129i
\(147\) −1.57007 + 7.89327i −0.129497 + 0.651026i
\(148\) 9.10222 + 6.08191i 0.748198 + 0.499930i
\(149\) −4.02675 4.02675i −0.329884 0.329884i 0.522658 0.852542i \(-0.324940\pi\)
−0.852542 + 0.522658i \(0.824940\pi\)
\(150\) 0 0
\(151\) 9.87709 + 4.09122i 0.803786 + 0.332939i 0.746472 0.665417i \(-0.231746\pi\)
0.0573142 + 0.998356i \(0.481746\pi\)
\(152\) 0.360303 + 0.360303i 0.0292244 + 0.0292244i
\(153\) −1.34079 5.88802i −0.108396 0.476018i
\(154\) 3.32564i 0.267987i
\(155\) 0 0
\(156\) −0.225175 + 0.336998i −0.0180284 + 0.0269815i
\(157\) 16.1039 1.28523 0.642616 0.766189i \(-0.277849\pi\)
0.642616 + 0.766189i \(0.277849\pi\)
\(158\) 5.34800 8.00385i 0.425464 0.636752i
\(159\) 4.46309 2.98214i 0.353946 0.236499i
\(160\) 0 0
\(161\) 0.488137 0.202193i 0.0384706 0.0159350i
\(162\) 2.27374 + 0.941813i 0.178642 + 0.0739958i
\(163\) 12.2141 + 18.2797i 0.956684 + 1.43178i 0.901242 + 0.433317i \(0.142657\pi\)
0.0554422 + 0.998462i \(0.482343\pi\)
\(164\) 3.97703 + 5.95205i 0.310554 + 0.464777i
\(165\) 0 0
\(166\) −8.87613 + 8.87613i −0.688922 + 0.688922i
\(167\) −16.2666 + 3.23562i −1.25875 + 0.250380i −0.778998 0.627026i \(-0.784272\pi\)
−0.479748 + 0.877406i \(0.659272\pi\)
\(168\) 0.337000 + 0.813590i 0.0260001 + 0.0627698i
\(169\) −12.8930 −0.991770
\(170\) 0 0
\(171\) −0.746286 −0.0570699
\(172\) −0.128609 0.310490i −0.00980635 0.0236746i
\(173\) 8.40635 1.67213i 0.639123 0.127129i 0.135117 0.990830i \(-0.456859\pi\)
0.504006 + 0.863700i \(0.331859\pi\)
\(174\) 6.18522 6.18522i 0.468900 0.468900i
\(175\) 0 0
\(176\) −2.59976 3.89081i −0.195964 0.293281i
\(177\) 2.74307 + 4.10529i 0.206181 + 0.308572i
\(178\) −0.489660 0.202824i −0.0367016 0.0152023i
\(179\) 18.8787 7.81980i 1.41106 0.584479i 0.458461 0.888715i \(-0.348401\pi\)
0.952597 + 0.304235i \(0.0984010\pi\)
\(180\) 0 0
\(181\) 3.58349 2.39441i 0.266359 0.177975i −0.415218 0.909722i \(-0.636295\pi\)
0.681577 + 0.731747i \(0.261295\pi\)
\(182\) 0.129149 0.193286i 0.00957318 0.0143273i
\(183\) 8.38613 0.619920
\(184\) −0.413033 + 0.618147i −0.0304492 + 0.0455704i
\(185\) 0 0
\(186\) 4.03205i 0.295644i
\(187\) 7.87160 + 17.6150i 0.575629 + 1.28814i
\(188\) 2.98538 + 2.98538i 0.217731 + 0.217731i
\(189\) −3.63236 1.50457i −0.264215 0.109442i
\(190\) 0 0
\(191\) 11.4696 + 11.4696i 0.829911 + 0.829911i 0.987504 0.157593i \(-0.0503733\pi\)
−0.157593 + 0.987504i \(0.550373\pi\)
\(192\) −1.03028 0.688411i −0.0743541 0.0496818i
\(193\) 0.0109326 0.0549621i 0.000786949 0.00395626i −0.980390 0.197068i \(-0.936858\pi\)
0.981177 + 0.193112i \(0.0618580\pi\)
\(194\) −9.66396 1.92228i −0.693832 0.138012i
\(195\) 0 0
\(196\) 2.48550 + 6.00052i 0.177536 + 0.428609i
\(197\) 3.08408 2.06071i 0.219731 0.146820i −0.440833 0.897589i \(-0.645317\pi\)
0.660565 + 0.750769i \(0.270317\pi\)
\(198\) 6.72188 + 1.33706i 0.477703 + 0.0950210i
\(199\) −1.29609 6.51587i −0.0918771 0.461898i −0.999145 0.0413442i \(-0.986836\pi\)
0.907268 0.420553i \(-0.138164\pi\)
\(200\) 0 0
\(201\) −0.400417 0.267550i −0.0282432 0.0188715i
\(202\) −13.3499 + 5.52971i −0.939295 + 0.389069i
\(203\) −3.54754 + 3.54754i −0.248988 + 0.248988i
\(204\) 3.71072 + 3.51171i 0.259803 + 0.245869i
\(205\) 0 0
\(206\) −4.44738 + 10.7369i −0.309863 + 0.748077i
\(207\) −0.212424 1.06793i −0.0147645 0.0742261i
\(208\) 0.327094i 0.0226799i
\(209\) 2.33857 0.465170i 0.161762 0.0321765i
\(210\) 0 0
\(211\) 3.42608 17.2241i 0.235861 1.18575i −0.663373 0.748289i \(-0.730876\pi\)
0.899235 0.437466i \(-0.144124\pi\)
\(212\) 1.65775 4.00217i 0.113855 0.274870i
\(213\) 7.43234 17.9432i 0.509255 1.22945i
\(214\) 1.87491 9.42580i 0.128166 0.644334i
\(215\) 0 0
\(216\) 5.42584 1.07927i 0.369181 0.0734348i
\(217\) 2.31259i 0.156989i
\(218\) −0.933131 4.69116i −0.0631996 0.317726i
\(219\) −5.67200 + 13.6934i −0.383278 + 0.925315i
\(220\) 0 0
\(221\) 0.226574 1.32947i 0.0152410 0.0894300i
\(222\) 9.59169 9.59169i 0.643752 0.643752i
\(223\) 9.63276 3.99002i 0.645058 0.267192i −0.0360779 0.999349i \(-0.511486\pi\)
0.681136 + 0.732157i \(0.261486\pi\)
\(224\) 0.590918 + 0.394839i 0.0394824 + 0.0263813i
\(225\) 0 0
\(226\) −1.83151 9.20761i −0.121830 0.612481i
\(227\) 12.0404 + 2.39499i 0.799152 + 0.158961i 0.577742 0.816220i \(-0.303934\pi\)
0.221410 + 0.975181i \(0.428934\pi\)
\(228\) 0.524974 0.350776i 0.0347673 0.0232307i
\(229\) 1.03397 + 2.49621i 0.0683263 + 0.164954i 0.954354 0.298678i \(-0.0965457\pi\)
−0.886028 + 0.463633i \(0.846546\pi\)
\(230\) 0 0
\(231\) 4.04164 + 0.803933i 0.265921 + 0.0528949i
\(232\) 1.37720 6.92365i 0.0904176 0.454560i
\(233\) −16.2429 10.8532i −1.06411 0.711014i −0.105119 0.994460i \(-0.533522\pi\)
−0.958988 + 0.283446i \(0.908522\pi\)
\(234\) −0.338750 0.338750i −0.0221448 0.0221448i
\(235\) 0 0
\(236\) 3.68132 + 1.52485i 0.239633 + 0.0992594i
\(237\) −8.43425 8.43425i −0.547864 0.547864i
\(238\) −2.12829 2.01415i −0.137956 0.130558i
\(239\) 25.3901i 1.64235i −0.570679 0.821173i \(-0.693320\pi\)
0.570679 0.821173i \(-0.306680\pi\)
\(240\) 0 0
\(241\) 4.45194 6.66280i 0.286775 0.429189i −0.659913 0.751342i \(-0.729407\pi\)
0.946687 + 0.322154i \(0.104407\pi\)
\(242\) −10.8972 −0.700497
\(243\) −7.52624 + 11.2638i −0.482808 + 0.722574i
\(244\) 5.62728 3.76003i 0.360250 0.240711i
\(245\) 0 0
\(246\) 8.19492 3.39445i 0.522489 0.216422i
\(247\) −0.153982 0.0637814i −0.00979764 0.00405832i
\(248\) −1.80782 2.70560i −0.114797 0.171806i
\(249\) 8.64145 + 12.9329i 0.547630 + 0.819586i
\(250\) 0 0
\(251\) −14.7371 + 14.7371i −0.930197 + 0.930197i −0.997718 0.0675209i \(-0.978491\pi\)
