Properties

Label 171.4.e.a.58.19
Level $171$
Weight $4$
Character 171.58
Analytic conductor $10.089$
Analytic rank $0$
Dimension $54$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,4,Mod(58,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.58");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 171.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0893266110\)
Analytic rank: \(0\)
Dimension: \(54\)
Relative dimension: \(27\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 58.19
Character \(\chi\) \(=\) 171.58
Dual form 171.4.e.a.115.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.989966 + 1.71467i) q^{2} +(4.88583 + 1.76881i) q^{3} +(2.03993 - 3.53327i) q^{4} +(1.25650 - 2.17632i) q^{5} +(1.80387 + 10.1287i) q^{6} +(-18.0950 - 31.3414i) q^{7} +23.9173 q^{8} +(20.7426 + 17.2842i) q^{9} +O(q^{10})\) \(q+(0.989966 + 1.71467i) q^{2} +(4.88583 + 1.76881i) q^{3} +(2.03993 - 3.53327i) q^{4} +(1.25650 - 2.17632i) q^{5} +(1.80387 + 10.1287i) q^{6} +(-18.0950 - 31.3414i) q^{7} +23.9173 q^{8} +(20.7426 + 17.2842i) q^{9} +4.97556 q^{10} +(17.8332 + 30.8880i) q^{11} +(16.2165 - 13.6547i) q^{12} +(32.9774 - 57.1185i) q^{13} +(35.8268 - 62.0539i) q^{14} +(9.98854 - 8.41061i) q^{15} +(7.35786 + 12.7442i) q^{16} +27.0750 q^{17} +(-9.10228 + 52.6775i) q^{18} -19.0000 q^{19} +(-5.12635 - 8.87910i) q^{20} +(-32.9718 - 185.135i) q^{21} +(-35.3085 + 61.1562i) q^{22} +(-78.7214 + 136.349i) q^{23} +(116.856 + 42.3052i) q^{24} +(59.3424 + 102.784i) q^{25} +130.586 q^{26} +(70.7723 + 121.137i) q^{27} -147.650 q^{28} +(-119.004 - 206.121i) q^{29} +(24.3097 + 8.80084i) q^{30} +(-37.5030 + 64.9570i) q^{31} +(81.1012 - 140.471i) q^{32} +(32.4949 + 182.457i) q^{33} +(26.8034 + 46.4248i) q^{34} -90.9452 q^{35} +(103.383 - 38.0306i) q^{36} +18.8827 q^{37} +(-18.8094 - 32.5788i) q^{38} +(262.154 - 220.740i) q^{39} +(30.0521 - 52.0517i) q^{40} +(-85.4586 + 148.019i) q^{41} +(284.805 - 239.813i) q^{42} +(34.8186 + 60.3077i) q^{43} +145.514 q^{44} +(63.6790 - 23.4249i) q^{45} -311.726 q^{46} +(254.788 + 441.305i) q^{47} +(13.4072 + 75.2806i) q^{48} +(-483.356 + 837.197i) q^{49} +(-117.494 + 203.506i) q^{50} +(132.284 + 47.8907i) q^{51} +(-134.543 - 233.036i) q^{52} +211.211 q^{53} +(-137.649 + 241.273i) q^{54} +89.6296 q^{55} +(-432.783 - 749.602i) q^{56} +(-92.8307 - 33.6074i) q^{57} +(235.619 - 408.105i) q^{58} +(-24.0526 + 41.6603i) q^{59} +(-9.34100 - 52.4493i) q^{60} +(-320.221 - 554.638i) q^{61} -148.507 q^{62} +(166.375 - 962.860i) q^{63} +438.876 q^{64} +(-82.8721 - 143.539i) q^{65} +(-280.685 + 236.344i) q^{66} +(160.552 - 278.084i) q^{67} +(55.2313 - 95.6635i) q^{68} +(-625.796 + 526.937i) q^{69} +(-90.0327 - 155.941i) q^{70} -564.580 q^{71} +(496.108 + 413.392i) q^{72} -1223.30 q^{73} +(18.6932 + 32.3776i) q^{74} +(108.131 + 607.151i) q^{75} +(-38.7588 + 67.1321i) q^{76} +(645.383 - 1117.84i) q^{77} +(638.020 + 230.982i) q^{78} +(527.668 + 913.948i) q^{79} +36.9806 q^{80} +(131.512 + 717.040i) q^{81} -338.404 q^{82} +(-408.359 - 707.299i) q^{83} +(-721.393 - 261.165i) q^{84} +(34.0198 - 58.9240i) q^{85} +(-68.9386 + 119.405i) q^{86} +(-216.843 - 1217.57i) q^{87} +(426.523 + 738.759i) q^{88} -119.022 q^{89} +(103.206 + 85.9988i) q^{90} -2386.90 q^{91} +(321.173 + 556.288i) q^{92} +(-298.130 + 251.033i) q^{93} +(-504.462 + 873.754i) q^{94} +(-23.8735 + 41.3501i) q^{95} +(644.714 - 542.866i) q^{96} +(470.013 + 814.087i) q^{97} -1914.02 q^{98} +(-163.968 + 948.931i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 6 q^{2} + 2 q^{3} - 108 q^{4} - 26 q^{5} + 59 q^{6} + 138 q^{8} - 102 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 54 q - 6 q^{2} + 2 q^{3} - 108 q^{4} - 26 q^{5} + 59 q^{6} + 138 q^{8} - 102 q^{9} - 70 q^{11} + 256 q^{12} - 121 q^{14} + 64 q^{15} - 468 q^{16} + 136 q^{17} - 102 q^{18} - 1026 q^{19} - 136 q^{20} + 133 q^{21} - 250 q^{23} - 762 q^{24} - 819 q^{25} + 1132 q^{26} + 1091 q^{27} - 920 q^{29} + 160 q^{30} - 18 q^{31} - 1368 q^{32} - 650 q^{33} + 528 q^{35} + 2043 q^{36} + 630 q^{37} + 114 q^{38} - 325 q^{39} - 854 q^{41} - 818 q^{42} + 144 q^{43} + 3496 q^{44} + 1984 q^{45} + 144 q^{46} - 81 q^{47} + 1060 q^{48} - 1521 q^{49} - 3776 q^{50} - 1234 q^{51} - 1251 q^{52} + 4532 q^{53} + 50 q^{54} - 1008 q^{55} - 3735 q^{56} - 38 q^{57} - 45 q^{58} - 1294 q^{59} - 1039 q^{60} + 18 q^{61} + 3116 q^{62} + 332 q^{63} + 4302 q^{64} - 2586 q^{65} - 635 q^{66} + 306 q^{67} - 3130 q^{68} - 1980 q^{69} + 2205 q^{70} + 5388 q^{71} + 4728 q^{72} - 72 q^{73} - 3202 q^{74} + 924 q^{75} + 2052 q^{76} - 2836 q^{77} - 85 q^{78} - 954 q^{79} + 9386 q^{80} + 5298 q^{81} - 2574 q^{82} - 1202 q^{83} - 10546 q^{84} + 468 q^{85} - 4029 q^{86} + 4797 q^{87} + 1044 q^{88} + 8812 q^{89} + 2101 q^{90} - 306 q^{91} - 7973 q^{92} - 3154 q^{93} + 225 q^{94} + 494 q^{95} - 434 q^{96} + 2142 q^{97} + 12128 q^{98} + 2690 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.989966 + 1.71467i 0.350006 + 0.606228i 0.986250 0.165260i \(-0.0528463\pi\)
−0.636244 + 0.771488i \(0.719513\pi\)
\(3\) 4.88583 + 1.76881i 0.940278 + 0.340408i
\(4\) 2.03993 3.53327i 0.254992 0.441659i
\(5\) 1.25650 2.17632i 0.112385 0.194656i −0.804347 0.594160i \(-0.797484\pi\)
0.916731 + 0.399504i \(0.130818\pi\)
\(6\) 1.80387 + 10.1287i 0.122738 + 0.689167i
\(7\) −18.0950 31.3414i −0.977036 1.69228i −0.673044 0.739602i \(-0.735014\pi\)
−0.303992 0.952674i \(-0.598320\pi\)
\(8\) 23.9173 1.05701
\(9\) 20.7426 + 17.2842i 0.768245 + 0.640156i
\(10\) 4.97556 0.157341
\(11\) 17.8332 + 30.8880i 0.488810 + 0.846645i 0.999917 0.0128727i \(-0.00409763\pi\)
−0.511107 + 0.859517i \(0.670764\pi\)
\(12\) 16.2165 13.6547i 0.390107 0.328481i
\(13\) 32.9774 57.1185i 0.703560 1.21860i −0.263649 0.964619i \(-0.584926\pi\)
0.967209 0.253983i \(-0.0817407\pi\)
\(14\) 35.8268 62.0539i 0.683937 1.18461i
\(15\) 9.98854 8.41061i 0.171935 0.144774i
\(16\) 7.35786 + 12.7442i 0.114967 + 0.199128i
\(17\) 27.0750 0.386274 0.193137 0.981172i \(-0.438134\pi\)
0.193137 + 0.981172i \(0.438134\pi\)
\(18\) −9.10228 + 52.6775i −0.119190 + 0.689790i
\(19\) −19.0000 −0.229416
\(20\) −5.12635 8.87910i −0.0573143 0.0992713i
\(21\) −32.9718 185.135i −0.342621 1.92380i
\(22\) −35.3085 + 61.1562i −0.342173 + 0.592661i
\(23\) −78.7214 + 136.349i −0.713676 + 1.23612i 0.249792 + 0.968300i \(0.419638\pi\)
−0.963468 + 0.267824i \(0.913696\pi\)
\(24\) 116.856 + 42.3052i 0.993879 + 0.359813i
\(25\) 59.3424 + 102.784i 0.474739 + 0.822273i
\(26\) 130.586 0.985000
\(27\) 70.7723 + 121.137i 0.504449 + 0.863441i
\(28\) −147.650 −0.996545
\(29\) −119.004 206.121i −0.762016 1.31985i −0.941810 0.336146i \(-0.890877\pi\)
0.179794 0.983704i \(-0.442457\pi\)
\(30\) 24.3097 + 8.80084i 0.147944 + 0.0535602i
\(31\) −37.5030 + 64.9570i −0.217282 + 0.376343i −0.953976 0.299883i \(-0.903052\pi\)
0.736694 + 0.676226i \(0.236386\pi\)
\(32\) 81.1012 140.471i 0.448025 0.776002i
\(33\) 32.4949 + 182.457i 0.171413 + 0.962476i
\(34\) 26.8034 + 46.4248i 0.135198 + 0.234170i
\(35\) −90.9452 −0.439216
\(36\) 103.383 38.0306i 0.478627 0.176067i
\(37\) 18.8827 0.0839000 0.0419500 0.999120i \(-0.486643\pi\)
0.0419500 + 0.999120i \(0.486643\pi\)
\(38\) −18.8094 32.5788i −0.0802968 0.139078i
\(39\) 262.154 220.740i 1.07636 0.906327i
\(40\) 30.0521 52.0517i 0.118791 0.205753i
\(41\) −85.4586 + 148.019i −0.325522 + 0.563820i −0.981618 0.190857i \(-0.938873\pi\)
0.656096 + 0.754677i \(0.272207\pi\)
\(42\) 284.805 239.813i 1.04634 0.881048i
\(43\) 34.8186 + 60.3077i 0.123484 + 0.213880i 0.921139 0.389233i \(-0.127260\pi\)
−0.797656 + 0.603113i \(0.793927\pi\)
