Properties

Label 171.6.a.k.1.1
Level 171171
Weight 66
Character 171.1
Self dual yes
Analytic conductor 27.42627.426
Analytic rank 11
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,6,Mod(1,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 171=3219 171 = 3^{2} \cdot 19
Weight: k k == 6 6
Character orbit: [χ][\chi] == 171.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 27.425633188027.4256331880
Analytic rank: 11
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6117x4+2916x21216 x^{6} - 117x^{4} + 2916x^{2} - 1216 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 23 2^{3}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 9.01831-9.01831 of defining polynomial
Character χ\chi == 171.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q9.01831q2+49.3298q4+69.9349q524.9809q7156.286q8630.694q1015.2536q11878.013q13+225.286q14169.122q1639.2385q17361.000q19+3449.88q20+137.562q22+1235.03q23+1765.89q25+7918.19q261232.31q28+3698.42q293303.45q31+6526.34q32+353.865q341747.04q35+845.412q37+3255.61q3810929.8q4018819.0q41+7092.14q43752.457q4411137.9q468219.10q4716183.0q4915925.3q5043312.3q52+4978.22q531066.76q55+3904.16q5633353.5q5836585.9q59+18413.6q61+29791.5q6253444.6q6461403.7q6556841.1q671935.63q68+15755.3q70+31417.8q71+62822.4q737624.19q7417808.1q76+381.049q7744851.7q7911827.5q80+169715.q8241714.2q832744.14q8563959.0q86+2383.92q8854448.5q89+21933.6q91+60923.9q92+74122.4q9425246.5q9543487.7q97+145943.q98+O(q100)q-9.01831 q^{2} +49.3298 q^{4} +69.9349 q^{5} -24.9809 q^{7} -156.286 q^{8} -630.694 q^{10} -15.2536 q^{11} -878.013 q^{13} +225.286 q^{14} -169.122 q^{16} -39.2385 q^{17} -361.000 q^{19} +3449.88 q^{20} +137.562 q^{22} +1235.03 q^{23} +1765.89 q^{25} +7918.19 q^{26} -1232.31 q^{28} +3698.42 q^{29} -3303.45 q^{31} +6526.34 q^{32} +353.865 q^{34} -1747.04 q^{35} +845.412 q^{37} +3255.61 q^{38} -10929.8 q^{40} -18819.0 q^{41} +7092.14 q^{43} -752.457 q^{44} -11137.9 q^{46} -8219.10 q^{47} -16183.0 q^{49} -15925.3 q^{50} -43312.3 q^{52} +4978.22 q^{53} -1066.76 q^{55} +3904.16 q^{56} -33353.5 q^{58} -36585.9 q^{59} +18413.6 q^{61} +29791.5 q^{62} -53444.6 q^{64} -61403.7 q^{65} -56841.1 q^{67} -1935.63 q^{68} +15755.3 q^{70} +31417.8 q^{71} +62822.4 q^{73} -7624.19 q^{74} -17808.1 q^{76} +381.049 q^{77} -44851.7 q^{79} -11827.5 q^{80} +169715. q^{82} -41714.2 q^{83} -2744.14 q^{85} -63959.0 q^{86} +2383.92 q^{88} -54448.5 q^{89} +21933.6 q^{91} +60923.9 q^{92} +74122.4 q^{94} -25246.5 q^{95} -43487.7 q^{97} +145943. q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+42q410q7788q101256q13606q162166q192524q223944q259632q2818136q3114072q3423764q3734284q4024606q4345640q46+16492q97+O(q100) 6 q + 42 q^{4} - 10 q^{7} - 788 q^{10} - 1256 q^{13} - 606 q^{16} - 2166 q^{19} - 2524 q^{22} - 3944 q^{25} - 9632 q^{28} - 18136 q^{31} - 14072 q^{34} - 23764 q^{37} - 34284 q^{40} - 24606 q^{43} - 45640 q^{46}+ \cdots - 16492 q^{97}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −9.01831 −1.59423 −0.797113 0.603830i 0.793641π-0.793641\pi
−0.797113 + 0.603830i 0.793641π0.793641\pi
33 0 0
44 49.3298 1.54156
55 69.9349 1.25103 0.625516 0.780211i 0.284888π-0.284888\pi
0.625516 + 0.780211i 0.284888π0.284888\pi
66 0 0
77 −24.9809 −0.192692 −0.0963460 0.995348i 0.530716π-0.530716\pi
−0.0963460 + 0.995348i 0.530716π0.530716\pi
88 −156.286 −0.863365
99 0 0
1010 −630.694 −1.99443
1111 −15.2536 −0.0380093 −0.0190047 0.999819i 0.506050π-0.506050\pi
−0.0190047 + 0.999819i 0.506050π0.506050\pi
1212 0 0
1313 −878.013 −1.44093 −0.720465 0.693492i 0.756071π-0.756071\pi
−0.720465 + 0.693492i 0.756071π0.756071\pi
1414 225.286 0.307195
1515 0 0
1616 −169.122 −0.165158
1717 −39.2385 −0.0329299 −0.0164649 0.999864i 0.505241π-0.505241\pi
−0.0164649 + 0.999864i 0.505241π0.505241\pi
1818 0 0
1919 −361.000 −0.229416
2020 3449.88 1.92854
2121 0 0
2222 137.562 0.0605955
2323 1235.03 0.486809 0.243404 0.969925i 0.421736π-0.421736\pi
0.243404 + 0.969925i 0.421736π0.421736\pi
2424 0 0
2525 1765.89 0.565083
2626 7918.19 2.29717
2727 0 0
2828 −1232.31 −0.297046
2929 3698.42 0.816622 0.408311 0.912843i 0.366118π-0.366118\pi
0.408311 + 0.912843i 0.366118π0.366118\pi
3030 0 0
3131 −3303.45 −0.617396 −0.308698 0.951160i 0.599893π-0.599893\pi
−0.308698 + 0.951160i 0.599893π0.599893\pi
3232 6526.34 1.12666
3333 0 0
3434 353.865 0.0524977
3535 −1747.04 −0.241064
3636 0 0
3737 845.412 0.101523 0.0507615 0.998711i 0.483835π-0.483835\pi
0.0507615 + 0.998711i 0.483835π0.483835\pi
3838 3255.61 0.365741
3939 0 0
4040 −10929.8 −1.08010
4141 −18819.0 −1.74838 −0.874192 0.485581i 0.838608π-0.838608\pi
−0.874192 + 0.485581i 0.838608π0.838608\pi
4242 0 0
4343 7092.14 0.584933 0.292466 0.956276i 0.405524π-0.405524\pi
0.292466 + 0.956276i 0.405524π0.405524\pi
4444 −752.457 −0.0585936
4545 0 0