0.0675209 + 0.997718i \(0.478491\pi\)
\(252\) −1.02089 + 0.203067i −0.0643098 + 0.0127920i
\(253\) 1.33131 + 3.21407i 0.0836987 + 0.202067i
\(254\) −1.02260 −0.0641633
\(255\) 0 0
\(256\) −1.00000 −0.0625000
\(257\) −3.26118 7.87318i −0.203427 0.491115i 0.788935 0.614476i \(-0.210633\pi\)
−0.992362 + 0.123361i \(0.960633\pi\)
\(258\) −0.408427 + 0.0812413i −0.0254276 + 0.00505786i
\(259\) −5.50132 + 5.50132i −0.341836 + 0.341836i
\(260\) 0 0
\(261\) 5.74411 + 8.59667i 0.355551 + 0.532120i
\(262\) 11.1319 + 16.6601i 0.687733 + 1.02927i
\(263\) −20.4534 8.47208i −1.26121 0.522411i −0.350930 0.936402i \(-0.614135\pi\)
−0.910281 + 0.413991i \(0.864135\pi\)
\(264\) −5.35696 + 2.21893i −0.329698 + 0.136565i
\(265\) 0 0
\(266\) −0.301099 + 0.201188i −0.0184616 + 0.0123356i
\(267\) −0.364861 + 0.546053i −0.0223291 + 0.0334179i
\(268\) −0.388648 −0.0237405
\(269\) −13.2164 + 19.7798i −0.805819 + 1.20599i 0.169573 + 0.985518i \(0.445761\pi\)
−0.975392 + 0.220476i \(0.929239\pi\)
\(270\) 0 0
\(271\) 20.8191i 1.26467i 0.774694 + 0.632336i \(0.217904\pi\)
−0.774694 + 0.632336i \(0.782096\pi\)
\(272\) 4.06450 + 0.692689i 0.246447 + 0.0420004i
\(273\) −0.203679 0.203679i −0.0123272 0.0123272i
\(274\) 16.5898 + 6.87172i 1.00223 + 0.415136i
\(275\) 0 0
\(276\) 0.651388 + 0.651388i 0.0392089 + 0.0392089i
\(277\) 3.33059 + 2.22543i 0.200116 + 0.133713i 0.651591 0.758571i \(-0.274102\pi\)
−0.451475 + 0.892284i \(0.649102\pi\)
\(278\) 3.20339 16.1045i 0.192127 0.965886i
\(279\) 4.67427 + 0.929769i 0.279841 + 0.0556638i
\(280\) 0 0
\(281\) 5.55980 + 13.4226i 0.331670 + 0.800722i 0.998460 + 0.0554766i \(0.0176678\pi\)
−0.666790 + 0.745246i \(0.732332\pi\)
\(282\) 4.34981 2.90645i 0.259028 0.173077i
\(283\) 12.4506 + 2.47657i 0.740110 + 0.147217i 0.550726 0.834686i \(-0.314351\pi\)
0.189384 + 0.981903i \(0.439351\pi\)
\(284\) −3.05782 15.3727i −0.181448 0.912203i
\(285\) 0 0
\(286\) 1.27266 + 0.850365i 0.0752540 + 0.0502831i
\(287\) −4.70020 + 1.94689i −0.277444 + 0.114921i
\(288\) 1.03564 1.03564i 0.0610255 0.0610255i
\(289\) −16.0404 5.63087i −0.943551 0.331228i
\(290\) 0 0
\(291\) −4.67229 + 11.2799i −0.273895 + 0.661240i
\(292\) 2.33358 + 11.7317i 0.136563 + 0.686546i
\(293\) 8.34021i 0.487240i 0.969871 + 0.243620i \(0.0783350\pi\)
−0.969871 + 0.243620i \(0.921665\pi\)
\(294\) 7.89327 1.57007i 0.460345 0.0915682i
\(295\) 0 0
\(296\) 2.13568 10.7368i 0.124134 0.624064i
\(297\) 9.90664 23.9167i 0.574842 1.38779i
\(298\) −2.17926 + 5.26121i −0.126241 + 0.304773i
\(299\) 0.0474409 0.238502i 0.00274358 0.0137929i
\(300\) 0 0
\(301\) 0.234254 0.0465960i 0.0135022 0.00268575i
\(302\) 10.6909i 0.615191i
\(303\) 3.49307 + 17.5608i 0.200672 + 1.00884i
\(304\) 0.194994 0.470758i 0.0111837 0.0269998i
\(305\) 0 0
\(306\) −4.92672 + 3.49198i −0.281642 + 0.199623i
\(307\) −0.0891571 + 0.0891571i −0.00508847 + 0.00508847i −0.709646 0.704558i \(-0.751145\pi\)
0.704558 + 0.709646i \(0.251145\pi\)
\(308\) 3.07249 1.27267i 0.175071 0.0725169i
\(309\) 11.9735 + 8.00041i 0.681146 + 0.455128i
\(310\) 0 0
\(311\) −1.86727 9.38742i −0.105883 0.532312i −0.996923 0.0783864i \(-0.975023\pi\)
0.891040 0.453926i \(-0.149977\pi\)
\(312\) 0.397517 + 0.0790710i 0.0225049 + 0.00447651i
\(313\) 14.4669 9.66650i 0.817719 0.546383i −0.0749013 0.997191i \(-0.523864\pi\)
0.892621 + 0.450808i \(0.148864\pi\)
\(314\) −6.16270 14.8781i −0.347781 0.839618i
\(315\) 0 0
\(316\) −9.44119 1.87797i −0.531108 0.105644i
\(317\) −3.90786 + 19.6461i −0.219487 + 1.10344i 0.701149 + 0.713015i \(0.252671\pi\)
−0.920636 + 0.390422i \(0.872329\pi\)
\(318\) −4.46309 2.98214i −0.250277 0.167230i
\(319\) −23.3582 23.3582i −1.30781 1.30781i
\(320\) 0 0
\(321\) −11.0019 4.55715i −0.614068 0.254355i
\(322\) −0.373604 0.373604i −0.0208201 0.0208201i
\(323\) −1.11864 + 1.77833i −0.0622430 + 0.0989488i
\(324\) 2.46108i 0.136726i
\(325\) 0 0
\(326\) 12.2141 18.2797i 0.676478 1.01242i
\(327\) −5.92674 −0.327749
\(328\) 3.97703 5.95205i 0.219595 0.328647i
\(329\) −2.49484 + 1.66700i −0.137545 + 0.0919045i
\(330\) 0 0
\(331\) 13.3662 5.53646i 0.734673 0.304312i 0.0162023 0.999869i \(-0.494842\pi\)
0.718471 + 0.695557i \(0.244842\pi\)
\(332\) 11.5972 + 4.80373i 0.636480 + 0.263639i
\(333\) 8.90764 + 13.3312i 0.488136 + 0.730547i
\(334\) 9.21428 + 13.7901i 0.504183 + 0.754563i
\(335\) 0 0
\(336\) 0.622694 0.622694i 0.0339708 0.0339708i
\(337\) −7.92021 + 1.57543i −0.431441 + 0.0858190i −0.406034 0.913858i \(-0.633088\pi\)
−0.0254078 + 0.999677i \(0.508088\pi\)
\(338\) 4.93394 + 11.9116i 0.268371 + 0.647905i
\(339\) −11.6327 −0.631804
\(340\) 0 0
\(341\) −15.2269 −0.824582
\(342\) 0.285591 + 0.689478i 0.0154430 + 0.0372827i
\(343\) −9.40644 + 1.87106i −0.507900 + 0.101028i
\(344\) −0.237639 + 0.237639i −0.0128126 + 0.0128126i
\(345\) 0 0
\(346\) −4.76181 7.12656i −0.255997 0.383126i
\(347\) −9.49472 14.2098i −0.509703 0.762825i 0.483976 0.875081i \(-0.339192\pi\)
−0.993679 + 0.112257i \(0.964192\pi\)
\(348\) −8.08138 3.34742i −0.433207 0.179440i
\(349\) −24.1690 + 10.0111i −1.29374 + 0.535884i −0.920098 0.391689i \(-0.871891\pi\)
−0.373641 + 0.927573i \(0.621891\pi\)
\(350\) 0 0
\(351\) −1.50457 + 1.00532i −0.0803078 + 0.0536600i
\(352\) −2.59976 + 3.89081i −0.138568 + 0.207381i
\(353\) −34.0507 −1.81234 −0.906168 0.422919i \(-0.861006\pi\)
−0.906168 + 0.422919i \(0.861006\pi\)
\(354\) 2.74307 4.10529i 0.145792 0.218194i
\(355\) 0 0
\(356\) 0.530005i 0.0280902i
\(357\) −2.96228 + 2.09961i −0.156780 + 0.111123i
\(358\) −14.4491 14.4491i −0.763659 0.763659i