\(44\) 145.514 0.498571
\(45\) 63.6790 23.4249i 0.210949 0.0775997i
\(46\) −311.726 −0.999163
\(47\) 254.788 + 441.305i 0.790736 + 1.36959i 0.925512 + 0.378719i \(0.123635\pi\)
−0.134776 + 0.990876i \(0.543031\pi\)
\(48\) 13.4072 + 75.2806i 0.0403158 + 0.226371i
\(49\) −483.356 + 837.197i −1.40920 + 2.44081i
\(50\) −117.494 + 203.506i −0.332323 + 0.575601i
\(51\) 132.284 + 47.8907i 0.363205 + 0.131491i
\(52\) −134.543 233.036i −0.358804 0.621467i
\(53\) 211.211 0.547398 0.273699 0.961815i \(-0.411753\pi\)
0.273699 + 0.961815i \(0.411753\pi\)
\(54\) −137.649 + 241.273i −0.346882 + 0.608021i
\(55\) 89.6296 0.219739
\(56\) −432.783 749.602i −1.03273 1.78875i
\(57\) −92.8307 33.6074i −0.215715 0.0780950i
\(58\) 235.619 408.105i 0.533420 0.923910i
\(59\) −24.0526 + 41.6603i −0.0530742 + 0.0919272i −0.891342 0.453332i \(-0.850235\pi\)
0.838268 + 0.545259i \(0.183569\pi\)
\(60\) −9.34100 52.4493i −0.0200986 0.112853i
\(61\) −320.221 554.638i −0.672132 1.16417i −0.977298 0.211868i \(-0.932045\pi\)
0.305166 0.952299i \(-0.401288\pi\)
\(62\) −148.507 −0.304199
\(63\) 166.375 962.860i 0.332718 1.92554i
\(64\) 438.876 0.857179
\(65\) −82.8721 143.539i −0.158139 0.273904i
\(66\) −280.685 + 236.344i −0.523484 + 0.440788i
\(67\) 160.552 278.084i 0.292754 0.507065i −0.681706 0.731626i \(-0.738762\pi\)
0.974460 + 0.224561i \(0.0720949\pi\)
\(68\) 55.2313 95.6635i 0.0984968 0.170601i
\(69\) −625.796 + 526.937i −1.09184 + 0.919358i
\(70\) −90.0327 155.941i −0.153728 0.266265i
\(71\) −564.580 −0.943709 −0.471855 0.881676i \(-0.656415\pi\)
−0.471855 + 0.881676i \(0.656415\pi\)
\(72\) 496.108 + 413.392i 0.812039 + 0.676649i
\(73\) −1223.30 −1.96132 −0.980660 0.195717i \(-0.937297\pi\)
−0.980660 + 0.195717i \(0.937297\pi\)
\(74\) 18.6932 + 32.3776i 0.0293655 + 0.0508625i
\(75\) 108.131 + 607.151i 0.166479 + 0.934770i
\(76\) −38.7588 + 67.1321i −0.0584991 + 0.101323i
\(77\) 645.383 1117.84i 0.955171 1.65441i
\(78\) 638.020 + 230.982i 0.926174 + 0.335302i
\(79\) 527.668 + 913.948i 0.751485 + 1.30161i 0.947103 + 0.320930i \(0.103996\pi\)
−0.195618 + 0.980680i \(0.562671\pi\)
\(80\) 36.9806 0.0516819
\(81\) 131.512 + 717.040i 0.180400 + 0.983593i
\(82\) −338.404 −0.455738
\(83\) −408.359 707.299i −0.540039 0.935376i −0.998901 0.0468679i \(-0.985076\pi\)
0.458862 0.888508i \(-0.348257\pi\)
\(84\) −721.393 261.165i −0.937029 0.339232i
\(85\) 34.0198 58.9240i 0.0434113 0.0751906i
\(86\) −68.9386 + 119.405i −0.0864400 + 0.149718i
\(87\) −216.843 1217.57i −0.267219 1.50042i
\(88\) 426.523 + 738.759i 0.516676 + 0.894909i
\(89\) −119.022 −0.141756 −0.0708782 0.997485i \(-0.522580\pi\)
−0.0708782 + 0.997485i \(0.522580\pi\)
\(90\) 103.206 + 85.9988i 0.120877 + 0.100723i
\(91\) −2386.90 −2.74961
\(92\) 321.173 + 556.288i 0.363963 + 0.630403i
\(93\) −298.130 + 251.033i −0.332415 + 0.279902i
\(94\) −504.462 + 873.754i −0.553524 + 0.958732i
\(95\) −23.8735 + 41.3501i −0.0257828 + 0.0446571i
\(96\) 644.714 542.866i 0.685426 0.577146i
\(97\) 470.013 + 814.087i 0.491986 + 0.852144i 0.999957 0.00922935i \(-0.00293784\pi\)
−0.507972 + 0.861374i \(0.669605\pi\)
\(98\) −1914.02 −1.97291
\(99\) −163.968 + 948.931i −0.166459 + 0.963345i
\(100\) 484.219 0.484219
\(101\) −607.124 1051.57i −0.598129 1.03599i −0.993097 0.117296i \(-0.962578\pi\)
0.394968 0.918695i \(-0.370756\pi\)
\(102\) 48.8399 + 274.234i 0.0474105 + 0.266208i
\(103\) 56.6910 98.1917i 0.0542324 0.0939332i −0.837635 0.546231i \(-0.816062\pi\)
0.891867 + 0.452298i \(0.149395\pi\)
\(104\) 788.731 1366.12i 0.743667 1.28807i
\(105\) −444.343 160.865i −0.412985 0.149513i
\(106\) 209.092 + 362.158i 0.191593 + 0.331848i
\(107\) 1158.81 1.04697 0.523487 0.852034i \(-0.324631\pi\)
0.523487 + 0.852034i \(0.324631\pi\)
\(108\) 572.382 2.94497i 0.509977 0.00262388i
\(109\) 553.494 0.486377 0.243189 0.969979i \(-0.421807\pi\)
0.243189 + 0.969979i \(0.421807\pi\)
\(110\) 88.7303 + 153.685i 0.0769100 + 0.133212i
\(111\) 92.2577 + 33.4000i 0.0788893 + 0.0285602i
\(112\) 266.280 461.211i 0.224653 0.389110i
\(113\) −146.584 + 253.890i −0.122030 + 0.211363i −0.920568 0.390582i \(-0.872274\pi\)
0.798538 + 0.601945i \(0.205607\pi\)
\(114\) −34.2735 192.444i −0.0281580 0.158106i
\(115\) 197.827 + 342.646i 0.160413 + 0.277843i
\(116\) −971.040 −0.777231
\(117\) 1671.29 614.798i 1.32060 0.485796i
\(118\) −95.2449 −0.0743051
\(119\) −489.922 848.570i −0.377404 0.653683i
\(120\) 238.899 201.159i 0.181737 0.153027i
\(121\) 29.4532 51.0145i 0.0221287 0.0383280i
\(122\) 634.015 1098.15i 0.470500 0.814930i
\(123\) −679.353 + 572.033i −0.498010 + 0.419337i
\(124\) 153.007 + 265.016i 0.110810 + 0.191929i
\(125\) 612.379 0.438183
\(126\) 1815.69 667.920i 1.28377 0.472247i
\(127\) 567.894 0.396791 0.198395 0.980122i \(-0.436427\pi\)
0.198395 + 0.980122i \(0.436427\pi\)
\(128\) −214.338 371.244i −0.148008 0.256357i
\(129\) 63.4450 + 356.240i 0.0433025 + 0.243141i
\(130\) 164.081 284.197i 0.110699 0.191736i
\(131\) −778.288 + 1348.03i −0.519079 + 0.899071i 0.480675 + 0.876899i \(0.340392\pi\)
−0.999754 + 0.0221726i \(0.992942\pi\)
\(132\) 710.958 + 257.387i 0.468795 + 0.169717i
\(133\) 343.804 + 595.487i 0.224148 + 0.388235i
\(134\) 635.763 0.409863
\(135\) 352.559 1.81395i 0.224766 0.00115645i
\(136\) 647.563 0.408294
\(137\) 782.857 + 1355.95i 0.488204 + 0.845594i 0.999908 0.0135677i \(-0.00431886\pi\)
−0.511704 + 0.859162i \(0.670986\pi\)
\(138\) −1523.04 551.385i −0.939491 0.340123i
\(139\) 480.105 831.565i 0.292964 0.507428i −0.681546 0.731776i \(-0.738692\pi\)
0.974509 + 0.224348i \(0.0720252\pi\)
\(140\) −185.522 + 321.334i −0.111996 + 0.193983i
\(141\) 464.262 + 2606.81i 0.277290 + 1.55697i
\(142\) −558.915 968.070i −0.330304 0.572103i
\(143\) 2352.37 1.37563
\(144\) −67.6521 + 391.522i −0.0391505 + 0.226576i
\(145\) −598.113 −0.342556
\(146\) −1211.03 2097.56i −0.686474 1.18901i
\(147\) −3842.44 + 3235.43i −2.15591 + 1.81533i
\(148\) 38.5195 66.7177i 0.0213938 0.0370552i
\(149\) 287.163 497.380i 0.157888 0.273470i −0.776219 0.630463i \(-0.782865\pi\)
0.934107 + 0.356994i \(0.116198\pi\)
\(150\) −934.018 + 786.468i −0.508415 + 0.428099i
\(151\) −576.757 998.973i −0.310833 0.538379i 0.667710 0.744422i \(-0.267275\pi\)
−0.978543 + 0.206043i \(0.933941\pi\)
\(152\) −454.429 −0.242494
\(153\) 561.607 + 467.971i 0.296753 + 0.247276i
\(154\) 2555.63 1.33726
\(155\) 94.2448 + 163.237i 0.0488382 + 0.0845903i
\(156\) −245.159 1376.56i −0.125823 0.706491i
\(157\) −1033.02 + 1789.25i −0.525122 + 0.909537i 0.474450 + 0.880282i \(0.342647\pi\)
−0.999572 + 0.0292550i \(0.990687\pi\)
\(158\) −1044.75 + 1809.56i −0.526048 + 0.911143i
\(159\) 1031.94 + 373.593i 0.514707 + 0.186339i
\(160\) −203.807 353.004i −0.100702 0.174422i
\(161\) 5697.85 2.78915
\(162\) −1099.30 + 935.344i −0.533141 + 0.453627i
\(163\) 672.746 0.323273 0.161637 0.986850i \(-0.448323\pi\)
0.161637 + 0.986850i \(0.448323\pi\)
\(164\) 348.660 + 603.897i 0.166011 + 0.287539i
\(165\) 437.915 + 158.538i 0.206616 + 0.0748010i
\(166\) 808.524 1400.40i 0.378034 0.654774i
\(167\) −1985.68 + 3439.31i −0.920101 + 1.59366i −0.120845 + 0.992671i \(0.538560\pi\)
−0.799256 + 0.600991i \(0.794773\pi\)
\(168\) −788.598 4427.94i −0.362153 2.03347i
\(169\) −1076.52 1864.58i −0.489993 0.848693i
\(170\) 134.714 0.0607769
\(171\) −394.110 328.400i −0.176247 0.146862i
\(172\) 284.111 0.125949
\(173\) 305.277 + 528.756i 0.134161 + 0.232373i 0.925277 0.379293i \(-0.123833\pi\)
−0.791116 + 0.611666i \(0.790500\pi\)
\(174\) 1873.06 1577.16i 0.816069 0.687152i
\(175\) 2147.60 3719.75i 0.927675 1.60678i