4646 −11137.9 −0.776084
4747 −8219.10 −0.542725 −0.271362 0.962477i 0.587474π-0.587474\pi
−0.271362 + 0.962477i 0.587474π0.587474\pi
4848 0 0
4949 −16183.0 −0.962870
5050 −15925.3 −0.900871
5151 0 0
5252 −43312.3 −2.22128
5353 4978.22 0.243436 0.121718 0.992565i 0.461160π-0.461160\pi
0.121718 + 0.992565i 0.461160π0.461160\pi
5454 0 0
5555 −1066.76 −0.0475509
5656 3904.16 0.166363
5757 0 0
5858 −33353.5 −1.30188
5959 −36585.9 −1.36831 −0.684153 0.729338i 0.739828π-0.739828\pi
−0.684153 + 0.729338i 0.739828π0.739828\pi
6060 0 0
6161 18413.6 0.633599 0.316799 0.948493i 0.397392π-0.397392\pi
0.316799 + 0.948493i 0.397392π0.397392\pi
6262 29791.5 0.984269
6363 0 0
6464 −53444.6 −1.63100
6565 −61403.7 −1.80265
6666 0 0
6767 −56841.1 −1.54695 −0.773474 0.633828i 0.781483π-0.781483\pi
−0.773474 + 0.633828i 0.781483π0.781483\pi
6868 −1935.63 −0.0507633
6969 0 0
7070 15755.3 0.384310
7171 31417.8 0.739657 0.369829 0.929100i 0.379416π-0.379416\pi
0.369829 + 0.929100i 0.379416π0.379416\pi
7272 0 0
7373 62822.4 1.37977 0.689886 0.723918i 0.257661π-0.257661\pi
0.689886 + 0.723918i 0.257661π0.257661\pi
7474 −7624.19 −0.161851
7575 0 0
7676 −17808.1 −0.353658
7777 381.049 0.00732409
7878 0 0
7979 −44851.7 −0.808558 −0.404279 0.914636i 0.632477π-0.632477\pi
−0.404279 + 0.914636i 0.632477π0.632477\pi
8080 −11827.5 −0.206618
8181 0 0
8282 169715. 2.78732
8383 −41714.2 −0.664643 −0.332322 0.943166i 0.607832π-0.607832\pi
−0.332322 + 0.943166i 0.607832π0.607832\pi
8484 0 0
8585 −2744.14 −0.0411964
8686 −63959.0 −0.932515
8787 0 0
8888 2383.92 0.0328159
8989 −54448.5 −0.728636 −0.364318 0.931275i 0.618698π-0.618698\pi
−0.364318 + 0.931275i 0.618698π0.618698\pi
9090 0 0
9191 21933.6 0.277655
9292 60923.9 0.750444
9393 0 0
9494 74122.4 0.865226
9595 −25246.5 −0.287007
9696 0 0
9797 −43487.7 −0.469285 −0.234642 0.972082i 0.575392π-0.575392\pi
−0.234642 + 0.972082i 0.575392π0.575392\pi
9898 145943. 1.53503
9999 0 0
100100 87110.8 0.871108
101101 10927.3 0.106588 0.0532940 0.998579i 0.483028π-0.483028\pi
0.0532940 + 0.998579i 0.483028π0.483028\pi
102102 0 0
103103 −76020.3 −0.706052 −0.353026 0.935614i 0.614847π-0.614847\pi
−0.353026 + 0.935614i 0.614847π0.614847\pi
104104 137221. 1.24405
105105 0 0
106106 −44895.1 −0.388092
107107 123618. 1.04381 0.521906 0.853003i 0.325221π-0.325221\pi
0.521906 + 0.853003i 0.325221π0.325221\pi
108108 0 0
109109 −145642. −1.17414 −0.587070 0.809536i 0.699719π-0.699719\pi
−0.587070 + 0.809536i 0.699719π0.699719\pi
110110 9620.35 0.0758070
111111 0 0
112112 4224.82 0.0318246
113113 4514.38 0.0332584 0.0166292 0.999862i 0.494707π-0.494707\pi
0.0166292 + 0.999862i 0.494707π0.494707\pi
114114 0 0
115115 86371.8 0.609014
116116 182442. 1.25887
117117 0 0
118118 329943. 2.18139
119119 980.214 0.00634532
120120 0 0
121121 −160818. −0.998555
122122 −166060. −1.01010
123123 0 0
124124 −162959. −0.951751
125125 −95049.5 −0.544095
126126 0 0
127127 71367.3 0.392636 0.196318 0.980540i 0.437102π-0.437102\pi
0.196318 + 0.980540i 0.437102π0.437102\pi
128128 273137. 1.47352
129129 0 0
130130 553758. 2.87383
131131 244939. 1.24704 0.623519 0.781808i 0.285702π-0.285702\pi
0.623519 + 0.781808i 0.285702π0.285702\pi
132132 0 0
133133 9018.12 0.0442066
134134 512610. 2.46618
135135 0 0
136136 6132.42 0.0284305
137137 −357466. −1.62717 −0.813585 0.581446i 0.802487π-0.802487\pi
−0.813585 + 0.581446i 0.802487π0.802487\pi
138138 0 0
139139 116186. 0.510056 0.255028 0.966934i 0.417915π-0.417915\pi
0.255028 + 0.966934i 0.417915π0.417915\pi
140140 −86181.1 −0.371614
141141 0 0
142142 −283336. −1.17918
143143 13392.9 0.0547688
144144 0 0
145145 258648. 1.02162
146146 −566552. −2.19967
147147 0 0
148148 41704.1 0.156503
149149 −237480. −0.876318 −0.438159 0.898897i 0.644369π-0.644369\pi
−0.438159 + 0.898897i 0.644369π0.644369\pi
150150 0 0
151151 67124.3 0.239573 0.119786 0.992800i 0.461779π-0.461779\pi
0.119786 + 0.992800i 0.461779π0.461779\pi
152152 56419.2 0.198070
153153 0 0
154154 −3436.42 −0.0116763
155155 −231026. −0.772382
156156 0 0
157157 −381859. −1.23639 −0.618193 0.786026i 0.712135π-0.712135\pi
−0.618193 + 0.786026i 0.712135π0.712135\pi
158158 404486. 1.28902
159159 0 0
160160 456419. 1.40949
161161 −30852.2 −0.0938042
162162 0 0
163163 −30881.4 −0.0910391 −0.0455195 0.998963i 0.514494π-0.514494\pi
−0.0455195 + 0.998963i 0.514494π0.514494\pi
164164 −928338. −2.69523
165165 0 0
166166 376191. 1.05959
167167 44367.3 0.123104 0.0615519 0.998104i 0.480395π-0.480395\pi
0.0615519 + 0.998104i 0.480395π0.480395\pi
168168 0 0
169169 399614. 1.07628
170170 24747.5 0.0656763
171171 0 0
172172 349854. 0.901707
173173 −498738. −1.26694 −0.633471 0.773766i 0.718371π-0.718371\pi
−0.633471 + 0.773766i 0.718371π0.718371\pi
174174 0 0
175175 −44113.5 −0.108887
176176 2579.72 0.00627755