\(359\) −1.81224 0.750656i −0.0956465 0.0396181i 0.334347 0.942450i \(-0.391484\pi\)
−0.429994 + 0.902832i \(0.641484\pi\)
\(360\) 0 0
\(361\) −13.2514 13.2514i −0.697444 0.697444i
\(362\) −3.58349 2.39441i −0.188344 0.125847i
\(363\) −2.63426 + 13.2433i −0.138263 + 0.695094i
\(364\) −0.227996 0.0453512i −0.0119502 0.00237705i
\(365\) 0 0
\(366\) −3.20923 7.74777i −0.167749 0.404983i
\(367\) 13.9565 9.32545i 0.728525 0.486785i −0.135156 0.990824i \(-0.543153\pi\)
0.863681 + 0.504040i \(0.168153\pi\)
\(368\) 0.729154 + 0.145038i 0.0380098 + 0.00756062i
\(369\) 2.04540 + 10.2829i 0.106479 + 0.535308i
\(370\) 0 0
\(371\) 2.55981 + 1.71041i 0.132898 + 0.0887999i
\(372\) −3.72513 + 1.54300i −0.193139 + 0.0800008i
\(373\) −5.16638 + 5.16638i −0.267505 + 0.267505i −0.828094 0.560589i \(-0.810575\pi\)
0.560589 + 0.828094i \(0.310575\pi\)
\(374\) 13.2618 14.0134i 0.685754 0.724616i
\(375\) 0 0
\(376\) 1.61568 3.90059i 0.0833222 0.201158i
\(377\) 0.450473 + 2.26468i 0.0232006 + 0.116637i
\(378\) 3.93164i 0.202222i
\(379\) 35.1483 6.99144i 1.80545 0.359126i 0.826453 0.563005i \(-0.190355\pi\)
0.978996 + 0.203879i \(0.0653550\pi\)
\(380\) 0 0
\(381\) −0.247200 + 1.24276i −0.0126644 + 0.0636685i
\(382\) 6.20731 14.9858i 0.317593 0.766738i
\(383\) −6.33151 + 15.2856i −0.323525 + 0.781058i 0.675519 + 0.737343i \(0.263920\pi\)
−0.999044 + 0.0437158i \(0.986080\pi\)
\(384\) −0.241738 + 1.21530i −0.0123361 + 0.0620179i
\(385\) 0 0
\(386\) −0.0549621 + 0.0109326i −0.00279750 + 0.000556457i
\(387\) 0.492215i 0.0250207i
\(388\) 1.92228 + 9.66396i 0.0975890 + 0.490613i
\(389\) −7.18782 + 17.3529i −0.364437 + 0.879829i 0.630203 + 0.776430i \(0.282972\pi\)
−0.994640 + 0.103398i \(0.967028\pi\)
\(390\) 0 0
\(391\) −2.86318 1.09458i −0.144797 0.0553554i
\(392\) 4.59260 4.59260i 0.231961 0.231961i
\(393\) 22.9380 9.50125i 1.15707 0.479274i
\(394\) −3.08408 2.06071i −0.155373 0.103817i
\(395\) 0 0
\(396\) −1.33706 6.72188i −0.0671900 0.337787i
\(397\) −8.07804 1.60682i −0.405425 0.0806440i −0.0118346 0.999930i \(-0.503767\pi\)
−0.393590 + 0.919286i \(0.628767\pi\)
\(398\) −5.52389 + 3.69094i −0.276887 + 0.185010i
\(399\) 0.171717 + 0.414560i 0.00859658 + 0.0207540i
\(400\) 0 0
\(401\) −7.93345 1.57806i −0.396178 0.0788046i −0.00701892 0.999975i \(-0.502234\pi\)
−0.389159 + 0.921171i \(0.627234\pi\)
\(402\) −0.0939510 + 0.472324i −0.00468585 + 0.0235574i
\(403\) 0.884984 + 0.591328i 0.0440842 + 0.0294561i
\(404\) 10.2176 + 10.2176i 0.508343 + 0.508343i
\(405\) 0 0
\(406\) 4.63508 + 1.91991i 0.230035 + 0.0952837i
\(407\) −36.2226 36.2226i −1.79549 1.79549i
\(408\) 1.82437 4.77214i 0.0903197 0.236256i
\(409\) 6.01170i 0.297259i −0.988893 0.148630i \(-0.952514\pi\)
0.988893 0.148630i \(-0.0474863\pi\)
\(410\) 0 0
\(411\) 12.3616 18.5004i 0.609751 0.912557i
\(412\) 11.6216 0.572553
\(413\) −1.57329 + 2.35459i −0.0774164 + 0.115862i
\(414\) −0.905345 + 0.604932i −0.0444953 + 0.0297308i
\(415\) 0 0
\(416\) 0.302195 0.125173i 0.0148163 0.00613713i
\(417\) −18.7974 7.78616i −0.920515 0.381290i
\(418\) −1.32469 1.98254i −0.0647929 0.0969694i
\(419\) −3.45852 5.17603i −0.168960 0.252866i 0.737321 0.675543i \(-0.236091\pi\)
−0.906280 + 0.422677i \(0.861091\pi\)
\(420\) 0 0
\(421\) 18.1423 18.1423i 0.884200 0.884200i −0.109759 0.993958i \(-0.535008\pi\)
0.993958 + 0.109759i \(0.0350078\pi\)
\(422\) −17.2241 + 3.42608i −0.838455 + 0.166779i
\(423\) 2.36634 + 5.71285i 0.115055 + 0.277768i
\(424\) −4.33191 −0.210376
\(425\) 0 0
\(426\) −19.4216 −0.940981
\(427\) 1.84066 + 4.44374i 0.0890757 + 0.215048i
\(428\) −9.42580 + 1.87491i −0.455613 + 0.0906271i
\(429\) 1.34110 1.34110i 0.0647488 0.0647488i
\(430\) 0 0
\(431\) 20.5669 + 30.7805i 0.990671 + 1.48264i 0.871877 + 0.489725i \(0.162903\pi\)
0.118795 + 0.992919i \(0.462097\pi\)
\(432\) −3.07349 4.59980i −0.147873 0.221308i
\(433\) −6.74685 2.79464i −0.324233 0.134302i 0.214629 0.976696i \(-0.431146\pi\)
−0.538862 + 0.842394i \(0.681146\pi\)
\(434\) 2.13655 0.884988i 0.102558 0.0424808i
\(435\) 0 0
\(436\) −3.97698 + 2.65733i −0.190463 + 0.127263i
\(437\) −0.210459 + 0.314974i −0.0100676 + 0.0150672i
\(438\) 14.8216 0.708206
\(439\) −17.4852 + 26.1685i −0.834523 + 1.24895i 0.131711 + 0.991288i \(0.457953\pi\)
−0.966235 + 0.257664i \(0.917047\pi\)
\(440\) 0 0
\(441\) 9.51253i 0.452978i
\(442\) −1.31498 + 0.299440i −0.0625472 + 0.0142429i
\(443\) −11.7784 11.7784i −0.559607 0.559607i 0.369589 0.929195i \(-0.379499\pi\)
−0.929195 + 0.369589i \(0.879499\pi\)
\(444\) −12.5321 5.19099i −0.594749 0.246353i
\(445\) 0 0
\(446\) −7.37260 7.37260i −0.349103 0.349103i
\(447\) 5.86713 + 3.92029i 0.277506 + 0.185423i
\(448\) 0.138649 0.697035i 0.00655055 0.0329318i
\(449\) 15.7553 + 3.13392i 0.743537 + 0.147899i 0.552300 0.833645i \(-0.313750\pi\)
0.191237 + 0.981544i \(0.438750\pi\)
\(450\) 0 0
\(451\) −12.8190 30.9478i −0.603623 1.45727i
\(452\) −7.80584 + 5.21569i −0.367156 + 0.245326i
\(453\) −12.9926 2.58439i −0.610446 0.121425i
\(454\) −2.39499 12.0404i −0.112403 0.565086i
\(455\) 0 0
\(456\) −0.524974 0.350776i −0.0245842 0.0164266i
\(457\) −7.82067 + 3.23943i −0.365835 + 0.151534i −0.558026 0.829824i \(-0.688441\pi\)
0.192190 + 0.981358i \(0.438441\pi\)
\(458\) 1.91052 1.91052i 0.0892727 0.0892727i
\(459\) 9.30598 + 20.8249i 0.434366 + 0.972022i
\(460\) 0 0
\(461\) 12.8444 31.0091i 0.598223 1.44424i −0.277168 0.960822i \(-0.589396\pi\)
0.875391 0.483416i \(-0.160604\pi\)
\(462\) −0.803933 4.04164i −0.0374023 0.188034i
\(463\) 5.72199i 0.265924i −0.991121 0.132962i \(-0.957551\pi\)