\(176\) −262.428 + 454.539i −0.112394 + 0.194672i
\(177\) −191.206 + 161.000i −0.0811973 + 0.0683703i
\(178\) −117.828 204.084i −0.0496155 0.0859366i
\(179\) 3262.59 1.36233 0.681167 0.732128i \(-0.261473\pi\)
0.681167 + 0.732128i \(0.261473\pi\)
\(180\) 47.1344 272.781i 0.0195177 0.112955i
\(181\) −781.862 −0.321079 −0.160540 0.987029i \(-0.551323\pi\)
−0.160540 + 0.987029i \(0.551323\pi\)
\(182\) −2362.95 4092.75i −0.962381 1.66689i
\(183\) −583.491 3276.28i −0.235699 1.32344i
\(184\) −1882.81 + 3261.11i −0.754360 + 1.30659i
\(185\) 23.7261 41.0948i 0.00942907 0.0163316i
\(186\) −725.578 262.680i −0.286032 0.103552i
\(187\) 482.835 + 836.295i 0.188815 + 0.327037i
\(188\) 2079.00 0.806525
\(189\) 2516.00 4410.08i 0.968317 1.69728i
\(190\) −94.5357 −0.0360965
\(191\) −638.536 1105.98i −0.241900 0.418983i 0.719356 0.694642i \(-0.244437\pi\)
−0.961255 + 0.275659i \(0.911104\pi\)
\(192\) 2144.27 + 776.288i 0.805986 + 0.291791i
\(193\) 310.504 537.809i 0.115806 0.200582i −0.802296 0.596927i \(-0.796388\pi\)
0.918102 + 0.396345i \(0.129722\pi\)
\(194\) −930.595 + 1611.84i −0.344396 + 0.596511i
\(195\) −151.006 847.890i −0.0554551 0.311378i
\(196\) 1972.03 + 3415.65i 0.718669 + 1.24477i
\(197\) −1997.22 −0.722315 −0.361157 0.932505i \(-0.617618\pi\)
−0.361157 + 0.932505i \(0.617618\pi\)
\(198\) −1789.43 + 658.258i −0.642268 + 0.236265i
\(199\) 1311.08 0.467036 0.233518 0.972352i \(-0.424976\pi\)
0.233518 + 0.972352i \(0.424976\pi\)
\(200\) 1419.31 + 2458.32i 0.501802 + 0.869147i
\(201\) 1276.31 1074.68i 0.447879 0.377126i
\(202\) 1202.06 2082.04i 0.418698 0.725206i
\(203\) −4306.74 + 7459.49i −1.48903 + 2.57908i
\(204\) 439.061 369.701i 0.150688 0.126884i
\(205\) 214.757 + 371.970i 0.0731673 + 0.126729i
\(206\) 224.489 0.0759266
\(207\) −3989.58 + 1467.61i −1.33959 + 0.492781i
\(208\) 970.572 0.323543
\(209\) −338.831 586.872i −0.112141 0.194234i
\(210\) −164.053 921.153i −0.0539084 0.302693i
\(211\) −2225.01 + 3853.82i −0.725951 + 1.25738i 0.232630 + 0.972565i \(0.425267\pi\)
−0.958581 + 0.284819i \(0.908066\pi\)
\(212\) 430.857 746.267i 0.139582 0.241763i
\(213\) −2758.44 998.637i −0.887349 0.321246i
\(214\) 1147.18 + 1986.98i 0.366447 + 0.634705i
\(215\) 174.998 0.0555106
\(216\) 1692.68 + 2897.28i 0.533206 + 0.912663i
\(217\) 2714.46 0.849168
\(218\) 547.941 + 949.061i 0.170235 + 0.294856i
\(219\) −5976.83 2163.79i −1.84419 0.667649i
\(220\) 182.839 316.686i 0.0560317 0.0970497i
\(221\) 892.864 1546.49i 0.271767 0.470714i
\(222\) 34.0620 + 191.256i 0.0102977 + 0.0578211i
\(223\) −2583.55 4474.83i −0.775816 1.34375i −0.934335 0.356397i \(-0.884005\pi\)
0.158518 0.987356i \(-0.449328\pi\)
\(224\) −5870.10 −1.75095
\(225\) −545.626 + 3157.70i −0.161667 + 0.935614i
\(226\) −580.451 −0.170845
\(227\) −1567.26 2714.58i −0.458251 0.793714i 0.540618 0.841268i \(-0.318191\pi\)
−0.998869 + 0.0475544i \(0.984857\pi\)
\(228\) −308.113 + 259.439i −0.0894968 + 0.0753586i
\(229\) 1629.99 2823.22i 0.470361 0.814689i −0.529064 0.848582i \(-0.677457\pi\)
0.999425 + 0.0338924i \(0.0107903\pi\)
\(230\) −391.684 + 678.416i −0.112291 + 0.194493i
\(231\) 5130.47 4319.99i 1.46130 1.23045i
\(232\) −2846.25 4929.85i −0.805455 1.39509i
\(233\) −1191.36 −0.334973 −0.167486 0.985874i \(-0.553565\pi\)
−0.167486 + 0.985874i \(0.553565\pi\)
\(234\) 2708.69 + 2257.08i 0.756721 + 0.630554i
\(235\) 1280.56 0.355466
\(236\) 98.1314 + 169.968i 0.0270670 + 0.0468814i
\(237\) 961.493 + 5398.74i 0.263526 + 1.47969i
\(238\) 970.012 1680.11i 0.264187 0.457586i
\(239\) −1259.92 + 2182.25i −0.340995 + 0.590620i −0.984618 0.174723i \(-0.944097\pi\)
0.643623 + 0.765343i \(0.277430\pi\)
\(240\) 180.681 + 65.4117i 0.0485954 + 0.0175929i
\(241\) −107.572 186.320i −0.0287524 0.0498006i 0.851291 0.524694i \(-0.175820\pi\)
−0.880044 + 0.474893i \(0.842487\pi\)
\(242\) 116.631 0.0309806
\(243\) −625.766 + 3735.95i −0.165197 + 0.986261i
\(244\) −2612.92 −0.685553
\(245\) 1214.67 + 2103.87i 0.316745 + 0.548619i
\(246\) −1653.39 598.574i −0.428520 0.155137i
\(247\) −626.570 + 1085.25i −0.161408 + 0.279566i
\(248\) −896.970 + 1553.60i −0.229668 + 0.397797i
\(249\) −744.094 4178.05i −0.189378 1.06335i
\(250\) 606.235 + 1050.03i 0.153367 + 0.265639i
\(251\) 6911.40 1.73802 0.869012 0.494791i \(-0.164756\pi\)
0.869012 + 0.494791i \(0.164756\pi\)
\(252\) −3062.65 2552.02i −0.765591 0.637945i
\(253\) −5615.42 −1.39541
\(254\) 562.196 + 973.751i 0.138879 + 0.240546i
\(255\) 270.440 227.718i 0.0664142 0.0559225i
\(256\) 2179.88 3775.66i 0.532196 0.921791i
\(257\) −152.177 + 263.579i −0.0369360 + 0.0639750i −0.883902 0.467671i \(-0.845093\pi\)
0.846966 + 0.531646i \(0.178426\pi\)
\(258\) −548.027 + 461.453i −0.132243 + 0.111352i
\(259\) −341.682 591.811i −0.0819733 0.141982i
\(260\) −676.214 −0.161296
\(261\) 1094.19 6332.37i 0.259496 1.50178i
\(262\) −3081.92 −0.726723
\(263\) 3271.54 + 5666.47i 0.767041 + 1.32855i 0.939161 + 0.343478i \(0.111605\pi\)
−0.172120 + 0.985076i \(0.555062\pi\)
\(264\) 777.190 + 4363.89i 0.181185 + 1.01734i
\(265\) 265.387 459.664i 0.0615192 0.106554i
\(266\) −680.709 + 1179.02i −0.156906 + 0.271769i
\(267\) −581.521 210.528i −0.133290 0.0482550i
\(268\) −655.030 1134.55i −0.149300 0.258595i
\(269\) −1680.21 −0.380833 −0.190417 0.981703i \(-0.560984\pi\)
−0.190417 + 0.981703i \(0.560984\pi\)
\(270\) 352.132 + 602.727i 0.0793706 + 0.135855i
\(271\) −421.138 −0.0943996 −0.0471998 0.998885i \(-0.515030\pi\)
−0.0471998 + 0.998885i \(0.515030\pi\)
\(272\) 199.214 + 345.049i 0.0444086 + 0.0769180i
\(273\) −11662.0 4221.98i −2.58540 0.935991i
\(274\) −1550.00 + 2684.68i −0.341749 + 0.591926i
\(275\) −2116.53 + 3665.94i −0.464115 + 0.803871i
\(276\) 585.227 + 3286.02i 0.127632 + 0.716650i
\(277\) −348.391 603.431i −0.0755696 0.130890i 0.825764 0.564015i \(-0.190744\pi\)
−0.901334 + 0.433125i \(0.857411\pi\)
\(278\) 1901.15 0.410156
\(279\) −1900.64 + 699.169i −0.407844 + 0.150029i
\(280\) −2175.17 −0.464254
\(281\) −965.771 1672.76i −0.205029 0.355120i 0.745113 0.666938i \(-0.232395\pi\)
−0.950142 + 0.311818i \(0.899062\pi\)
\(282\) −4010.22 + 3376.71i −0.846827 + 0.713051i
\(283\) 3203.55 5548.72i 0.672903 1.16550i −0.304174 0.952616i \(-0.598381\pi\)
0.977077 0.212885i \(-0.0682861\pi\)
\(284\) −1151.71 + 1994.82i −0.240638 + 0.416798i
\(285\) −189.782 + 159.802i −0.0394447 + 0.0332134i
\(286\) 2328.77 + 4033.54i 0.481479 + 0.833945i
\(287\) 6185.48 1.27219
\(288\) 4110.19 1511.97i 0.840956 0.309354i
\(289\) −4179.94 −0.850792
\(290\) −592.111 1025.57i −0.119896 0.207667i
\(291\) 856.437 + 4808.85i 0.172527 + 0.968728i
\(292\) −2495.45 + 4322.25i −0.500121 + 0.866234i
\(293\) −1741.85 + 3016.97i −0.347304 + 0.601548i −0.985770 0.168103i \(-0.946236\pi\)
0.638466 + 0.769650i \(0.279569\pi\)
\(294\) −9351.59 3385.55i −1.85509 0.671596i
\(295\) 60.4441 + 104.692i 0.0119295 + 0.0206624i
\(296\) 451.624 0.0886828
\(297\) −2479.60 + 4346.29i −0.484448 + 0.849148i
\(298\) 1137.13 0.221047
\(299\) 5192.05 + 8992.90i 1.00423 + 1.73937i
\(300\) 2365.81 + 856.492i 0.455300 + 0.164832i
\(301\) 1260.08 2182.53i 0.241296 0.417937i
\(302\) 1141.94 1977.90i 0.217587 0.376872i
\(303\) −1106.27 6211.67i −0.209748 1.17773i
\(304\) −139.799 242.140i −0.0263751 0.0456831i
\(305\) −1609.43 −0.302149
\(306\) −246.445 + 1426.25i −0.0460402 + 0.266448i
\(307\) 5195.75 0.965919 0.482959 0.875643i \(-0.339562\pi\)
0.482959 + 0.875643i \(0.339562\pi\)
\(308\) −2633.08 4560.62i −0.487122 0.843720i
\(309\) 450.665 379.472i 0.0829691 0.0698622i
\(310\) −186.598 + 323.198i −0.0341873 + 0.0592142i