177177 0 0
178178 491033. 1.16161
179179 −632626. −1.47576 −0.737878 0.674934i 0.764172π-0.764172\pi
−0.737878 + 0.674934i 0.764172π0.764172\pi
180180 0 0
181181 −810854. −1.83970 −0.919849 0.392274i 0.871689π-0.871689\pi
−0.919849 + 0.392274i 0.871689π0.871689\pi
182182 −197804. −0.442646
183183 0 0
184184 −193018. −0.420294
185185 59123.8 0.127009
186186 0 0
187187 598.528 0.00125164
188188 −405447. −0.836641
189189 0 0
190190 227681. 0.457554
191191 299878. 0.594786 0.297393 0.954755i 0.403883π-0.403883\pi
0.297393 + 0.954755i 0.403883π0.403883\pi
192192 0 0
193193 −616954. −1.19223 −0.596114 0.802900i 0.703289π-0.703289\pi
−0.596114 + 0.802900i 0.703289π0.703289\pi
194194 392185. 0.748146
195195 0 0
196196 −798302. −1.48432
197197 687623. 1.26237 0.631183 0.775634i 0.282570π-0.282570\pi
0.631183 + 0.775634i 0.282570π0.282570\pi
198198 0 0
199199 −800129. −1.43228 −0.716139 0.697957i 0.754092π-0.754092\pi
−0.716139 + 0.697957i 0.754092π0.754092\pi
200200 −275983. −0.487873
201201 0 0
202202 −98545.6 −0.169926
203203 −92389.9 −0.157356
204204 0 0
205205 −1.31610e6 −2.18729
206206 685574. 1.12561
207207 0 0
208208 148491. 0.237981
209209 5506.55 0.00871994
210210 0 0
211211 −1.26274e6 −1.95258 −0.976291 0.216460i 0.930549π-0.930549\pi
−0.976291 + 0.216460i 0.930549π0.930549\pi
212212 245575. 0.375270
213213 0 0
214214 −1.11482e6 −1.66407
215215 495988. 0.731770
216216 0 0
217217 82523.3 0.118967
218218 1.31344e6 1.87184
219219 0 0
220220 −52623.0 −0.0733025
221221 34451.9 0.0474496
222222 0 0
223223 1.38236e6 1.86148 0.930741 0.365679i 0.119163π-0.119163\pi
0.930741 + 0.365679i 0.119163π0.119163\pi
224224 −163034. −0.217099
225225 0 0
226226 −40712.0 −0.0530214
227227 1.45586e6 1.87523 0.937615 0.347674i 0.113028π-0.113028\pi
0.937615 + 0.347674i 0.113028π0.113028\pi
228228 0 0
229229 1.05680e6 1.33169 0.665845 0.746090i 0.268071π-0.268071\pi
0.665845 + 0.746090i 0.268071π0.268071\pi
230230 −778927. −0.970906
231231 0 0
232232 −578010. −0.705043
233233 −125063. −0.150917 −0.0754586 0.997149i 0.524042π-0.524042\pi
−0.0754586 + 0.997149i 0.524042π0.524042\pi
234234 0 0
235235 −574802. −0.678966
236236 −1.80477e6 −2.10932
237237 0 0
238238 −8839.87 −0.0101159
239239 1.01600e6 1.15054 0.575268 0.817965i 0.304898π-0.304898\pi
0.575268 + 0.817965i 0.304898π0.304898\pi
240240 0 0
241241 735229. 0.815417 0.407709 0.913112i 0.366328π-0.366328\pi
0.407709 + 0.913112i 0.366328π0.366328\pi
242242 1.45031e6 1.59192
243243 0 0
244244 908340. 0.976729
245245 −1.13175e6 −1.20458
246246 0 0
247247 316963. 0.330572
248248 516282. 0.533038
249249 0 0
250250 857185. 0.867411
251251 1.38044e6 1.38303 0.691517 0.722360i 0.256943π-0.256943\pi
0.691517 + 0.722360i 0.256943π0.256943\pi
252252 0 0
253253 −18838.7 −0.0185033
254254 −643612. −0.625950
255255 0 0
256256 −753005. −0.718122
257257 753987. 0.712084 0.356042 0.934470i 0.384126π-0.384126\pi
0.356042 + 0.934470i 0.384126π0.384126\pi
258258 0 0
259259 −21119.2 −0.0195627
260260 −3.02904e6 −2.77889
261261 0 0
262262 −2.20894e6 −1.98806
263263 329348. 0.293607 0.146803 0.989166i 0.453102π-0.453102\pi
0.146803 + 0.989166i 0.453102π0.453102\pi
264264 0 0
265265 348151. 0.304546
266266 −81328.1 −0.0704753
267267 0 0
268268 −2.80396e6 −2.38471
269269 2.00722e6 1.69128 0.845638 0.533756i 0.179220π-0.179220\pi
0.845638 + 0.533756i 0.179220π0.179220\pi
270270 0 0
271271 −969156. −0.801623 −0.400812 0.916160i 0.631272π-0.631272\pi
−0.400812 + 0.916160i 0.631272π0.631272\pi
272272 6636.09 0.00543864
273273 0 0
274274 3.22374e6 2.59408
275275 −26936.1 −0.0214785
276276 0 0
277277 78953.9 0.0618264 0.0309132 0.999522i 0.490158π-0.490158\pi
0.0309132 + 0.999522i 0.490158π0.490158\pi
278278 −1.04780e6 −0.813145
279279 0 0
280280 273037. 0.208126
281281 −581164. −0.439069 −0.219535 0.975605i 0.570454π-0.570454\pi
−0.219535 + 0.975605i 0.570454π0.570454\pi
282282 0 0
283283 1.88724e6 1.40075 0.700375 0.713775i 0.253016π-0.253016\pi
0.700375 + 0.713775i 0.253016π0.253016\pi
284284 1.54984e6 1.14022
285285 0 0
286286 −120781. −0.0873138
287287 470116. 0.336899
288288 0 0
289289 −1.41832e6 −0.998916
290290 −2.33257e6 −1.62870
291291 0 0
292292 3.09902e6 2.12700
293293 2.13183e6 1.45072 0.725360 0.688370i 0.241674π-0.241674\pi
0.725360 + 0.688370i 0.241674π0.241674\pi
294294 0 0
295295 −2.55863e6 −1.71180
296296 −132126. −0.0876514
297297 0 0
298298 2.14167e6 1.39705
299299 −1.08437e6 −0.701457
300300 0 0
301301 −177168. −0.112712
302302 −605347. −0.381933
303303 0 0
304304 61053.0 0.0378899
305305 1.28775e6 0.792653
306306 0 0
307307 −1.32016e6 −0.799428 −0.399714 0.916640i 0.630891π-0.630891\pi
−0.399714 + 0.916640i 0.630891π0.630891\pi
308308 18797.1 0.0112905
309309 0 0
310310 2.08347e6 1.23135