0.991121 0.132962i \(-0.0424488\pi\)
\(464\) −6.92365 + 1.37720i −0.321422 + 0.0639349i
\(465\) 0 0
\(466\) −3.81112 + 19.1598i −0.176547 + 0.887561i
\(467\) −14.2144 + 34.3166i −0.657764 + 1.58798i 0.143485 + 0.989652i \(0.454169\pi\)
−0.801249 + 0.598330i \(0.795831\pi\)
\(468\) −0.183330 + 0.442599i −0.00847445 + 0.0204591i
\(469\) 0.0538857 0.270902i 0.00248821 0.0125091i
\(470\) 0 0
\(471\) −19.5711 + 3.89292i −0.901787 + 0.179377i
\(472\) 3.98463i 0.183408i
\(473\) 0.306804 + 1.54241i 0.0141069 + 0.0709201i
\(474\) −4.56459 + 11.0199i −0.209658 + 0.506160i
\(475\) 0 0
\(476\) −1.04637 + 2.73706i −0.0479602 + 0.125453i
\(477\) 4.48629 4.48629i 0.205413 0.205413i
\(478\) −23.4574 + 9.71636i −1.07291 + 0.444416i
\(479\) 16.0975 + 10.7560i 0.735513 + 0.491454i 0.866030 0.499992i \(-0.166664\pi\)
−0.130517 + 0.991446i \(0.541664\pi\)
\(480\) 0 0
\(481\) 0.698569 + 3.51194i 0.0318520 + 0.160131i
\(482\) −7.85931 1.56331i −0.357982 0.0712070i
\(483\) −0.544354 + 0.363726i −0.0247690 + 0.0165501i
\(484\) 4.17017 + 10.0677i 0.189553 + 0.457621i
\(485\) 0 0
\(486\) 13.2866 + 2.64286i 0.602691 + 0.119883i
\(487\) 0.389463 1.95796i 0.0176483 0.0887238i −0.970957 0.239253i \(-0.923098\pi\)
0.988606 + 0.150529i \(0.0480976\pi\)
\(488\) −5.62728 3.76003i −0.254735 0.170209i
\(489\) −19.2627 19.2627i −0.871090 0.871090i
\(490\) 0 0
\(491\) 18.8235 + 7.79693i 0.849491 + 0.351871i 0.764589 0.644519i \(-0.222942\pi\)
0.0849021 + 0.996389i \(0.472942\pi\)
\(492\) −6.27212 6.27212i −0.282769 0.282769i
\(493\) 29.0952 0.801699i 1.31038 0.0361067i
\(494\) 0.166669i 0.00749879i
\(495\) 0 0
\(496\) −1.80782 + 2.70560i −0.0811737 + 0.121485i
\(497\) 11.1393 0.499665
\(498\) 8.64145 12.9329i 0.387233 0.579535i
\(499\) −12.9080 + 8.62482i −0.577840 + 0.386100i −0.809871 0.586608i \(-0.800463\pi\)
0.232031 + 0.972708i \(0.425463\pi\)
\(500\) 0 0
\(501\) 18.9866 7.86450i 0.848258 0.351360i
\(502\) 19.2549 + 7.97566i 0.859390 + 0.355971i
\(503\) −23.9967 35.9136i −1.06996 1.60131i −0.759242 0.650808i \(-0.774430\pi\)
−0.310719 0.950502i \(-0.600570\pi\)
\(504\) 0.578286 + 0.865466i 0.0257589 + 0.0385509i
\(505\) 0 0
\(506\) 2.45994 2.45994i 0.109358 0.109358i
\(507\) 15.6689 3.11673i 0.695878 0.138419i
\(508\) 0.391330 + 0.944755i 0.0173625 + 0.0419167i
\(509\) −35.6718 −1.58113 −0.790563 0.612381i \(-0.790212\pi\)
−0.790563 + 0.612381i \(0.790212\pi\)
\(510\) 0 0
\(511\) −8.50097 −0.376061
\(512\) 0.382683 + 0.923880i 0.0169124 + 0.0408301i
\(513\) 2.76471 0.549934i 0.122065 0.0242802i
\(514\) −6.02587 + 6.02587i −0.265790 + 0.265790i
\(515\) 0 0
\(516\) 0.231356 + 0.346248i 0.0101849 + 0.0152427i
\(517\) −10.9761 16.4269i −0.482728 0.722454i
\(518\) 7.18782 + 2.97729i 0.315815 + 0.130815i
\(519\) −9.81200 + 4.06426i −0.430699 + 0.178401i
\(520\) 0 0
\(521\) 6.25857 4.18185i 0.274193 0.183210i −0.410870 0.911694i \(-0.634775\pi\)
0.685063 + 0.728484i \(0.259775\pi\)
\(522\) 5.74411 8.59667i 0.251413 0.376266i
\(523\) −17.7492 −0.776116 −0.388058 0.921635i \(-0.626854\pi\)
−0.388058 + 0.921635i \(0.626854\pi\)
\(524\) 11.1319 16.6601i 0.486301 0.727801i
\(525\) 0 0
\(526\) 22.1386i 0.965289i
\(527\) 9.22204 9.74465i 0.401718 0.424484i
\(528\) 4.10004 + 4.10004i 0.178431 + 0.178431i
\(529\) 20.7386 + 8.59021i 0.901678 + 0.373487i
\(530\) 0 0
\(531\) 4.12663 + 4.12663i 0.179081 + 0.179081i
\(532\) 0.301099 + 0.201188i 0.0130543 + 0.00872261i
\(533\) −0.456802 + 2.29650i −0.0197863 + 0.0994725i
\(534\) 0.644114 + 0.128122i 0.0278735 + 0.00554439i
\(535\) 0 0
\(536\) 0.148729 + 0.359064i 0.00642412 + 0.0155092i
\(537\) −21.0529 + 14.0671i −0.908499 + 0.607039i
\(538\) 23.3318 + 4.64099i 1.00591 + 0.200087i
\(539\) −5.92930 29.8086i −0.255393 1.28395i
\(540\) 0 0
\(541\) 8.89263 + 5.94187i 0.382324 + 0.255461i 0.731850 0.681466i \(-0.238657\pi\)
−0.349526 + 0.936927i \(0.613657\pi\)
\(542\) 19.2344 7.96714i 0.826187 0.342218i
\(543\) −3.77619 + 3.77619i −0.162052 + 0.162052i
\(544\) −0.915457 4.02019i −0.0392499 0.172364i
\(545\) 0 0
\(546\) −0.110231 + 0.266120i −0.00471743 + 0.0113889i
\(547\) −2.65720 13.3586i −0.113614 0.571174i −0.995092 0.0989503i \(-0.968452\pi\)
0.881479 0.472224i \(-0.156548\pi\)
\(548\) 17.9567i 0.767071i
\(549\) 9.72185 1.93380i 0.414918 0.0825324i
\(550\) 0 0
\(551\) 0.701745 3.52791i 0.0298953 0.150294i
\(552\) 0.352528 0.851079i 0.0150046 0.0362243i
\(553\) 2.61802 6.32046i 0.111330 0.268773i
\(554\) 0.781467 3.92870i 0.0332013 0.166914i
\(555\) 0 0
\(556\) −16.1045 + 3.20339i −0.682985 + 0.135854i
\(557\) 1.23472i 0.0523168i −0.999658 0.0261584i \(-0.991673\pi\)
0.999658 0.0261584i \(-0.00832743\pi\)
\(558\) −0.929769 4.67427i −0.0393603 0.197877i
\(559\) 0.0420672 0.101559i 0.00177925 0.00429550i
\(560\) 0 0
\(561\) −13.8246 19.5047i −0.583674 0.823488i
\(562\) 10.2732 10.2732i 0.433348 0.433348i
\(563\) 19.7174 8.16721i 0.830989 0.344207i 0.0736946 0.997281i \(-0.476521\pi\)
0.757294 + 0.653074i \(0.226521\pi\)
\(564\) −4.34981 2.90645i −0.183160 0.122384i
\(565\) 0 0
\(566\) −2.47657 12.4506i −0.104098 0.523337i
\(567\) 1.71546 + 0.341226i 0.0720424 + 0.0143301i
\(568\) −13.0324 + 8.70794i −0.546826 + 0.365377i
\(569\) −12.6066 30.4351i −0.528498 1.27591i −0.932507 0.361152i \(-0.882384\pi\)
0.404009 0.914755i \(-0.367616\pi\)
\(570\) 0 0
\(571\) 42.1343 + 8.38102i 1.76326 + 0.350735i 0.967110 0.254359i \(-0.0818646\pi\)
0.796154 + 0.605094i \(0.206865\pi\)
\(572\) 0.298608 1.50121i 0.0124854 0.0627685i
\(573\) −16.7116 11.1664i −0.698138 0.466481i