\(311\) 2429.65 4208.28i 0.442999 0.767297i −0.554911 0.831910i \(-0.687248\pi\)
0.997910 + 0.0646123i \(0.0205811\pi\)
\(312\) 6270.01 5279.52i 1.13772 0.957993i
\(313\) −3796.70 6576.08i −0.685630 1.18755i −0.973238 0.229798i \(-0.926193\pi\)
0.287608 0.957748i \(-0.407140\pi\)
\(314\) −4090.62 −0.735182
\(315\) −1886.44 1571.92i −0.337425 0.281167i
\(316\) 4305.64 0.766490
\(317\) −3502.14 6065.88i −0.620504 1.07474i −0.989392 0.145270i \(-0.953595\pi\)
0.368888 0.929474i \(-0.379739\pi\)
\(318\) 380.998 + 2139.29i 0.0671865 + 0.377249i
\(319\) 4244.44 7351.59i 0.744962 1.29031i
\(320\) 551.447 955.134i 0.0963338 0.166855i
\(321\) 5661.74 + 2049.71i 0.984446 + 0.356398i
\(322\) 5640.67 + 9769.93i 0.976219 + 1.69086i
\(323\) −514.426 −0.0886174
\(324\) 2801.77 + 998.048i 0.480413 + 0.171133i
\(325\) 7827.83 1.33603
\(326\) 665.995 + 1153.54i 0.113147 + 0.195977i
\(327\) 2704.28 + 979.027i 0.457330 + 0.165567i
\(328\) −2043.94 + 3540.21i −0.344078 + 0.595961i
\(329\) 9220.75 15970.8i 1.54516 2.67629i
\(330\) 161.680 + 907.827i 0.0269703 + 0.151437i
\(331\) −1398.51 2422.29i −0.232232 0.402238i 0.726232 0.687449i \(-0.241270\pi\)
−0.958465 + 0.285211i \(0.907936\pi\)
\(332\) −3332.11 −0.550822
\(333\) 391.677 + 326.373i 0.0644557 + 0.0537091i
\(334\) −7863.04 −1.28816
\(335\) −403.466 698.824i −0.0658021 0.113973i
\(336\) 2116.80 1782.40i 0.343693 0.289398i
\(337\) −3481.07 + 6029.39i −0.562689 + 0.974605i 0.434572 + 0.900637i \(0.356900\pi\)
−0.997261 + 0.0739681i \(0.976434\pi\)
\(338\) 2131.43 3691.74i 0.343001 0.594095i
\(339\) −1165.27 + 981.185i −0.186692 + 0.157200i
\(340\) −138.796 240.402i −0.0221391 0.0383460i
\(341\) −2675.19 −0.424838
\(342\) 172.943 1000.87i 0.0273442 0.158249i
\(343\) 22572.1 3.55329
\(344\) 832.769 + 1442.40i 0.130523 + 0.226072i
\(345\) 360.471 + 2024.03i 0.0562525 + 0.315855i
\(346\) −604.428 + 1046.90i −0.0939140 + 0.162664i
\(347\) 943.257 1633.77i 0.145927 0.252753i −0.783791 0.621024i \(-0.786717\pi\)
0.929718 + 0.368271i \(0.120050\pi\)
\(348\) −4744.33 1717.59i −0.730813 0.264576i
\(349\) −4848.28 8397.47i −0.743618 1.28798i −0.950838 0.309689i \(-0.899775\pi\)
0.207220 0.978294i \(-0.433558\pi\)
\(350\) 8504.20 1.29877
\(351\) 9253.07 47.6080i 1.40710 0.00723968i
\(352\) 5785.18 0.875998
\(353\) −2894.39 5013.24i −0.436411 0.755886i 0.560999 0.827817i \(-0.310417\pi\)
−0.997410 + 0.0719309i \(0.977084\pi\)
\(354\) −465.350 168.470i −0.0698675 0.0252941i
\(355\) −709.395 + 1228.71i −0.106058 + 0.183699i
\(356\) −242.797 + 420.537i −0.0361467 + 0.0626079i
\(357\) −892.714 5012.55i −0.132346 0.743115i
\(358\) 3229.86 + 5594.28i 0.476825 + 0.825885i
\(359\) 11197.3 1.64616 0.823081 0.567924i \(-0.192253\pi\)
0.823081 + 0.567924i \(0.192253\pi\)
\(360\) 1523.03 560.262i 0.222975 0.0820233i
\(361\) 361.000 0.0526316
\(362\) −774.017 1340.64i −0.112380 0.194647i
\(363\) 234.139 197.151i 0.0338542 0.0285062i
\(364\) −4869.12 + 8433.56i −0.701129 + 1.21439i
\(365\) −1537.07 + 2662.29i −0.220422 + 0.381783i
\(366\) 5040.10 4243.90i 0.719810 0.606099i
\(367\) 794.879 + 1376.77i 0.113058 + 0.195822i 0.917002 0.398883i \(-0.130602\pi\)
−0.803944 + 0.594705i \(0.797269\pi\)
\(368\) −2316.88 −0.328196
\(369\) −4331.02 + 1593.21i −0.611013 + 0.224767i
\(370\) 93.9522 0.0132009
\(371\) −3821.86 6619.66i −0.534828 0.926350i
\(372\) 278.803 + 1565.46i 0.0388582 + 0.218187i
\(373\) −919.929 + 1593.36i −0.127700 + 0.221183i −0.922785 0.385315i \(-0.874093\pi\)
0.795085 + 0.606498i \(0.207426\pi\)
\(374\) −955.980 + 1655.81i −0.132173 + 0.228930i
\(375\) 2991.98 + 1083.18i 0.412014 + 0.149161i
\(376\) 6093.84 + 10554.8i 0.835813 + 1.44767i
\(377\) −15697.7 −2.14449
\(378\) 10052.6 51.7216i 1.36786 0.00703776i
\(379\) −7320.77 −0.992196 −0.496098 0.868266i \(-0.665234\pi\)
−0.496098 + 0.868266i \(0.665234\pi\)
\(380\) 97.4007 + 168.703i 0.0131488 + 0.0227744i
\(381\) 2774.63 + 1004.50i 0.373094 + 0.135071i
\(382\) 1264.26 2189.76i 0.169333 0.293293i
\(383\) 691.918 1198.44i 0.0923116 0.159888i −0.816172 0.577809i \(-0.803908\pi\)
0.908483 + 0.417921i \(0.137241\pi\)
\(384\) −390.557 2192.96i −0.0519024 0.291429i
\(385\) −1621.85 2809.12i −0.214693 0.371860i
\(386\) 1229.56 0.162131
\(387\) −320.141 + 1852.75i −0.0420509 + 0.243361i
\(388\) 3835.19 0.501809
\(389\) 449.284 + 778.182i 0.0585594 + 0.101428i 0.893819 0.448428i \(-0.148016\pi\)
−0.835260 + 0.549856i \(0.814683\pi\)
\(390\) 1304.36 1098.31i 0.169356 0.142602i
\(391\) −2131.39 + 3691.67i −0.275675 + 0.477483i
\(392\) −11560.6 + 20023.5i −1.48953 + 2.57995i
\(393\) −6187.00 + 5209.62i −0.794130 + 0.668678i
\(394\) −1977.18 3424.58i −0.252814 0.437887i
\(395\) 2652.06 0.337822
\(396\) 3018.35 + 2515.10i 0.383024 + 0.319163i
\(397\) 5636.84 0.712607 0.356303 0.934370i \(-0.384037\pi\)
0.356303 + 0.934370i \(0.384037\pi\)
\(398\) 1297.93 + 2248.08i 0.163465 + 0.283130i
\(399\) 626.465 + 3517.57i 0.0786027 + 0.441350i
\(400\) −873.266 + 1512.54i −0.109158 + 0.189068i
\(401\) 997.797 1728.24i 0.124258 0.215222i −0.797184 0.603736i \(-0.793678\pi\)
0.921443 + 0.388514i \(0.127011\pi\)
\(402\) 3106.23 + 1124.55i 0.385385 + 0.139521i
\(403\) 2473.50 + 4284.23i 0.305741 + 0.529559i
\(404\) −4953.97 −0.610072
\(405\) 1725.75 + 614.748i 0.211736 + 0.0754249i
\(406\) −17054.1 −2.08468
\(407\) 336.739 + 583.250i 0.0410112 + 0.0710335i
\(408\) 3163.88 + 1145.42i 0.383910 + 0.138987i
\(409\) 4526.61 7840.32i 0.547253 0.947870i −0.451208 0.892419i \(-0.649007\pi\)
0.998461 0.0554514i \(-0.0176598\pi\)
\(410\) −425.205 + 736.476i −0.0512180 + 0.0887121i
\(411\) 1426.49 + 8009.65i 0.171200 + 0.961282i
\(412\) −231.292 400.609i −0.0276576 0.0479044i
\(413\) 1740.92 0.207422
\(414\) −6466.01 5387.94i −0.767602 0.639621i
\(415\) −2052.41 −0.242769
\(416\) −5349.01 9264.76i −0.630425 1.09193i
\(417\) 3816.59 3213.67i 0.448200 0.377396i
\(418\) 670.862 1161.97i 0.0784999 0.135966i
\(419\) 5505.54 9535.87i 0.641917 1.11183i −0.343087 0.939303i \(-0.611473\pi\)
0.985004 0.172529i \(-0.0551940\pi\)
\(420\) −1474.81 + 1241.83i −0.171341 + 0.144274i
\(421\) −4521.01 7830.62i −0.523374 0.906511i −0.999630 0.0272039i \(-0.991340\pi\)
0.476256 0.879307i \(-0.341994\pi\)
\(422\) −8810.72 −1.01635
\(423\) −2342.65 + 13557.6i −0.269276 + 1.55838i
\(424\) 5051.61 0.578604
\(425\) 1606.70 + 2782.88i 0.183380 + 0.317623i
\(426\) −1018.43 5718.44i −0.115829 0.650374i
\(427\) −11588.8 + 20072.3i −1.31339 + 2.27487i
\(428\) 2363.89 4094.38i 0.266970 0.462405i
\(429\) 11493.3 + 4160.90i 1.29347 + 0.468275i
\(430\) 173.242 + 300.065i 0.0194291 + 0.0336521i
\(431\) 1224.90 0.136894 0.0684471 0.997655i \(-0.478196\pi\)
0.0684471 + 0.997655i \(0.478196\pi\)
\(432\) −1023.07 + 1793.25i −0.113941 + 0.199717i
\(433\) 2132.79 0.236709 0.118355 0.992971i \(-0.462238\pi\)
0.118355 + 0.992971i \(0.462238\pi\)
\(434\) 2687.22 + 4654.41i 0.297214 + 0.514789i
\(435\) −2922.27 1057.95i −0.322097 0.116609i
\(436\) 1129.09 1955.64i 0.124022 0.214813i
\(437\) 1495.71 2590.64i 0.163729 0.283586i
\(438\) −2206.68 12390.4i −0.240728 1.35168i
\(439\) 3955.93 + 6851.87i 0.430082 + 0.744925i 0.996880 0.0789326i \(-0.0251512\pi\)
−0.566798 + 0.823857i \(0.691818\pi\)
\(440\) 2143.70 0.232266
\(441\) −24496.4 + 9011.22i −2.64511 + 0.973028i
\(442\) 3535.62 0.380480
\(443\) −4198.99 7272.86i −0.450338 0.780009i 0.548068 0.836433i \(-0.315363\pi\)
−0.998407 + 0.0564245i \(0.982030\pi\)
\(444\) 306.211 257.837i 0.0327300 0.0275595i
\(445\) −149.551 + 259.030i −0.0159312 + 0.0275937i
\(446\) 5115.25 8859.86i 0.543080 0.940643i
\(447\) 2282.80 1922.18i 0.241550 0.203391i