311311 −1.81117e6 −1.06184 −0.530918 0.847423i 0.678153π-0.678153\pi
−0.530918 + 0.847423i 0.678153π0.678153\pi
312312 0 0
313313 297903. 0.171876 0.0859378 0.996301i 0.472611π-0.472611\pi
0.0859378 + 0.996301i 0.472611π0.472611\pi
314314 3.44372e6 1.97108
315315 0 0
316316 −2.21253e6 −1.24644
317317 −2.85867e6 −1.59777 −0.798887 0.601481i 0.794578π-0.794578\pi
−0.798887 + 0.601481i 0.794578π0.794578\pi
318318 0 0
319319 −56414.2 −0.0310393
320320 −3.73764e6 −2.04043
321321 0 0
322322 278235. 0.149545
323323 14165.1 0.00755463
324324 0 0
325325 −1.55047e6 −0.814245
326326 278498. 0.145137
327327 0 0
328328 2.94114e6 1.50949
329329 205321. 0.104579
330330 0 0
331331 −1.63518e6 −0.820342 −0.410171 0.912009i 0.634531π-0.634531\pi
−0.410171 + 0.912009i 0.634531π0.634531\pi
332332 −2.05775e6 −1.02459
333333 0 0
334334 −400118. −0.196255
335335 −3.97518e6 −1.93528
336336 0 0
337337 741151. 0.355494 0.177747 0.984076i 0.443119π-0.443119\pi
0.177747 + 0.984076i 0.443119π0.443119\pi
338338 −3.60385e6 −1.71583
339339 0 0
340340 −135368. −0.0635066
341341 50389.5 0.0234668
342342 0 0
343343 824120. 0.378229
344344 −1.10840e6 −0.505010
345345 0 0
346346 4.49777e6 2.01979
347347 404168. 0.180193 0.0900966 0.995933i 0.471282π-0.471282\pi
0.0900966 + 0.995933i 0.471282π0.471282\pi
348348 0 0
349349 −2.94995e6 −1.29644 −0.648219 0.761454i 0.724486π-0.724486\pi
−0.648219 + 0.761454i 0.724486π0.724486\pi
350350 397829. 0.173591
351351 0 0
352352 −99550.1 −0.0428238
353353 −244773. −0.104551 −0.0522754 0.998633i 0.516647π-0.516647\pi
−0.0522754 + 0.998633i 0.516647π0.516647\pi
354354 0 0
355355 2.19720e6 0.925335
356356 −2.68594e6 −1.12323
357357 0 0
358358 5.70522e6 2.35269
359359 1.10852e6 0.453948 0.226974 0.973901i 0.427117π-0.427117\pi
0.226974 + 0.973901i 0.427117π0.427117\pi
360360 0 0
361361 130321. 0.0526316
362362 7.31253e6 2.93289
363363 0 0
364364 1.08198e6 0.428022
365365 4.39348e6 1.72614
366366 0 0
367367 2.98676e6 1.15754 0.578768 0.815492i 0.303534π-0.303534\pi
0.578768 + 0.815492i 0.303534π0.303534\pi
368368 −208871. −0.0804005
369369 0 0
370370 −533197. −0.202480
371371 −124361. −0.0469081
372372 0 0
373373 3.57172e6 1.32925 0.664623 0.747179i 0.268592π-0.268592\pi
0.664623 + 0.747179i 0.268592π0.268592\pi
374374 −5397.71 −0.00199540
375375 0 0
376376 1.28453e6 0.468570
377377 −3.24726e6 −1.17669
378378 0 0
379379 5.41131e6 1.93510 0.967551 0.252675i 0.0813102π-0.0813102\pi
0.967551 + 0.252675i 0.0813102π0.0813102\pi
380380 −1.24541e6 −0.442437
381381 0 0
382382 −2.70439e6 −0.948223
383383 −54664.9 −0.0190419 −0.00952097 0.999955i 0.503031π-0.503031\pi
−0.00952097 + 0.999955i 0.503031π0.503031\pi
384384 0 0
385385 26648.6 0.00916268
386386 5.56388e6 1.90068
387387 0 0
388388 −2.14524e6 −0.723430
389389 2.24796e6 0.753208 0.376604 0.926374i 0.377092π-0.377092\pi
0.376604 + 0.926374i 0.377092π0.377092\pi
390390 0 0
391391 −48460.8 −0.0160306
392392 2.52917e6 0.831308
393393 0 0
394394 −6.20120e6 −2.01250
395395 −3.13670e6 −1.01153
396396 0 0
397397 1.76879e6 0.563249 0.281624 0.959525i 0.409127π-0.409127\pi
0.281624 + 0.959525i 0.409127π0.409127\pi
398398 7.21581e6 2.28338
399399 0 0
400400 −298650. −0.0933281
401401 −4.31762e6 −1.34086 −0.670431 0.741972i 0.733891π-0.733891\pi
−0.670431 + 0.741972i 0.733891π0.733891\pi
402402 0 0
403403 2.90047e6 0.889624
404404 539041. 0.164312
405405 0 0
406406 833201. 0.250862
407407 −12895.6 −0.00385882
408408 0 0
409409 −1.56828e6 −0.463569 −0.231784 0.972767i 0.574456π-0.574456\pi
−0.231784 + 0.972767i 0.574456π0.574456\pi
410410 1.18690e7 3.48703
411411 0 0
412412 −3.75007e6 −1.08842
413413 913949. 0.263662
414414 0 0
415415 −2.91728e6 −0.831491
416416 −5.73021e6 −1.62344
417417 0 0
418418 −49659.7 −0.0139016
419419 92273.8 0.0256769 0.0128385 0.999918i 0.495913π-0.495913\pi
0.0128385 + 0.999918i 0.495913π0.495913\pi
420420 0 0
421421 −6.80057e6 −1.86999 −0.934997 0.354655i 0.884598π-0.884598\pi
−0.934997 + 0.354655i 0.884598π0.884598\pi
422422 1.13878e7 3.11286
423423 0 0
424424 −778025. −0.210174
425425 −69290.7 −0.0186081
426426 0 0
427427 −459989. −0.122089
428428 6.09805e6 1.60910
429429 0 0
430430 −4.47297e6 −1.16661
431431 −4.66801e6 −1.21043 −0.605214 0.796063i 0.706912π-0.706912\pi
−0.605214 + 0.796063i 0.706912π0.706912\pi
432432 0 0
433433 3.00139e6 0.769312 0.384656 0.923060i 0.374320π-0.374320\pi
0.384656 + 0.923060i 0.374320π0.374320\pi
434434 −744220. −0.189661
435435 0 0
436436 −7.18449e6 −1.81000
437437 −445847. −0.111682
438438 0 0
439439 6.91030e6 1.71134 0.855669 0.517524i 0.173146π-0.173146\pi
0.855669 + 0.517524i 0.173146π0.173146\pi
440440 166719. 0.0410538
441441 0 0
442442 −310698. −0.0756455
443443 −6.81040e6 −1.64878 −0.824391 0.566021i 0.808482π-0.808482\pi
−0.824391 + 0.566021i 0.808482π0.808482\pi
444444 0 0