\(574\) 3.59738 + 3.59738i 0.150152 + 0.150152i
\(575\) 0 0
\(576\) −1.35312 0.560483i −0.0563802 0.0233534i
\(577\) −32.4025 32.4025i −1.34893 1.34893i −0.886823 0.462109i \(-0.847093\pi\)
−0.462109 0.886823i \(-0.652907\pi\)
\(578\) 0.936137 + 16.9742i 0.0389382 + 0.706034i
\(579\) 0.0694382i 0.00288575i
\(580\) 0 0
\(581\) −4.95631 + 7.41765i −0.205622 + 0.307736i
\(582\) 12.2093 0.506091
\(583\) −11.2619 + 16.8547i −0.466421 + 0.698049i
\(584\) 9.94566 6.64548i 0.411554 0.274992i
\(585\) 0 0
\(586\) 7.70535 3.19166i 0.318305 0.131846i
\(587\) 12.6495 + 5.23957i 0.522099 + 0.216260i 0.628139 0.778101i \(-0.283817\pi\)
−0.106040 + 0.994362i \(0.533817\pi\)
\(588\) −4.47118 6.69159i −0.184388 0.275956i
\(589\) −0.921167 1.37862i −0.0379560 0.0568052i
\(590\) 0 0
\(591\) −3.24992 + 3.24992i −0.133684 + 0.133684i
\(592\) −10.7368 + 2.13568i −0.441280 + 0.0877760i
\(593\) −4.00157 9.66064i −0.164325 0.396715i 0.820172 0.572117i \(-0.193878\pi\)
−0.984497 + 0.175402i \(0.943878\pi\)
\(594\) −25.8873 −1.06217
\(595\) 0 0
\(596\) 5.69469 0.233264
\(597\) 3.15026 + 7.60541i 0.128932 + 0.311269i
\(598\) −0.238502 + 0.0474409i −0.00975306 + 0.00194000i
\(599\) 9.67035 9.67035i 0.395120 0.395120i −0.481388 0.876508i \(-0.659867\pi\)
0.876508 + 0.481388i \(0.159867\pi\)
\(600\) 0 0
\(601\) 9.25488 + 13.8509i 0.377514 + 0.564990i 0.970766 0.240027i \(-0.0771562\pi\)
−0.593252 + 0.805017i \(0.702156\pi\)
\(602\) −0.132694 0.198591i −0.00540821 0.00809396i
\(603\) −0.525890 0.217831i −0.0214159 0.00887075i
\(604\) −9.87709 + 4.09122i −0.401893 + 0.166470i
\(605\) 0 0
\(606\) 14.8874 9.94742i 0.604758 0.404086i
\(607\) 5.89289 8.81933i 0.239185 0.357966i −0.692385 0.721529i \(-0.743440\pi\)
0.931570 + 0.363563i \(0.118440\pi\)
\(608\) −0.509545 −0.0206648
\(609\) 3.45374 5.16889i 0.139953 0.209454i
\(610\) 0 0
\(611\) 1.38098i 0.0558685i
\(612\) 5.11154 + 3.21538i 0.206622 + 0.129974i
\(613\) 29.6325 + 29.6325i 1.19685 + 1.19685i 0.975105 + 0.221742i \(0.0711742\pi\)
0.221742 + 0.975105i \(0.428826\pi\)
\(614\) 0.116489 + 0.0482515i 0.00470113 + 0.00194727i
\(615\) 0 0
\(616\) −2.35158 2.35158i −0.0947479 0.0947479i
\(617\) 31.9289 + 21.3342i 1.28541 + 0.858882i 0.995179 0.0980747i \(-0.0312684\pi\)
0.290229 + 0.956957i \(0.406268\pi\)
\(618\) 2.80937 14.1237i 0.113009 0.568137i
\(619\) 2.57153 + 0.511509i 0.103358 + 0.0205593i 0.246499 0.969143i \(-0.420720\pi\)
−0.143140 + 0.989702i \(0.545720\pi\)
\(620\) 0 0
\(621\) 1.57390 + 3.79974i 0.0631585 + 0.152478i
\(622\) −7.95827 + 5.31755i −0.319098 + 0.213214i
\(623\) −0.369432 0.0734846i −0.0148010 0.00294410i
\(624\) −0.0790710 0.397517i −0.00316537 0.0159134i
\(625\) 0 0
\(626\) −14.4669 9.66650i −0.578215 0.386351i
\(627\) −2.72961 + 1.13064i −0.109010 + 0.0451535i
\(628\) −11.3872 + 11.3872i −0.454398 + 0.454398i
\(629\) 45.1191 1.24323i 1.79902 0.0495708i
\(630\) 0 0
\(631\) −3.04583 + 7.35329i −0.121253 + 0.292730i −0.972838 0.231486i \(-0.925641\pi\)
0.851586 + 0.524216i \(0.175641\pi\)
\(632\) 1.87797 + 9.44119i 0.0747016 + 0.375550i
\(633\) 21.7606i 0.864907i
\(634\) 19.6461 3.90786i 0.780247 0.155201i
\(635\) 0 0
\(636\) −1.04719 + 5.26457i −0.0415237 + 0.208754i
\(637\) −0.812991 + 1.96273i −0.0322119 + 0.0777663i
\(638\) −12.6414 + 30.5190i −0.500477 + 1.20826i
\(639\) 4.47852 22.5151i 0.177168 0.890682i
\(640\) 0 0
\(641\) −20.1899 + 4.01602i −0.797453 + 0.158623i −0.576968 0.816767i \(-0.695764\pi\)
−0.220485 + 0.975390i \(0.570764\pi\)
\(642\) 11.9084i 0.469987i
\(643\) 5.93231 + 29.8237i 0.233947 + 1.17613i 0.901905 + 0.431934i \(0.142169\pi\)
−0.667958 + 0.744199i \(0.732831\pi\)
\(644\) −0.202193 + 0.488137i −0.00796752 + 0.0192353i
\(645\) 0 0
\(646\) 2.07105 + 0.352956i 0.0814842 + 0.0138869i
\(647\) 34.7745 34.7745i 1.36712 1.36712i 0.502614 0.864511i \(-0.332372\pi\)
0.864511 0.502614i \(-0.167628\pi\)
\(648\) −2.27374 + 0.941813i −0.0893209 + 0.0369979i
\(649\) −15.5035 10.3591i −0.608564 0.406629i
\(650\) 0 0
\(651\) −0.559040 2.81048i −0.0219105 0.110151i
\(652\) −21.5624 4.28903i −0.844449 0.167971i
\(653\) 5.29511 3.53808i 0.207214 0.138456i −0.447633 0.894217i \(-0.647733\pi\)
0.654847 + 0.755761i \(0.272733\pi\)
\(654\) 2.26806 + 5.47559i 0.0886884 + 0.214113i
\(655\) 0 0
\(656\) −7.02092 1.39655i −0.274121 0.0545261i
\(657\) −3.41779 + 17.1824i −0.133341 + 0.670349i
\(658\) 2.49484 + 1.66700i 0.0972589 + 0.0649863i
\(659\) 19.7490 + 19.7490i 0.769313 + 0.769313i 0.977986 0.208672i \(-0.0669142\pi\)
−0.208672 + 0.977986i \(0.566914\pi\)
\(660\) 0 0
\(661\) −2.39578 0.992363i −0.0931849 0.0385984i 0.335604 0.942003i \(-0.391060\pi\)
−0.428789 + 0.903405i \(0.641060\pi\)
\(662\) −10.2301 10.2301i −0.397602 0.397602i
\(663\) 0.0460290 + 1.67048i 0.00178762 + 0.0648760i
\(664\) 12.5527i 0.487141i
\(665\) 0 0
\(666\) 8.90764 13.3312i 0.345164 0.516575i
\(667\) 5.24815 0.203209
\(668\) 9.21428 13.7901i 0.356511 0.533557i
\(669\) −10.7421 + 7.17767i −0.415315 + 0.277505i
\(670\) 0 0
\(671\) −29.2592 + 12.1195i −1.12954 + 0.467870i
\(672\) −0.813590 0.337000i −0.0313849 0.0130000i
\(673\) 6.11108 + 9.14587i 0.235565 + 0.352548i 0.930352 0.366668i \(-0.119501\pi\)
−0.694787 + 0.719215i \(0.744501\pi\)
\(674\) 4.48644 + 6.71443i 0.172811 + 0.258630i
\(675\) 0 0
\(676\) 9.11673 9.11673i 0.350644 0.350644i
\(677\) 5.81600 1.15687i 0.223527 0.0444623i −0.0820560 0.996628i \(-0.526149\pi\)
0.305583 + 0.952165i \(0.401149\pi\)
\(678\) 4.45166 + 10.7473i 0.170965 + 0.412746i
\(679\) −7.00265 −0.268737
\(680\) 0 0