\(448\) −7941.44 13755.0i −0.837495 1.45058i
\(449\) 13283.5 1.39619 0.698095 0.716005i \(-0.254031\pi\)
0.698095 + 0.716005i \(0.254031\pi\)
\(450\) −5954.57 + 2190.44i −0.623780 + 0.229463i
\(451\) −6096.00 −0.636474
\(452\) 598.042 + 1035.84i 0.0622335 + 0.107792i
\(453\) −1050.94 5900.98i −0.109001 0.612036i
\(454\) 3103.08 5374.69i 0.320781 0.555609i
\(455\) −2999.14 + 5194.65i −0.309015 + 0.535229i
\(456\) −2220.26 803.800i −0.228012 0.0825469i
\(457\) −6674.65 11560.8i −0.683210 1.18335i −0.973996 0.226566i \(-0.927250\pi\)
0.290786 0.956788i \(-0.406083\pi\)
\(458\) 6454.53 0.658517
\(459\) 1916.16 + 3279.80i 0.194856 + 0.333525i
\(460\) 1614.21 0.163616
\(461\) −6239.00 10806.3i −0.630324 1.09175i −0.987485 0.157710i \(-0.949589\pi\)
0.357162 0.934042i \(-0.383744\pi\)
\(462\) 12486.4 + 4520.43i 1.25740 + 0.455215i
\(463\) −6101.13 + 10567.5i −0.612406 + 1.06072i 0.378428 + 0.925631i \(0.376465\pi\)
−0.990834 + 0.135087i \(0.956869\pi\)
\(464\) 1751.23 3033.21i 0.175213 0.303477i
\(465\) 171.729 + 964.248i 0.0171263 + 0.0961633i
\(466\) −1179.41 2042.79i −0.117242 0.203070i
\(467\) 7789.97 0.771899 0.385949 0.922520i \(-0.373874\pi\)
0.385949 + 0.922520i \(0.373874\pi\)
\(468\) 1237.06 7159.25i 0.122187 0.707129i
\(469\) −11620.7 −1.14413
\(470\) 1267.71 + 2195.74i 0.124415 + 0.215494i
\(471\) −8212.00 + 6914.72i −0.803374 + 0.676462i
\(472\) −575.273 + 996.402i −0.0560998 + 0.0971677i
\(473\) −1241.86 + 2150.96i −0.120720 + 0.209093i
\(474\) −8305.22 + 6993.21i −0.804792 + 0.677656i
\(475\) −1127.51 1952.90i −0.108913 0.188642i
\(476\) −3997.64 −0.384940
\(477\) 4381.07 + 3650.62i 0.420536 + 0.350421i
\(478\) −4989.13 −0.477400
\(479\) −4699.45 8139.68i −0.448274 0.776433i 0.550000 0.835165i \(-0.314628\pi\)
−0.998274 + 0.0587316i \(0.981294\pi\)
\(480\) −371.368 2085.21i −0.0353137 0.198285i
\(481\) 622.702 1078.55i 0.0590287 0.102241i
\(482\) 212.986 368.902i 0.0201270 0.0348610i
\(483\) 27838.7 + 10078.4i 2.62258 + 0.949449i
\(484\) −120.165 208.133i −0.0112853 0.0195466i
\(485\) 2362.28 0.221167
\(486\) −7025.41 + 2625.48i −0.655719 + 0.245050i
\(487\) −18953.9 −1.76362 −0.881810 0.471604i \(-0.843675\pi\)
−0.881810 + 0.471604i \(0.843675\pi\)
\(488\) −7658.82 13265.5i −0.710448 1.23053i
\(489\) 3286.92 + 1189.96i 0.303966 + 0.110045i
\(490\) −2404.97 + 4165.53i −0.221725 + 0.384039i
\(491\) −1761.16 + 3050.42i −0.161874 + 0.280374i −0.935541 0.353219i \(-0.885087\pi\)
0.773667 + 0.633592i \(0.218420\pi\)
\(492\) 635.312 + 3567.25i 0.0582156 + 0.326878i
\(493\) −3222.03 5580.73i −0.294347 0.509824i
\(494\) −2481.13 −0.225975
\(495\) 1859.15 + 1549.18i 0.168813 + 0.140667i
\(496\) −1103.77 −0.0999205
\(497\) 10216.1 + 17694.7i 0.922039 + 1.59702i
\(498\) 6427.36 5412.01i 0.578347 0.486984i
\(499\) 1948.97 3375.72i 0.174846 0.302842i −0.765262 0.643719i \(-0.777391\pi\)
0.940108 + 0.340877i \(0.110724\pi\)
\(500\) 1249.21 2163.70i 0.111733 0.193527i
\(501\) −15785.2 + 13291.6i −1.40765 + 1.18528i
\(502\) 6842.05 + 11850.8i 0.608318 + 1.05364i
\(503\) −21465.3 −1.90276 −0.951382 0.308014i \(-0.900336\pi\)
−0.951382 + 0.308014i \(0.900336\pi\)
\(504\) 3979.24 23029.0i 0.351686 2.03531i
\(505\) −3051.40 −0.268882
\(506\) −5559.08 9628.60i −0.488401 0.845936i
\(507\) −1961.58 11014.2i −0.171828 0.964805i
\(508\) 1158.47 2006.52i 0.101178 0.175246i
\(509\) 3861.76 6688.76i 0.336286 0.582464i −0.647445 0.762112i \(-0.724163\pi\)
0.983731 + 0.179648i \(0.0574958\pi\)
\(510\) 658.188 + 238.283i 0.0571471 + 0.0206889i
\(511\) 22135.6 + 38339.9i 1.91628 + 3.31910i
\(512\) 5202.61 0.449072
\(513\) −1344.67 2301.61i −0.115729 0.198087i
\(514\) −602.601 −0.0517113
\(515\) −142.464 246.756i −0.0121898 0.0211133i
\(516\) 1388.12 + 502.539i 0.118427 + 0.0428741i
\(517\) −9087.36 + 15739.8i −0.773040 + 1.33894i
\(518\) 676.507 1171.75i 0.0573823 0.0993890i
\(519\) 556.262 + 3123.39i 0.0470466 + 0.264165i
\(520\) −1982.08 3433.06i −0.167154 0.289519i
\(521\) 13201.5 1.11011 0.555055 0.831814i \(-0.312697\pi\)
0.555055 + 0.831814i \(0.312697\pi\)
\(522\) 11941.1 4392.66i 1.00124 0.368317i
\(523\) −4723.73 −0.394941 −0.197471 0.980309i \(-0.563273\pi\)
−0.197471 + 0.980309i \(0.563273\pi\)
\(524\) 3175.31 + 5499.81i 0.264722 + 0.458512i
\(525\) 17072.3 14375.4i 1.41923 1.19503i
\(526\) −6477.43 + 11219.2i −0.536938 + 0.930003i
\(527\) −1015.39 + 1758.71i −0.0839303 + 0.145372i
\(528\) −2086.18 + 1756.61i −0.171949 + 0.144786i
\(529\) −6310.62 10930.3i −0.518667 0.898358i
\(530\) 1050.90 0.0861283
\(531\) −1218.98 + 448.413i −0.0996218 + 0.0366468i
\(532\) 2805.35 0.228623
\(533\) 5636.40 + 9762.53i 0.458048 + 0.793363i
\(534\) −214.700 1205.53i −0.0173989 0.0976939i
\(535\) 1456.04 2521.94i 0.117664 0.203800i
\(536\) 3839.97 6651.02i 0.309443 0.535971i
\(537\) 15940.5 + 5770.92i 1.28097 + 0.463749i
\(538\) −1663.35 2881.01i −0.133294 0.230872i
\(539\) −34479.1 −2.75533
\(540\) 712.788 1249.39i 0.0568028 0.0995649i
\(541\) −699.631 −0.0555998 −0.0277999 0.999614i \(-0.508850\pi\)
−0.0277999 + 0.999614i \(0.508850\pi\)
\(542\) −416.912 722.113i −0.0330404 0.0572277i
\(543\) −3820.04 1382.97i −0.301904 0.109298i
\(544\) 2195.82 3803.27i 0.173061 0.299750i
\(545\) 695.465 1204.58i 0.0546614 0.0946763i
\(546\) −4305.66 24176.1i −0.337482 1.89495i
\(547\) −8548.87 14807.1i −0.668232 1.15741i −0.978398 0.206730i \(-0.933718\pi\)
0.310166 0.950683i \(-0.399616\pi\)
\(548\) 6387.90 0.497952
\(549\) 2944.28 17039.4i 0.228887 1.32463i
\(550\) −8381.18 −0.649772
\(551\) 2261.07 + 3916.29i 0.174818 + 0.302794i
\(552\) −14967.4 + 12602.9i −1.15408 + 0.971767i
\(553\) 19096.3 33075.7i 1.46846 2.54344i
\(554\) 689.790 1194.75i 0.0528996 0.0916248i
\(555\) 188.611 158.815i 0.0144254 0.0121465i
\(556\) −1958.76 3392.68i −0.149407 0.258780i
\(557\) 2587.98 0.196869 0.0984347 0.995144i \(-0.468616\pi\)
0.0984347 + 0.995144i \(0.468616\pi\)
\(558\) −3080.41 2566.82i −0.233700 0.194735i
\(559\) 4592.91 0.347512
\(560\) −669.162 1159.02i −0.0504951 0.0874601i
\(561\) 879.800 + 4940.04i 0.0662124 + 0.371780i
\(562\) 1912.16 3311.96i 0.143522 0.248588i
\(563\) −7421.26 + 12854.0i −0.555540 + 0.962223i 0.442322 + 0.896856i \(0.354155\pi\)
−0.997861 + 0.0653663i \(0.979178\pi\)
\(564\) 10157.6 + 3677.36i 0.758357 + 0.274548i
\(565\) 368.364 + 638.026i 0.0274287 + 0.0475079i
\(566\) 12685.6 0.942080
\(567\) 20093.3 17096.6i 1.48825 1.26629i
\(568\) −13503.3 −0.997507
\(569\) 2753.27 + 4768.81i 0.202853 + 0.351351i 0.949446 0.313929i \(-0.101645\pi\)
−0.746594 + 0.665280i \(0.768312\pi\)
\(570\) −461.885 167.216i −0.0339408 0.0122876i
\(571\) −5624.72 + 9742.31i −0.412237 + 0.714016i −0.995134 0.0985305i \(-0.968586\pi\)
0.582897 + 0.812546i \(0.301919\pi\)
\(572\) 4798.68 8311.56i 0.350774 0.607559i
\(573\) −1163.51 6533.06i −0.0848279 0.476305i
\(574\) 6123.42 + 10606.1i 0.445273 + 0.771235i
\(575\) −18686.1 −1.35524
\(576\) 9103.42 + 7585.62i 0.658523 + 0.548728i
\(577\) 18667.6 1.34687 0.673435 0.739247i \(-0.264818\pi\)
0.673435 + 0.739247i \(0.264818\pi\)
\(578\) −4138.00 7167.23i −0.297782 0.515774i
\(579\) 2468.35 2078.42i 0.177170 0.149182i
\(580\) −1220.11 + 2113.29i −0.0873488 + 0.151293i
\(581\) −14778.5 + 25597.1i −1.05528 + 1.82779i
\(582\) −7397.76 + 6229.11i −0.526885 + 0.443651i
\(583\) 3766.58 + 6523.90i 0.267574 + 0.463452i
\(584\) −29258.1 −2.07313
\(585\) 761.971 4409.75i 0.0538523 0.311659i
\(586\) −6897.49 −0.486233
\(587\) 342.110 + 592.552i 0.0240552 + 0.0416648i 0.877802 0.479023i \(-0.159009\pi\)
−0.853747 + 0.520688i \(0.825676\pi\)