445445 −3.80785e6 −0.911548
446446 −1.24665e7 −2.96762
447447 0 0
448448 1.33510e6 0.314281
449449 1.64802e6 0.385787 0.192893 0.981220i 0.438213π-0.438213\pi
0.192893 + 0.981220i 0.438213π0.438213\pi
450450 0 0
451451 287057. 0.0664549
452452 222693. 0.0512698
453453 0 0
454454 −1.31294e7 −2.98954
455455 1.53392e6 0.347356
456456 0 0
457457 −3.88919e6 −0.871101 −0.435551 0.900164i 0.643446π-0.643446\pi
−0.435551 + 0.900164i 0.643446π0.643446\pi
458458 −9.53052e6 −2.12301
459459 0 0
460460 4.26071e6 0.938830
461461 2.50854e6 0.549753 0.274877 0.961479i 0.411363π-0.411363\pi
0.274877 + 0.961479i 0.411363π0.411363\pi
462462 0 0
463463 −212544. −0.0460782 −0.0230391 0.999735i 0.507334π-0.507334\pi
−0.0230391 + 0.999735i 0.507334π0.507334\pi
464464 −625484. −0.134872
465465 0 0
466466 1.12786e6 0.240596
467467 8.46883e6 1.79693 0.898465 0.439046i 0.144683π-0.144683\pi
0.898465 + 0.439046i 0.144683π0.144683\pi
468468 0 0
469469 1.41994e6 0.298084
470470 5.18374e6 1.08243
471471 0 0
472472 5.71785e6 1.18135
473473 −108181. −0.0222329
474474 0 0
475475 −637485. −0.129639
476476 48353.8 0.00978168
477477 0 0
478478 −9.16263e6 −1.83422
479479 2.49078e6 0.496016 0.248008 0.968758i 0.420224π-0.420224\pi
0.248008 + 0.968758i 0.420224π0.420224\pi
480480 0 0
481481 −742283. −0.146287
482482 −6.63052e6 −1.29996
483483 0 0
484484 −7.93314e6 −1.53933
485485 −3.04130e6 −0.587091
486486 0 0
487487 4.86094e6 0.928748 0.464374 0.885639i 0.346279π-0.346279\pi
0.464374 + 0.885639i 0.346279π0.346279\pi
488488 −2.87778e6 −0.547027
489489 0 0
490490 1.02065e7 1.92038
491491 −8.88281e6 −1.66283 −0.831413 0.555655i 0.812467π-0.812467\pi
−0.831413 + 0.555655i 0.812467π0.812467\pi
492492 0 0
493493 −145120. −0.0268913
494494 −2.85847e6 −0.527006
495495 0 0
496496 558686. 0.101968
497497 −784847. −0.142526
498498 0 0
499499 1.33020e6 0.239148 0.119574 0.992825i 0.461847π-0.461847\pi
0.119574 + 0.992825i 0.461847π0.461847\pi
500500 −4.68878e6 −0.838754
501501 0 0
502502 −1.24492e7 −2.20487
503503 −4.82565e6 −0.850425 −0.425212 0.905094i 0.639801π-0.639801\pi
−0.425212 + 0.905094i 0.639801π0.639801\pi
504504 0 0
505505 764198. 0.133345
506506 169893. 0.0294984
507507 0 0
508508 3.52054e6 0.605271
509509 −3.34728e6 −0.572662 −0.286331 0.958131i 0.592436π-0.592436\pi
−0.286331 + 0.958131i 0.592436π0.592436\pi
510510 0 0
511511 −1.56936e6 −0.265871
512512 −1.94955e6 −0.328670
513513 0 0
514514 −6.79969e6 −1.13522
515515 −5.31647e6 −0.883294
516516 0 0
517517 125371. 0.0206286
518518 190459. 0.0311873
519519 0 0
520520 9.59653e6 1.55635
521521 −7.67213e6 −1.23829 −0.619144 0.785277i 0.712520π-0.712520\pi
−0.619144 + 0.785277i 0.712520π0.712520\pi
522522 0 0
523523 8.45117e6 1.35102 0.675511 0.737349i 0.263923π-0.263923\pi
0.675511 + 0.737349i 0.263923π0.263923\pi
524524 1.20828e7 1.92238
525525 0 0
526526 −2.97016e6 −0.468076
527527 129622. 0.0203308
528528 0 0
529529 −4.91104e6 −0.763017
530530 −3.13974e6 −0.485516
531531 0 0
532532 444862. 0.0681469
533533 1.65233e7 2.51930
534534 0 0
535535 8.64520e6 1.30584
536536 8.88346e6 1.33558
537537 0 0
538538 −1.81017e7 −2.69628
539539 246848. 0.0365981
540540 0 0
541541 9.89761e6 1.45391 0.726954 0.686686i 0.240935π-0.240935\pi
0.726954 + 0.686686i 0.240935π0.240935\pi
542542 8.74014e6 1.27797
543543 0 0
544544 −256084. −0.0371009
545545 −1.01854e7 −1.46889
546546 0 0
547547 −86566.6 −0.0123703 −0.00618517 0.999981i 0.501969π-0.501969\pi
−0.00618517 + 0.999981i 0.501969π0.501969\pi
548548 −1.76337e7 −2.50838
549549 0 0
550550 242918. 0.0342415
551551 −1.33513e6 −0.187346
552552 0 0
553553 1.12044e6 0.155803
554554 −712030. −0.0985653
555555 0 0
556556 5.73145e6 0.786281
557557 5.91849e6 0.808300 0.404150 0.914693i 0.367567π-0.367567\pi
0.404150 + 0.914693i 0.367567π0.367567\pi
558558 0 0
559559 −6.22699e6 −0.842847
560560 295462. 0.0398137
561561 0 0
562562 5.24112e6 0.699976
563563 801516. 0.106571 0.0532857 0.998579i 0.483031π-0.483031\pi
0.0532857 + 0.998579i 0.483031π0.483031\pi
564564 0 0
565565 315712. 0.0416074
566566 −1.70197e7 −2.23311
567567 0 0
568568 −4.91016e6 −0.638594
569569 1.10482e7 1.43058 0.715289 0.698829i 0.246295π-0.246295\pi
0.715289 + 0.698829i 0.246295π0.246295\pi
570570 0 0
571571 2.87709e6 0.369286 0.184643 0.982806i 0.440887π-0.440887\pi
0.184643 + 0.982806i 0.440887π0.440887\pi
572572 660667. 0.0844292
573573 0 0
574574 −4.23965e6 −0.537094
575575 2.18092e6 0.275088
576576 0 0
577577 3.25493e6 0.407007 0.203503 0.979074i 0.434767π-0.434767\pi
0.203503 + 0.979074i 0.434767π0.434767\pi
578578 1.27908e7 1.59250
579579 0 0
580580 1.27591e7 1.57489
581581 1.04206e6 0.128071
582582 0 0
583583 −75935.8 −0.00925284
584584 −9.81825e6 −1.19125
585585 0 0
586586 −1.92255e7 −2.31277
587587 9.44870e6 1.13182 0.565910 0.824467i 0.308525π-0.308525\pi