\(681\) −15.2117 −0.582913
\(682\) 5.82707 + 14.0678i 0.223130 + 0.538684i
\(683\) 20.7405 4.12555i 0.793615 0.157860i 0.218397 0.975860i \(-0.429917\pi\)
0.575218 + 0.818000i \(0.304917\pi\)
\(684\) 0.527704 0.527704i 0.0201772 0.0201772i
\(685\) 0 0
\(686\) 5.32832 + 7.97439i 0.203436 + 0.304464i
\(687\) −1.86001 2.78370i −0.0709637 0.106205i
\(688\) 0.310490 + 0.128609i 0.0118373 + 0.00490317i
\(689\) 1.30908 0.542240i 0.0498721 0.0206577i
\(690\) 0 0
\(691\) −11.6317 + 7.77206i −0.442491 + 0.295663i −0.756787 0.653662i \(-0.773232\pi\)
0.314295 + 0.949325i \(0.398232\pi\)
\(692\) −4.76181 + 7.12656i −0.181017 + 0.270911i
\(693\) 4.87077 0.185025
\(694\) −9.49472 + 14.2098i −0.360415 + 0.539398i
\(695\) 0 0
\(696\) 8.74722i 0.331563i
\(697\) 27.5692 + 10.5396i 1.04426 + 0.399215i
\(698\) 18.4982 + 18.4982i 0.700167 + 0.700167i
\(699\) 22.3636 + 9.26330i 0.845868 + 0.350370i
\(700\) 0 0
\(701\) −29.0853 29.0853i −1.09853 1.09853i −0.994582 0.103953i \(-0.966851\pi\)
−0.103953 0.994582i \(-0.533149\pi\)
\(702\) 1.50457 + 1.00532i 0.0567862 + 0.0379433i
\(703\) 1.08823 5.47088i 0.0410432 0.206338i
\(704\) 4.58953 + 0.912914i 0.172974 + 0.0344067i
\(705\) 0 0
\(706\) 13.0306 + 31.4587i 0.490414 + 1.18397i
\(707\) −8.53866 + 5.70535i −0.321129 + 0.214572i
\(708\) −4.84252 0.963237i −0.181993 0.0362006i
\(709\) −5.86964 29.5087i −0.220439 1.10822i −0.919479 0.393139i \(-0.871389\pi\)
0.699040 0.715082i \(-0.253611\pi\)
\(710\) 0 0
\(711\) −11.7225 7.83275i −0.439629 0.293751i
\(712\) 0.489660 0.202824i 0.0183508 0.00760115i
\(713\) 1.71060 1.71060i 0.0640623 0.0640623i
\(714\) 3.07340 + 1.93330i 0.115019 + 0.0723520i
\(715\) 0 0
\(716\) −7.81980 + 18.8787i −0.292240 + 0.705529i
\(717\) 6.13774 + 30.8565i 0.229218 + 1.15236i
\(718\) 1.96156i 0.0732047i
\(719\) −42.2633 + 8.40669i −1.57616 + 0.313517i −0.904211 0.427085i \(-0.859540\pi\)
−0.671944 + 0.740602i \(0.734540\pi\)
\(720\) 0 0
\(721\) −1.61132 + 8.10064i −0.0600086 + 0.301683i
\(722\) −7.17163 + 17.3138i −0.266900 + 0.644354i
\(723\) −3.79979 + 9.17350i −0.141316 + 0.341166i
\(724\) −0.840805 + 4.22701i −0.0312483 + 0.157096i
\(725\) 0 0
\(726\) 13.2433 2.63426i 0.491505 0.0977665i
\(727\) 22.7691i 0.844459i 0.906489 + 0.422230i \(0.138752\pi\)
−0.906489 + 0.422230i \(0.861248\pi\)
\(728\) 0.0453512 + 0.227996i 0.00168083 + 0.00845009i
\(729\) 9.24917 22.3295i 0.342562 0.827018i
\(730\) 0 0
\(731\) −1.17290 0.737804i −0.0433813 0.0272887i
\(732\) −5.92989 + 5.92989i −0.219175 + 0.219175i
\(733\) 6.72010 2.78355i 0.248212 0.102813i −0.255109 0.966912i \(-0.582111\pi\)
0.503321 + 0.864099i \(0.332111\pi\)
\(734\) −13.9565 9.32545i −0.515145 0.344209i
\(735\) 0 0
\(736\) −0.145038 0.729154i −0.00534616 0.0268770i
\(737\) 1.78371 + 0.354802i 0.0657039 + 0.0130693i
\(738\) 8.71745 5.82481i 0.320894 0.214414i
\(739\) 19.3452 + 46.7035i 0.711626 + 1.71802i 0.695898 + 0.718140i \(0.255006\pi\)
0.0157273 + 0.999876i \(0.494994\pi\)
\(740\) 0 0
\(741\) 0.202553 + 0.0402902i 0.00744095 + 0.00148010i
\(742\) 0.600615 3.01950i 0.0220493 0.110849i
\(743\) 19.7303 + 13.1834i 0.723835 + 0.483651i 0.862096 0.506745i \(-0.169151\pi\)
−0.138261 + 0.990396i \(0.544151\pi\)
\(744\) 2.85109 + 2.85109i 0.104526 + 0.104526i
\(745\) 0 0
\(746\) 6.75020 + 2.79603i 0.247143 + 0.102370i
\(747\) 13.0001 + 13.0001i 0.475648 + 0.475648i
\(748\) −18.0218 6.88965i −0.658942 0.251911i
\(749\) 6.83007i 0.249565i
\(750\) 0 0
\(751\) 15.9309 23.8422i 0.581326 0.870016i −0.417934 0.908477i \(-0.637246\pi\)
0.999260 + 0.0384614i \(0.0122457\pi\)
\(752\) −4.22197 −0.153959
\(753\) 14.3475 21.4725i 0.522850 0.782501i
\(754\) 1.91990 1.28284i 0.0699188 0.0467183i
\(755\) 0 0
\(756\) 3.63236 1.50457i 0.132108 0.0547208i
\(757\) −9.96860 4.12913i −0.362315 0.150076i 0.194097 0.980982i \(-0.437822\pi\)
−0.556412 + 0.830907i \(0.687822\pi\)
\(758\) −19.9099 29.7973i −0.723162 1.08229i
\(759\) −2.39490 3.58422i −0.0869294 0.130099i
\(760\) 0 0
\(761\) 16.8074 16.8074i 0.609267 0.609267i −0.333487 0.942755i \(-0.608225\pi\)
0.942755 + 0.333487i \(0.108225\pi\)
\(762\) 1.24276 0.247200i 0.0450204 0.00895511i
\(763\) −1.30085 3.14053i −0.0470939 0.113695i
\(764\) −16.2205 −0.586836
\(765\) 0 0
\(766\) 16.5450 0.597796
\(767\) 0.498770 + 1.20414i 0.0180095 + 0.0434788i
\(768\) 1.21530 0.241738i 0.0438533 0.00872297i
\(769\) 11.7131 11.7131i 0.422384 0.422384i −0.463640 0.886024i \(-0.653457\pi\)
0.886024 + 0.463640i \(0.153457\pi\)
\(770\) 0 0
\(771\) 5.86655 + 8.77991i 0.211279 + 0.316201i
\(772\) 0.0311335 + 0.0465946i 0.00112052 + 0.00167698i
\(773\) 19.3600 + 8.01916i 0.696329 + 0.288429i 0.702634 0.711551i \(-0.252007\pi\)
−0.00630500 + 0.999980i \(0.502007\pi\)
\(774\) −0.454747 + 0.188362i −0.0163455 + 0.00677054i
\(775\) 0 0
\(776\) 8.19271 5.47419i 0.294101 0.196512i
\(777\) 5.35587 8.01563i 0.192141 0.287559i
\(778\) 18.7827 0.673392
\(779\) 2.02648 3.03284i 0.0726061 0.108663i
\(780\) 0 0
\(781\) 73.3450i 2.62449i
\(782\) 0.0844297 + 3.06411i 0.00301920 + 0.109573i
\(783\) −27.6146 27.6146i −0.986866 0.986866i
\(784\) −6.00052 2.48550i −0.214304 0.0887678i
\(785\) 0 0
\(786\) −17.5560 17.5560i −0.626202 0.626202i
\(787\) −10.9455 7.31354i −0.390164 0.260700i 0.344980 0.938610i \(-0.387886\pi\)
−0.735144 + 0.677910i \(0.762886\pi\)
\(788\) −0.723626 + 3.63792i −0.0257781 + 0.129595i
\(789\) 26.9050 + 5.35174i 0.957844 + 0.190527i
\(790\) 0 0
\(791\) −2.55325 6.16410i −0.0907832 0.219170i
\(792\) −5.69853 + 3.80764i −0.202488 + 0.135298i
\(793\) 2.17119 + 0.431877i 0.0771013 + 0.0153364i