\(588\) 3593.34 + 20176.4i 0.252018 + 1.41507i
\(589\) 712.556 1234.18i 0.0498478 0.0863390i
\(590\) −119.675 + 207.283i −0.00835076 + 0.0144639i
\(591\) −9758.07 3532.71i −0.679177 0.245882i
\(592\) 138.936 + 240.645i 0.00964569 + 0.0167068i
\(593\) −13876.6 −0.960952 −0.480476 0.877008i \(-0.659536\pi\)
−0.480476 + 0.877008i \(0.659536\pi\)
\(594\) −9907.17 + 50.9734i −0.684337 + 0.00352099i
\(595\) −2462.35 −0.169658
\(596\) −1171.59 2029.25i −0.0805202 0.139465i
\(597\) 6405.72 + 2319.06i 0.439144 + 0.158983i
\(598\) −10279.9 + 17805.3i −0.702971 + 1.21758i
\(599\) −11727.7 + 20313.0i −0.799969 + 1.38559i 0.119667 + 0.992814i \(0.461817\pi\)
−0.919636 + 0.392773i \(0.871516\pi\)
\(600\) 2586.21 + 14521.4i 0.175969 + 0.988058i
\(601\) −9321.09 16144.6i −0.632638 1.09576i −0.987010 0.160656i \(-0.948639\pi\)
0.354373 0.935104i \(-0.384694\pi\)
\(602\) 4989.76 0.337820
\(603\) 8136.73 2993.17i 0.549508 0.202142i
\(604\) −4706.19 −0.317040
\(605\) −74.0159 128.199i −0.00497384 0.00861495i
\(606\) 9555.81 8046.24i 0.640558 0.539367i
\(607\) 7140.81 12368.2i 0.477490 0.827037i −0.522177 0.852837i \(-0.674880\pi\)
0.999667 + 0.0258002i \(0.00821337\pi\)
\(608\) −1540.92 + 2668.96i −0.102784 + 0.178027i
\(609\) −34236.4 + 28828.0i −2.27805 + 1.91818i
\(610\) −1593.28 2759.64i −0.105754 0.183171i
\(611\) 33608.9 2.22532
\(612\) 2799.11 1029.68i 0.184881 0.0680103i
\(613\) −16591.5 −1.09319 −0.546593 0.837398i \(-0.684076\pi\)
−0.546593 + 0.837398i \(0.684076\pi\)
\(614\) 5143.62 + 8909.00i 0.338077 + 0.585567i
\(615\) 391.321 + 2197.25i 0.0256579 + 0.144068i
\(616\) 15435.8 26735.6i 1.00962 1.74872i
\(617\) 9516.01 16482.2i 0.620908 1.07544i −0.368409 0.929664i \(-0.620097\pi\)
0.989317 0.145781i \(-0.0465693\pi\)
\(618\) 1096.81 + 397.078i 0.0713921 + 0.0258460i
\(619\) −7267.87 12588.3i −0.471923 0.817395i 0.527561 0.849517i \(-0.323107\pi\)
−0.999484 + 0.0321223i \(0.989773\pi\)
\(620\) 769.013 0.0498134
\(621\) −22088.3 + 113.647i −1.42733 + 0.00734378i
\(622\) 9621.08 0.620209
\(623\) 2153.70 + 3730.32i 0.138501 + 0.239891i
\(624\) 4742.05 + 1716.76i 0.304221 + 0.110137i
\(625\) −6648.35 + 11515.3i −0.425494 + 0.736978i
\(626\) 7517.21 13020.2i 0.479949 0.831296i
\(627\) −617.402 3466.69i −0.0393248 0.220807i
\(628\) 4214.59 + 7299.89i 0.267803 + 0.463849i
\(629\) 511.250 0.0324084
\(630\) 827.809 4790.77i 0.0523503 0.302967i
\(631\) −2527.57 −0.159463 −0.0797315 0.996816i \(-0.525406\pi\)
−0.0797315 + 0.996816i \(0.525406\pi\)
\(632\) 12620.4 + 21859.2i 0.794324 + 1.37581i
\(633\) −17687.7 + 14893.5i −1.11062 + 0.935171i
\(634\) 6934.00 12010.0i 0.434360 0.752334i
\(635\) 713.558 1235.92i 0.0445932 0.0772377i
\(636\) 3425.10 2884.03i 0.213544 0.179810i
\(637\) 31879.6 + 55217.1i 1.98291 + 3.43451i
\(638\) 16807.4 1.04296
\(639\) −11710.9 9758.33i −0.725000 0.604121i
\(640\) −1077.26 −0.0665351
\(641\) 2707.40 + 4689.36i 0.166827 + 0.288953i 0.937303 0.348517i \(-0.113315\pi\)
−0.770476 + 0.637469i \(0.779981\pi\)
\(642\) 2090.34 + 11737.2i 0.128503 + 0.721540i
\(643\) 587.285 1017.21i 0.0360191 0.0623869i −0.847454 0.530869i \(-0.821866\pi\)
0.883473 + 0.468482i \(0.155199\pi\)
\(644\) 11623.2 20132.0i 0.711210 1.23185i
\(645\) 855.012 + 309.539i 0.0521954 + 0.0188963i
\(646\) −509.264 882.071i −0.0310166 0.0537223i
\(647\) 9101.51 0.553040 0.276520 0.961008i \(-0.410819\pi\)
0.276520 + 0.961008i \(0.410819\pi\)
\(648\) 3145.40 + 17149.7i 0.190684 + 1.03966i
\(649\) −1715.74 −0.103773
\(650\) 7749.29 + 13422.2i 0.467618 + 0.809939i
\(651\) 13262.4 + 4801.37i 0.798454 + 0.289064i
\(652\) 1372.36 2376.99i 0.0824320 0.142776i
\(653\) 2943.59 5098.44i 0.176404 0.305540i −0.764243 0.644929i \(-0.776887\pi\)
0.940646 + 0.339389i \(0.110220\pi\)
\(654\) 998.432 + 5606.15i 0.0596969 + 0.335195i
\(655\) 1955.84 + 3387.61i 0.116673 + 0.202084i
\(656\) −2515.17 −0.149696
\(657\) −25374.4 21143.8i −1.50677 1.25555i
\(658\) 36512.9 2.16325
\(659\) −5108.58 8848.32i −0.301976 0.523037i 0.674608 0.738176i \(-0.264313\pi\)
−0.976583 + 0.215139i \(0.930979\pi\)
\(660\) 1453.48 1223.86i 0.0857219 0.0721801i
\(661\) 3050.88 5284.28i 0.179524 0.310945i −0.762193 0.647349i \(-0.775878\pi\)
0.941718 + 0.336404i \(0.109211\pi\)
\(662\) 2768.95 4795.96i 0.162565 0.281572i
\(663\) 7097.82 5976.55i 0.415772 0.350091i
\(664\) −9766.86 16916.7i −0.570825 0.988698i
\(665\) 1727.96 0.100763
\(666\) −171.876 + 994.695i −0.0100001 + 0.0578733i
\(667\) 37472.6 2.17533
\(668\) 8101.33 + 14031.9i 0.469237 + 0.812742i
\(669\) −4707.62 26433.1i −0.272058 1.52760i
\(670\) 798.836 1383.62i 0.0460623 0.0797822i
\(671\) 11421.1 19782.0i 0.657090 1.13811i
\(672\) −28680.3 10383.1i −1.64638 0.596037i
\(673\) −1582.16 2740.38i −0.0906208 0.156960i 0.817152 0.576423i \(-0.195552\pi\)
−0.907773 + 0.419463i \(0.862218\pi\)
\(674\) −13784.6 −0.787777
\(675\) −8251.21 + 14462.9i −0.470502 + 0.824704i
\(676\) −8784.08 −0.499777
\(677\) 14849.2 + 25719.6i 0.842987 + 1.46010i 0.887358 + 0.461082i \(0.152539\pi\)
−0.0443701 + 0.999015i \(0.514128\pi\)
\(678\) −2835.98 1026.71i −0.160642 0.0581571i
\(679\) 17009.8 29461.8i 0.961376 1.66515i
\(680\) 813.662 1409.30i 0.0458860 0.0794769i
\(681\) −2855.80 16035.2i −0.160697 0.902304i
\(682\) −2648.35 4587.08i −0.148696 0.257549i
\(683\) 2998.31 0.167976 0.0839878 0.996467i \(-0.473234\pi\)
0.0839878 + 0.996467i \(0.473234\pi\)
\(684\) −1964.28 + 722.581i −0.109805 + 0.0403926i
\(685\) 3934.63 0.219467
\(686\) 22345.6 + 38703.7i 1.24367 + 2.15410i
\(687\) 12957.6 10910.6i 0.719597 0.605920i
\(688\) −512.381 + 887.471i −0.0283930 + 0.0491781i
\(689\) 6965.20 12064.1i 0.385128 0.667061i
\(690\) −3113.69 + 2621.81i −0.171791 + 0.144653i
\(691\) 6508.85 + 11273.7i 0.358333 + 0.620651i 0.987683 0.156471i \(-0.0500119\pi\)
−0.629349 + 0.777123i \(0.716679\pi\)
\(692\) 2490.98 0.136839
\(693\) 32707.8 12031.9i 1.79288 0.659529i
\(694\) 3735.17 0.204301
\(695\) −1206.50 2089.72i −0.0658492 0.114054i
\(696\) −5186.31 29120.9i −0.282452 1.58596i
\(697\) −2313.80 + 4007.61i −0.125741 + 0.217789i
\(698\) 9599.27 16626.4i 0.520541 0.901604i
\(699\) −5820.78 2107.29i −0.314967 0.114027i
\(700\) −8761.92 15176.1i −0.473099 0.819432i
\(701\) −28770.9 −1.55016 −0.775080 0.631863i \(-0.782291\pi\)
−0.775080 + 0.631863i \(0.782291\pi\)
\(702\) 9241.86 + 15818.9i 0.496883 + 0.850490i
\(703\) −358.772 −0.0192480
\(704\) 7826.56 + 13556.0i 0.418998 + 0.725726i
\(705\) 6256.60 + 2265.07i 0.334237 + 0.121004i
\(706\) 5730.70 9925.87i 0.305493 0.529129i
\(707\) −21971.8 + 38056.2i −1.16879 + 2.02440i
\(708\) 178.810 + 1004.01i 0.00949168 + 0.0532953i
\(709\) 7729.78 + 13388.4i 0.409447 + 0.709183i 0.994828 0.101575i \(-0.0323882\pi\)
−0.585381 + 0.810759i \(0.699055\pi\)
\(710\) −2809.11 −0.148484
\(711\) −4851.67 + 28078.0i −0.255910 + 1.48102i
\(712\) −2846.69 −0.149837
\(713\) −5904.57 10227.0i −0.310137 0.537174i
\(714\) 7711.11 6492.96i 0.404175 0.340326i
\(715\) 2955.75 5119.51i 0.154600 0.267775i
\(716\) 6655.48 11527.6i 0.347384 0.601687i
\(717\) −10015.8 + 8433.54i −0.521681 + 0.439270i
\(718\) 11085.0 + 19199.7i 0.576166 + 0.997949i
\(719\) −7691.51 −0.398950 −0.199475 0.979903i \(-0.563924\pi\)
−0.199475 + 0.979903i \(0.563924\pi\)
\(720\) 767.073 + 639.180i 0.0397044 + 0.0330845i
\(721\) −4103.29 −0.211948
\(722\) 357.378 + 618.996i 0.0184214 + 0.0319067i
\(723\) −196.013 1100.60i −0.0100827 0.0566140i
\(724\) −1594.95 + 2762.53i −0.0818726 + 0.141807i
\(725\) 14123.9 24463.4i 0.723518 1.25317i
\(726\) 569.838 + 206.298i 0.0291304 + 0.0105461i