0.565910 + 0.824467i 0.308525π0.308525\pi
588588 0 0
589589 1.19255e6 0.141640
590590 2.30745e7 2.72899
591591 0 0
592592 −142978. −0.0167673
593593 1.20293e6 0.140477 0.0702383 0.997530i 0.477624π-0.477624\pi
0.0702383 + 0.997530i 0.477624π0.477624\pi
594594 0 0
595595 68551.2 0.00793821
596596 −1.17149e7 −1.35089
597597 0 0
598598 9.77922e6 1.11828
599599 9.23082e6 1.05117 0.525585 0.850741i 0.323846π-0.323846\pi
0.525585 + 0.850741i 0.323846π0.323846\pi
600600 0 0
601601 −9.23923e6 −1.04340 −0.521699 0.853130i 0.674701π-0.674701\pi
−0.521699 + 0.853130i 0.674701π0.674701\pi
602602 1.59776e6 0.179688
603603 0 0
604604 3.31123e6 0.369315
605605 −1.12468e7 −1.24923
606606 0 0
607607 −384978. −0.0424096 −0.0212048 0.999775i 0.506750π-0.506750\pi
−0.0212048 + 0.999775i 0.506750π0.506750\pi
608608 −2.35601e6 −0.258475
609609 0 0
610610 −1.16133e7 −1.26367
611611 7.21648e6 0.782028
612612 0 0
613613 −3.47518e6 −0.373530 −0.186765 0.982405i 0.559800π-0.559800\pi
−0.186765 + 0.982405i 0.559800π0.559800\pi
614614 1.19056e7 1.27447
615615 0 0
616616 −59552.5 −0.00632337
617617 −3.15989e6 −0.334164 −0.167082 0.985943i 0.553434π-0.553434\pi
−0.167082 + 0.985943i 0.553434π0.553434\pi
618618 0 0
619619 1.82717e7 1.91670 0.958348 0.285604i 0.0921943π-0.0921943\pi
0.958348 + 0.285604i 0.0921943π0.0921943\pi
620620 −1.13965e7 −1.19067
621621 0 0
622622 1.63337e7 1.69281
623623 1.36017e6 0.140402
624624 0 0
625625 −1.21657e7 −1.24576
626626 −2.68658e6 −0.274009
627627 0 0
628628 −1.88370e7 −1.90596
629629 −33172.7 −0.00334314
630630 0 0
631631 −1.44229e6 −0.144204 −0.0721021 0.997397i 0.522971π-0.522971\pi
−0.0721021 + 0.997397i 0.522971π0.522971\pi
632632 7.00968e6 0.698080
633633 0 0
634634 2.57803e7 2.54721
635635 4.99106e6 0.491200
636636 0 0
637637 1.42088e7 1.38743
638638 508760. 0.0494836
639639 0 0
640640 1.91018e7 1.84342
641641 −7.73894e6 −0.743937 −0.371969 0.928245i 0.621317π-0.621317\pi
−0.371969 + 0.928245i 0.621317π0.621317\pi
642642 0 0
643643 −1.43398e7 −1.36778 −0.683888 0.729587i 0.739712π-0.739712\pi
−0.683888 + 0.729587i 0.739712π0.739712\pi
644644 −1.52194e6 −0.144604
645645 0 0
646646 −127745. −0.0120438
647647 4.01534e6 0.377105 0.188552 0.982063i 0.439620π-0.439620\pi
0.188552 + 0.982063i 0.439620π0.439620\pi
648648 0 0
649649 558066. 0.0520084
650650 1.39826e7 1.29809
651651 0 0
652652 −1.52337e6 −0.140342
653653 2.59212e6 0.237888 0.118944 0.992901i 0.462049π-0.462049\pi
0.118944 + 0.992901i 0.462049π0.462049\pi
654654 0 0
655655 1.71298e7 1.56009
656656 3.18271e6 0.288760
657657 0 0
658658 −1.85165e6 −0.166722
659659 −1.02865e7 −0.922686 −0.461343 0.887222i 0.652632π-0.652632\pi
−0.461343 + 0.887222i 0.652632π0.652632\pi
660660 0 0
661661 1.39262e7 1.23974 0.619868 0.784706i 0.287186π-0.287186\pi
0.619868 + 0.784706i 0.287186π0.287186\pi
662662 1.47465e7 1.30781
663663 0 0
664664 6.51934e6 0.573830
665665 630681. 0.0553039
666666 0 0
667667 4.56767e6 0.397539
668668 2.18863e6 0.189772
669669 0 0
670670 3.58493e7 3.08528
671671 −280874. −0.0240827
672672 0 0
673673 −582222. −0.0495508 −0.0247754 0.999693i 0.507887π-0.507887\pi
−0.0247754 + 0.999693i 0.507887π0.507887\pi
674674 −6.68393e6 −0.566738
675675 0 0
676676 1.97129e7 1.65914
677677 1.14185e7 0.957500 0.478750 0.877951i 0.341090π-0.341090\pi
0.478750 + 0.877951i 0.341090π0.341090\pi
678678 0 0
679679 1.08636e6 0.0904274
680680 428870. 0.0355675
681681 0 0
682682 −454428. −0.0374114
683683 1.84937e7 1.51695 0.758477 0.651700i 0.225944π-0.225944\pi
0.758477 + 0.651700i 0.225944π0.225944\pi
684684 0 0
685685 −2.49993e7 −2.03564
686686 −7.43216e6 −0.602983
687687 0 0
688688 −1.19944e6 −0.0966064
689689 −4.37095e6 −0.350774
690690 0 0
691691 1.36336e7 1.08621 0.543107 0.839663i 0.317248π-0.317248\pi
0.543107 + 0.839663i 0.317248π0.317248\pi
692692 −2.46027e7 −1.95306
693693 0 0
694694 −3.64491e6 −0.287269
695695 8.12548e6 0.638097
696696 0 0
697697 738429. 0.0575741
698698 2.66036e7 2.06681
699699 0 0
700700 −2.17611e6 −0.167856
701701 1.97549e6 0.151838 0.0759190 0.997114i 0.475811π-0.475811\pi
0.0759190 + 0.997114i 0.475811π0.475811\pi
702702 0 0
703703 −305194. −0.0232910
704704 815222. 0.0619932
705705 0 0
706706 2.20744e6 0.166678
707707 −272974. −0.0205387
708708 0 0
709709 −1.56906e7 −1.17226 −0.586128 0.810218i 0.699349π-0.699349\pi
−0.586128 + 0.810218i 0.699349π0.699349\pi
710710 −1.98150e7 −1.47519
711711 0 0
712712 8.50953e6 0.629079
713713 −4.07987e6 −0.300554
714714 0 0
715715 936628. 0.0685176
716716 −3.12074e7 −2.27496
717717 0 0
718718 −9.99695e6 −0.723696
719719 1.50922e6 0.108875 0.0544377 0.998517i 0.482663π-0.482663\pi
0.0544377 + 0.998517i 0.482663π0.482663\pi
720720 0 0
721721 1.89906e6 0.136050
722722 −1.17527e6 −0.0839066
723723 0 0