\(794\) 1.60682 + 8.07804i 0.0570240 + 0.286679i
\(795\) 0 0
\(796\) 5.52389 + 3.69094i 0.195789 + 0.130822i
\(797\) 15.4224 6.38819i 0.546291 0.226281i −0.0924305 0.995719i \(-0.529464\pi\)
0.638722 + 0.769438i \(0.279464\pi\)
\(798\) 0.317291 0.317291i 0.0112320 0.0112320i
\(799\) 17.1602 + 2.92451i 0.607084 + 0.103462i
\(800\) 0 0
\(801\) −0.297058 + 0.717163i −0.0104960 + 0.0253397i
\(802\) 1.57806 + 7.93345i 0.0557233 + 0.280140i
\(803\) 55.9734i 1.97526i
\(804\) 0.472324 0.0939510i 0.0166576 0.00331340i
\(805\) 0 0
\(806\) 0.207647 1.04391i 0.00731404 0.0367702i
\(807\) 11.2804 27.2332i 0.397088 0.958655i
\(808\) 5.52971 13.3499i 0.194534 0.469648i
\(809\) −1.40383 + 7.05754i −0.0493561 + 0.248130i −0.997585 0.0694582i \(-0.977873\pi\)
0.948229 + 0.317588i \(0.102873\pi\)
\(810\) 0 0
\(811\) −10.1395 + 2.01688i −0.356048 + 0.0708223i −0.369873 0.929082i \(-0.620599\pi\)
0.0138259 + 0.999904i \(0.495599\pi\)
\(812\) 5.01698i 0.176061i
\(813\) −5.03278 25.3015i −0.176507 0.887362i
\(814\) −19.6036 + 47.3272i −0.687104 + 1.65882i
\(815\) 0 0
\(816\) −5.10703 + 0.140721i −0.178782 + 0.00492622i
\(817\) −0.121087 + 0.121087i −0.00423632 + 0.00423632i
\(818\) −5.55409 + 2.30058i −0.194194 + 0.0804378i
\(819\) −0.283088 0.189154i −0.00989191 0.00660956i
\(820\) 0 0
\(821\) 7.89804 + 39.7061i 0.275643 + 1.38575i 0.831984 + 0.554799i \(0.187205\pi\)
−0.556341 + 0.830954i \(0.687795\pi\)
\(822\) −21.8227 4.34081i −0.761154 0.151403i
\(823\) 33.6500 22.4842i 1.17297 0.783751i 0.192666 0.981264i \(-0.438287\pi\)
0.980300 + 0.197514i \(0.0632867\pi\)
\(824\) −4.44738 10.7369i −0.154932 0.374038i
\(825\) 0 0
\(826\) 2.77743 + 0.552465i 0.0966391 + 0.0192227i
\(827\) −8.79987 + 44.2399i −0.306001 + 1.53837i 0.455515 + 0.890228i \(0.349455\pi\)
−0.761517 + 0.648145i \(0.775545\pi\)
\(828\) 0.905345 + 0.604932i 0.0314629 + 0.0210229i
\(829\) −3.20565 3.20565i −0.111337 0.111337i 0.649244 0.760580i \(-0.275086\pi\)
−0.760580 + 0.649244i \(0.775086\pi\)
\(830\) 0 0
\(831\) −4.58563 1.89943i −0.159074 0.0658905i
\(832\) −0.231290 0.231290i −0.00801854 0.00801854i
\(833\) 22.6675 + 14.2588i 0.785381 + 0.494038i
\(834\) 20.3462i 0.704531i
\(835\) 0 0
\(836\) −1.32469 + 1.98254i −0.0458155 + 0.0685677i
\(837\) −18.0015 −0.622224
\(838\) −3.45852 + 5.17603i −0.119472 + 0.178803i
\(839\) −5.29222 + 3.53615i −0.182708 + 0.122081i −0.643561 0.765395i \(-0.722544\pi\)
0.460853 + 0.887477i \(0.347544\pi\)
\(840\) 0 0
\(841\) −19.2477 + 7.97267i −0.663715 + 0.274920i
\(842\) −23.7040 9.81852i −0.816894 0.338369i
\(843\) −10.0016 14.9684i −0.344472 0.515539i
\(844\) 9.75666 + 14.6019i 0.335838 + 0.502617i
\(845\) 0 0
\(846\) 4.37243 4.37243i 0.150327 0.150327i
\(847\) −7.59571 + 1.51088i −0.260992 + 0.0519145i
\(848\) 1.65775 + 4.00217i 0.0569274 + 0.137435i
\(849\) −15.7299 −0.539847
\(850\) 0 0
\(851\) 8.13854 0.278986
\(852\) 7.43234 + 17.9432i 0.254628 + 0.614726i
\(853\) −24.6319 + 4.89959i −0.843381 + 0.167759i −0.597828 0.801624i \(-0.703969\pi\)
−0.245553 + 0.969383i \(0.578969\pi\)
\(854\) 3.40109 3.40109i 0.116383 0.116383i
\(855\) 0 0
\(856\) 5.33929 + 7.99081i 0.182493 + 0.273120i
\(857\) 19.7655 + 29.5811i 0.675175 + 1.01047i 0.997950 + 0.0639953i \(0.0203843\pi\)
−0.322775 + 0.946476i \(0.604616\pi\)
\(858\) −1.75223 0.725797i −0.0598201 0.0247783i
\(859\) 21.0814 8.73222i 0.719289 0.297939i 0.00714690 0.999974i \(-0.497725\pi\)
0.712142 + 0.702035i \(0.247725\pi\)
\(860\) 0 0
\(861\) 5.24151 3.50227i 0.178630 0.119357i
\(862\) 20.5669 30.7805i 0.700510 1.04839i
\(863\) −25.2963 −0.861095 −0.430548 0.902568i \(-0.641680\pi\)
−0.430548 + 0.902568i \(0.641680\pi\)
\(864\) −3.07349 + 4.59980i −0.104562 + 0.156488i
\(865\) 0 0
\(866\) 7.30274i 0.248157i
\(867\) 20.8550 + 2.96562i 0.708274 + 0.100718i
\(868\) −1.63525 1.63525i −0.0555038 0.0555038i
\(869\) 41.6162 + 17.2380i 1.41173 + 0.584758i
\(870\) 0 0
\(871\) −0.0898905 0.0898905i −0.00304582 0.00304582i
\(872\) 3.97698 + 2.65733i 0.134677 + 0.0899886i
\(873\) −2.81540 + 14.1540i −0.0952867 + 0.479039i
\(874\) 0.371537 + 0.0739032i 0.0125674 + 0.00249981i
\(875\) 0 0
\(876\) −5.67200 13.6934i −0.191639 0.462658i
\(877\) −10.7855 + 7.20665i −0.364201 + 0.243351i −0.724183 0.689608i \(-0.757783\pi\)
0.359982 + 0.932959i \(0.382783\pi\)
\(878\) 30.8678 + 6.13999i 1.04174 + 0.207214i
\(879\) −2.01615 10.1358i −0.0680029 0.341874i
\(880\) 0 0
\(881\) 11.7274 + 7.83599i 0.395106 + 0.264001i 0.737214 0.675659i \(-0.236141\pi\)
−0.342108 + 0.939661i \(0.611141\pi\)
\(882\) 8.78844 3.64029i 0.295922 0.122575i
\(883\) 2.99147 2.99147i 0.100671 0.100671i −0.654977 0.755648i \(-0.727322\pi\)
0.755648 + 0.654977i \(0.227322\pi\)
\(884\) 0.779867 + 1.10029i 0.0262298 + 0.0370068i
\(885\) 0 0
\(886\) −6.37440 + 15.3892i −0.214152 + 0.517009i
\(887\) 7.78099 + 39.1177i 0.261260 + 1.31344i 0.859092 + 0.511822i \(0.171029\pi\)
−0.597831 + 0.801622i \(0.703971\pi\)
\(888\) 13.5647i 0.455202i
\(889\) −0.712785 + 0.141782i −0.0239060 + 0.00475521i
\(890\) 0 0
\(891\) −2.24675 + 11.2952i −0.0752690 + 0.378403i
\(892\) −3.99002 + 9.63276i −0.133596 + 0.322529i
\(893\) 0.823260 1.98753i 0.0275494 0.0665100i
\(894\) 1.37662 6.92075i 0.0460411 0.231464i
\(895\) 0 0
\(896\) −0.697035 + 0.138649i −0.0232863 + 0.00463194i
\(897\) 0.301319i 0.0100608i
\(898\) −3.13392 15.7553i −0.104580 0.525760i
\(899\) −8.79058 + 21.2223i −0.293182 + 0.707805i
\(900\) 0 0
\(901\) −3.96568 17.4151i −0.132116 0.580182i
\(902\) −23.6864 + 23.6864i −0.788671 + 0.788671i