\(727\) −1915.06 3316.97i −0.0976967 0.169216i 0.813034 0.582216i \(-0.197814\pi\)
−0.910731 + 0.413000i \(0.864481\pi\)
\(728\) −57088.2 −2.90636
\(729\) −9665.58 + 17146.3i −0.491062 + 0.871125i
\(730\) −6086.61 −0.308596
\(731\) 942.716 + 1632.83i 0.0476985 + 0.0826163i
\(732\) −12766.3 4621.76i −0.644610 0.233368i
\(733\) −2328.91 + 4033.79i −0.117354 + 0.203262i −0.918718 0.394914i \(-0.870774\pi\)
0.801365 + 0.598176i \(0.204108\pi\)
\(734\) −1573.81 + 2725.91i −0.0791420 + 0.137078i
\(735\) 2213.32 + 12427.7i 0.111074 + 0.623676i
\(736\) 12768.8 + 22116.2i 0.639490 + 1.10763i
\(737\) 11452.6 0.572405
\(738\) −7019.39 5849.06i −0.350118 0.291744i
\(739\) 37264.5 1.85493 0.927466 0.373907i \(-0.121982\pi\)
0.927466 + 0.373907i \(0.121982\pi\)
\(740\) −96.7994 167.661i −0.00480867 0.00832886i
\(741\) −4980.92 + 4194.07i −0.246935 + 0.207926i
\(742\) 7567.03 13106.5i 0.374386 0.648456i
\(743\) −11479.4 + 19882.9i −0.566808 + 0.981741i 0.430071 + 0.902795i \(0.358489\pi\)
−0.996879 + 0.0789455i \(0.974845\pi\)
\(744\) −7130.46 + 6004.04i −0.351365 + 0.295859i
\(745\) −721.639 1249.92i −0.0354883 0.0614676i
\(746\) −3642.79 −0.178783
\(747\) 3754.68 21729.4i 0.183904 1.06431i
\(748\) 3939.81 0.192585
\(749\) −20968.6 36318.7i −1.02293 1.77177i
\(750\) 1104.65 + 6202.58i 0.0537817 + 0.301982i
\(751\) −3623.63 + 6276.31i −0.176069 + 0.304961i −0.940531 0.339708i \(-0.889672\pi\)
0.764462 + 0.644669i \(0.223005\pi\)
\(752\) −3749.38 + 6494.12i −0.181816 + 0.314915i
\(753\) 33767.9 + 12225.0i 1.63423 + 0.591637i
\(754\) −15540.2 26916.5i −0.750586 1.30005i
\(755\) −2898.78 −0.139732
\(756\) −10449.5 17886.0i −0.502706 0.860458i
\(757\) 11767.6 0.564996 0.282498 0.959268i \(-0.408837\pi\)
0.282498 + 0.959268i \(0.408837\pi\)
\(758\) −7247.31 12552.7i −0.347275 0.601497i
\(759\) −27436.0 9932.63i −1.31207 0.475009i
\(760\) −570.990 + 988.983i −0.0272526 + 0.0472029i
\(761\) −2919.39 + 5056.52i −0.139064 + 0.240866i −0.927143 0.374709i \(-0.877743\pi\)
0.788079 + 0.615575i \(0.211076\pi\)
\(762\) 1024.41 + 5752.00i 0.0487013 + 0.273455i
\(763\) −10015.5 17347.3i −0.475208 0.823085i
\(764\) −5210.29 −0.246730
\(765\) 1724.11 634.231i 0.0814842 0.0299748i
\(766\) 2739.90 0.129238
\(767\) 1586.38 + 2747.69i 0.0746818 + 0.129353i
\(768\) 17328.9 14591.4i 0.814198 0.685576i
\(769\) 3340.04 5785.11i 0.156625 0.271283i −0.777024 0.629471i \(-0.783272\pi\)
0.933650 + 0.358188i \(0.116605\pi\)
\(770\) 3211.14 5561.86i 0.150288 0.260306i
\(771\) −1209.73 + 1018.63i −0.0565077 + 0.0475810i
\(772\) −1266.82 2194.19i −0.0590593 0.102294i
\(773\) 19676.9 0.915560 0.457780 0.889065i \(-0.348645\pi\)
0.457780 + 0.889065i \(0.348645\pi\)
\(774\) −3493.79 + 1285.22i −0.162250 + 0.0596853i
\(775\) −8902.06 −0.412609
\(776\) 11241.5 + 19470.8i 0.520032 + 0.900722i
\(777\) −622.597 3495.86i −0.0287459 0.161407i
\(778\) −889.551 + 1540.75i −0.0409922 + 0.0710006i
\(779\) 1623.71 2812.35i 0.0746798 0.129349i
\(780\) −3303.87 1196.10i −0.151663 0.0549066i
\(781\) −10068.3 17438.8i −0.461295 0.798986i
\(782\) −8440.00 −0.385951
\(783\) 16546.8 29003.4i 0.755215 1.32375i
\(784\) −14225.9 −0.648044
\(785\) 2595.98 + 4496.37i 0.118031 + 0.204436i
\(786\) −15057.7 5451.33i −0.683321 0.247382i
\(787\) −12842.8 + 22244.3i −0.581697 + 1.00753i 0.413582 + 0.910467i \(0.364278\pi\)
−0.995278 + 0.0970611i \(0.969056\pi\)
\(788\) −4074.20 + 7056.72i −0.184184 + 0.319017i
\(789\) 5961.25 + 33472.1i 0.268981 + 1.51032i
\(790\) 2625.45 + 4547.41i 0.118240 + 0.204797i
\(791\) 10609.7 0.476912
\(792\) −3921.68 + 22695.9i −0.175948 + 1.01826i
\(793\) −42240.1 −1.89154
\(794\) 5580.28 + 9665.33i 0.249417 + 0.432002i
\(795\) 2109.69 1776.42i 0.0941171 0.0792491i
\(796\) 2674.52 4632.41i 0.119090 0.206271i
\(797\) 8628.46 14944.9i 0.383483 0.664211i −0.608075 0.793880i \(-0.708058\pi\)
0.991557 + 0.129668i \(0.0413913\pi\)
\(798\) −5411.30 + 4556.46i −0.240047 + 0.202126i
\(799\) 6898.39 + 11948.4i 0.305441 + 0.529039i
\(800\) 19251.0 0.850781
\(801\) −2468.83 2057.20i −0.108904 0.0907462i
\(802\) 3951.14 0.173965
\(803\) −21815.4 37785.3i −0.958714 1.66054i
\(804\) −1193.57 6701.82i −0.0523555 0.293974i
\(805\) 7159.34 12400.3i 0.313458 0.542925i
\(806\) −4897.36 + 8482.47i −0.214022 + 0.370698i
\(807\) −8209.21 2971.97i −0.358089 0.129639i
\(808\) −14520.8 25150.7i −0.632227 1.09505i
\(809\) 854.593 0.0371395 0.0185698 0.999828i \(-0.494089\pi\)
0.0185698 + 0.999828i \(0.494089\pi\)
\(810\) 654.344 + 3567.68i 0.0283843 + 0.154760i
\(811\) 14057.1 0.608646 0.304323 0.952569i \(-0.401570\pi\)
0.304323 + 0.952569i \(0.401570\pi\)
\(812\) 17570.9 + 30433.8i 0.759383 + 1.31529i
\(813\) −2057.61 744.913i −0.0887618 0.0321344i
\(814\) −666.721 + 1154.79i −0.0287083 + 0.0497242i
\(815\) 845.304 1464.11i 0.0363309 0.0629270i
\(816\) 362.999 + 2038.22i 0.0155729 + 0.0874413i
\(817\) −661.554 1145.85i −0.0283291 0.0490674i
\(818\) 17924.8 0.766167
\(819\) −49510.5 41255.7i −2.11238 1.76018i
\(820\) 1752.36 0.0746282
\(821\) −8271.65 14326.9i −0.351623 0.609029i 0.634911 0.772585i \(-0.281037\pi\)
−0.986534 + 0.163556i \(0.947703\pi\)
\(822\) −12321.7 + 10375.2i −0.522835 + 0.440241i
\(823\) −20164.9 + 34926.7i −0.854078 + 1.47931i 0.0234206 + 0.999726i \(0.492544\pi\)
−0.877498 + 0.479580i \(0.840789\pi\)
\(824\) 1355.90 2348.48i 0.0573239 0.0992880i
\(825\) −16825.4 + 14167.4i −0.710041 + 0.597874i
\(826\) 1723.45 + 2985.11i 0.0725988 + 0.125745i
\(827\) −33819.0 −1.42201 −0.711005 0.703187i \(-0.751760\pi\)
−0.711005 + 0.703187i \(0.751760\pi\)
\(828\) −2953.04 + 17090.1i −0.123943 + 0.717297i
\(829\) −16608.2 −0.695812 −0.347906 0.937529i \(-0.613107\pi\)
−0.347906 + 0.937529i \(0.613107\pi\)
\(830\) −2031.82 3519.21i −0.0849704 0.147173i
\(831\) −634.822 3564.50i −0.0265003 0.148798i
\(832\) 14473.0 25067.9i 0.603077 1.04456i
\(833\) −13086.9 + 22667.1i −0.544338 + 0.942821i
\(834\) 9288.68 + 3362.78i 0.385660 + 0.139620i
\(835\) 4990.02 + 8642.97i 0.206811 + 0.358206i
\(836\) −2764.77 −0.114380
\(837\) −10522.9 + 54.1414i −0.434557 + 0.00223584i
\(838\) 21801.2 0.898699
\(839\) −2260.32 3914.98i −0.0930093 0.161097i 0.815767 0.578381i \(-0.196315\pi\)
−0.908776 + 0.417284i \(0.862982\pi\)
\(840\) −10627.5 3847.46i −0.436527 0.158036i
\(841\) −16129.3 + 27936.8i −0.661336 + 1.14547i
\(842\) 8951.29 15504.1i 0.366368 0.634568i
\(843\) −1759.78 9881.10i −0.0718982 0.403705i
\(844\) 9077.73 + 15723.1i 0.370223 + 0.641245i
\(845\) −5410.56 −0.220271
\(846\) −25566.0 + 9404.70i −1.03898 + 0.382199i
\(847\) −2131.82 −0.0864820
\(848\) 1554.06 + 2691.72i 0.0629325 + 0.109002i
\(849\) 25466.6 21443.6i 1.02946 0.866834i
\(850\) −3181.15 + 5509.92i −0.128368 + 0.222340i
\(851\) −1486.47 + 2574.65i −0.0598774 + 0.103711i
\(852\) −9155.49 + 7709.17i −0.368148 + 0.309990i
\(853\) −1911.61 3311.00i −0.0767318 0.132903i 0.825106 0.564978i \(-0.191115\pi\)
−0.901838 + 0.432074i \(0.857782\pi\)
\(854\) −45889.9 −1.83878
\(855\) −1209.90 + 445.074i −0.0483951 + 0.0178026i
\(856\) 27715.6 1.10666
\(857\) 10107.2 + 17506.2i 0.402865 + 0.697783i 0.994070 0.108738i \(-0.0346810\pi\)
−0.591205 + 0.806521i \(0.701348\pi\)
\(858\) 4243.37 + 23826.3i 0.168842 + 0.948039i
\(859\) 9675.51 16758.5i 0.384312 0.665648i −0.607361 0.794426i \(-0.707772\pi\)
0.991674 + 0.128777i \(0.0411053\pi\)
\(860\) 356.985 618.316i 0.0141548 0.0245168i
\(861\) 30221.2 + 10941.0i 1.19621 + 0.433062i
\(862\) 1212.61 + 2100.30i 0.0479138 + 0.0829891i
\(863\) 27462.6 1.08324 0.541620 0.840623i \(-0.317811\pi\)
0.541620 + 0.840623i \(0.317811\pi\)