724724 −3.99993e7 −2.83600
725725 6.53098e6 0.461460
726726 0 0
727727 2.42082e6 0.169874 0.0849369 0.996386i 0.472931π-0.472931\pi
0.0849369 + 0.996386i 0.472931π0.472931\pi
728728 −3.42791e6 −0.239718
729729 0 0
730730 −3.96217e7 −2.75186
731731 −278285. −0.0192618
732732 0 0
733733 −2.40820e7 −1.65552 −0.827758 0.561086i 0.810384π-0.810384\pi
−0.827758 + 0.561086i 0.810384π0.810384\pi
734734 −2.69355e7 −1.84537
735735 0 0
736736 8.06024e6 0.548470
737737 867031. 0.0587985
738738 0 0
739739 −9.91699e6 −0.667988 −0.333994 0.942575i 0.608397π-0.608397\pi
−0.333994 + 0.942575i 0.608397π0.608397\pi
740740 2.91657e6 0.195791
741741 0 0
742742 1.12152e6 0.0747822
743743 −2.39963e7 −1.59468 −0.797338 0.603533i 0.793759π-0.793759\pi
−0.797338 + 0.603533i 0.793759π0.793759\pi
744744 0 0
745745 −1.66081e7 −1.09630
746746 −3.22109e7 −2.11912
747747 0 0
748748 29525.3 0.00192948
749749 −3.08809e6 −0.201134
750750 0 0
751751 1.75635e7 1.13634 0.568172 0.822909i 0.307651π-0.307651\pi
0.568172 + 0.822909i 0.307651π0.307651\pi
752752 1.39003e6 0.0896354
753753 0 0
754754 2.92848e7 1.87592
755755 4.69433e6 0.299713
756756 0 0
757757 3.44163e6 0.218285 0.109143 0.994026i 0.465189π-0.465189\pi
0.109143 + 0.994026i 0.465189π0.465189\pi
758758 −4.88008e7 −3.08499
759759 0 0
760760 3.94567e6 0.247791
761761 −2.71265e7 −1.69798 −0.848990 0.528409i 0.822789π-0.822789\pi
−0.848990 + 0.528409i 0.822789π0.822789\pi
762762 0 0
763763 3.63827e6 0.226247
764764 1.47929e7 0.916896
765765 0 0
766766 492985. 0.0303572
767767 3.21229e7 1.97163
768768 0 0
769769 −9.55287e6 −0.582530 −0.291265 0.956642i 0.594076π-0.594076\pi
−0.291265 + 0.956642i 0.594076π0.594076\pi
770770 −240325. −0.0146074
771771 0 0
772772 −3.04342e7 −1.83789
773773 −3.86711e6 −0.232776 −0.116388 0.993204i 0.537132π-0.537132\pi
−0.116388 + 0.993204i 0.537132π0.537132\pi
774774 0 0
775775 −5.83352e6 −0.348880
776776 6.79650e6 0.405164
777777 0 0
778778 −2.02728e7 −1.20078
779779 6.79366e6 0.401107
780780 0 0
781781 −479235. −0.0281139
782782 437034. 0.0255563
783783 0 0
784784 2.73689e6 0.159026
785785 −2.67053e7 −1.54676
786786 0 0
787787 1.47900e7 0.851197 0.425598 0.904912i 0.360064π-0.360064\pi
0.425598 + 0.904912i 0.360064π0.360064\pi
788788 3.39204e7 1.94601
789789 0 0
790790 2.82877e7 1.61261
791791 −112773. −0.00640863
792792 0 0
793793 −1.61674e7 −0.912971
794794 −1.59515e7 −0.897946
795795 0 0
796796 −3.94702e7 −2.20794
797797 1.59707e7 0.890589 0.445294 0.895384i 0.353099π-0.353099\pi
0.445294 + 0.895384i 0.353099π0.353099\pi
798798 0 0
799799 322505. 0.0178719
800800 1.15248e7 0.636659
801801 0 0
802802 3.89376e7 2.13764
803803 −958267. −0.0524442
804804 0 0
805805 −2.15765e6 −0.117352
806806 −2.61574e7 −1.41826
807807 0 0
808808 −1.70778e6 −0.0920244
809809 −711077. −0.0381984 −0.0190992 0.999818i 0.506080π-0.506080\pi
−0.0190992 + 0.999818i 0.506080π0.506080\pi
810810 0 0
811811 −1.71319e7 −0.914648 −0.457324 0.889300i 0.651192π-0.651192\pi
−0.457324 + 0.889300i 0.651192π0.651192\pi
812812 −4.55758e6 −0.242574
813813 0 0
814814 116296. 0.00615184
815815 −2.15969e6 −0.113893
816816 0 0
817817 −2.56026e6 −0.134193
818818 1.41432e7 0.739033
819819 0 0
820820 −6.49232e7 −3.37183
821821 9.14797e6 0.473660 0.236830 0.971551i 0.423892π-0.423892\pi
0.236830 + 0.971551i 0.423892π0.423892\pi
822822 0 0
823823 1.37403e7 0.707128 0.353564 0.935410i 0.384970π-0.384970\pi
0.353564 + 0.935410i 0.384970π0.384970\pi
824824 1.18809e7 0.609581
825825 0 0
826826 −8.24227e6 −0.420336
827827 5.10837e6 0.259728 0.129864 0.991532i 0.458546π-0.458546\pi
0.129864 + 0.991532i 0.458546π0.458546\pi
828828 0 0
829829 −1.36897e7 −0.691844 −0.345922 0.938263i 0.612434π-0.612434\pi
−0.345922 + 0.938263i 0.612434π0.612434\pi
830830 2.63089e7 1.32558
831831 0 0
832832 4.69251e7 2.35016
833833 634995. 0.0317072
834834 0 0
835835 3.10282e6 0.154007
836836 271637. 0.0134423
837837 0 0
838838 −832153. −0.0409348
839839 7.59127e6 0.372314 0.186157 0.982520i 0.440397π-0.440397\pi
0.186157 + 0.982520i 0.440397π0.440397\pi
840840 0 0
841841 −6.83285e6 −0.333128
842842 6.13296e7 2.98119
843843 0 0
844844 −6.22910e7 −3.01002
845845 2.79470e7 1.34646
846846 0 0
847847 4.01739e6 0.192414
848848 −841927. −0.0402054
849849 0 0
850850 624885. 0.0296656
851851 1.04411e6 0.0494223
852852 0 0
853853 1.52482e6 0.0717542 0.0358771 0.999356i 0.488578π-0.488578\pi
0.0358771 + 0.999356i 0.488578π0.488578\pi
854854 4.14832e6 0.194638
855855 0 0
856856 −1.93197e7 −0.901190
857857 7.90135e6 0.367493 0.183747 0.982974i 0.441177π-0.441177\pi
0.183747 + 0.982974i 0.441177π0.441177\pi
858858 0 0
859859 4.18519e7 1.93523 0.967615 0.252432i 0.0812302π-0.0812302\pi
0.967615 + 0.252432i 0.0812302π0.0812302\pi
860860 2.44670e7 1.12807
861861 0 0
862862 4.20976e7 1.92970