\(903\) −0.273424 + 0.113256i −0.00909899 + 0.00376893i
\(904\) 7.80584 + 5.21569i 0.259618 + 0.173471i
\(905\) 0 0
\(906\) 2.58439 + 12.9926i 0.0858607 + 0.431651i
\(907\) −3.80511 0.756884i −0.126347 0.0251319i 0.131512 0.991315i \(-0.458017\pi\)
−0.257859 + 0.966183i \(0.583017\pi\)
\(908\) −10.2074 + 6.82036i −0.338744 + 0.226342i
\(909\) 8.09888 + 19.5524i 0.268623 + 0.648513i
\(910\) 0 0
\(911\) −21.2127 4.21946i −0.702807 0.139797i −0.169265 0.985571i \(-0.554139\pi\)
−0.533542 + 0.845773i \(0.679139\pi\)
\(912\) −0.123176 + 0.619249i −0.00407878 + 0.0205054i
\(913\) −48.8404 32.6341i −1.61638 1.08003i
\(914\) 5.98568 + 5.98568i 0.197989 + 0.197989i
\(915\) 0 0
\(916\) −2.49621 1.03397i −0.0824772 0.0341632i
\(917\) 10.0693 + 10.0693i 0.332516 + 0.332516i
\(918\) 15.6784 16.5669i 0.517466 0.546790i
\(919\) 21.0567i 0.694597i −0.937755 0.347298i \(-0.887099\pi\)
0.937755 0.347298i \(-0.112901\pi\)
\(920\) 0 0
\(921\) 0.0867999 0.129905i 0.00286015 0.00428052i
\(922\) −33.5640 −1.10537
\(923\) 2.84831 4.26280i 0.0937534 0.140312i
\(924\) −3.42634 + 2.28941i −0.112718 + 0.0753159i
\(925\) 0 0
\(926\) −5.28643 + 2.18971i −0.173723 + 0.0719584i
\(927\) 15.7254 + 6.51368i 0.516491 + 0.213937i
\(928\) 3.92193 + 5.86959i 0.128744 + 0.192679i
\(929\) 15.1360 + 22.6526i 0.496595 + 0.743207i 0.992107 0.125394i \(-0.0400196\pi\)
−0.495512 + 0.868601i \(0.665020\pi\)
\(930\) 0 0
\(931\) 2.34014 2.34014i 0.0766949 0.0766949i
\(932\) 19.1598 3.81112i 0.627600 0.124837i
\(933\) 4.53859 + 10.9571i 0.148587 + 0.358720i
\(934\) 37.1440 1.21539
\(935\) 0 0
\(936\) 0.479065 0.0156587
\(937\) −6.54003 15.7890i −0.213653 0.515805i 0.780326 0.625373i \(-0.215053\pi\)
−0.993979 + 0.109568i \(0.965053\pi\)
\(938\) −0.270902 + 0.0538857i −0.00884525 + 0.00175943i
\(939\) −15.2449 + 15.2449i −0.497498 + 0.497498i
\(940\) 0 0
\(941\) −3.01100 4.50628i −0.0981558 0.146900i 0.779141 0.626849i \(-0.215656\pi\)
−0.877297 + 0.479948i \(0.840656\pi\)
\(942\) 11.0861 + 16.5915i 0.361205 + 0.540582i
\(943\) 4.91678 + 2.03660i 0.160112 + 0.0663208i
\(944\) −3.68132 + 1.52485i −0.119817 + 0.0496297i
\(945\) 0 0
\(946\) 1.30759 0.873705i 0.0425135 0.0284066i
\(947\) −3.28837 + 4.92140i −0.106858 + 0.159924i −0.881045 0.473033i \(-0.843159\pi\)
0.774187 + 0.632957i \(0.218159\pi\)
\(948\) 11.9278 0.387398
\(949\) −2.17369 + 3.25316i −0.0705611 + 0.105602i
\(950\) 0 0
\(951\) 24.8206i 0.804863i
\(952\) 2.92914 0.0807107i 0.0949341 0.00261585i
\(953\) 15.4098 + 15.4098i 0.499172 + 0.499172i 0.911180 0.412008i \(-0.135173\pi\)
−0.412008 + 0.911180i \(0.635173\pi\)
\(954\) −5.86162 2.42796i −0.189777 0.0786082i
\(955\) 0 0
\(956\) 17.9535 + 17.9535i 0.580657 + 0.580657i
\(957\) 34.0338 + 22.7407i 1.10016 + 0.735101i
\(958\) 3.77700 18.9883i 0.122029 0.613484i
\(959\) 12.5164 + 2.48967i 0.404177 + 0.0803957i
\(960\) 0 0
\(961\) −7.81115 18.8578i −0.251973 0.608315i
\(962\) 2.97728 1.98935i 0.0959914 0.0641394i
\(963\) −13.8051 2.74601i −0.444864 0.0884890i
\(964\) 1.56331 + 7.85931i 0.0503510 + 0.253131i
\(965\) 0 0
\(966\) 0.544354 + 0.363726i 0.0175143 + 0.0117027i
\(967\) −42.9099 + 17.7739i −1.37989 + 0.571569i −0.944452 0.328649i \(-0.893407\pi\)
−0.435438 + 0.900219i \(0.643407\pi\)
\(968\) 7.70546 7.70546i 0.247663 0.247663i
\(969\) 0.929597 2.43162i 0.0298630 0.0781148i
\(970\) 0 0
\(971\) −6.91456 + 16.6932i −0.221899 + 0.535711i −0.995148 0.0983915i \(-0.968630\pi\)
0.773249 + 0.634102i \(0.218630\pi\)
\(972\) −2.64286 13.2866i −0.0847699 0.426167i
\(973\) 11.6696i 0.374110i
\(974\) −1.95796 + 0.389463i −0.0627372 + 0.0124792i
\(975\) 0 0
\(976\) −1.32035 + 6.63783i −0.0422633 + 0.212472i
\(977\) −4.78935 + 11.5625i −0.153225 + 0.369917i −0.981788 0.189978i \(-0.939158\pi\)
0.828564 + 0.559895i \(0.189158\pi\)
\(978\) −10.4249 + 25.1679i −0.333352 + 0.804782i
\(979\) 0.483849 2.43247i 0.0154639 0.0777421i
\(980\) 0 0
\(981\) −6.87074 + 1.36667i −0.219366 + 0.0436346i
\(982\) 20.3744i 0.650172i
\(983\) 10.4133 + 52.3512i 0.332132 + 1.66974i 0.680779 + 0.732489i \(0.261641\pi\)
−0.348647 + 0.937254i \(0.613359\pi\)
\(984\) −3.39445 + 8.19492i −0.108211 + 0.261245i
\(985\) 0 0
\(986\) −11.8749 26.5736i −0.378174 0.846277i
\(987\) 2.62900 2.62900i 0.0836819 0.0836819i
\(988\) 0.153982 0.0637814i 0.00489882 0.00202916i
\(989\) −0.207742 0.138809i −0.00660580 0.00441385i
\(990\) 0 0
\(991\) −5.61025 28.2046i −0.178216 0.895950i −0.961609 0.274424i \(-0.911513\pi\)
0.783393 0.621526i \(-0.213487\pi\)
\(992\) 3.19147 + 0.634823i 0.101329 + 0.0201557i
\(993\) −14.9056 + 9.95958i −0.473014 + 0.316058i
\(994\) −4.26282 10.2914i −0.135209 0.326422i
\(995\) 0 0
\(996\) −15.2553 3.03448i −0.483384 0.0961510i
\(997\) 4.14662 20.8465i 0.131325 0.660215i −0.857901 0.513815i \(-0.828232\pi\)
0.989226 0.146399i \(-0.0467684\pi\)
\(998\) 12.9080 + 8.62482i 0.408594 + 0.273014i
\(999\) −42.8232 42.8232i −1.35487 1.35487i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.v.c.143.2 32
5.2 odd 4 850.2.s.c.7.3 32
5.3 odd 4 170.2.o.a.7.2 32
5.4 even 2 170.2.r.a.143.3 yes 32
17.5 odd 16 850.2.s.c.243.3 32
85.22 even 16 inner 850.2.v.c.107.2 32
85.39 odd 16 170.2.o.a.73.2 yes 32
85.73 even 16 170.2.r.a.107.3 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.o.a.7.2 32 5.3 odd 4
170.2.o.a.73.2 yes 32 85.39 odd 16
170.2.r.a.107.3 yes 32 85.73 even 16
170.2.r.a.143.3 yes 32 5.4 even 2
850.2.s.c.7.3 32 5.2 odd 4
850.2.s.c.243.3 32 17.5 odd 16
850.2.v.c.107.2 32 85.22 even 16 inner
850.2.v.c.143.2 32 1.1 even 1 trivial