\(864\) 22756.1 117.082i 0.896038 0.00461021i
\(865\) 1534.32 0.0603104
\(866\) 2111.39 + 3657.03i 0.0828497 + 0.143500i
\(867\) −20422.5 7393.53i −0.799981 0.289616i
\(868\) 5537.32 9590.92i 0.216531 0.375043i
\(869\) −18820.0 + 32597.3i −0.734668 + 1.27248i
\(870\) −1078.92 6058.07i −0.0420445 0.236078i
\(871\) −10589.2 18341.0i −0.411940 0.713501i
\(872\) 13238.1 0.514104
\(873\) −4321.56 + 25010.1i −0.167540 + 0.969603i
\(874\) 5922.80 0.229224
\(875\) −11081.0 19192.8i −0.428121 0.741527i
\(876\) −19837.6 + 16703.8i −0.765126 + 0.644256i
\(877\) −5196.63 + 9000.84i −0.200089 + 0.346564i −0.948557 0.316607i \(-0.897456\pi\)
0.748468 + 0.663171i \(0.230790\pi\)
\(878\) −7832.47 + 13566.2i −0.301063 + 0.521456i
\(879\) −13846.8 + 11659.4i −0.531334 + 0.447397i
\(880\) 659.482 + 1142.26i 0.0252627 + 0.0437562i
\(881\) 37813.2 1.44604 0.723018 0.690829i \(-0.242754\pi\)
0.723018 + 0.690829i \(0.242754\pi\)
\(882\) −39701.8 33082.4i −1.51568 1.26297i
\(883\) −19334.7 −0.736881 −0.368440 0.929651i \(-0.620108\pi\)
−0.368440 + 0.929651i \(0.620108\pi\)
\(884\) −3642.77 6309.46i −0.138597 0.240057i
\(885\) 110.138 + 618.422i 0.00418335 + 0.0234893i
\(886\) 8313.71 14399.8i 0.315242 0.546015i
\(887\) 2792.24 4836.31i 0.105698 0.183075i −0.808325 0.588736i \(-0.799626\pi\)
0.914023 + 0.405662i \(0.132959\pi\)
\(888\) 2206.56 + 798.838i 0.0833865 + 0.0301883i
\(889\) −10276.0 17798.6i −0.387679 0.671480i
\(890\) −592.202 −0.0223041
\(891\) −19802.7 + 16849.2i −0.744573 + 0.633525i
\(892\) −21081.1 −0.791307
\(893\) −4840.96 8384.80i −0.181407 0.314207i
\(894\) 5555.80 + 2011.36i 0.207845 + 0.0752461i
\(895\) 4099.45 7100.45i 0.153105 0.265186i
\(896\) −7756.87 + 13435.3i −0.289218 + 0.500940i
\(897\) 9460.72 + 53121.5i 0.352156 + 1.97734i
\(898\) 13150.3 + 22776.9i 0.488675 + 0.846409i
\(899\) 17852.0 0.662288
\(900\) 10044.0 + 8369.34i 0.371998 + 0.309976i
\(901\) 5718.56 0.211446
\(902\) −6034.84 10452.6i −0.222770 0.385848i
\(903\) 10017.0 8434.61i 0.369154 0.310838i
\(904\) −3505.89 + 6072.38i −0.128987 + 0.223412i
\(905\) −982.408 + 1701.58i −0.0360844 + 0.0625000i
\(906\) 9077.85 7643.79i 0.332882 0.280296i
\(907\) 14585.2 + 25262.3i 0.533951 + 0.924831i 0.999213 + 0.0396577i \(0.0126267\pi\)
−0.465262 + 0.885173i \(0.654040\pi\)
\(908\) −12788.5 −0.467401
\(909\) 5582.22 32305.9i 0.203686 1.17879i
\(910\) −11876.2 −0.432628
\(911\) 25412.2 + 44015.2i 0.924198 + 1.60076i 0.792847 + 0.609421i \(0.208598\pi\)
0.131351 + 0.991336i \(0.458069\pi\)
\(912\) −254.736 1430.33i −0.00924907 0.0519331i
\(913\) 14564.7 25226.8i 0.527954 0.914443i
\(914\) 13215.4 22889.7i 0.478255 0.828362i
\(915\) −7863.38 2846.77i −0.284104 0.102854i
\(916\) −6650.14 11518.4i −0.239876 0.415478i
\(917\) 56332.4 2.02864
\(918\) −3726.85 + 6532.48i −0.133992 + 0.234863i
\(919\) 23089.0 0.828768 0.414384 0.910102i \(-0.363997\pi\)
0.414384 + 0.910102i \(0.363997\pi\)
\(920\) 4731.49 + 8195.17i 0.169557 + 0.293681i
\(921\) 25385.5 + 9190.30i 0.908232 + 0.328807i
\(922\) 12352.8 21395.7i 0.441234 0.764239i
\(923\) −18618.4 + 32248.0i −0.663956 + 1.15001i
\(924\) −4797.87 26939.8i −0.170821 0.959151i
\(925\) 1120.55 + 1940.84i 0.0398306 + 0.0689887i
\(926\) −24159.7 −0.857382
\(927\) 2873.09 1056.89i 0.101796 0.0374465i
\(928\) −38605.4 −1.36561
\(929\) 3259.82 + 5646.17i 0.115125 + 0.199403i 0.917830 0.396974i \(-0.129940\pi\)
−0.802705 + 0.596377i \(0.796606\pi\)
\(930\) −1483.36 + 1249.03i −0.0523026 + 0.0440402i
\(931\) 9183.76 15906.7i 0.323293 0.559959i
\(932\) −2430.30 + 4209.40i −0.0854153 + 0.147944i
\(933\) 19314.5 16263.3i 0.677737 0.570672i
\(934\) 7711.80 + 13357.2i 0.270169 + 0.467947i
\(935\) 2426.73 0.0848796
\(936\) 39972.7 14704.3i 1.39588 0.513489i
\(937\) −15579.4 −0.543178 −0.271589 0.962413i \(-0.587549\pi\)
−0.271589 + 0.962413i \(0.587549\pi\)
\(938\) −11504.1 19925.7i −0.400451 0.693601i
\(939\) −6918.18 38845.2i −0.240433 1.35002i
\(940\) 2612.26 4524.57i 0.0906410 0.156995i
\(941\) 8944.32 15492.0i 0.309858 0.536690i −0.668473 0.743736i \(-0.733052\pi\)
0.978331 + 0.207046i \(0.0663851\pi\)
\(942\) −19986.1 7235.55i −0.691276 0.250262i
\(943\) −13454.8 23304.5i −0.464634 0.804770i
\(944\) −707.902 −0.0244070
\(945\) −6436.40 11016.9i −0.221562 0.379237i
\(946\) −4917.58 −0.169011
\(947\) 1193.79 + 2067.70i 0.0409640 + 0.0709518i 0.885780 0.464104i \(-0.153624\pi\)
−0.844816 + 0.535056i \(0.820290\pi\)
\(948\) 21036.6 + 7615.86i 0.720714 + 0.260919i
\(949\) −40341.2 + 69873.0i −1.37991 + 2.39007i
\(950\) 2232.39 3866.60i 0.0762402 0.132052i
\(951\) −6381.44 35831.5i −0.217594 1.22178i
\(952\) −11717.6 20295.5i −0.398918 0.690947i
\(953\) −50911.1 −1.73050 −0.865252 0.501337i \(-0.832842\pi\)
−0.865252 + 0.501337i \(0.832842\pi\)
\(954\) −1922.51 + 11126.1i −0.0652447 + 0.377590i
\(955\) −3209.28 −0.108743
\(956\) 5140.32 + 8903.30i 0.173902 + 0.301207i
\(957\) 33741.2 28411.0i 1.13970 0.959661i
\(958\) 9304.58 16116.0i 0.313797 0.543512i
\(959\) 28331.5 49071.6i 0.953986 1.65235i
\(960\) 4383.72 3691.21i 0.147379 0.124097i
\(961\) 12082.6 + 20927.6i 0.405577 + 0.702481i
\(962\) 2465.82 0.0826415
\(963\) 24036.7 + 20029.1i 0.804332 + 0.670227i
\(964\) −877.761 −0.0293265
\(965\) −780.297 1351.51i −0.0260297 0.0450847i
\(966\) 10278.2 + 57711.5i 0.342334 + 1.92219i
\(967\) 2938.71 5090.00i 0.0977277 0.169269i −0.813016 0.582241i \(-0.802176\pi\)
0.910744 + 0.412972i \(0.135509\pi\)
\(968\) 704.443 1220.13i 0.0233901 0.0405129i
\(969\) −2513.40 909.923i −0.0833250 0.0301661i
\(970\) 2338.58 + 4050.54i 0.0774096 + 0.134077i
\(971\) −29273.1 −0.967476 −0.483738 0.875213i \(-0.660721\pi\)
−0.483738 + 0.875213i \(0.660721\pi\)
\(972\) 11923.6 + 9832.09i 0.393467 + 0.324449i
\(973\) −34749.9 −1.14494
\(974\) −18763.7 32499.7i −0.617277 1.06916i
\(975\) 38245.4 + 13846.0i 1.25624 + 0.454796i
\(976\) 4712.28 8161.90i 0.154545 0.267680i
\(977\) −20833.8 + 36085.1i −0.682222 + 1.18164i 0.292079 + 0.956394i \(0.405653\pi\)
−0.974301 + 0.225249i \(0.927680\pi\)
\(978\) 1213.55 + 6814.01i 0.0396778 + 0.222789i
\(979\) −2122.55 3676.36i −0.0692920 0.120017i
\(980\) 9911.40 0.323070
\(981\) 11480.9 + 9566.72i 0.373657 + 0.311358i
\(982\) −6973.95 −0.226627
\(983\) 24668.1 + 42726.4i 0.800396 + 1.38633i 0.919356 + 0.393428i \(0.128711\pi\)
−0.118959 + 0.992899i \(0.537956\pi\)
\(984\) −16248.3 + 13681.5i −0.526399 + 0.443242i
\(985\) −2509.50 + 4346.59i −0.0811771 + 0.140603i
\(986\) 6379.41 11049.5i 0.206046 0.356883i
\(987\) 73300.3 61720.8i 2.36391 1.99047i
\(988\) 2556.32 + 4427.68i 0.0823153 + 0.142574i
\(989\) −10963.9 −0.352509
\(990\) −815.834 + 4721.47i −0.0261908 + 0.151574i
\(991\) −60404.6 −1.93624 −0.968121 0.250485i \(-0.919410\pi\)
−0.968121 + 0.250485i \(0.919410\pi\)
\(992\) 6083.07 + 10536.2i 0.194695 + 0.337222i
\(993\) −2548.30 14308.6i −0.0814378 0.457270i
\(994\) −20227.1 + 35034.4i −0.645438 + 1.11793i
\(995\) 1647.37 2853.33i 0.0524877 0.0909114i
\(996\) −16280.1 5893.87i −0.517926 0.187504i
\(997\) 28168.3 + 48788.9i 0.894783 + 1.54981i 0.834073 + 0.551655i \(0.186003\pi\)
0.0607108 + 0.998155i \(0.480663\pi\)
\(998\) 7717.67 0.244788
\(999\) 1336.37 + 2287.40i 0.0423233 + 0.0724427i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.4.e.a.58.19 54
9.4 even 3 1539.4.a.h.1.9 27
9.5 odd 6 1539.4.a.g.1.19 27
9.7 even 3 inner 171.4.e.a.115.19 yes 54
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.4.e.a.58.19 54 1.1 even 1 trivial
171.4.e.a.115.19 yes 54 9.7 even 3 inner
1539.4.a.g.1.19 27 9.5 odd 6
1539.4.a.h.1.9 27 9.4 even 3