863863 3.23045e7 1.47651 0.738254 0.674523i 0.235650π-0.235650\pi
0.738254 + 0.674523i 0.235650π0.235650\pi
864864 0 0
865865 −3.48792e7 −1.58499
866866 −2.70674e7 −1.22646
867867 0 0
868868 4.07086e6 0.183395
869869 684149. 0.0307327
870870 0 0
871871 4.99073e7 2.22904
872872 2.27617e7 1.01371
873873 0 0
874874 4.02078e6 0.178046
875875 2.37442e6 0.104843
876876 0 0
877877 −8.40521e6 −0.369020 −0.184510 0.982831i 0.559070π-0.559070\pi
−0.184510 + 0.982831i 0.559070π0.559070\pi
878878 −6.23192e7 −2.72826
879879 0 0
880880 180412. 0.00785343
881881 2.14767e7 0.932238 0.466119 0.884722i 0.345652π-0.345652\pi
0.466119 + 0.884722i 0.345652π0.345652\pi
882882 0 0
883883 −4.00787e7 −1.72986 −0.864931 0.501890i 0.832638π-0.832638\pi
−0.864931 + 0.501890i 0.832638π0.832638\pi
884884 1.69951e6 0.0731463
885885 0 0
886886 6.14183e7 2.62853
887887 −2.81155e7 −1.19988 −0.599938 0.800046i 0.704808π-0.704808\pi
−0.599938 + 0.800046i 0.704808π0.704808\pi
888888 0 0
889889 −1.78282e6 −0.0756577
890890 3.43403e7 1.45321
891891 0 0
892892 6.81916e7 2.86958
893893 2.96709e6 0.124510
894894 0 0
895895 −4.42426e7 −1.84622
896896 −6.82322e6 −0.283935
897897 0 0
898898 −1.48624e7 −0.615031
899899 −1.22175e7 −0.504179
900900 0 0
901901 −195338. −0.00801632
902902 −2.58877e6 −0.105944
903903 0 0
904904 −705533. −0.0287142
905905 −5.67070e7 −2.30152
906906 0 0
907907 −1.84010e7 −0.742717 −0.371358 0.928490i 0.621108π-0.621108\pi
−0.371358 + 0.928490i 0.621108π0.621108\pi
908908 7.18173e7 2.89078
909909 0 0
910910 −1.38334e7 −0.553764
911911 −4.13921e7 −1.65242 −0.826211 0.563361i 0.809508π-0.809508\pi
−0.826211 + 0.563361i 0.809508π0.809508\pi
912912 0 0
913913 636291. 0.0252627
914914 3.50739e7 1.38873
915915 0 0
916916 5.21316e7 2.05288
917917 −6.11881e6 −0.240294
918918 0 0
919919 7.77910e6 0.303837 0.151918 0.988393i 0.451455π-0.451455\pi
0.151918 + 0.988393i 0.451455π0.451455\pi
920920 −1.34987e7 −0.525801
921921 0 0
922922 −2.26227e7 −0.876431
923923 −2.75853e7 −1.06579
924924 0 0
925925 1.49290e6 0.0573689
926926 1.91678e6 0.0734591
927927 0 0
928928 2.41371e7 0.920059
929929 3.18869e7 1.21220 0.606098 0.795390i 0.292734π-0.292734\pi
0.606098 + 0.795390i 0.292734π0.292734\pi
930930 0 0
931931 5.84205e6 0.220897
932932 −6.16934e6 −0.232648
933933 0 0
934934 −7.63745e7 −2.86471
935935 41858.0 0.00156585
936936 0 0
937937 −1.23641e7 −0.460061 −0.230030 0.973183i 0.573883π-0.573883\pi
−0.230030 + 0.973183i 0.573883π0.573883\pi
938938 −1.28055e7 −0.475214
939939 0 0
940940 −2.83549e7 −1.04667
941941 −7.79985e6 −0.287152 −0.143576 0.989639i 0.545860π-0.545860\pi
−0.143576 + 0.989639i 0.545860π0.545860\pi
942942 0 0
943943 −2.32421e7 −0.851129
944944 6.18747e6 0.225987
945945 0 0
946946 975605. 0.0354443
947947 −3.53833e7 −1.28211 −0.641053 0.767497i 0.721502π-0.721502\pi
−0.641053 + 0.767497i 0.721502π0.721502\pi
948948 0 0
949949 −5.51589e7 −1.98815
950950 5.74903e6 0.206674
951951 0 0
952952 −153194. −0.00547833
953953 1.37685e6 0.0491084 0.0245542 0.999699i 0.492183π-0.492183\pi
0.0245542 + 0.999699i 0.492183π0.492183\pi
954954 0 0
955955 2.09719e7 0.744097
956956 5.01193e7 1.77362
957957 0 0
958958 −2.24626e7 −0.790762
959959 8.92983e6 0.313543
960960 0 0
961961 −1.77164e7 −0.618822
962962 6.69414e6 0.233215
963963 0 0
964964 3.62687e7 1.25701
965965 −4.31466e7 −1.49152
966966 0 0
967967 −1.49803e7 −0.515175 −0.257588 0.966255i 0.582928π-0.582928\pi
−0.257588 + 0.966255i 0.582928π0.582928\pi
968968 2.51336e7 0.862118
969969 0 0
970970 2.74274e7 0.935956
971971 1.07440e7 0.365695 0.182847 0.983141i 0.441469π-0.441469\pi
0.182847 + 0.983141i 0.441469π0.441469\pi
972972 0 0
973973 −2.90244e6 −0.0982837
974974 −4.38374e7 −1.48063
975975 0 0
976976 −3.11414e6 −0.104644
977977 1.81622e7 0.608741 0.304371 0.952554i 0.401554π-0.401554\pi
0.304371 + 0.952554i 0.401554π0.401554\pi
978978 0 0
979979 830535. 0.0276950
980980 −5.58292e7 −1.85693
981981 0 0
982982 8.01079e7 2.65092
983983 −2.71045e7 −0.894660 −0.447330 0.894369i 0.647625π-0.647625\pi
−0.447330 + 0.894369i 0.647625π0.647625\pi
984984 0 0
985985 4.80889e7 1.57926
986986 1.30874e6 0.0428708
987987 0 0
988988 1.56357e7 0.509596
989989 8.75901e6 0.284750
990990 0 0
991991 6.68184e6 0.216128 0.108064 0.994144i 0.465535π-0.465535\pi
0.108064 + 0.994144i 0.465535π0.465535\pi
992992 −2.15594e7 −0.695598
993993 0 0
994994 7.07799e6 0.227219
995995 −5.59569e7 −1.79183
996996 0 0
997997 −2.45982e7 −0.783729 −0.391864 0.920023i 0.628170π-0.628170\pi
−0.391864 + 0.920023i 0.628170π0.628170\pi
998998 −1.19962e7 −0.381256
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.6.a.k.1.1 6
3.2 odd 2 inner 171.6.a.k.1.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.6.a.k.1.1 6 1.1 even 1 trivial
171.6.a.k.1.6 yes 6 3.2 odd 2 inner